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Mathematical definition of the BRAID probabilistic model:
Technical report companion to (Phénix et al., 2025)

Thierry Phénix, Émilie Ginestet, Sylviane Valdois, and Julien Diard
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France

1. Introduction
This is a technical note, to provide the complete mathematical definition of the

BRAID model. Unfortunately, it could not be included in the main paper (Phénix et
al., 2025). Therefore, it technically has not been peer-reviewed, in this form, during the
publication process, in 2025 in the journal Psychonomic Bulletin & Review. However, it
can be seen as an English translation and summary of the mathematical definition of the
BRAID model as found in Thierry Phénix’s PhD thesis manuscript, which, of course, has
been peer-reviewed as part of Thierry’s PhD defense.

The first section serves as a preamble: it recalls the two schematic representations
of the BRAID model, reprised from Figure 1 and Figure 2 of the published paper (Phénix
et al., 2025).

The second section contains the full mathematical definition of the model, with the
definition of all variables, the decomposition of the joint probability distribution (this is
a slight adaptation of Appendix A of the published paper (Phénix et al., 2025)), and the
definition of all terms appearing in this decomposition. The section then provides details
on how Bayesian inference yields probabilistic computation for all tasks of interest: letter
recognition, word recognition, letter recognition with lexical influence, and lexical decision.

The third and final section provides the mathematical definition and properties of
controlled coherence variables.

2. Schematic representations of the BRAID model
Figure 1 shows, side by side, two schematic representations of the BRAID model.

3. BRAID model definition
We apply the Bayesian Programming methodology (Bessière et al., 2013; Lebeltel

et al., 2004), in which a “Bayesian program” is a structure that consists of two parts. In the
first part, called a “description”, we provide a complete, operational mathematical definition
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2 Vanilla BRAID, box-model version
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Figure 1

Graphical representations of the BRAID model. The left schema is a conceptual represen-
tation of the model, the right schema is the graphical representation of the structure of the
model, according to the usual convention of probabilistic graphical models (except for the
self-looping arrows, which represent temporal dependencies).

of the joint probability distribution of interest. In the second part, the joint probability
distribution is used, thanks to Bayesian inference, to compute answers to probabilistic
questions of interest.

3.1 BRAID model: description

To define the joint probability distribution that constitutes the probabilistic knowl-
edge base of the BRAID model, first we define the variables it involves, second we decompose
the joint probability distribution as a product of terms, introducing conditional indepen-
dence hypotheses to simplify some terms, and third and finally, we mathematically define
each term of the decomposition.

Variables

To define each variable of the model, we give it a name and variation domain, i.e.,
a set of possible values. Subscript indexes X1:N refer to spatial position in a left-to-right
letter sequence, superscript indexes X1:T refer to time evolution of variable X from time
index 1 to T .

• S1:T
1:N , I1:T

1:N , P 0:T
1:N and L1:T

1:N are variables over letter identity, that is, they each have
the domain DL = {‘a′, ‘b′, . . . , ‘z′, ‘$′}, with ‘$′ a symbol representing the unknown or
missing letter. We note |DL| the cardinal of the space DL, i.e. |DL| = 27.
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• W 0:T are variables over word identity, that is, they each have the domain DW =
{w1, w2, . . . , wK}.

• D0:T are Boolean variables for lexical decision, that is, their values are noted {T, F}
(for True, False, respectively).

• ∆I1:T
1:N are variables over relative position shifts, that is, they each have the domain

D∆I = {−1, 0, 1}.

• λL
1:T
1:N , λP

1:T
1:N , λD

1:T
1:N are coherence variables, that is, binary variables that can be used

a “Bayesian switches”. Their values are noted {0, 1}.

• CD
1:T
1:N are binary variables, their values are noted {0, 1}.

• CA
1:T
1:N are “control variables”, that is, binary variables that can pilot the state of

coherence variables. Their values are noted {0, 1}.

• A1:T are variables denoting the spatial positions of letters. Their domains are the
discrete set of possible letter positions, i.e. for N -letter words, DA = {1, 2, . . . , N}.

• µ1:T
A and G1:T are variables over spatial positions. Their domains are the continuous

sets of possible attention and gaze position, i.e. DP os = [1, N ].

• σ1:T
A are variables over spatial dispersion. Their domains are the interval (0, 100].

Decomposition

The core definition of the BRAID model is the joint probability distribution

JDBRAID =

P

(
W 0:T L1:T

1:N λL
1:T
1:N P 0:T

1:N A1:T µ1:T
A σ1:T

A CA
1:T
1:N λP

1:T
1:N

G1:T S1:T
1:N ∆I1:T

1:N I1:T
1:N λD

1:T
1:N D0:T CD

1:T
1:N

)
,
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which is defined by the following decomposition:

JDBRAID = (1)

P (W 0)P (D0)
N∏

n=1
P (P 0

n)

T∏
t=1



P (W t | W t−1)
N∏

n=1
P (Lt

n | W t)

P (Dt | Dt−1) P (CD
t
1:N | Dt)

N∏
n=1

[
P (λD

t
n | λL

t
n CD

t
n)P (λL

t
n | Lt

n P t
n)
]

N∏
n=1

P (P t
n | P t−1

n )

P (At | µt
A σt

A)P (µt
A)P (σt

A)
N∏

n=1
P (CA

t
n | At)

N∏
n=1

P (λP
t
n | P t

n It
n CA

t
n)

P (Gt)
N∏

n=1

[
P (St

n)P (∆It
n)P (It

n | St
1:N ∆It

n Gt)
]



.

The top terms (first line of Equation (1), outside of the main product) concern the initial
state of the model (at time t = 0), whereas the innermost product contains the temporally
local portion of the model, i.e., the model that is iterated at each time step t ̸= 0. The
innermost product is laid out over seven lines, roughly following a top-down traversal of the
dependency structure shown Figure 1 (right), from lexical knowledge to stimulus.

Parametric forms and parameter identification

We now define each term of the model, that is to say, each term appearing in
Equation (1), by defining their parametric forms.

• P (W 0) is the prior probability distribution over word identity. It is a discrete prob-
ability distribution P ([W 0 = wi]) = pwi , whose parameters pwi are identified from a
frequency database provided by a chosen lexicon.

• P (D0) is the prior probability distribution over the lexical decision binary variable,
that is to say, over whether a word is present or not. It is a Bernoulli distribution
P ([D0 = T ]) = pd0 , whose parameters pd0 = 1/2 in our experiments, assuming
ignorance of the frequency of encountered words and non-words, or, equivalently,
assuming half of stimuli are words.

• ∀n, P (P 0
n) are the prior probability distributions over letter identity. They are discrete

uniform probability distributions.

• ∀t, P (W t | W t−1) are the probability distributions for the (stationary) dynamical
model of word identity evolution in lexical memory. These discrete conditional prob-
ability distributions are generalized version of the Laplace succession law. In other
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words, they are “almost Dirac” discrete conditional probability distributions: most of
the probability mass is set on the same word as in the previous time step, and the rest
is distributed as is distributed the prior probability distribution over words, P (W 0).
When iterated with itself, P (W t | W t−1) therefore converges towards P (W 0), which
can be seen as its resting state. Recalling that P ([W 0 = wi]) = pwi , and introducing
parameter LeakW to control convergence speed, we define:

P ([W t = wt] | [W t−1 = wt−1])

=


1+pwt LeakW

1+LeakW
if wt = wt−1

pwi LeakW

1+LeakW
otherwise.

• ∀t, n, P (Lt
n | W t) are the probability distributions for the (stationary) model of how

letters compose words, i.e., a lexical database of known words. They are “almost
Dirac” discrete conditional probability distributions: given a lexicon, a word and a
position, almost all the probability mass (1 − ϵ) is set on the correct letter, and the
rest of the probability mass is uniformly distributed over all other letters. Recall that
the letter space is of size |DL|, so that, mathematically:

P ([Lt
n = l] | [W t = wt])

=


1 − ϵ if l is the correct letter

for word wt at position n
ϵ/(|DL| − 1) otherwise.

• ∀t, n, P (λL
t
n | Lt

n P t
n) are the probability distributions for the coherence models be-

tween the lexical knowledge model and the perceptual letter representation model.
As any coherence model, they are Dirac probability distributions over value λt

Ln
= 1

when Lt
n = P t

n. Mathematically:

P ([λL
t
n = 1] | [Lt

n = lL] [P t
n = lP ]) =

{
1 if lL = lP
0 otherwise.

• ∀t, n, P (P t
n | P t−1

n ) are the probability distributions for the (stationary) dynamical
model of letter identity evolution in the perceptual letter representation model. These
discrete conditional probability distributions are “almost Dirac” discrete conditional
probability distributions: almost all the probability mass is set on the same letter
as in the previous time step, and the rest of the probability mass is uniformly dis-
tributed over all other letters (so that, when iterated with itself, P t

n would decay to
a uniform probability distribution, with decay speed controlled by parameter LeakP ).
Mathematically, P (P t

n | P t−1
n ) are Laplace succession laws:

P ([P t
n = lP

t] | [P t−1
n = lP

t−1])

=
{ 1+LeakP

1+|DL| LeakP
if lP

t = lP
t−1

LeakP
1+|DL| LeakP

otherwise.
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• ∀t, P (At | µt
A σt

A) are the probability distributions for the model of attention dis-
tribution. They are discrete and bounded approximations of Gaussian probability
distributions over the space of possible letter positions. Their parameters are their
means µt

A and standard-deviations σt
A.

• ∀t, P (µt
A) and P (σt

A) are prior probability distributions on the parameters of attention
distribution. They both are uniform probability distributions over their respective
domains. This choice is of no practical consequence, as all inferences considered in
this manuscript are conditioned on given values for variables µt

A = µ, σt
A = σ, so that

P ([µt
A = µ]) and P ([σt

A = σ]) can always be aggregated into normalization constants.
The values µ and σ for µt

A and σt
A depend on the experiment, and are provided in the

main text.

• ∀t, n, P (λP
t
n | P t

n It
n CA

t
n) are the probability distributions for the coherence models

between the perceptual letter representation model and the visual letter recognition
model, controlled by attention. When the control variable CA

t
n = 1, the probability

distribution over coherence variable λt
Pn

is a Dirac distribution centered on value 1
when P t

n = It
n, and centered on value 0 otherwise. When the control variable CA

t
n = 0,

the probability value for the case [λP
t
n = 1] is 1/|DL|. Mathematically:

P ([λP
t
n = 1] | [P t

n = lP ] [It
n = lI ] [CA

t
n = c])

=


1 if c = 1 and lP = lI
0 if c = 1 and lP ̸= lI
1/|DL| if c = 0.

Details about control variables and demonstrations of their properties, in the general
case, as well as the rationale and consequence of value 1/DL for the case c = 0, are
provided in the last section of this document.

• ∀t, n, P (CA
t
n | At) are the probability distributions for the models of attention al-

location to spatial positions. They are Bernoulli probability distributions, with the
attention probability allocated to position n by P (At) being the probability for value
CA

t
n = 1: {

P ([CA
t
n = 1] | At) = P ([At = n])

P ([CA
t
n = 0] | At) = 1 − P ([At = n]) .

• ∀t, P (Gt) are the probability distributions for the model of gaze positioning. They
are discrete uniform probability distributions over the space of possible letter posi-
tions. This choice is of no practical consequence, as all inferences considered in this
manuscript are conditioned on given values of gaze position gt.

• ∀t, n, P (St
n) are the prior probability distributions over stimuli. They are discrete uni-

form probability distributions. Here again, this choice is of no practical consequence,
as all inferences considered in this manuscript are conditioned on given values st

n for
variables St

n, so that P ([St
n = st

n]) can always be aggregated into normalization con-
stants. The values st

n describe the stimuli used in experiment simulations, i.e. the
input words, pseudo-words, etc.
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• ∀t, n, P (∆It
n) are the probability distributions over relative input shifts, for the model

of lateral interference between letters. They are discrete probability distributions
over position indexes D∆I = {−1, 0, 1}, that we choose to constrain to be symmetric
for internal letters, with parameter θI regulating the strength of interference from
neighboring letters. Mathematically:

P ([∆It
n = i]) =

{
1 − θI if i = 0
θI/2 otherwise.

For the first and last letter of a word, however, all interference is provided by the only
neighboring letter, and the distribution is then normalized:

P ([∆It
n = i]) =

{ 2θI
1+θI

if i = 0
1−θI
1+θI

otherwise.

• ∀t, n, P (It
n | St

1:N ∆It
n Gt) are the probability distributions for the model of stimulus

decoding. They are discrete probability distributions over letter identity, as a function
of stimulus input, relative position shift, and gaze position. Describing this term is
easier done in pedagogical steps.
First, consider a probability distribution of the form P (It

n | St
n): this would be a con-

ditional table of discrete probability distributions, whose parameters can be identified
from any number of experimental confusion matrices in the literature (i.e., from one
specific confusion matrix to capture the specifics of experimental conditions it was
measured in, or from an average of several to simulate overall statistics of confusions
in letter identification). Let {pi,s}i,s∈D2

L
be such experimental parameters; we scale

them down by a constant factor ScaleI , to affect the quantity of perceptual informa-
tion that enters the model at each time step (in effect, this slows down simulation
time by scaling the arbitrary time unit).
Second, eccentricity from gaze position is used to augment the scaling factor ScaleI ,
as a linear function of distance between gaze gt and letter position n. The slope of
this linear function is related to a parameter noted θG. Gaze position Gt thus also
conditions the term P (It

n | St
1:N Gt).

Third and finally, we implement interference from neighboring stimuli by refining
P (It

n | St
n Gt) into P (It

n | St
1:N ∆It

n Gt): ∆It
n represents a possible lateral shift

between stimulus and letter recognition. When ∆It
n = 0, the stimulus at position

n correctly feeds the letter representation at the same position n. However, when
∆It

n = −1, the stimulus at position n − 1 incorrectly feeds the letter representation at
position n, etc. Given the value of ∆It

n, the adequate set of {pi,s} parameters is used.

• ∀t, n, P (λD
t
n | λL

t
n CD

t
n) are the probability distributions for the coherence models

between coherence variables of the word recognition model and the decision control
variables. As any coherence model, they are Dirac probability distributions over value
λD

t
n = 1 when λL

t
n = CD

t
n. Mathematically:

P ([λD
t
n = 1] | [λL

t
n = l] [CD

t
n = c]) =

{
1 if l = c
0 otherwise.
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• ∀t, P (Dt | Dt−1) are the probability distributions for the (stationary) dynamical model
of lexical decision evolution. They are conditional Bernoulli distributions featuring
decay parameter LeakD, that controls convergence speed for each hypothesis Dt = T
and Dt = F : {

P ([Dt = T ] | [Dt−1 = T ]) = 1 − LeakD

P ([Dt = F ] | [Dt−1 = F ]) = 1 − LeakD .

• ∀t, P (CD
t
1:N | Dt) are joint probability distributions of control variables that define

the lexical decision knowledge. There are two cases to consider. Firstly, when reading
a word (Dt = T ), the perceived letters should perfectly match those of a word in or-
thographic knowledge, so that all CD

t
n should be 1. Secondly, when reading something

that is not a word (Dt = F ), some or all of control variables CD
t
n can be 0. However,

to limit computation time, we limit the model so that it only consider non-words which
have at most 1 letter that differs from a real word (in practice, this has a negligible
impact, as having two differing letters will also be recognized as having probably at
least 1 letter differing). The position of the error is unconstrained. Mathematically:

P ([CD
t
1:N = {c1, . . . , cN }] | [Dt = d])

=


1 if d = T and ∀n, cn = 1
1/N if d = F and ∃!n, cn = 0
0 otherwise .

(We recall that ∃!n, cn = 0 reads “there exists a single n such that cn = 0, i.e.,
P (CD

t
1:N | [Dt = F ]) is uniformly distributed over the N cases that contain a single

error cn = 0 at position n.)

This concludes the description of probabilistic terms featured in the BRAID model.

4. Using Bayesian inference to model cognitive tasks

The BRAID model is used to solve three main cognitive tasks, that we used in several
simulated experiments: isolated letter recognition, word recognition and lexical decision. In
the case of isolated letter recognition, we develop two variants, depending on whether lexical
knowledge is allowed to influence letter recognition or not. Each cognitive task is modeled
by a probabilistic question to BRAID, solved automatically by Bayesian inference.

Indeed, we call a probabilistic question any term of the form P (Searched | Known),
where Searched, Known are subsets of variables appearing in the joint probability distri-
bution of the model (such that Searched ̸= ∅, and such that Searched, Known, along with
Free, form a partition of all variables in the joint probability distribution). Whatever the
question, Bayesian inference allows to automatically compute its answer; this has been
demonstrated in the general case elsewhere (Bessière et al., 2013; Lebeltel et al., 2004).

In this annex, we provide the mathematical definition of the probabilistic questions
that model our cognitive tasks, and show what solution results from Bayesian inference
from the joint probability distribution JDBRAID of the BRAID model.
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4.1 Isolated letter identification without lexical influence: QP
T
n

Letter recognition, in its simplest form, is modeled by the probabilistic question
QP

T
n = P (P T

n | S1:T
1:N [λP

1:T
n = 1] µ1:T

A σ1:T
A G1:T ): given the stimulus S1:T

1:N , given attention
distribution parameters µ1:T

A , σ1:T
A and gaze position G1:T , and given that information is

allowed to propagate in the model from the stimulus to the perceived letter at position n (i.e.,
[λP

1:T
n = 1]), what is the probability distribution over the perceived letter at position n, P T

n ?
Using the shorthand kt = st

1:N gt µt
A σt

A, it is rewritten as QP
T
n = P (P T

n | k1:T [λP
1:T
n = 1].

We now derive the answer to question QP
T
n by applying Bayesian inference. We

first notice that many coherence variables are left unspecified in the question (λL and λD

at all positions, λP
t
m for positions m ̸= n). A key feature of coherence variables is that,

in this case, they can be interpreted as open “Bayesian switches”, so that we can simplify
portions of the model beyond these coherence variables (Gilet et al., 2011). Therefore, even
if we start from the entire joint probability distribution JDBRAID, only variables between
stimulus S1:T

1:N and letter percept P T
n are involved. In other words, we can solve QP

T
n in a

“lighter” version of the model, which would be the joint probability distribution JDPercept :

JDPercept
T
n =

P

(
P 0:T

n A1:T µ1:T
A σ1:T

A λP
1:T
n

CA
1:T
n G1:T S1:T

1:N ∆I1:T
n I1:T

n

)
,

defined by the following decomposition:

JDPercept
T
n = P (P 0

n)

T∏
t=1


P (P t

n | P t−1
n )

P (At | µt
A σt

A)P (µt
A)P (σt

A)
P (λP

t
n | P t

n It
n CA

t
n) P (CA

t
n | At)

P (Gt)
N∏

n=1

[
P (St

n)
]

P (∆It
n) P (It

n | St
1:N ∆It

n Gt)

 .

To answer the question QP
T
n , we first involve this partial joint distribution JDPercept

by marginalizing over missing variables. Then we reorder terms to make appear a temporal
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recursion term.

QP
T
n = P (P T

n | k1:T [λP
1:T
n = 1])

∝
∑
I1:T

n

∆I
1:T
n

∑
P 1:T −1

n

∑
A1:T

CA
1:T
n

JDPercept
T
n

∝
∑

P T −1
n



P (P 0
n)

∑
I1:T −1

n

∆I
1:T −1
n

∑
P 1:T −2

n

∑
A1:T −1

CA
1:T −1
n

T −1∏
t=1


P (P t

n | P t−1
n )

P (At | µt
A σt

A)
P (λP

t
n | P t

n It
n CA

t
n) P (CA

t
n | At)

P (Gt)
N∏

n=1

[
P (St

n)
]

P (∆It
n) P (It

n | St
1:N ∆It

n Gt)


P (P T

n | P T −1
n )

∑
IT

n

∆I
T
n

∑
AT

CA
T
n


P (AT | µT

A σT
A)

P (λP
T
n | P T

n IT
n CA

T
n ) P (CA

T
n | AT )

P (GT )
N∏

n=1

[
P (ST

n )
]

P (∆IT
n ) P (IT

n | ST
1:N ∆IT

n GT )





In the second line of the outermost summation, we first recognize the model at the previous
time step, and thus a recursion term:

QP
T
n

∝
∑

P T −1
n



∑
I1:T −1

n

∆I
1:T −1
n

∑
P 1:T −2

n

∑
A1:T −1

CA
1:T −1
n

JDPercept
T −1
n

P (P T
n | P T −1

n )

∑
IT

n

∆I
T
n

∑
AT

CA
T
n


P (AT | µT

A σT
A)

P (λP
T
n | P T

n IT
n CA

T
n ) P (CA

T
n | AT )

P (GT )
N∏

n=1

[
P (ST

n )
]

P (∆IT
n ) P (IT

n | ST
1:N ∆IT

n GT )





∝
∑

P T −1
n



QP
T −1
n

P (P T
n | P T −1

n )

∑
IT

n

∆I
T
n

∑
AT

CA
T
n


P (AT | µT

A σT
A)

P (λP
T
n | P T

n IT
n CA

T
n ) P (CA

T
n | AT )

P (GT )
N∏

n=1

[
P (ST

n )
]

P (∆IT
n ) P (IT

n | ST
1:N ∆IT

n GT )





As in a standard Markov model, the temporal transition based on the recursion term can
thus be isolated from the rest of the equation. This latter part is reorganized to make
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appear the summation over the attentional switch variables CA
T
n :

∝



∑
P T −1

n

[
P (P T

n | P T −1
n ) QP

T −1
n

]

∑
IT

n

∆I
T
n

∑
AT

CA
T
n


P (AT | µT

A σT
A)

P (λP
T
n | P T

n IT
n CA

T
n ) P (CA

T
n | AT )

P (GT )
N∏

n=1

[
P (ST

n )
]

P (∆IT
n ) P (IT

n | ST
1:N ∆IT

n GT )





∝



∑
P T −1

n

[
P (P T

n | P T −1
n ) QP

T −1
n

]

∑
AT

CA
T
n


P (CA

T
n | AT )P (AT | µT

A σT
A)

∑
IT

n


P (λP

T
n | P T

n IT
n CA

T
n )∑

∆IT
n

[
P (∆IT

n )
P (IT

n | ST
1:N ∆IT

n GT )

] 



It remains only to write explicitly the two terms of the sum over the binary variable CA

T
n

and to simplify writing. We first remark that, since only position n is considered, we can
collapse the summation over At. We also note αn = P ([CA

T
n = 1] | [AT = n]), and p the

current value considered for variable P T
n , which propagates to variable IT

n , in the collapse
of the summation over IT

n due to the Bayesian switch λP
T
n being closed. We obtain:

∝



∑
P T −1

n

[
P ([P T

n = p] | P T −1
n ) QP

T −1
n

]


αn

∑
∆IT

n

[
P (∆IT

n )
P ([IT

n = p] | ST
1:N ∆IT

n GT )

]
+

(1 − αn)
|DL|

∑
∆IT

n

 P (∆IT
n )∑

IT
n

P (IT
n | ST

1:N ∆IT
n GT )







Finally, applying the normalization rule to simplify sums, we obtain:

QP
T
n ∝



∑
P T −1

n

[
P ([P T

n = p] | P T −1
n ) QP

T −1
n

]


αn

∑
∆IT

n

[
P (∆IT

n )
P ([IT

n = p] | ST
1:N ∆IT

n GT )

]
+

(1 − αn)
|DL|




(2)

This result is easily interpreted, as it contains the classic components of inference in a
Hidden Markov Model (HMM; Rabiner & Juang, 1993). Indeed, the temporal recursive
question QP

T −1
n is first multiplied with state transition probabilities P (P T

n | P T −1
n ). This

multiplication is then summed over P T −1
n , which “predicts” letter percepts for next time

step (in our case, this step involves memory decay, so that information about letter percepts
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decays and uncertainty increases). Finally, information from the stimulus is acquired via the
observation model. This observation model, in the BRAID model, is itself hierarchical and
structured, and already involves mechanisms such as lateral interference (with summations
over ∆IT

n and IT
n ) and attention distribution (with summation over CA

T
n ).

4.2 Word recognition: QW
T

The second cognitive task we consider is word recognition, mathematically modeled
by the probabilistic question QW

T = P (W T | S1:T
1:N [λL

1:T
1:N = 1] [λP

1:T
1:N = 1] µ1:T

A σ1:T
A G1:T ):

given the stimulus S1:T
1:N , given attention distribution parameters µ1:T

A , σ1:T
A and gaze position

G1:T , and given that information propagates in the model from stimulus to words (i.e.,
[λL

1:T
1:N = 1], [λP

1:T
1:N = 1]), what is the probability distribution over words W T ?

As previously, we use the property of open Bayesian switches, and observe that
λD variables are unspecified: we can simplify out the part of the BRAID model dedicated
to lexical decision. The “reduced” version of the joint distribution we use to solve the
probabilistic question of word recognition is:

JDWord
T =

P

(
W 0:T L1:T

1:N λL
1:T
1:N P 0:T

1:N A1:T µ1:T
A σ1:T

A λP
1:T
1:N CA

1:T
1:N

G1:T S1:T
1:N ∆I1:T

1:N I1:T
1:N

)
,

which is defined by the following decomposition:

JDWord
T =

P (W 0)
N∏

n=1
P (P 0

n)

T∏
t=1



P (W t | W t−1)
N∏

n=1
P (Lt

n | W t)

P (λL
t
n | Lt

n P t
n)

N∏
n=1

P (P t
n | P t−1

n )

P (At | µt
A σt

A)P (µt
A)P (σt

A)
N∏

n=1

[
P (λP

t
n | P t

n It
n CA

t
n)P (CA

t
n | At)

]
P (Gt)

N∏
n=1

[
P (St

n)P (∆It
n)P (It

n | St
1:N ∆It

n Gt)
]



.

In previous inferences, the model JDPercept could be interpreted as a HMM with a
complex observation model. This is not the case here, as the JDWord model contains two
parallel dynamic models: one over the word space P (W t | W t−1), the other over the letter
space P (P t

n | P t−1
n ). This makes JDWord a Hierarchical HMM (HHMM; Murphy, 2002). Of

course, since JDWord is nested in JDBRAID, this also applies to our overall BRAID model.
Various techniques exist to perform inference in such structures, and guarantee that

the parallel temporal dependencies are handled correctly. There are exact and approximate
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methods. For instance, standard Bayesian Network (BN; Pearl, 1988) or Dynamic Bayesian
Network (DBN; Dean & Kanazawa, 1989) exact inference techniques, such as clique tree
methods, would amount to grouping the W t and P t

n variables into a single joint variable, in
effect collapsing the two parallel dynamic models into a single one over a more complicated
space. This obviously costs memory space and computation time. On the other hand,
approximate techniques, in essence, perform iterations of information propagation in the
model, until numerical convergence.

We chose a method inspired from such approximate inference methods, perform-
ing single-pass inference. Indeed, at each time step, we “cut” the temporal dependency
between P t

n and P t−1
n . This allows to drastically simplify notations. Indeed, we can then

consider that the whole “bottom portion” of the model (between stimulus S1:T
1:N and let-

ter percepts P 0:T
1:N ) is synthesized and replaced by the process of isolated letter recogni-

tion we previously described. Recall the notation shorthand for known variables in the
right-hand side: kt = st

1:N gt µt
A σt

A. The joint probability distribution then features
QP

T
n = P (P T

n | k1:T [λP
1:T
n = 1]) as a term of its (simplified) decomposition 1. It also

becomes a conditional joint distribution:

JDWord
T

= P (W 0:T L1:T
1:N λL

1:T
1:N P 1:T

1:N | k1:T [λP
1:T
1:N = 1])

=



P (W 0)
N∏

n=1
P (P 0

n)

T∏
t=1


P (W t | W t−1)
N∏

n=1

 P (Lt
n | W t)

P (λL
t
n | Lt

n P t
n)

P (P t
n | k1:T [λP

1:T
n = 1])






The quality of this approximation, i.e., the discrepancy between the results we obtained
and results that would be provided by an exact inference method, is an open question.
However, since this approximation mostly concerns the speed of information accumulation
in the letter and word spaces, we believe any information lost by our approximation could
be counter-balanced by changing the “memory decay” parameters LeakP and LeakW . Since
we calibrated these parameters on experimentally observed dynamics from human partic-
ipants, it is likely that replacing our approximate inference by an exact inference method
would, after recalibration of the model, not change the overall dynamics of the inferences
we perform, and thus of the simulation results we obtained.

To compute QW
T from JDWord

T , we first marginalize over unknown variables. Then,

1We note here that we chose to feature QP
T
n , i.e. isolated letter recognition without influence of lexical

knowledge. The alternative choice would be to feature Q′
P

T
n , i.e. isolated letter recognition with influence

from lexical knowledge. However, this would not simplify the model, as letter recognition would be influenced
by word recognition in order to compute the influence of letter recognition over word recognition: this is
another way to see the information propagation loop we chose to approximate.
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we rearrange the terms of the summation so that the temporal recursion appears:

QW
T = P (W T | k1:T [λL

1:T
1:N = 1] [λP

1:T
1:N = 1])

∝
∑

W 0:T −1,L1:T
1:N ,P 1:T

1:N

JDWord
T

∝



∑
W T −1


 ∑

W 0:T −2,L1:T −1
1:N ,P 1:T −1

1:N

JDWord
T −1

 P (W T | W T −1)


N∏

n=1

∑
LT

n P T
n

 P (LT
n | W T )

P ([λL
T
n = 1] | LT

n P T
n )

P (P T
n | k1:T [λP

1:T
n = 1])




Then, as λL

T
n = 1, we can reduce the double sum over LT

n and P T
n to a single sum

over domain L:

∝


∑

W T −1

[
P (W T | W T −1) QW

T −1
]

N∏
n=1

∑
p∈DL

[
P ([LT

n = p] | W T )
P ([P T

n = p] | k1:T [λP
1:T
n = 1])

]


Using ⟨·, ·⟩ to denote the inner product:

QW
T ∝


∑

W T −1

[
P (W T | W T −1)QW

T −1
]

N∏
n=1

〈
P (LT

n | W T ), P (P T
n | k1:T [λP

1:T
n = 1])

〉


We recognize, in the last expression, the term P (P T
n | k1:T [λP

1:T
n = 1]), which is QP

T
n :

the process of word recognition includes a component which can be interpreted as letter
recognition. Therefore, finally:

QW
T ∝


∑

W T −1

[
P (W T | W T −1)QW

T −1
]

N∏
n=1

〈
P (LT

n | W T ), QP
T
n

〉


4.3 Isolated letter identification with lexical influence: Q′
P

T
n

In a previous section, we have shown how the probabilistic question QP
T
n was used

to model isolated letter recognition without influence of lexical knowledge. In QP
T
n , the

λL
1:T
1:N coherence variables were left unspecified, i.e. they were “open” Bayesian switches,

disconnecting in effect lexical knowledge from inference over variable P T
n .

We now develop a variant in which we “close” the Bayesian switch between letter per-
cepts P T

n and lexical knowledge, to model isolated letter recognition with lexical influence.
The corresponding probabilistic question is Q′

P
T
n = P (P T

n | k1:T [λP
1:T
n = 1] [λL

1:T
n = 1]):
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given the stimulus S1:T
1:N , given attention distribution parameters µ1:T

A , σ1:T
A and gaze po-

sition G1:T , and given that information propagates in the model in a bottom-up manner
from stimulus to the perceived letter at position n ([λP

1:T
n = 1]), but also in a top-down

manner from lexical knowledge to the perceived letter at position n ([λL
1:T
n = 1]), what is

the probability distribution over the perceived letter at position n, P T
n ?

Word recognition, with the probabilistic question QW
T , and letter recognition here

with Q′
P

T
n both involve the same portion of the model. As when solving QW

T , the issue arises
to deal with the coupled Markov models (one over variables P t

n, the other over variables
W t). In word recognition, we had chosen to “decouple” the Markov chains, resulting in
a strict bottom-up flow of information, where percept variables P t

n would inform about
the word variable W t, but not the other way around. Following the same strategy for
our approximated inference would of course make impossible to have lexical knowledge
inform letter identity. Indeed, a way to interpret exact inference would be to have a two-
way exchange of probabilistic information between W t and P t

n, at each time step t, until
convergence. Instead of performing this, which is costly in terms of computation costs, we
introduce a one-pass top-down propagation of information, at the last time step considered.

To derive our solution for Q′
P

T
n , we first make the joint probability distribution

JDWord
T appear by marginalizing over missing variables. The, we reorganize terms and

sums to make the temporal recursion appear:

Q′
P

T
n = P (P T

n | k1:T [λL
1:T
1:N = 1] [λP

1:T
n = 1])

∝
∑

w0:T ,
l1:T
1:N ,

p1:T −1
1:N ,pT

m ̸=n

JDWord
T

∝
∑

wT −1:T ,
lT1:N ,

pT
m ̸=n




P (W T | wT −1)∑
w0:T −2,

l1:T −1
1:N ,

p1:T −1
1:N

JDWord
T −1


 N∏

m=1,
m̸=n

P (lTm | wT )
P (λL

T
m | lTm pT

m)
P (pT

m | k1:T )


 P (lTn | wT )

P (λL
T
n | lTn P T

n )
P (P T

n | k1:T [λP
1:T
n = 1])




We can now make QW
T −1(wT −1) appear, that corresponds to the second summation over

JDWord
T −1. Reorganizing and simplifying further:

Q′
P

T
n ∝

∑
wT −1:T


[

P (W T | wT −1)
QW

T −1(wT −1)

]
N∏

m=1,
m ̸=n


∑
lTm,

pT
m

 P (lTm | wT )
P (λL

T
m | lTm pT

m)
P (pT

m | k1:T )



∑
lTn

 P (lTn | wT )
P (λL

T
n | lTn P T

n )
P (P T

n | k1:T [λP
1:T
n = 1])




∝
∑
wT





∑
wT −1

[
QW

T −1(wT −1) P (W T | wT −1)
]

N∏
m=1,
m ̸=n

〈
P (LT

m | wT ), P (P T
m | k1:T )

〉


∑
lTn

P (lTn | wT ) P (λL
T
n | lTn P T

n ) P (P T
n | k1:T [λP

1:T
n = 1])


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The first two lines correspond to QW
T (wT ), without considering a similarity between

letter percepts and words. This is where we temporarily ignore the top-down influence of
lexical knowledge on letter recognition.

Noticing that
〈
P (LT

n | W T ), P (P T
n | k1:T [λP

1:T
n = 1])

〉
is never 0, we write:

Q′
P

T
n ∝

∑
wT

 QW
T (wT ) /

〈
P (LT

n | wT ), P (P T
n | k1:T [λP

1:T
n = 1])

〉∑
lTn

P (lTn | wT ) P (λL
T
n | lTn P T

n ) P (P T
n | k1:T [λP

1:T
n = 1])


We now approximate our solution by multiplying the first line by〈

P (LT
n | W T ), P (P T

n | k1:T [λP
1:T
n = 1])

〉
, thus simplifying it to QW

T (wT ). This choice
amounts to considering the word recognition process terminated, before “sending” the
probability distribution over words to inform letter identity. This approximation allows to
write:

Q′
P

T
n ≈

∑
wT

QW
T (wT )

∑
lTn

P (lTn | wT ) P (λL
T
n | lTn P T

n ) P (P T
n | k1:T [λP

1:T
n = 1])

 . (3)

Recognizing that P ([P T
n = p] | k1:T [λP

1:T
n = 1]) is letter identification without lexical

influence, QP
T
n :

Q′
P =p

T

n
≈
∑
wT

[
QW =wT

T P ([LT
n = p] | wT ) QP =p

T
n

]
. (4)

Compared with letter recognition without lexical influence, the inference for Q′
P

T
n

features a marginalization over the word space wT , so that information about words influ-
ence the probability distribution over letter percepts, P (P T

n | k1:T [λP
1:T
n = 1]) = QP

T
n , com-

puted without lexical influence. To understand intuitively how lexical information combines
with information about letters, consider distribution P (ltn | wt): this is a constant distribu-
tion, that is to say, independent of time index t. This distribution is almost 0 everywhere,
except for the correct letter, that is to say, the letter at position n of the spelling of word wt.
The second part of Equation (3) can thus be interpreted as the comparison between letters
predicted by word wt, and letters perceived from the stimulus, P (P T

n | k1:T [λP
1:T
n = 1]),

for all positions. This comparison is not performed for a single recognized word, but for
all words (

∑
wT ) according to their probability QW

T (wT ) to be recognized in the stimulus.
This is where we obtain a two-way exchange of information: stimulus processing informs
percepts, which inform words, and which, in a one-pass top-down influence, inform percepts.

4.4 Lexical decision: QD
T

The fourth and final cognitive task we consider is lexical decision, mathemati-
cally modeled by the probabilistic question QD

T = P (DT | S1:T
1:N [λD

1:T
1:N = 1] [λP

1:T
1:N =

1] µ1:T
A σ1:T

A G1:T ): given the stimulus S1:T
1:N , given attention distribution parameters

µ1:T
A , σ1:T

A and gaze position G1:T , and given that information propagates throughout the
whole model, what is the probability that DT = T , i.e., that the input is a known word?
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In this question, observe that the λL
1:T
1:N coherence variables are not specified. Con-

trary to the precedent cases, this does not allow us to simplify portions of the model, as the
λL

1:T
1:N variables do not play the role of Bayesian switches here. Indeed, in QD

T , the λD
1:T
1:N

coherence variables are, for the first time in this manuscript, closed, and they connect the
λL

1:T
1:N and CD

1:T
1:N (i.e. they appear on the right-hand side of the terms P (λD

t
n | λL

t
n CD

t
n) in

JDBRAID). This means that probability distributions over λL
1:T
1:N and CD

1:T
1:N are (implicitly)

computed during inference, and their correspondence evaluated by the coherence term.

Therefore, we deal here with the complete model, with its three dynamic models
(over letter percepts P t

n, over words W t and over lexical membership Dt) that evolve in
a coupled manner. To solve QD

T , we follow the same strategy as before, by isolating
letter recognition, and answering first QP

T
n at all positions n. Then, in the general model,

we replace the temporal dynamic model over P T
n by the answer to QP

T . As before, this
“decouples” the letter dynamic model from the other two. This yields the following rewriting
of the model joint probability distribution:

JDLD
T = P (W 0:T L1:T

1:N λL
1:T
1:N P 0:T

1:N λD
1:T
1:N CD

1:T
1:N D0:T | k1:T [λP

1:T
n = 1])

= P (W 0)
T∏

t=1



P (W t | W t−1)
N∏

n=1

 P (Lt
n | W t)

P (λL
t
n | Lt

n P t
n)

P (P t
n | k1:T [λP

1:T
n = 1])


N∏

n=1
P (λD

t
n | λL

t
n CD

t
n)

P (Dt | Dt−1) P (CD
t
1:N | Dt)



We also decouple the dynamic model over words in a similar manner, replacing it by the
answer to word recognition QW

T . This yields the final form of the model that we consider
for lexical decision:

JDLD
T =

T∏
t=1



P (W t | K1:t−1 λL
1:t−1
1:N )

N∏
n=1

 P (Lt
n | W t)

P (λL
t
n | Lt

n P t
n)

P (P t
n | k1:t [λP

1:T
n = 1])


N∏

n=1
P (λD

t
n | λL

t
n CD

t
n)

P (Dt | Dt−1)P (CD
t
1:N | Dt)


(5)

To solve QD
T , we first introduce missing variables by marginalizations, in order to
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make the joint probability distribution appear:

QD
T = P (DT | k1:T [λD

1:T
1:N = 1] [λP

1:T
1:N = 1])

∝
∑
w1:T

l1:T
1:N

p1:T
1:N

∑
d0:T −1

cD
1:T
1:N

JDLD
T

∝



∑
dT −1




∑

w1:T −1

l1:T −1
1:N

p1:T −1
1:N

∑
d0:T −2

cD
1:T −1
1:N

JDLD
T −1


P (DT | dT −1)



∑
λL

T
1:N



∑
wT

lT1:N
pT

1:N


P (wT | k1:T −1 [λL

1:T −1
1:N = 1] [λP

1:T
1:N = 1])

N∏
n=1

 P (lTn | wT )
P (λL

T
n | lTn pT

n )
P (pT

n | k1:T [λP
1:T
n = 1])




∑
cD

T
1:N

 P (cD
T
1:N | DT )

N∏
n=1

P (λD
T
n | λL

T
n cD

T
n )







Reorganizing terms to make appear the temporal recursion term QD
T −1, we obtain:

QD
T ∝



∑
dT −1

[
QD

T −1 P (DT | dT −1)
]

∑
λL

T
1:N



∑
wT


P (wT | k1:T −1 [λL

1:T −1
1:N = 1] [λP

1:T
1:N = 1])

N∏
n=1

∑
lTn
pT

n

 P (lTn | wT )
P (λL

T
n | lTn pT

n )
P (pT

n | k1:T [λP
1:T
n = 1])




∑
cD

T
1:N

 P (cD
T
1:N | DT )

N∏
n=1

P (λD
T
n | λL

T
n cD

T
n )







We now consider separately the two cases for question QT
D, that is to say, since

variable DT is Boolean, the case DT = True first, and DT = False second.
Assuming that DT = True amounts to consider that all coherence variables λL

T
1:N

are “closed”, because they are controlled by control variables CD
T
1:N , which are all to 1

when DT = True. The summation over CD
T
1:N thus collapses to a unique value. This

propagates in the model, to variables λL
T
1:N , which are also “closed”, thus also collapsing
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their summation. This yields:

QD=True
T = P ([DT = True] | k1:T [λD

1:T
1:N = 1] [λP

1:T
1:N = 1])

∝



∑
dT −1

[
P ([DT = True] | dT −1) QD=dT −1

T −1
]

∑
wT

 P (wT | k1:T −1 [λL
1:T −1
1:N = 1] [λP

1:T
1:N = 1])

N∏
n=1

〈
P (LT

n | wT ), QP
T
n

〉


 (6)

The case QD=False
T is more complicated. Indeed, variables CD

T
1:N now can take

several values (enumerating all possible positions of a single error in the stimulus, that is,
all CD

T
1:N are 1 except one, which is 0). This yields N configurations to consider, which

we consider equally probable (P (CD
T
1:N | [DT = False]) = 1

N when CD
T
n = 1 ∀n ̸= i, and

CD
T
i = 0, and P (CD

T
1:N | [DT = False]) = 0 otherwise).

QD=False
T = P ([DT = False] | k1:T [λD

1:T
1:N = 1] [λP

1:T
1:N = 1])

∝



∑
dT −1

[
P ([DT = False] | dT −1) QD=dT −1

T −1
]

1
N

N∑
i=1


∑
wT


P (wT | k1:T −1 [λL

1:T −1
i = 0][λL

1:T −1
n̸=i = 1] [λP

1:T −1
1:N = 1])

N∏
n=1
n̸=i

〈
P (LT

n | wT ), QP
T
n

〉
〈
P (LT

i | wT ), 1 − QP
T
i

〉






(7)

Once QD=True
T and QT

D=False are computed, we normalize them, and thus obtain a prob-
ability distribution over variable DT . Therefore, when used at the next time step, this
ensures that probability values are used during the combination with the dynamic term
P (DT +1 | DT ).

Here is a technical surprise: Equations (6) and (7) do not exactly match the imple-
mentation of the BRAID model. Indeed, it was found that the resulting dynamics of these
equations were not satisfying. During Thierry Phénix’s PhD thesis, an empirical solution
was found, which consisted in dividing the inner products that appear in these equations by
the cardinal |DL| of the letter space (i.e., in practice, 27); this solution was applied without
studying its theoretical justification. This has been the focus of a later paper (Steinhilber
et al., 2022), which suggests that dividing by the L2-norm of one of the probability distri-
butions (instead of the cardinal of the set) provides a variant of the similarity operator (the
inner products) that accounts and corrects for the entropy of the compared distributions.
Since the cardinal and L2-norm were numerically close, the current implementation involves
dividing by the L2-norm, instead.

5. Control variables
Control variables are an additional tool to coherence variables for expressing mod-

ularity in Bayesian algorithmic models, due to Jacques Droulez (Droulez, 2015). Both are
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binary variables that link sub-models in probabilistic dependency graphs, that are used for
expressing whether sub-models they connect share information or not. Control variables,
as coherence variables, can be interpreted as “Bayesian switches”. However, whereas coher-
ence variables allow controlling the switch state using probabilistic questions to the overall
model, control variables explicitly set, by their value, the switch state.

This allows a more natural semantic of the variable: using coherence variable λ, sub-
models A and B are connected, i.e., the Bayesian switch is closed, by setting the constraint
λ = 1 in the right-hand side of a given probabilistic question, and A and B are disconnected
by leaving variable λ unconstrained in the probabilistic question. In contrast, using control
variable ξ, sub-models A and B are connected whenever ξ = 1, and disconnected whenever
ξ = 0.

Control variables act in conjunction with coherence variables. We now provide the
mathematical definition of control variables and coherence variables as Bayesian switches,
and demonstrate their properties.

Let λ and ξ be two binary variables, A and B be probabilistic variables with the
same, arbitrary domain (although this can be generalized easily). ξ is a control variable if
it appears, in the decomposition of a joint probability distribution, in a term of the form
P (λ | A B ξ), defined by:

P ([λ = 1] | [A = a] [B = b] [ξ = c])

=


1 if c = 1 and a = b
0 if c = 1 and a ̸= b
θξ if c = 0.

To demonstrate how the value of a control variable ξ connects or disconnects sub-
models A and B, we take the example of a joint probability distribution P (A B λ ξ) defined
by:

P (A B λ ξ) = P (A)P (B)P (ξ)P (λ | A B ξ) .

This is without loss of generality; in the general case, A and B represent “gateways” to
arbitrarily complex probabilistic models, with additional variables and probabilistic terms.
However, they do not affect the local property of control variables.

We now demonstrate that setting ξ = 1 connects sub-models A and B, i.e., com-
puting P (A | [λ = 1] [ξ = 1]) involves P (B). Bayesian inference yields:

P ([A = a] | [λ = 1] [ξ = 1])

= P ([A = a] [λ = 1] [ξ = 1])
P ([λ = 1] [ξ = 1])

=
∑

B P (A)P (B)P ([ξ = 1])P ([λ = 1] | A B [ξ = 1])∑
A,B P (A)P (B)P ([ξ = 1])P ([λ = 1] | A B [ξ = 1])

= P ([ξ = 1])P ([A = a])P ([B = a])
P ([ξ = 1])

∑
a′∈A P ([A = a′])P ([B = a′])

= P ([A = a])P ([B = a])∑
a′∈A P ([A = a′])P ([B = a′]) .
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Finally, we demonstrate that setting ξ = 0 disconnects sub-models A and B. i.e.,
computing P (A | [λ = 1] [ξ = 0]) does not involve P (B). Bayesian inference yields:

P ([A = a] | [λ = 1] [ξ = 0])

= P ([A = a] [λ = 1] [ξ = 0])
P ([λ = 1] [ξ = 0])

=
∑

B P (A)P (B)P ([ξ = 0])P ([λ = 1] | A B [ξ = 0])∑
A,B P (A)P (B)P ([ξ = 0])P ([λ = 1] | A B [ξ = 0])

= θξP ([ξ = 0])P ([A = a])
θξP ([ξ = 0])

∑
A,B P (A)P (B)

= P ([A = a]) .

We note that, during this inference, the probability value θξ assigned to P ([λ =
1] | A B [ξ = 0]) is irrelevant, as it can always be factored out and simplified. However,
when marginalizing over ξ, this value has an effect. Indeed, consider computing:

P ([A = a] | [λ = 1])
∝

∑
ξ,B

P ([A = a] B [λ = 1] ξ)

∝
∑
ξ,B

P ([A = a])P (B)P (ξ)P ([λ = 1] | [A = a] B ξ)

∝ P ([A = a])
(

P ([ξ = 0])
∑

B P (B)P ([λ = 1] | [A = a] B [ξ = 0])
+P ([ξ = 1])

∑
B P (B)P ([λ = 1] | [A = a] B [ξ = 1])

)
∝ P ([A = a]) (P ([ξ = 0])θξ + P ([ξ = 1])P ([B = a])) .

In that result, the prior probability distribution P (ξ) serves as a weighting factor between
an “open” (ξ = 0) and a “closed” (ξ = 1) mode of information transfer, which are combined
by the summation. On the one hand, with factor P ([ξ = 1]), submodels are connected, and
P (A) is multiplied by P (B). On the other hand, with factor P ([ξ = 0]), submodels are
disconnected, and P (A) is multiplied by a constant value θξ. This can also be interpreted
as a connected mode, where A would be connected to B, but B would be replaced by a
uniform model. In that case, the “uniform” model over variable B should provide a numeric
value consistent with a uniform distribution over B, i.e., 1/|B|.

Indeed, in the context of the BRAID model, control variables CA
t
n are involved in the

attention model, which connects variables It
n and P t

n by coherence variables λP
t
n. Variables

It
n and P t

n are defined over the letter domain DL, and so we have defined P ([λP
t
n = 1] | [P t

n =
lP ] [It

n = lI ] [CA
t
n = c]) to be 1/|DL| when c = 0.
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