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Abstract: Interdisciplinary research (IDR) is essential for addressing complex global chal-
lenges that surpass the capabilities of any single discipline. However, measuring interdisci-
plinarity remains challenging due to conceptual ambiguities and inconsistent methodolo-
gies. To overcome these challenges, we propose a deep learning approach that quantifies
interdisciplinarity in scientific articles through semantic analysis of titles and abstracts. Uti-
lizing the Semantic Scholar Open Research Corpus (S2ORC), we leveraged metadata field
tags to categorize papers as either interdisciplinary or monodisciplinary, establishing the
foundation for supervised learning in our model. Specifically, we preprocessed the textual
data and employed a Text Convolutional Neural Network (Text CNN) architecture to iden-
tify semantic patterns indicative of interdisciplinarity. Our model achieved an F1 score of
0.82, surpassing baseline machine learning models. By directly analyzing semantic content
and incorporating metadata for training, our method addresses the limitations of previous
approaches that rely solely on bibliometric features such as citations and co-authorship.
Furthermore, our large-scale analysis of 136 million abstracts revealed that approximately
25% of the literature within the specified disciplines is interdisciplinary. Additionally, we
outline how our quantification method can be integrated into a TRIZ-based (Theory of
Inventive Problem Solving) methodological framework for cross-disciplinary innovation,
providing a foundation for systematic knowledge transfer and inventive problem solving
across domains. Overall, this approach not only offers a scalable measurement of interdisci-
plinarity but also contributes to a framework for facilitating innovation through structured
cross-domain knowledge integration.

Keywords: interdisciplinary quantification; deep learning; TRIZ; convolutional neural
networks; systematic innovation; semantic analysis

1. Introduction
Interdisciplinary research (IDR) has become increasingly vital in addressing complex

global challenges that transcend traditional disciplinary boundaries [1,2]. Defined as
the integration of concepts, theories, and methods from multiple disciplines to advance
fundamental understanding or solve problems beyond the scope of a single discipline [3],
IDR is essential for fostering innovation and tackling multifaceted issues such as climate
change, healthcare, and sustainable development.

The importance of IDR is underscored by its potential to generate novel insights and
solutions that single-discipline approaches may not achieve. For example, the intersection
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of biology and computer science has given rise to bioinformatics, revolutionizing genomic
research and personalized medicine [4]. Similarly, the convergence of engineering and
environmental science has led to sustainable engineering practices that address ecological
concerns while promoting technological advancement [5].

Quantifying the extent and evolution of IDR remains challenging due to conceptual
ambiguities and methodological inconsistencies in existing measurement approaches [6–9].
Traditional methods predominantly rely on bibliometric indicators such as citation analysis,
co-authorship networks, co-citation patterns, and journal classifications [10–12]. For in-
stance, co-citation analysis examines the frequency with which two documents are cited
together, providing insights into the relatedness of different research areas [13]. However,
these approaches may not capture the full extent of interdisciplinary integration present in
the content of the research itself.

Diversity indices, such as Shannon Entropy [14], Simpson’s Index [15], and the
Herfindahl–Hirschman Index [16], have been used to quantify interdisciplinarity by mea-
suring the diversity of disciplines cited within a publication. While these metrics offer
quantitative measures, they rely heavily on the classification of references into disciplines,
which can be subjective and inconsistent across different classification systems. Moreover,
they often fail to account for the semantic content and the actual integration of knowledge
across disciplines.

Recent advancements in natural language processing (NLP) and machine learning
offer new opportunities to analyze text content and capture semantic relationships more ef-
fectively [17,18]. Topic modeling techniques, such as Latent Dirichlet Allocation (LDA) [19],
have been employed to uncover thematic structures within text corpora; however, these
models assume topic independence. Furthermore, topic models often require manual
interpretation of the topics, which can introduce subjectivity.

In contrast, deep learning approaches, such as Convolutional Neural Networks (CNNs)
and Transformers [20,21], have shown promise in capturing complex semantic patterns
in text data. These methods enable the analysis of text content, potentially overcoming
the limitations of traditional bibliometric and topic modeling approaches. By leveraging
hierarchical feature extraction and contextual embeddings, deep learning models can detect
subtle semantic cues indicative of interdisciplinary integration.

We propose a novel text-based deep learning approach to quantify interdisciplinarity
in scientific articles and provide insights into how our method can aid in fostering inter-
disciplinary collaboration and addressing complex engineering problems in the context
of the Theory of Inventive Problem Solving (TRIZ) [22]. TRIZ principles emphasize sys-
tematic innovation by solving contradictions and transferring knowledge across domains,
specifically focusing on engineering applications. In that context, our aim is to facilitate the
identification of inventive solutions arising from interdisciplinary research.

To elucidate the various pathways through which interdisciplinary research can foster
innovative solutions within the TRIZ framework, we introduce the TRIZ-inspired Frames
of Knowledge in Figure 1. This conceptual framework categorizes solutions into four
distinct cases:

• Case C1: The solution is within the same industry.
• Case C2 : The solution is in another industry.
• Case C3 : The solution is outside of what exists in all industries.
• Case C4 : The solution does not yet exist.

Each case represents a different level of interdisciplinary integration and innovation
scope, providing a structured approach to identifying and leveraging cross-disciplinary
solutions within engineering applications. This study focuses on case C2. By targeting
interdisciplinary research that bridges distinct industries (Case C2), our method aims to
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facilitate the application of TRIZ principles to transfer and adapt innovative solutions from
one domain to another, thereby enhancing the systematic problem-solving capabilities
advocated by the TRIZ.

Figure 1. TRIZ-inspired Frames of Knowledge: A conceptual framework illustrating the integration
of interdisciplinary research within the TRIZ methodology for systematic innovation. Arrows depict
the path taken toward a solution in each distinct case.

Our main contributions are as follows:

1. We introduce a deep learning-based method for quantifying interdisciplinarity by
analyzing the titles and abstracts of scientific articles.

2. We demonstrate the effectiveness of our approach by comparing it with other machine
learning estimators and traditional metrics.

3. We assess the scale of interdisciplinary research by running predictions on a very
large-scale dataset.

4. We quantify the prevalence of interdisciplinarity in the scientific literature by ana-
lyzing 136 million abstracts, finding that approximately 25% of the analyzed corpus
across specified disciplines is interdisciplinary.

5. We propose the integration of the newly developed interdisciplinarity classifier into
a high-level framework toward systematic, cross-disciplinary innovation using the
TRIZ, which was theoretically introduced by Douard et al. [23,24].

2. Related Work
Interdisciplinarity measurement has evolved through various methodologies, each

with its advantages and limitations.
Bibliometric approaches have been widely used to quantify journal interdisciplinar-

ity, including citation analysis, co-authorship networks, co-citation patterns, and journal
classifications. These methods provide valuable quantitative indicators but may not fully
capture the interdisciplinary nature of the research content itself.

Diversity indices offer quantitative measures of interdisciplinarity by assessing the
distribution of disciplines within the references cited by a publication.

Shannon Entropy is defined as

H = −
N

∑
i=1

pi ln(pi) (1)
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where pi is the proportion of references in discipline i, and N is the total number of
disciplines. Higher entropy values indicate greater diversity and, by extension, higher
interdisciplinarity [14].

Simpson’s Index is calculated as

D = 1 −
N

∑
i=1

p2
i (2)

This index measures the probability that two randomly selected references belong to
different disciplines. A higher value of D suggests greater interdisciplinarity [15].

The Rao–Stirling Diversity Index [25] incorporates both the disciplinary diversity
and the distances between disciplines:

D =
N

∑
i=1

N

∑
j=1

pi pjdij (3)

where dij represents the cognitive distance between disciplines i and j. This index accounts
for the relatedness of disciplines, providing a more nuanced measure of interdisciplinarity.

While these indices offer valuable insights, they rely on accurate discipline classifica-
tion of references and may overlook the depth of integration between disciplines within
the content of the publication.

Topic modeling, such as Latent Dirichlet Allocation (LDA) [19], has been employed
to identify thematic structures within text corpora. By detecting topics that span multiple
disciplines, researchers can infer interdisciplinary content [26]. However, topic models
assume that topics are independent and may not capture complex interactions between
disciplines. Interpretation of the topics can also be challenging, and the assignment of
disciplines to topics may introduce subjectivity.

Nanni et al. [27] investigated text mining methods for the automated identification
of interdisciplinary doctoral dissertations by analyzing abstracts. They framed interdisci-
plinarity detection as a two-step classification process: predicting the main discipline using
supervised classifiers and detecting interdisciplinarity by exploiting prediction confidences.
Their findings revealed that directly using textual features yielded better performance than
relying on main discipline classification results.

Similarly, Pham et al. [28] proposed a metadata-based approach for research discipline
prediction using machine learning techniques and distance metrics. They focused on
predicting research disciplines associated with projects and measuring interdisciplinarity
based on associated metadata. Their framework included feature extraction using topic
models, discipline encoding to reduce output dimensionality, and a distance matrix to
recommend appropriate disciplines and compute interdisciplinarity.

Advancements in deep learning have opened new avenues for analyzing text content.
Models like CNNs and transformers (e.g., BERT) have demonstrated high performance in
various NLP tasks [20,21]. These models can capture hierarchical and contextual semantic
relationships, making them suitable for detecting interdisciplinarity within texts.

For example, Beltagy et al. [29] introduced SciBERT, a pretrained language model
based on BERT, trained on scientific text. SciBERT has shown improved performance on
various scientific NLP tasks, highlighting the importance of domain-specific models.

However, deploying large transformer-based models on massive datasets like S2ORC
can pose computational challenges. It is our intent to introduce a computationally effective
solution enabling filtering literature at scale. Therefore, more computationally efficient
models like Text CNNs offer a practical balance between performance and resource require-
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ments. The same comment can be made about employing Large Language Models (LLMs)
toward this task.

Our work builds upon these methodologies by leveraging deep learning techniques,
aiming to capture more comprehensive semantic information indicative of interdisciplinar-
ity. We employ a Text CNN model trained on titles and abstracts from the extensive S2ORC
dataset and compare it against multiple other machine learning estimators over the same
training set.

To provide a comprehensive overview of the existing methodologies for measur-
ing interdisciplinarity, we present a comparative analysis of the primary approaches in
Table 1. This comparison highlights the distinct methodologies, advantages, and limitations
associated with each approach, which are supported by relevant scholarly references.

Table 1. Comparison of approaches to measuring interdisciplinarity.

Approach Methodology Advantages Limitations

Bibliometric Indicators

Use citations, co-authorships,
co-citations, and journal
classifications to infer
interdisciplinarity [10–13].

Based on readily available
metadata; established in
scientometrics; facilitates
longitudinal studies.

Dependent on metadata
accuracy; may not capture
actual content integration;
citation practices vary across
disciplines.

Diversity Indices
(e.g., Shannon Entropy,
Simpson’s Index)

Calculate statistical diversity
measures from discipline
distributions in
references [14–16,25].

Quantitative and easily
comparable; simple
computation and
interpretation; applicable
across various datasets.

Reliant on accurate discipline
classification; may overlook
depth of content integration;
sensitive to granularity of
classification schemes.

Topic Modeling (e.g., LDA)

Uncover thematic structures
and topics within text corpora
using probabilistic
models [19,26–28].

Directly analyzes content
semantics; scalable to large
datasets; identifies latent
thematic connections.

Assumes topic independence,
which may not hold true; may
miss nuanced
interdisciplinary integrations;
interpretation of topics can be
subjective and challenging.

Machine Learning
Approaches

Utilize traditional supervised
or unsupervised algorithms
(e.g., Random Forest, SVM)
often relying on engineered
features [30–33].

Often less data-intensive; can
be more interpretable;
well-established
methodologies.

May require careful feature
engineering; can struggle with
highly complex semantic
patterns; performance may
plateau without deeper
feature extraction.

Deep Learning Approaches
Utilize algorithms like CNNs,
RNNs, and Transformers to
analyze text content [19,20,29].

Capable of capturing complex
semantic patterns; can
integrate various data sources
(e.g., full texts, abstracts);
often achieve higher
predictive performance.

Require large labeled datasets
for training; computationally
intensive; may lack
interpretability.

3. Methodology
We utilized the Semantic Scholar Open Research Corpus (S2ORC) [34], which is a large-

scale dataset that contains more than 100 million abstracts of academic papers in various
disciplines. S2ORC includes metadata, abstracts, and full-text excerpts for open articles,
providing a rich resource for text-based analysis.

Given the scope of TRIZ and our aim to integrate the interdisciplinary model with
the systematic, cross-disciplinary innovation framework proposed by Douard et al. [23,24],
we focused on papers classified under Biology, Engineering, Physics, Computer Science,
Chemistry, Mathematics, and Materials Science. These disciplines were selected due to
their representation in the corpus and relevance in engineering applications.
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Approximately one million papers were used for initial modeling, with an equal split
between interdisciplinary and monodisciplinary papers. Interdisciplinary papers were
labeled on the basis of their metadata tags from the Semantic Scholar classification. Papers
tagged with more than one discipline were labeled as interdisciplinary, while those tagged
with only one discipline were labeled as monodisciplinary. Among the one million papers,
approximately 18% are associated with more than one field of study. This proportion
declines rapidly: fewer than 0.5% span more than two fields, and only an insignificant
0.02% involve three or more fields.

Semantic Scholar assigns Fields of Study to papers using a machine learning model
that analyzes the title and abstract, applying multi-label classification to capture interdis-
ciplinary research. This approach relies on training data derived from venue-level field
mappings (assuming each publication venue typically focuses on a relatively narrow range
of fields) and human-labeled “gold” sets, combining scalability with reasonable accuracy.
Though not perfectly precise, the model’s design and confidence thresholds ensure reliable,
broad coverage of English-language scholarship. Our hypothesis is that, at scale, the deep
learning model can generalize the concept of interdisciplinarity by learning underlying
semantic patterns. The high-level process used to create the training dataset is shown
in Figure 2.

Figure 2. Overview of the process used to create the training dataset, highlighting how the number
of fields of study is used to differentiate between multidisciplinary and monodisciplinary abstracts.

To prepare the textual data for input into the neural network, we employed several
preprocessing steps, including normalization (converting text to lowercase and removing
punctuation), tokenization, lemmatization, removal of stop words, and handling of missing
values. We applied Byte Pair Encoding (BPE) [35] to the text data. BPE is a subword
tokenization technique that combines the benefits of word-level and character-level repre-
sentations. It allows the model to handle out-of-vocabulary words and capture meaningful
subword patterns, improving the representation of rare and compound words.

Figure 3 presents the inference pipeline used to predict interdisciplinarity. Titles and
abstracts undergo BPE for tokenization and then feed into a Text CNN, which outputs a
probability score. While standard, this process ensures consistent text representation and is
efficient for large-scale analysis, forming the backbone of our approach.

Figure 3. Inference pipeline from raw article text to an estimated interdisciplinarity score, highlighting
encoding and classification steps using the Text CNN model.

The Text CNN model architecture is illustrated in Figure 4. The architecture consists of
an embedding layer, convolutional layers with varying kernel sizes, a pooling layer, fully
connected layers, and an output layer. The convolutional layers apply multiple filters to
capture n-grams of different lengths, and the pooling layer uses max-over-time pooling to
capture the most salient features. The fully connected layers include dropout regularization,
and the output layer uses a sigmoid activation function for binary classification.
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To effectively capture varying semantic structures within the text, we selected multiple
kernel sizes corresponding to different n-gram lengths. Specifically, kernel sizes of 2 and 3
were chosen to detect bi-grams and tri-grams, respectively. This selection is based on the
Text CNN Classifier’s capability to process multiple parallel convolutional layers, each with
distinct kernel sizes. By incorporating kernel sizes of 2 and 3, the model can identify both
short-range dependencies, such as common phrase patterns, and slightly longer contextual
relationships that are indicative of interdisciplinary content. This variation allows the
Text CNN to better represent the diverse linguistic patterns that signify the integration of
multiple disciplines within an abstract.

Figure 4. High-level architecture of the Text CNN model utilized for interdisciplinarity detection,
as initially introduced in [21]. The model includes multiple convolutional layers with different kernel
sizes, a max pooling layer, and a fully connected layers leading to the output.

To enhance the model’s performance and generalization capabilities, we employed
several training techniques, including the Adam optimizer [36] with a learning rate of
0.001, a binary cross-entropy loss function, a batch size of 64, and an early stopping based
on validation loss. Hyperparameters were tuned using random search with 5-fold cross-
validation on the validation set, exploring various learning rates, dropout rates, kernel
sizes, number of filters, and batch sizes [37].

The model was implemented using the Keras library with a TensorFlow backend [38].
We utilized mixed-precision training to speed up computation and reduce memory us-
age. The model is highly efficient, as it can run on a CPU, which is a key factor in its
scalability for processing large-scale datasets. This efficiency ensures that our approach
remains computationally feasible even when applied to extensive corpora, such as the 136
million abstracts analyzed in this study. Additional technical details regarding the model
architecture and hyperparameters are available in Appendix A, and technical validation
details are provided in Appendix B.

We used multiple evaluation metrics to assess model performance, including accu-
racy, precision, recall, F1 score, Matthews Correlation Coefficient (MCC) [39], and ROC-
AUC score.

Other estimators considered for benchmarking consist of Gradient Boosted Trees Clas-
sifier [30], SVM Classifier [31] (Nyström Kernel), Random Forest Classifier [32], and Extra
Trees Classifier [33].

We propose that this interdisciplinary classifier and its inference outputs be used
as a first step in the framework proposed by Douard et al. [23,24]. Subsequent steps
could involve discipline-specific classifiers to narrow down to a specific pairing objective
(e.g., biology and engineering-related disciplines in the context of biomimicry). From there,
topic modeling could be employed to map the fields of study of interest. This would
in turn enable the capacity to derive, for each article, a primary and a secondary topic.
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The frequency at which topics are paired could inform the creation of an interdisciplinary
graph, bridging concepts across disciplines.

Figure 5 illustrates our multi-phase pipeline for uncovering cross-domain connections
at scale. We began with around 100 million abstracts from the Semantic Scholar dataset
and used an interdisciplinary classifier to narrow the corpus to about 25 million articles
that cross multiple fields. Next, discipline-specific classifiers (for engineering and biology)
and topic modeling (e.g., BERTopic [40]) extracted coherent themes and assigned each
abstract a set of topic probabilities. By embedding and interlinking these topics in a
graph, we systematically uncovered synergies—particularly between engineering and
biology. Finally, we applied TRIZ contradiction formalism to highlight how solutions
in one domain address challenges in the other, revealing novel thematic overlaps and
potentially facilitating systematic cross-disciplinary innovation.

Figure 5. Framework for interdisciplinary topic pairing and graph construction using classifiers and
topic modeling. Example over 100 M engineering and physics abstracts as input.

By integrating our interdisciplinarity quantification method into the TRIZ-based frame-
work for cross-disciplinary innovation, we suggest a systematic approach to leveraging
interdisciplinary knowledge for inventive problem solving. Specifically, the interdisci-
plinarity scores produced by our Text CNN model could serve as an initial filtering mech-
anism to identify scientific articles potentially rich in cross-disciplinary content. These
selected articles might then be subjected to TRIZ analytical processes, such as contradiction
identification and the application of inventive principles, to extract and adapt innova-
tive solutions across domains. Technically, this integration involves using the classifier’s
output to prioritize literature for TRIZ analysis, thereby potentially streamlining the knowl-
edge transfer process and enhancing the effectiveness of systematic innovation within the
TRIZ methodology.

4. Results
The performance comparison of the classification models is shown in Table 2. Our

Text CNN model outperformed all baseline models in terms of LogLoss, F1 score, and max
MCC. Comparison was done over 26,999 holdout samples that neither model has been
exposed to. In addition, examining precision (0.80) and recall (0.83) provides insights into
the model’s balanced performance, indicating that it can effectively identify interdisci-
plinary articles while maintaining a relatively low rate of false positives. This suggests that
the model’s learning process captures semantic cues related to interdisciplinarity. Some
misclassifications occurred when abstracts lack explicit cross-field terminology, pointing to
opportunities for refining the training data. Furthermore, while this study uses a binary
classification approach, the model could be extended to a multi-class or multi-label frame-
work, enabling it to classify articles into multiple disciplines simultaneously and offering
more granular insights into interdisciplinary research.
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Additionally, the max MCC value of 0.64 for the Text CNN model indicates a strong
overall correlation between predicted and actual classifications, outperforming the base-
line models’ MCC of 0.59. The precision–recall curve (Figure 6) demonstrates that the
Text CNN maintains a high balance between precision and recall across various thresh-
olds, highlighting its effectiveness in accurately identifying both interdisciplinary and
monodisciplinary articles.

Table 2. Performance comparison of classification models using holdout data.

Model LogLoss Precision Recall F1 Score Max MCC

Text CNN 0.41 0.80 0.83 0.82 0.64
Boosted Trees 0.45 0.74 0.86 0.80 0.59
Random Forest 0.46 0.76 0.82 0.79 0.57
SVM 0.46 0.75 0.83 0.79 0.57
Extra Trees 0.46 0.74 0.84 0.79 0.57

The confusion matrix for the Text CNN model over holdout data is presented in
Table 3. The model correctly classified 21,908 out of 26,999 papers.

Table 3. Confusion matrix for text CNN model over holdout data.

Predicted Negative Predicted Positive

Actual Negative 10,655 2845
Actual Positive 2246 11,253

The precision–recall curve (Figure 6) and ROC curve (Figure 7) indicate a good balance
between precision and recall and strong discriminative ability, respectively.

Figure 6. Precision–recall Curve for the Text CNN model. The area under the curve (AUC) indicates
the model’s ability to balance precision and recall across different thresholds.
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Figure 7. ROC Curve for the Text CNN model. The area under the ROC curve (AUC) indicates
discriminative ability.

The learning curves showing training and validation loss and accuracy over epochs
are presented in Figures 8 and 9. The convergence of the loss and consistency between
training and validation accuracy suggest satisfactory generalization without overfitting.

Figure 8. Learning curve showing training and validation loss over epochs for the Text CNN model.
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Figure 9. Learning curve showing training and validation accuracy over epochs for the Text
CNN model.

To further understand the model’s confidence in its predictions, Figure 10 presents the
density distribution of predicted probabilities for both the interdisciplinary and monodisci-
plinary classes. This visualization reveals how the model assigns probabilities, providing
insights into areas where the model is more or less confident in its classifications.

Figure 10. Density plot of predicted probabilities for interdisciplinary and monodisciplinary classes.
The plot illustrates the distribution of predicted probabilities, highlighting the confidence levels of
the Text CNN model’s classifications.

To illustrate the ability of our Text CNN model in evaluating interdisciplinarity, we
provide several examples of research abstracts classified at different levels. These abstracts
are based on real-world studies and include citations; however, they have been paraphrased
to comply with copyright policies. Please note that these examples are intended solely for
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illustrative purposes and do not comprehensively reflect the model’s overall performance
or capabilities.

Example 1: High Interdisciplinarity

Paraphrased Abstract: Li et al. (2022) [41] examined organ-on-a-chip devices that
integrate micro-manufacturing and tissue engineering to replicate the essential physiolog-
ical environments and functions of human organs. These devices are utilized to predict
drug responses and evaluate the effects of environmental factors on organs. Precision
control of micro-scale reagents is achieved through micro-fluidic technology, leading to its
widespread application in organ-on-chip systems for mimicking specific or multiple organs
in vivo. Enhanced with various sensors, these models demonstrate significant potential
in simulating the human environment. In this review, the typical structures and recent re-
search advancements of several organ-on-a-chip platforms are introduced, and innovations
in models for pharmacokinetics/pharmacodynamics, nanomedicine, continuous dynamic
monitoring in disease modeling, and other applications are discussed.

The abstract was classified as highly interdisciplinary, with a probability score of 0.90.
It integrates methodologies from micro-manufacturing and tissue engineering to develop
organ-on-a-chip devices, employs micro-fluidic technology for precise control of reagents,
and incorporates sensor technologies to simulate the human environment. Addition-
ally, it encompasses applications in pharmacokinetics/pharmacodynamics, nanomedicine,
and disease modeling. This convergence of engineering, biology, chemistry, and medical sci-
ences demonstrates a high level of interdisciplinarity, enabling comprehensive simulation
and the analysis of complex physiological systems.

Example 2: Moderate Interdisciplinarity

Paraphrased Abstract: Vincent et al. (2006) [42] explored the theory and practice
of biomimetics—the transfer of ideas from biology to technology. They adapted TRIZ,
a Russian problem-solving methodology, to enhance this transfer process. Their analysis
revealed only a 12% similarity between biology and technology in problem-solving princi-
ples. While technology primarily manipulates energy, biology focuses on information and
structure, factors often overlooked in technological applications.

The abstract was classified as moderately interdisciplinary, with a probability score
of 0.72. It bridges biology, specifically biomimetics, with engineering problem-solving
techniques like TRIZ. By integrating biological concepts into technological innovation,
the study demonstrates a moderate level of interdisciplinarity. The model appropriately
classified it as moderately interdisciplinary.

Example 3: Low Interdisciplinarity

Paraphrased Abstract: Patil et al. (2022) [43] conducted a critical review on optimizing
cutting parameters during CNC milling of EN24 steel using tungsten carbide coated inserts.
The study emphasizes that by optimizing the feed rate, speed, and depth of cut, one can
enhance the material removal rate, surface roughness, and tool wear. The researchers
employed optimization techniques like the Taguchi method and Response Surface Method-
ology (RSM), and they used Analysis of Variance (ANOVA) to analyze the impact of
machining parameters on performance metrics.

The article was classified as having low interdisciplinarity, with a probability score of
0.18. This work is rooted within the field of mechanical engineering, specifically focusing
on CNC milling optimization. It utilizes established methods and concepts within the same
discipline without significant integration of ideas from other fields. The model correctly
classified it as having low interdisciplinarity.

In order to estimate the proportion of interdisciplinary research in the scientific litera-
ture, we scaled up our analysis to process 136 million abstracts, specifically focusing on
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disciplines within the scope of TRIZ. Abstracts were sourced using the Semantic Scholar
API and subsequently filtered to a subset encompassing TRIZ-related disciplines, including
biology, engineering, physics, computer science, chemistry, mathematics, and materials
science. To classify papers as interdisciplinary, we utilized a thresholding approach based
on the Matthews Correlation Coefficient (MCC) [39], which is a metric that considers the
balance between true and false positives and negatives. By varying the classification thresh-
old and selecting the value that maximizes the MCC, we aimed to achieve an effective
balance between precision and recall in our classification process. This approach allowed us
to identify papers that exhibit characteristics of interdisciplinarity with a reasonable degree
of confidence. Consequently, our analysis suggests that approximately 25% of the literature
across the specified disciplines can be characterized as interdisciplinary. This proportion
represents the subset of papers that exceeded the MCC-derived threshold, indicating a
notable presence of interdisciplinary integration within the extensive body of scientific
research examined.

5. Discussion
Our approach demonstrates that deep learning models can effectively capture complex

semantic patterns indicative of interdisciplinarity, exceeding the performance of traditional
machine learning techniques used in previous studies [27,28].

In comparison to recent approaches, our deep learning method demonstrates im-
proved performance. For instance, Nanni et al. [27] (2016) used text mining and machine
learning classifiers on dissertation abstracts, reporting accuracy improvements from di-
rect textual features but not achieving the F1 score levels found in our study. Similarly,
Pham et al. [28] achieved improvements in discipline prediction using metadata and topic
modeling. However, their approach achieved a correctly predicted discipline percentage
(CPDP) of around 58% to 69% depending on the dataset. In contrast, our Text CNN model,
trained on large-scale abstracts from S2ORC, attained an F1 score of 0.82, indicating a more
robust capture of interdisciplinary cues directly from semantic content.

This shows that our method, which leverages modern deep learning architectures,
not only surpassing traditional classifiers but also offering measurable gains over recent
text and metadata-driven approaches. By quantifying interdisciplinarity and identifying
areas of strong cross-disciplinary interaction, we provide a systematic method to uncover
opportunities for inventive problem solving as advocated by TRIZ principles.

This interdisciplinary quantification directly supports TRIZ-based innovation by iden-
tifying cross-disciplinary research that offers inventive solutions. For instance, in devel-
oping advanced medical devices, our Text CNN model can detect studies that integrate
biomedical engineering and materials science. TRIZ principles can then be applied to these
identified interdisciplinary insights to resolve specific contradictions, such as enhancing
device biocompatibility without compromising mechanical strength.

Similarly, in sustainable energy technologies, our model can pinpoint research com-
bining electrical engineering, environmental science, and data analytics. This allows
TRIZ practitioners to systematically apply inventive principles to address challenges like
optimizing energy efficiency while minimizing environmental impact. These examples
demonstrate how our interdisciplinarity quantification method serves as a practical tool for
facilitating TRIZ-based systematic innovation.

While our approach shows promising results, it has some limitations. Its reliance on
metadata tags for labeling can introduce biases due to inaccuracies. In addition, under-
standing the model decision-making process is challenging. To improve interpretability
in interdisciplinary detection, future work could explore and incorporate techniques such
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as attention mechanisms [44], layer-wise relevance propagation [45], saliency maps [46],
integrated gradients [47], and LIME [48].

Future research directions include the refinement of labels by incorporating expert
annotations or semi-supervised learning to improve label quality. Developing methods to
enhance the interpretability of deep learning models in the context of interdisciplinarity is
also essential. Applying the methodology to other corpora can validate generalizability.
Creating tools that integrate our interdisciplinarity quantification with TRIZ methodologies
can support engineers in inventive problem solving. Especially, STEM articles classified as
interdisciplinary can be used as a foundation to build upon in the context of a subsequent
model bridging concepts across disciplines.

Building upon recent advancements in interdisciplinary research quantification, our
study aligns with methodologies such as those proposed by Likhareva et al. [49], who
employed SciBERT-CNN models augmented with topic modeling to enhance multi-label
text classification. While their approach leverages domain-specific embeddings and topic
extraction to address class imbalances and semantic nuances, our Text CNN model focuses
on scalable deep learning techniques using titles and abstracts from the extensive S2ORC
dataset. Future work could explore integrating SciBERT’s domain-specific capabilities
and topic modeling into our framework to further refine the semantic analysis and im-
prove classification accuracy. Additionally, combining these methodologies may enable
a more nuanced understanding of interdisciplinary interactions, thereby enhancing the
robustness and applicability of interdisciplinarity quantification within the TRIZ-based
innovation framework.

Recent developments, such as the Set-CNN model proposed by Zhou et al. [50], high-
light the benefits of semantic extension in enriching text representations for classification
tasks. Similar to our deep learning approach, Set-CNN employs convolutional neural
networks to capture intricate semantic patterns, which can enhance the identification of
interdisciplinary content in scientific abstracts. Integrating semantic extension and multi-
channel convolutions from Set-CNN into our framework could further improve our model’s
ability to detect subtle cross-disciplinary integrations.

Furthermore, TRIZ formalism can be used to build a topic model on text excerpts
narrowed to contradictions and associated parameters [51]. This enables the frequency of
association between parameters to be used as a parameter of interest in the creation of a
discipline-specific interdisciplinary graphs as opposed to having pairing relying solely on
semantic content. For example, volume and weight could be paired in the same article.

A comprehensive integration would involve several key steps. First, the trained Text
CNN model would be utilized to classify a large corpus of scientific articles, identifying
those with high interdisciplinarity scores. For these interdisciplinary articles, topic model-
ing techniques would extract the primary and secondary disciplines involved, effectively
pairing the domains. TRIZ contradiction analysis would be applied to these articles to
uncover inherent conflicts and inventive principles that can be leveraged. Finally, using the
insights gained, innovative solutions would be generated by adapting principles from one
discipline to address problems in another following the TRIZ methodology.

6. Conclusions
In this study, we presented a text-based deep learning approach to quantify interdis-

ciplinarity within the TRIZ framework, specifically focusing on engineering applications.
By leveraging semantic analysis and employing a Text CNN model, we addressed limita-
tions of previous citation-based measures and content-based approaches that relied solely
on metadata and did not analyze semantic content.
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Our model achieved higher performance compared to traditional machine learning
models, demonstrating the effectiveness of deep learning in capturing complex semantic
patterns indicative of interdisciplinarity. The findings highlight the significant presence
of interdisciplinary research within the corpus analyzed, emphasizing the importance of
cross-disciplinary collaboration in advancing knowledge and innovation in engineering.

By expanding on the methodologies of previous studies, our research contributes to the
field by offering a scalable, deep learning-based solution for quantifying interdisciplinarity.
This approach not only enhances detection accuracy but also provides actionable insights
for promoting interdisciplinary collaboration.

Our interdisciplinarity quantification method facilitates the systematic application
of TRIZ principles by identifying and utilizing cross-disciplinary research, supporting
innovative problem solving in engineering. A robust analysis of interdisciplinary work can
help identify emerging fields and aid strategic decision making to foster innovation.

Future Perspectives

While our model performs well in quantifying interdisciplinarity, several key areas
for future research could further enhance its effectiveness. Extending the analysis beyond
abstracts to include full-text articles would provide a more comprehensive view of in-
terdisciplinary connections, capturing richer contextual details often absent in abstracts
alone. Developing discipline-specific models could also improve accuracy, allowing the
model to capture field-specific language and nuances, thereby refining its analysis across
diverse domains.

Additionally, combining semantic analysis with bibliometric network analysis—such
as co-authorship or citation networks—could deepen insights into the structural and social
dynamics of interdisciplinary research. This combined approach would not only highlight
thematic connections but also reveal collaborative patterns that influence interdisciplinary
knowledge exchange. Together, these directions offer pathways to a more robust and
nuanced understanding of interdisciplinarity in the scientific literature.

Future studies could also explore the interpretability of deep learning models in the
context of interdisciplinarity detection, aiding in understanding the underlying factors that
contribute to interdisciplinary integration.
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Appendix A. Technical Details
Model Architecture and Hyperparameters

The Text Convolutional Neural Network (Text CNN) model was configured with the
following hyperparameters:

• BPE Encoding Maximium Length: 300
• CNN Filters: (256, 256)
• CNN Kernel Sizes: (2, 3)
• CNN Pooling Transformation: max
• Learning Rate: 0.001
• Dropout Rate: 0.2
• Batch Size: 64
• Optimizer: Adam with a learning rate of 1 × 10−3

• Activation Function: PReLU for convolutional layers, sigmoid for the output layer
• Hidden Units: None
• Loss Function: Binary Crossentropy
• Early Stopping Patience: 2
• Trainable Embeddings: True
• Dropout Type: normal
• Hidden Weight Initializer: heuni f orm

• Hidden Bias Initializer: zeros
• Output Bias Initializer: mean

The BPE encoding was configured with the following parameters:

• Maximum Length: 300
• Padding: post

The model was trained for six epochs with early stopping based on validation loss.

Appendix B. Technical Validation
In addition to the metrics reported, we conducted robustness checks by evaluating

the model on different random seeds and subsets of the data. The results were consistent
across runs, indicating the stability of the model’s performance.

We also performed an error analysis to understand the types of misclassifications made
by the model. A significant portion of errors occurred in cases where the interdisciplinar-
ity was subtle. This suggests that improving label quality and incorporating additional
contextual information could help further enhance the performance of the model.
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