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Abstract

We use microeconomic theory to describe the inner workings of Constant Function
Market Makers (CFMMs). We show that standard results from consumer theory apply
in this new context, endowing us with powerful tools to characterize the optimal design
of CFMMs. We employ them to analyze the externalities that traders and liquidity
providers exert on each other when interacting through a CFMM. Liquidity providers
reduce the execution costs by flattening the bonding curve on which trades are executed.
Arbitrageurs impose an adverse selection cost on liquidity providers by unfavorably
rebalancing their portfolio. We show that the strengths of these two externalities are
pinned down by the curvature of the bonding curve and are inversely related to each
other, thereby identifying the fundamental economic tradeoff that market designers
have to address.

Keywords: Automated Market Makers, Decentralized Finance, Blockchain, Market Design.
JEL Code: D47, D53.

1 Introduction

Decentralized exchanges enable traders to transact without relinquishing the control of their
assets to a third party. Instead of delegating the execution of their orders to a financial
institution, traders can now rely on smart-contracts. Disintermediation removes the need
for trust and thus holds the promise of lower transaction costs. But this benefit is counter-
balanced by the operational costs of processing transactions through smart-contracts. The
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dominant design of centralized markets, namely limit order books, is not yet a viable op-
tion because it is too cumbersome to be efficiently handled in a decentralized environment.
This is why leaner protocols called Constant Function Market Makers (CFMMs hereafter)
have risen to prominence, establishing themselves as the main paradigm for decentralized
exchanges.

The traditional approach to foster liquidity relies on professional market makers that
stand ready to process incoming market orders. Automated Market Makers (AMMs here-
after) replace human market makers with algorithms. CFMMs are a subclass of AMMs
whose minimalist design aims at achieving computational efficiency. They are built around
liquidity pools. The level of inventory or reserves are determined by liquidity providers who
can fill or deplete the pool. New liquidity provisions increase the size of the pool but leave
constant the share of each asset in reserve. Traders, on the other hand, exchange one asset
against another and thus alter the composition of the pool. The rate at which the exchange
is processed corresponds to the market price quoted by the AMM. The main design choice
therefore consists in determining the relative price of each asset as a function of the com-
position of the liquidity pool. A practical solution consists in defining an arbitrary trading
function which depends solely on the reserves, and to ensure that the AMM only accepts
trades that leave the value of the trading function unchanged, hence the name Constant
Function Market Maker.

This simple design meets the two main requirements that a decentralized AMM should
fulfill. First, it fosters market liquidity by guaranteeing that the AMM always quotes a price,
and thus stands ready to process all incoming buy and sell orders. Second, the computational
costs are low because the price only depends on an internal state of the smart-contract,
namely the composition of its reserves. However, besides their practical convenience, little is
known about the properties of CFMMs. What types of market structure and price discovery
do CFMMs generate? More fundamentally, how should CFMMs be fine tuned so as to
maximize the welfare of liquidity providers and traders?

One cannot address these questions without first identifying the tradeoffs involved in the
choice of the trading function. We show in this paper that standard microeconomic theory
sheds a surprisingly powerful light on this issue and, more generally, on the overall design
space of CFMMs.

Considering first the problem of liquidity traders, we establish that it is isomorphic to
the derivation of Hicksian demand. This fundamental insight enables us to apply the whole
apparatus of consumer theory to the study of CFMMs. For instance, we show that the
classical result according to which expansion paths are linear in wealth solely when the
utility function is homothetic implies that the prices quoted by a CFMM are independent of

2



its pool size solely when its trading function is homothetic. This theorem drastically reduces
the size of the design space since it suggests that, for most practical applications, designers
can focus on trading functions that are homogenous of degree one.

After having characterized the optimization problem of traders, we turn our attention to
its dual formulation. Again, we leverage similarities with consumer theory. We demonstrate
that the minimal value of the portfolio held by liquidity providers can be derived following the
same steps as the ones involved in the derivation of the expenditure function of consumers.
This finding indicates that the rewards of liquidity providers are given by the solution to the
dual problem. In other words, the two-sided nature of CFMMs is reflected in the structure
of their optimization problems, with the primal capturing the perspective of traders and the
dual that of liquidity providers.

We illustrate this general insight through two results of practical relevance. First, we
show that impermanent losses, a concept widely used by liquidity providers to measure their
exposure to adverse selection, are naturally expressed in the dual space because they are
encapsulated in the expenditure function. Second, we prove that the trading set is fully
described by the conjugate of the expenditure function. This theorem provides an intuitive
interpretation for the otherwise opaque trading functions of CFMMs. They can now be
directly constructed from the portfolio value of liquidity providers, making it possible to
build CFMMs for sophisticated financial products.

We use duality theory to quantify and tie together the externalities that traders and
liquidity providers exert on each other. We find that both externalities are a function of
the trading function’s curvature. A steeper trading function increases the marginal cost of
trading but reduces the impermanent losses of liquidity providers. Moreover, the externalities
exerted by traders and by liquidity providers are inversely proportional to each other.

To summarize, this paper demonstrates that the economics of CFMMs becomes apparent
when examined through the lens of consumer theory. The similarities are striking as the
unfolding of propositions closely follows that of microeconomic textbooks. Besides them, our
research was also inspired by the seminal work of Angeris and Chitra (2020), Angeris et al.
(2020) and Angeris et al. (2021a). They established some but not all the results presented in
this paper. An essential difference is that they did so using a methodology rooted in convex
analysis. Hence, our paper can partly be read as a translation of their research program into
a language that is more accessible to economists. However, we believe that our contribution
goes beyond pedagogical benefits since it unveils new economic intuitions and provides a
unified framework for the analysis of CFMMs.
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Related literature

We describe CFMMs as two-sided markets and provide a detailed analysis of their connec-
tion with microeconomic theory. Several recent contributions also analyze the economics of
CFMMs but they do so from a different angle. Schlegel et al. (2022); Bichuch and Feinstein
(2022) provide an axiomatic characterization of CFMMs. Schlegel et al. (2022) find that
trading functions with constant elasticity of substitution fully identify the class of CFMMs
that satisfy the axioms of independence and scale-invariance. Bichuch and Feinstein (2022)
propose axioms that are satisfied by the vast majority of CFMMs. Bartoletti et al. (2021)
provides another axiomatic characterization but from a computer science perspective. Jensen
et al. (2021) analyze constant-product market makers, giving the intuition for some of the
results that this paper proves in general. Park (2021) compares constant-product CFMMs
with traditional market makers. He shows that constant-product CFMM are vulnerable
to sandwich attacks, a form of miner extractable value. Jensen et al. (2021) also analyze
constant-product market makers, giving the intuition for some of the results that this paper
proves in general.

A growing stream of research studies the payoff profile of liquidity providers. Milionis
et al. (2022) and Cartea et al. (2022) quantify the adverse selection cost of liquidity provision.
They quantify impermanent losses resulting from a passive liquidity position and from a
continuously-hedged liquidity position. Milionis et al. (2022) terms the latter ‘loss-versus-
rebalancing’ (LvR). Cohen et al. (2023) determine the level of fees needed for liquidity
providers to cover their losses and break even.

Cartea et al. (2022) also quantifies impermanent losses for concentrated liquidity CFMMs,
i.e. with liquidity provision restricted to a specified price range. Bergault et al. (2022)
outline a mean-variance analysis of the profitability of liquidity provision for a CFMM that
incorporates external data through a price oracle. To the best of our knowledge, only Goyal
et al. (2022) provide a characterization of optimal trading functions. They propose a convex
optimization framework to design CFMMs that are optimal for a given specification of the
price process of the traded assets.

Another relevant branch of literature studies the platform economy of decentralized ex-
changes. These papers propose variations of a benchmark static (or two-period) model to
study the rents of traders and liquidity providers. Aoyagi (2020) determines the level of
liquidity provision in competing CFMMs assuming both atomistic and strategic liquidity
providers. Aoyagi and Ito (2021) cover instead the competition between a CFMM and a
centralized exchange. Lehar and Parlour (2021) together with Capponi and Jia (2021) de-
termine the impact of market fundamentals, such as noise versus informed trading, on the
rents of liquidity providers. Using Uniswap and Sushiswap data, they both provide evidence
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supporting their models.

Structure of the paper

Section 2 describes the functioning of CFMMs and explains why they create two-sided mar-
kets. Section 3 applies microeconomic theory to analyze the problem of arbitrageurs and
its implications for the portfolio of liquidity providers. We also provide in this section the
general conditions under which liquidity provision does not affect the prices quoted by a
CFMM. Section 4 focuses on the welfare of traders and the externalities exerted by liquidity
providers. Section 5 reverses the perspective of the previous section by focusing on the wel-
fare of liquidity providers and the externalities exerted by traders. Section 6 uses duality to
tie together both sides of the market. Section 7 introduces transactions fees while Section 8
discusses the objective of liquidity providers. Section 9 concludes while the proofs of the
main results are relegated to the Appendices.

2 CFMMs as Two-Sided Markets

This section outlines the functioning of CFMMs and describes the market participants with
whom they interact. A CFMM is a smart contract running on a blockchain. Each CFMM
stores virtual assets’ reserves in a liquidity pool. Based on these reserves, the CFMM performs
two elementary operations: liquidity provision and asset swap.

CFMMs are platforms whose purpose is to connect liquidity providers with liquidity con-
sumers. The two sides on the market exert cross-side network externalities on each other.1

Liquidity providers (LPs) are the owner of the liquidity pool and constitute the supply side
of the decentralized exchange. They provide the CFMM with its initial reserves and receive
in return LP tokens which represent shares of the liquidity pool. Liquidity providers can at
any time redeem their shares by burning (i.e. destroying) their LP tokens and receiving a
corresponding fraction of the pool’s current reserves. The demand side of the decentralized
exchange is constituted of liquidity consumers. They interact with the CFMM by supplying
some assets and withdrawing others from the pool’s reserves. Thus we will simply refer to
liquidity consumers as traders.

The behavior of each set of participants has a direct impact on the utility of the other
set of participants. Liquidity providers benefit from the participation of traders because
they collect fees that are proportional to the trading volume. Traders benefit from the

1For a definition of cross-side network externalities, see for example Tirole and Rochet (2003) or Armstrong
and Wright (2007).
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participation of liquidity providers as larger reserves translate into lower price impact. These
network effects imply that the decentralized exchanges generated by CFMMs are two-sided
markets.

The interactions between suppliers and consumers is mediated by a trading function,
U : RN

+ → R, that maps the reserve vector R ∈ RN
+ of the N assets held in the liquidity

pool, with components Ri for i ∈ {1, . . . , N}, to a real number K ∈ R. The trading function
encodes the set of trades that the CFMM will accept given its current reserves. The trading
function represents the trading set in the same way that utility functions represent preferences
in consumer theory. To underline this analogy, we use U to denote the trading function and
refer to its value as the utility of the CFMM.2

2.1 Asset swap

Given reserves R, the CFMM accepts an asset swap that shifts reserves to R′ if and only if
U(R′) ≥ U(R). The trading set is thus the trading function’s upper-contour set

S(K) ≡
{
R′ ∈ RN : U(R′) ≥ K

}
(1)

evaluated at K = U(R).
It is convenient to decompose trades into input-output vectors (I, O) ∈ RN

+ ×RN
+ . I ∈ RN

+

is the vector of reserves that a trader inputs into the liquidity pool, whereas O ∈ RN
+ are

the reserves that the CFMM outputs to the trader. The criterion for trade admissibility in
Eq. (1) can then be stated in terms of netput (net output) vectors ∆ ≡ O − I ∈ RN as

U(R − ∆) ≥ U (R) . (2)

Unless otherwise stated, we maintain a set of assumptions that guarantee that the trading
function is well-behaved:

Assumption 1. The trading function U is
i Twice-continuously differentiable: U ∈ C2.

ii Strictly increasing: ∇U = (UR1 , UR2 , . . . , URN
) >> 0.3

2An alternative interpretation is to view CFMMs as firms. According to this analogy, trading functions
are transformation functions from production theory. We favor the consumer analogy because it makes the
analysis more transparent.

3Each gradient component is ∇Ui = URi ≡ ∂U/∂Ri > 0. For x, y ∈ RN , the vector inequality x >> y
means xi > yi for all i. Conversely, x > y indicates that xi ≥ yi for all i and xi > yi for at least one i. We
assume that vectors are column vectors unless otherwise stated.
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iii Strictly quasi-concave: If U(R) ≥ K and U(R′) ≥ K,

U
(
αR + (1 − α)R′

)
> min

{
U(R), U(R′)

}
for all R ̸= R′, α ∈ (0, 1).

Assumption 1 summarizes standard regularity assumptions for utility functions in con-
sumer theory. Differentiability (i) makes the trading function smooth, allowing for differential
analysis. Monotonicity (ii) aligns the CFMM’s utility with its reserves, so that the CFMMs
accepts trades that either deepen its reserves or leave them invariant.4 Quasi-concavity (iii)
guarantees that S (K) is a strictly convex set. This implies that the CFMM prefers balanced
reserves over extreme ones: If the CFMM accepts trades that leave reserves R and R′, then
it accepts a trade that leaves reserves at the average of those two. As we will see below, each
of the three assumptions plays an important role in ensuring that a CFMM is well behaved.

Although the trading set includes all the trades which increase the utility of the CFMM,
no rational trader would input more than required. This is why decentralized applications
are configured so that traders leave the CFMM exactly indifferent between its pre- and post-
trade reserves. We will therefore restrict our attention to trades occurring on the indifference
curve reached by the initial reserves, i.e. on the bonding curve defined as

Sb (U(R)
)

≡
{
R′ ∈ RN : U(R′) = U(R)

}
. (3)

Quantity function and spot prices

We can use Eq. (3) to define the terms of an asset swap. Consider a trader submitting to a
CFMM with reserves R a buy request of ∆ ≡ ∆i > 0 units of asset i in exchange for asset j.
The amount of asset-j input the trader has to pay is determined by the quantity function,
qij(∆, R) : R × RN

+ → R, implicitly defined by:5

U
(
R∆

)
− U(R) = 0, (4)

where R∆ are the post-trade reserves

R∆ ≡ R − ∆i + qij(∆, R)j (5)

with i, j denoting basis vectors.6 The quantity function can be differentiated to give the
marginal price charged by the CFMM. Formally, we define the price function pij(∆, R) ≡

4Monotonicity (ii) is equivalent to the path-deficiency property in Angeris and Chitra (2020).
5Notice that qij(∆, R) is also defined for ∆ < 0, which indicates a request to sell asset i. In this case,∣∣qij(∆, R)

∣∣ gives the amount of asset-j output that the trader will receive from the CFMM.
6i ∈ RN is such that ii = 1, i−i = 0. j is analogous. We will drop indexes ij when clear from the context.
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D∆qij(∆, R), so that

qij(∆, R) =
∫ ∆

0
pij(x, R) dx. (6)

To further connect with economic theory, a straightforward implicit differentiation of Eq. (4)
shows that pij(∆, R) is a marginal rate of substitution (MRS):7

pij(∆, R) =
∣∣∣MRSij(R∆)

∣∣∣ , (7)

where MRSij(R∆) ≡ −URi
(R∆)/URj

(R∆) is the slope of the bonding curve measuring the
amount of asset j the CFMM has to receive to compensate a marginal reduction in the
reserves of asset i while maintaining its utility constant.

Multi-asset trade

A CFMM can also allow multi-asset trades. The most general way to formalize them with
Eq. (4) is by replacing ∆i with a generic output vector O ∈ RN

+ , and qij(∆, R)j with a generic
input vector I ∈ RN

+ . However, doing so generally leads to a multiplicity of solutions for I

given O. Thus multi-asset trade requires imposing further restrictions on the contract space
in order to be well defined (Angeris et al., 2022). We handle multi-asset trade by considering
composite assets defined by generic basis vectors b, b’ that replace i, j in Eq. (5). With this
interpretation, the analysis of two-assets trades naturally extends to higher dimensions, as
we explain in Section 4.2.

2.2 Liquidity provision

The operations performed by liquidity providers can also be represented as input-output
vectors. Liquidity provision is an operation with I > 0 and O = 0; while liquidity withdrawal
has I = 0 and O > 0.

Most CFMMs advise or require liquidity providers to supply all the N assets simultane-
ously so as to maintain their shares in the pool. As we will see in Section 3, under common
assumptions on the trading function this type of liquidity provision does not alter CFMM
prices and therefore does not generate an arbitrage opportunity. More formally, the liquidity
input has to move reserves from R to R′ = αR ≥ R, where the scalar α ≥ 1 determines the
CFMM utility at the new reserves. Thus the input vector has to be formatted as I = R(α−1).
In reward for supplying liquidity, the provider receives an amount of newly minted liquidity

7The identity is proven by totally differentiating U along the bonding curve to obtain URi
(R∆) d∆i +

URj
(R∆) d∆j = 0, showing that the slope of the bonding curve, d∆j/ d∆i = MRSij(R∆).
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tokens that constitutes a share α − 1 of their pre-emission supply. The initial emission of
LP tokens is chosen arbitrarily by most CFMMs.

The CFMM also maintains the composition of the pool when reserves are withdrawn.
This case of negative liquidity provision can be represented as before but with α ∈ [0, 1].
By burning a share 1 − α of liquidity tokens in circulation, a liquidity provider receives
O = R(1 − α) assets back from the CFMM, and moves its reserves from R to R′ = αR ≤ R.

2.3 Analogy with consumer theory

In consumer theory, the impact of a price change divides into a substitution effect that moves
consumption along the consumer’s indifference curve, and an income effect that shifts the
indifference curve. By contrast, with CFMMs, the substitution and income channels are split
between two types of market participants: Traders move reserves along the bonding curve
of the CFMM, while liquidity providers shift the bonding curve (see Figure 1). We unfold
the implications of this decomposition in the rest of paper, showing that it sheds a powerful
light on the inner workings of CFMMs.

Some CFMMs implement more sophisticated operations than simple trade or liquidity
provision and withdrawal. Yet, these can be captured by a composition of the two benchmark
operations. For example, trading under transaction fees can be seen as a trade followed by
a liquidity provision since collected fees are directly fed into the liquidity pool, leading to
an upward shift of the bonding curve. Also, non-proportional or partial (e.g. single-sided)
liquidity provision triggers a proportional glide along the bonding curve followed by a shift.

(a) Swap (b) Liquidity provision

Figure 1: Division of CFMM operation among market actors

9



2.4 Overview of popular CFMMs

Before diving into the mathematical analysis of CFMMs, we survey the trading functions
implemented by the most popular protocols (see also Xu et al. 2023 for an extensive survey
of existing CFMMs). We restrict our attention to CFMMs that quote prices only as a
function of their reserves. Thus we do not cover recent CFMMs that feed additional data
to their pricing algorithm by implementing on-chain oracles, like DODO, or that implement
concentrated liquidity positions, like Uniswap V3.

Uniswap (Adams et al., 2020)

Uniswap (V2) is by far the most popular CFMM. It was originally deployed on the Ethereum
blockchain. Since then, Uniswap has been replicated by multiple clones on Ethereum as
well as on other blockchains (e.g., Sushiswap on Ethereum, Pancakeswap on BNB Smart
Chain, Serum on Solana). Uniswap’s pools contain pre-defined asset pairs and implement
the constant-product trading function, U : R2

+ → R, such that

U(R) = R1R2. (8)

Hence a trade is admissible according to Eq. (2) if and only if (R1 − ∆1) (R2 − ∆2) ≥ R1R2.

Uniswap’s LP tokens are called Uniswap (UNI) tokens. Uniswap allows liquidity providers
to supply liquidity arbitrarily but advises them to perform proportional multi-asset liquidity
provision to avoid arbitrage (see Section 2.2).8 The initial emission of UNI tokens is set at
the geometric mean,

√
I1I2, of the initial input of reserves.

Balancer (Martinelli and Mushegian, 2019)

Balancer is a multi-asset generalization of Uniswap. It uses a geometric mean (G3M) trading
function, U : RN

+ → R+, such that

U(R) =
∏N

i=1 Rwi
i ; wi ∈ (0, 1),

∑N

i=1 wi = 1. (9)

The trading functions of Uniswap and Balancer are both instances of Cobb-Douglas utility
functions. Liquidity provision in Balancer can be both proportional multi-asset provision
and single-asset provision. In single-asset provision, providers are free to supply any asset
individually but pay a trading fee as the CFMM treats this operation as a multi-asset
provision followed by a swap.

8https://docs.uniswap.org/contracts/v2/guides/smart-contract-integration/providing-liquidity.
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MStable (Andersson, 2020)

The MStable CFMM uses a linear trading function, U : RN
+ → R+, with

U(R) =
∑N

i=1 Ri. (10)

This constant sum CFMM executes swaps at parity. Hence it is convenient for stablecoin
pools, since stablecoins pegged to the same underlying value are supposed to trade close
to parity. The linear CFMM is not practical because, due to its linearity, arbitrageurs can
profit from draining reserves of some asset to zero, thereby preventing other liquidity traders
to buy them (see Section 4.2). However, linear trading functions can have a meaningful use
when mixed with other functional forms, as in the next CFMM.

Curve (Egorov, 2019a,b)

Curve (previously known as StableSwap) mixes a linear and a geometric-mean trading func-
tion.9 The CFMM’s utility is set to simultaneously satisfy ∑N

i Ri = U and ∏N
i Ri = (U/N)N .

Multiplying the linear trading function by χ(U, R)UN−1 and adding both sides of each iden-
tity gives the implicit equation of Curve’s trading function, U : RN

+ → R+ such that

χ(R, U) UN−1 ∑N

i=1 Ri +
∏N

i=1 Ri = χ(R, U) UN +
(

U

N

)N

. (11)

The leverage χ(U, R) is a 0-homogeneous (scale free) function that gives the weight on the
linear component. It turns Curve into a geometric CFMM for χ(U, R) = 0 and into a
linear one for χ(U, R) → ∞. The leverage is multiplied by UN−1 so that the linear and the
geometric component are measured in the same units of utility. The implicit bonding curve
originating from Eq. (11) is an hyperbolic-like function, similar to the ones used by Uniswap
and Balancer, with a flat central region and asymptotes along each R-axis.

Curve adjusts the leverage dynamically as a function of the reserves:10

χ(R, U) = Aχ0(R, U), χ0(R, U) ≡
∏N

i=1 Ri

(U/N)N
in Curve V1;

χ(R, U) = Aχ0(R, U) γ2

γ + 1 − K0
in Curve V2.

(12)

The parameter A ∈ R+ is called the amplification coefficient. It controls the flatness of the
9Port and Tiruviluamala present a general technique to mix linear and geometric trading functions.

10An alternative formulation for Curve V1 and V2’s implicit equation follows by plugging the value of
χ(R, U) into Eq. (11): ANN

∑N
i=1 Ri + U = UANN + UN+1/NN

∏N
i=1 Ri.
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bonding curve around the 45-degree line. The larger is A, the wider is the central plateau
of the curve. γ ∈ R+ controls the steepness of tails by stretching the bonding curve towards
the axes when increased (see Fig. 2).

Figure 2: Effect of parameters on Curve’s bonding curves

Yieldspace (Niemerg et al., 2020)

Yieldspace uses a constant power sum trading function, U : R2
+ → R+, with

U(R) = Rρ
1 + Rρ

2, ρ ∈ (−∞, 1]. (13)

This trading function converges to constant product for ρ → 0, and becomes linear at ρ = 1.
For ρ → −∞, U(R) converges to a Leontief trading function U(R) = min (R1, R2). In this
limit, the CFMM has the bizarre behavior of allowing only trades that switch the reserves
of the two assets.11 That is, assuming R1 = min (R1, R2), only ∆ = (R2 − R1) · (1, −1) is an
admissible trade. An immediate multi-asset generalization of the constant power sum is the
constant elasticity of substitution (CES) trading function

U(R) =
 N∑

i=1
Rρ

i

 1
ρ

, ρ ∈ (−∞, 1). (14)

11In our notation, the symbol “·” denotes the inner product among two vectors. Conversely, two variables
next to each other indicate multiplication by a scalar or matrix product.
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To the best of our knowledge, this specification has not yet been implemented for N > 2.

3 No-Arbitrage Equilibrium

The first question raised by decentralized exchanges is whether they enable discovery of
fundamental prices. Given that CFMMs coexist with centralized exchanges which update
their quotes at a much higher frequency, it is reasonable to assume that traders observe
reference prices P ∈ RN

+ for the CFMM’s assets. Arbitrageurs can therefore maximize their
profits from trading between the CFMM and the centralized market by solving

max
∆

P · ∆ s.t. U (R − ∆) ≥ K. (15)

Problem (15) is not yet in a standard form because it depends on the net trade ∆. However,
observing that the arbitrageur’s profit is given by

P · ∆ = P ·
(
R − R′

)
= P · R − P · R′, (16)

and that P · R is fixed, we infer that the arbitrage problem is equivalent to

min
R′

P · R′ s.t. U
(
R′
)

≥ K. (AP)

Two insights follow from formulation (AP) of the arbitrage problem. First, arbitrage
profits are maximized when the post-arbitrage value of the pool is minimized. Hence, the
incentives of arbitrageurs are opposite to those of liquidity providers. Second, the arbi-
trageur’s problem is isomorphic to the expenditure minimization problem (EMP) of con-
sumers. Thanks to this similarity, an arsenal of established results from consumer theory
readily characterizes the solution to the arbitrage problem. Most importantly, it follows
that the reserves that solve (AP) are given by the Hicksian demand of the corresponding
consumer problem, and liquidity providers’ portfolio value of holding the equilibrium re-
serves in the liquidity pool is described by the related expenditure function. For this reason
we refer to h(P, K) as the vector of Hicksian reserves, and denote their portfolio value by
V (P, K) = P · h(P, K). These two quantities are formally defined as

h(P, K) = arg min
R

{
P · R| U (R) ≥ K

}
, (17)

V (P, K) = min
R

{
P · R| U (R) ≥ K

}
= P · h(P, K). (18)

We will refresh these concepts and show exactly how they relate to (AP) in the next para-

13



graphs, dropping the notation K when irrelevant or clear from the context.

3.1 CFMMs as decentralized price oracles

We are now in a position to derive the prices that should be quoted by the CFMM to reveal
the reference values of its assets. When price revelation occurs, the CFMM is said to act
as a decentralized price oracle. Efficient quotation follows from another well known result in
consumer theory according to which, at the solution R = h(P, K) of (AP), the gradient ∇U

is proportional to the price vector. That is,

P = λ∇U (R) , (19)

where U(R) = K and λ ∈ R+ is a scaling constant that depends on the choice of numéraire.
Assumption 1 ensures that h(P, K) is well-defined, unique, and continuous in P and K.
Moreover, condition (19) is both necessary and sufficient for a constrained minimum.

There are two ways to think about Eq. (19). First, it defines how relative prices should
be quoted by the CFMM to prevent arbitrage, namely as ratios of marginal utilities as in
Eq. (7). Second, it guarantees that arbitrageurs bring each CFMM spot price back in line
with the reference price. In other words, arbitrageurs synchronize on-chain and off-chain
data, making the CFMM a reliable price oracle.

The decentralized oracle property is the combination of the two above considerations.
Using the handy notation pij(R) ≡ pij(0, R) to denote CFMM spot prices, it reads:12

pij(R) = URi
(R)

URj
(R) = Pi

Pj

. (20)

3.2 Basic properties of Hicksian reserves and portfolio value

Consumer theory connects Hicksian reserves to their shares in the portfolio value. It is well
known that the Hicksian reserves of the Cobb-Douglas trading function in Eq. (9) satisfy

Pihi(P, K) = wiV (P, K). (21)

The exponents wi are therefore the share of portfolio value that Balancer’s liquidity providers
obtain from the reserves of asset i. A similar relationship establishes that, for the CES utility

12Here pij(R) is the CFMM spot price, while pij(0, R) is the price function in Eq. (7) evaluated at ∆ = 0.
They are different objects: pij(R) gives the CFMM price as a function of equilibrium reserves; pij(∆, R)
gives the updated CFMM price as a function of the purchase ∆ of asset i, given reserves R.
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in Eq. (14),

Pihi(P, K) = P
ρ/(ρ−1)
i∑N

j=1 P
ρ/(ρ−1)
j

V (P, K).

Hence asset i’s share of the portfolio value is now an increasing function of its price. The
portfolio value of a linear CFMM comes instead only from the cheapest asset, so that
V (P, K) = K min(P ). This is the result of arbitrageurs fully draining the reserves of the
most valuable asset.

More generally, for CFMMs that satisfy Assumption 1, standard results (see, for instance,
Mas-Colell et al. 1995) ensure that:

Proposition 1. The Hicksian reserves h(P, K) is: (i) 0-homogeneous in P ; (ii) increasing
in K (DKh(P, K) ≥ 0).

Proposition 2. The portfolio value V (P, K) satisfies: (i) 1-homogeneity in P ; (ii)
DP V (P, K) ≥ 0; (iii) DKV (P, K) > 0; (iv) continuity in P and K.

The homogeneity translates into h(·) being a function of relative, rather than absolute,
prices and V scaling linearly with the price vector. The signs of the derivatives above are
all very natural: higher utility requires more reserves, and so portfolios that correspond to
higher utility are worth more. The continuity of V is inherited from the smoothness of U .
Notice that we do not describe DP h(·) at this stage. Doing so requires a deeper analysis of
the off-equilibrium consequences of arbitrage, which we perform later in Section 5.

3.3 CFMM equivalence under monotonic transformation

We have seen in Section 2.4 that CFMMs come in all shapes and sizes. However, their
diversity is more apparent than real. It can be trimmed down with the help, once again, of
consumer theory. One of the fundamental insight of utility representation is that functional
forms matter only to the extent that they capture ordinal preferences. Monotonic transfor-
mations are therefore irrelevant for utility functions and, by extension, for trading functions.
Concretely, consider two CFMMs with trading functions U1 and U2. If there exists a mono-
tonic transformation f such that U1 = f ◦ U2, then the two CFMMs are equivalent. For
instance, let us compare Uniswap’s trading function UA = R1R2 with the trading function
of an equally-weighted Balancer pool, UB = R

1/2
1 R

1/2
2 . Since UB =

√
UA, or UB = f ◦ UA

with f (x) =
√

x, we can conclude that the two CFMMs are equivalent. In Appendix B, we
formally show that:

Example 1. Uniswap and Balancer with N = 2 and w1 = w2 = 1/2 are equivalent CFMMs.
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This equivalence combined with Eq. (21) shows that the portfolio value of Uniswap’s liq-
uidity providers is evenly split among the two assets. Going beyond the Uniswap-Balancer
analogy, one can show that Balancer is also equivalent to a CFMM that uses the exp-log trad-
ing function U(R) = exp(∑n

i=1 wi log(Ri)), and that N -assets generalizations of Yieldspace
(Eq. 13) are equivalent to the CES CFMMs in Eq. (14) for ρ ≥ 0.

3.4 Price neutral liquidity provision

The design space can be further narrowed down by requiring that liquidity providers do not
affect the prices quoted by the AMM. This restriction is natural since it prevents liquidity
provision from scrambling the price discovery process. The necessary condition has long been
established in consumer theory where it is common to focus on homothetic preferences so as
to ensure that consumers with different incomes demand goods in the same proportions, as
long as they are facing the same relative prices. Then the income expansion path of demand
becomes linear because the slope of the indifference curves stays constant along rays in
RN originating at 0. The implication for CFMMs is that their spot price depends on the
composition and not on the size of the pool solely when the trading function is homothetic.
Then, and only then, liquidity provision does not create new arbitrage opportunities by
tampering with the spot price (see Figure 3).

Figure 3: Bonding curves of an homothetic trading function

A trading function is homothetic when it is of the form U = f ◦u, where f is an increasing,
monotonic function and u is a 1-homogenous trading function. Since we have shown that
monotonic transformation are immaterial for the behavior of CFMMs, we can conclude that
the class of CFMMs whose trading functions are homogenous of degree one encompasses
all the CFMMs whose prices are not impacted by liquidity provision. Imposing this simple
restriction therefore results in a dramatic reduction of the design space.
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Proposition 3. CFMM prices are invariant to liquidity provision if and only if U is ho-
mothetic. Formally, for α ∈ R, Dαpij(αR) = 0 if and only if U = f ◦ u with f monotone
increasing and u 1-homogeneous.

Proof in Appendix A.
All the CFMMs listed in Section 2.4 are homothetic. Curve is the only CFMM for

which homotheticity is not obvious but we show in Appendix B that Curve is indeed 1-
homogeneous.

Example 2. The trading function of Curve is 1-homogeneous.

4 Traders’ Side of the Market

Now that we have established the general structure and properties of CFMMs, we turn our
attention to the description of each side of their marketplaces, pinpointing the externalities
that connect them. This section explains why the cost for traders of interacting with a
CFMM is encapsulated by its price impact. We then show that liquidity providers exert a
positive externality on traders when the price impact decreases in the size of the liquidity
pool. We provide formal conditions under which this statement is true so that traders really
benefit from the participation of liquidity providers.

4.1 Cost of trading and price impact

The cost of buying ∆ units of asset i with asset j is given by the difference between the
actual transfer and the one that would have prevailed in a market with fixed execution price:

C(R∆, R) = qij(∆, R) − pij(0, R)∆, (22)

where qij and pij are the quantity and price functions defined in Eqs. (6) and (7), while the
argument (R∆, R) indicates that the reserves moved from R to R∆ as defined in Eq. (5).13

According to Eq. (6), the cost of trading is equal to the (total) price impact.

C(R∆, R) =
∫ ∆

0

[
pij(x, R) − pij(0, R)

]
dx.

We leverage this connection to focus on price impact in order to characterize the cost of
trading.

13We use (R∆, R) instead of (∆, R) because it underlines the connection between the cost functions of
traders and of liquidity providers covered in Section 6.
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4.2 Price impact and CFMM curvature

In this subsection, we prove that the CFMMs that satisfy Assumption 1 have strictly positive
price impact, so that Dxpij(x, R) > 0. In other words, qij(∆, R) is strictly increasing and
convex in ∆ for all R.

Our result follows by analogy with the property that a quasi-concave utility function ex-
presses the preferences of an agent with Diminishing Marginal Rates of Substitution (DMRS)
in consumption, resulting in convex preferences (Arrow and Enthoven, 1961). When we re-
place the consumer with a CFMM, convex preferences translate into convex trading sets,
and DMRS into positive price impact for any swap among composite assets generated by
linear combinations of the base assets of the liquidity pool.

For simplicity, consider first a two-assets pool. The equivalence between price impact and
quasi-concavity in this case follows from decomposing the curvature of the bonding curve at
reserves R∆, given by sij(R∆) ≡ D∆pij(∆, R), into

sij(R∆) = −

URiRi
U2

Rj
− 2URiRj

URi
URj

+ URjRj
U2

Ri(
URj

)3


∣∣∣∣∣∣∣∣
R=R∆

> 0, (23)

The expression in parenthesis in Eq. (23) is exactly D∆MRSij(R∆). Thus, owing to DMRS,
sij(R∆) > 0 for all ∆ and R.

Lemma 1. A two-asset CFMM exhibits positive price impact if and only if the trading
function is strictly quasi-concave.

Proof in Appendix A.
We provide additional details on the equivalence between DMRS and quasi-concavity in

Appendix D.1. For a generic N -asset CFMM, quasi-concavity becomes apparent when we
define a trading function over pairs of linearly-independent (i.e. non proportional) composite
assets b, b′ ∈ RN with reserves Rb, Rb′ ∈ R. Linear-independence is needed to consider the
two composite assets as distinct, so that b and b′ form an orthogonal basis for the swap.
The trading function so constructed, Ũ : R2 × RN × RN → R, is defined as

Ũ(Rb, Rb′ ; b, b′) = U(Rbb + Rb′b′), with b ̸= αb′, and α ∈ R \ {0}. (24)

Using Ũ we can generalize the concept of quasi-concavity to more than two assets since
Arrow and Enthoven (1961) have shown that U is quasi-concave if and only if Ũ is quasi-
concave for all (linearly-independent) assets (b, b′) ∈ RN

+ × RN .
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Proposition 4. A CFMM exhibits positive price impact among composite assets if and only
if the trading function is strictly quasi-concave.

An alternative and more common way to test for quasi-concavity of a function with N ≥ 3
arguments is by studying the sign of the principal minors of its bordered Hessian.14 The
two approaches are equivalent, although the method we propose has a direct economic in-
terpretation when applied to CFMMs: Identifying quasi-concavity coincides with identifying
positive price impact in the trading of composite assets.

Restricting Proposition 4 to basis vectors b = i, b’ = j immediately gives the most
relevant application of quasi-concavity in practice:

Corollary 1. A CFMM exhibits positive price impact among base assets if and only if Ũ in
Eq. (24) is quasi-concave for all basis vectors b = i, b’ = j.

Infinite liquidity

(a) Depletable CFMM (b) Non-depletable CFMM

Figure 4: Infinite liquidity and asymptotes of the bonding curve

A positive price impact is an inconvenience for traders but, as we will see in Section 6.2,
it is also a necessary defense mechanism for the CFMM. Besides reducing arbitrageurs’ in-
centives to trade against liquidity providers, it can guarantee the property known as ‘infinite
liquidity’ in practitioners’ jargon. That is, the price impact can preclude traders from ex-
hausting all reserves, thereby ensuring that the CFMM always remains ready to process
incoming orders. For this to be the case, strict quasi-concavity has to be complemented with
the property that the price becomes infinite when the reserve of any of the traded assets
nears zero:

14This is also known as the determinant criterion: U is quasi-concave if and only if the (−1)r|D̄2
rU | ≥ 0

for r = 1, 2, . . . , N , where D̄2
rU is the r-th principal minor of the bordered Hessian of U .
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Lemma 2. The CFMM’s reserves cannot be drained if

lim
∆i→Ri

∣∣∣MRSij(R∆)
∣∣∣ = +∞, for all ij. (25)

Eq. (25) is a variant of the Inada condition. It essentially requires that the bonding
curve has asymptotes along the axis of each asset pair, as in Fig. 4b. By contrast, bonding
curves such as those in Fig. 4a correspond to CFMMs that can be completely drained of
their reserves.

4.3 Network effect of liquidity provision on trade

The results derived in the previous subsection allow us to characterize how the cost of trading
C(R∆, R) is affected by liquidity provision. We focus on multi-asset proportional liquidity
provisions to homothetic CFMMs since they are by far the most common in practice (see
Sections 2.2 and 3.4). We relegate the more convoluted analysis of single-asset liquidity
provision to Appendix C.

Equilibrium spot prices are preserved under multi-asset provision to an homothetic
CFMM. Thus, liquidity provision has a positive network effect on traders whenever pur-
chasing assets at the new reserves costs less inputs than before. Specifically, traders benefit
from a proportional liquidity injection if

qij(∆, R) − qij(∆, αR) ≥ 0, α > 1, (26)

holds for all distinct asset-pairs ij and strictly for at least one ij. Fig. 5 shows an example
where Eq. (26) is satisfied.

Figure 5: Effect of deepening the pool on the cost of trading
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In Appendix A we establish a property which allows us to conclude that liquidity provision
does exert a positive externality on traders for homothetic trading functions under Assump-
tion 1. Namely, we show that homotheticity of the trading function implies 1-homogeneity
of the quantity function, and vice-versa:

Lemma 3. A trading function U(R) is homothetic if and only if its quantity function
qij(∆, R) is 1-homogeneous in (∆, R).

Furthermore, it follows from Euler’s theorem that:

Corollary 2. If U if homothetic, then the price function pij(∆, R) is 0-homogeneous in
(∆, R) so that

pij(∆, αR) = pij

(
∆
α

, R

)
.

In words, buying ∆ in a pool that is deeper by a factor α is equivalent to buying the
smaller quantity ∆/α at the initial reserves. Thus, under quasi-concavity of the trading
function, pij(∆, αR) < pij(∆, R) due to Corollary 1, and so, qij(∆, αR) being determined
through integration of the marginal price, we have qij(∆, αR) < qij(∆, R).

Proposition 5. If the trading function U is homothetic and strictly quasi-concave, liquidity
provision reduces the cost of trading; i.e. the inequalities in Eq. (26) hold strictly for all asset
pairs.

Proof in Appendix A.

5 Liquidity Providers’ Side of the Market

While the previous section focused on the externalities affecting traders, we now turn our
attention to liquidity providers. In centralized markets managed via limit order books, liq-
uidity providers bear an adverse selection cost (Glosten and Milgrom, 1985). CFMMs are no
exception. We have shown in Section 3 that arbitrage opportunities harm liquidity providers
because arbitrageurs replace appreciating assets with depreciating ones. To quantify the im-
pact of arbitrage, new analytical tools are needed. It turns out that the effect of arbitrage on
the portfolio value of liquidity providers is more conveniently studied in the dual space of the
arbitrage problem. The benefit of this shift of perspective is intuitive since the preferences
of liquidity providers are not expressed by the trading function but rather by the monetary
value encoded in its supporting hyperplanes. Moreover, formulating our analysis in the dual
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space does not entail any loss of information because the Hicksian reserves can be derived
from the portfolio value function through Shephard’s Lemma:15

Proposition 6. (Shephard’s Lemma) Suppose that U : RN
+ → R is a continuous, strictly

increasing, and strictly quasi-concave trading function. Then, for all P ∈ Rn
++ and K ∈ R,

h (P, K) = ∇P V (P, K) , (27)

where h (P, K) and V (P, K) are the Hicksian reserves and their portfolio value, defined in
Eqs. (17) and (18).

Furthermore, according to Eq. (27), twice-differentiation of the portfolio value with re-
spect to P yields the impact of price movements on equilibrium reserves. The resulting
Hessian is the Slutsky matrix which encapsulates the substitution effects of a change in
prices on consumption.

Corollary 3. The price derivative of the Hicksian reserves are given by the Slutsky matrix:
D2

P V (·, K) = DP h(·, K).

We refer to the negative of the ij-element of the Slutsky matrix

ℓij(P, K) ≡ −D2
P Vij(·, K) = −∂hi(P, K)/∂Pj (28)

as the liquidity of asset i with respect to the price of asset j. Liquidity is a standard concept
to express how many units of Ri the CFMM can sell in response to a marginal change in
Pj (Goyal et al., 2022; Milionis et al., 2022). This interpretation holds for ℓij(P, K) ≥ 0.
Similarly, in the case of negative liquidity, with ℓij(P, K) ≤ 0,

∣∣∣ℓij(P, K)
∣∣∣ gives the amount of

Ri that the CFMM can buy in response to a marginal change in Pj. Large values of ℓij(P, K)
also indicate that the CFMM can sell (or buy) many reserves without altering substantially
its internal spot prices, thereby remaining synchronized with the reference market prices.
Besides describing how reserves change with arbitrage, we will see in Section 6.2 that liquidity
connects the perspectives of liquidity providers and traders.

5.1 Liquidity and concavity of portfolio value

The concavity of the portfolio value quantifies the exposure to adverse selection of liquidity
providers. Technically, V (P, K) is concave if, given a pair of distinct prices, the portfolio

15In consumer theory, Shephard’s Lemma is typically stated assuming local non-satiation rather than strict
monotonicity of the utility function. The latter is a stronger assumption.
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value evaluated at the average price is higher than the average portfolio value at each separate
price:

V (αP + (1 − α)P ′, K) ≥ αV (P, K) + (1 − α)V (P ′, K), for all P, P ′, and α ∈ [0, 1]. (29)

We can interpret Eq. (29) as comparing the portfolio value at the average prices to the
expected value of the portfolio resulting from a distribution that returns P with probability
α and P ′ with probability 1 − α. Intuitively, the inequality in Eq. (29) holds because
the arbitrageur can re-optimize reserves at each price level, generating a profit for herself
and a corresponding loss for the liquidity providers. Hence the expected portfolio value
over multiple prices should be lower than the portfolio value at the fixed average price.
Assumption 1 guarantees that arbitrage is indeed profitable after each price change.

Lemma 4. The portfolio value V (P, K) is concave in P .

Proof in Appendix A.

Liquidity

The combination of Lemma 4, Proposition 6 and Corollary 3 allow us to translate the
concavity of V (P, K) into conditions on the signs and magnitudes of assets’ liquidity:

Proposition 7. D2
P V (·, K) is negative semi-definite and satisfies D2

P V (·, K)P = 0.

Proposition 7 essentially implies that prices and reserves move in opposite directions, a
behavior encapsulated in consumer theory by the compensated law of demand.16 In particu-
lar, semi-definite D2

P V (·, K) and DP h(·, K)P = 0 jointly imply that

ℓii(P, K) ≥ 0 for all assets i, and ℓij(P, K) ≤ 0 for at least one j ̸= i. (30)

In words, an increase in Pi that alters the no-arbitrage equilibrium allows for liquidity ex-
traction from the reserves of asset i but requires a liquidity injection of at least another asset
j to maintain reserves on the bonding curve.

5.2 Impermanent losses

We are now in a position to quantify the cost of adverse selection originating from arbitrage.
Our measure of adverse selection is the profit that the arbitrageur can make from a single

16The law of demand states that marginal changes in prices dP ∈ RN and reserves dh(P, K) ∈ R2N satisfy
dP · dh(P, K) = dP · DP h(·, K) dP ≤ 0.
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(a) p′ > p (b) p′ < p

Figure 6: Impermanent losses in the primal space

price movement. The cost component originating from arbitrage is known as impermanent
loss.17 To quantify it, consider a change in reference market prices from P to P ′, assuming
that the spot prices of the CFMM were initially equal to their reference value P . Before
arbitrageurs consume their arbitrage opportunity, the value of the liquidity pool is P ′ ·
h(P, K). However, at the new equilibrium, the pool’s resources will be worth V (P ′, K) =
P ′ · h(P ′, K) ≤ P ′ · h(P, K). The liquidity providers therefore lose

L(P ′, P, K) = P ′ ·
(
h(P, K) − h(P ′, K)

)
≥ 0. (31)

The inequality follows directly from the definition of the portfolio value since it achieves a
global minimum at any given prices. Moreover, Eq. (31) holds with equality at P ′ = αP (for
α > 0) as h(αP, K) = h(P, K).

Fig. 6 represents the impermanent loss in the primal space of the arbitrage problem (AP).
It depicts the loss generated by a change from p to p′ in the price of asset 1 measured in
terms of the numéraire asset 2. With this normalization, the price vector is P = (p, 1),
with p = P1/P2 = P1. The impermanent loss L reported in orange on the vertical axis is the
difference between the ordinate-intercepts of the hyperplanes with slope p′ that are tangent to
the bonding curve at h(p, 1) and h(p′, 1). These correspond to the portfolio values of liquidity
providers before and after arbitrage. We now show that representing the impermanent loss
in the dual space provides a more compact and transparent representation.

17An alternative term for the adverse selection cost of liquidity provision is divergence loss (Goyal et al.,
2022). While some papers refer to impermanent loss specifically for passive liquidity positions, we adopt it
as a generic adverse selection cost as it is more widely used in both the literature and by practitioners.
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Figure 7: Geometry of impermanent losses in the dual space

Shephard’s Lemma (Proposition 6), allows us to rewrite the impermanent loss as

L
(
P ′, P, K

)
= P ′ · ∇P V (P, K) − V

(
P ′, K

)
. (32)

As shown in Fig. 7, L (P ′, P, K) is the difference between the portfolio value and its tangent
hyperplane at prices P .18 L (P ′, P, K) ≥ 0 then immediately follows from the concavity of
the portfolio value established in Proposition 2. Notice that impermanent losses are strictly
positive only when relative prices change. Instead, if all prices are scaled by the same factor
α, as on the gray price curve in Fig. 7, then the portfolio value moves along the black dashed
line on the supporting hyperplane. In other words, the portfolio value also scales linearly
from V (P ) to αV (P ), achieving the same values as those on the supporting hyperplane. By
contrast, if relative prices change, as on the red price curve, then the value of V (P ′) is lower
than that of P ′ · ∇P V (P ), as can be seen comparing the solid red parabola with the red
dashed line. The impermanent loss induced by a price change from P to P ′ is therefore given
by the vertical distance between points B and C in Fig. 7. Given that impermanent losses
are measured by the difference between a linear and a concave function, they are convex in

18This representation holds true because of Shephard’s Lemma. Omitting the argument K, the difference
between the portfolio value V (P ′) and its approximation based on its supporting hyperplane at P is given
by
[
V (P ) + ∇P V (P ) · (P ′ − P )

]
− V (P ′), which equals P ′ · ∇P V (P ) − V (P ′) because Shephard’s Lemma

implies that V (P ) = P · ∇P V (P ).
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Figure 8: Projected impermanent losses for a change in the relative price

the price displacement. In Appendix A we complement these graphical arguments with an
analytical proof which demonstrates that:

Proposition 8. The impermanent losses L(P ′, P, K) are positive and convex in P ′, with
global minimum 0 at P ′ = αP , for all α ∈ R++.

Fig. 8 reports a 2-dimensional projection of Fig. 7 for the same setting as Fig. 6a. As the
figure shows, a change in relative prices causes an impermanent loss for every p′ ̸= p.

Impermanent losses and price-neutral liquidity provision

We have shown in Section 3.4 that the spot prices of an homothetic CFMM are independent
of the overall liquidity or utility K of the CFMM. Interestingly, this property also guarantees
that the impermanent loss as a percentage of the portfolio value is independent of K. This
result holds true because, although liquidity provision incentivizes arbitrage by flattening the
curvature of the bonding curve, it also proportionally increases the value of the pool. The
proof follows once again from standard microeconomic theory. It is a direct consequence of
the fact that homothetic trading functions generate separable portfolio value functions and
separable Hicksian reserves.

Lemma 5. V (P, K) and h(P, K) are separable if and only if U is homothetic; that is,
V (P, K) = ϕ (K) V (P, 1), h(P, K) = ϕ(K)h(P, 1), where ϕ(K) is a positive and increasing
function.

Proof in Appendix A.
Lemma 5 implies that

L(P ′, P, K)
V (P, K) = P ′ ·

(
h(P, K) − h(P ′, K)

)
P · h(P, K) = P ′ ·

(
h(P, 1) − h(P ′, 1)

)
P · h(P, 1)
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is independent of K when U is homothetic, as ϕ(K) cancels out after being factorized in the
numerator and denominator.

Proposition 9. The rate of impermanent losses, L(P ′, P, K)/V (P, K), is independent of
the pool size K whenever the CFMM is homothetic.

5.3 Price manipulation

Beyond its theoretical importance, understanding the role of arbitrage in shaping pool values
and Hicksian reserves has practical implications. A notable example is the exploit on Warp
Finance, which stemmed from a design flaw in its quoting algorithm (Michel, 2022).

Warp Finance allowed borrowing using Uniswap’s LP tokens as collateral, and the attack
exploited flaws in how Warp Finance calculated the value of these tokens. While the formula
for pricing LP tokens can be computed simply as the product of asset prices, P , and reserves,
R, divided by the total supply of LP tokens, its implementation requires careful consideration
of these inputs are determined. Warp Finance used a time-weighted average price (TWAP) to
compute P , effectively mitigating short-term volatility, but relied on instantaneous (current)
reserves from Uniswap for R. This inconsistency between the average prices and current
reserves created an exploitable vulnerability.

Using a flash loan, an attacker manipulated the reserves to inflate the perceived value of
LP tokens. A flash loan is a unique DeFi mechanism that allows users to borrow large sums
of assets without collateral, provided the loan is repaid within a single composite transaction
including multiple operations. If not repaid, the entire transaction is reverted, effectively
nullifying the loan. Exploiting this mechanism, the attacker temporarily injected liquidity
into the Uniswap pool, increasing its reserves R and artificially inflating the value of the LP
tokens. With these overvalued tokens as collateral, the attacker borrowed more funds than
the collateral’s true worth.

An alternative DeFi protocol, Alpha Finance, addressed this type of vulnerability by
incorporating equilibrium-based reserve values, using the Hicksian reserves’ formula, into its
pricing mechanism. Specifically, rather than relying on current reserves, Alpha Finance relied
on an historical average of Hicksian reserves calculated from the constant product invariant
of liquidity pools and trusted price oracles for asset prices. This approach anchored LP token
valuations to the pool’s theoretical equilibrium, making it resilient to flash loans.

The Warp Finance exploit, and Alpha Finance’s response, highlight the importance of
incorporating equilibrium pricing principles to mitigate vulnerabilities in Constant Function
Market Makers (CFMMs) and strengthen the design of resilient DeFi protocols.
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6 Duality in Liquidity Provision and Liquidity Trading

We conclude our analysis by showing that duality ties together the perspectives of traders and
liquidity providers. First, we outline a method for portfolio replication: Given a portfolio
value V (P, K), we explain how to find the trading function U which achieves that value.
Then we build on this result to highlight the fundamental tradeoff connecting the two market
sides of a CFMM. We prove that the externality exerted by liquidity providers on traders is
inversely proportional to the externality exerted by traders on liquidity providers. Moreover,
we show that the size of these externalities is fully determined by the slope of the bonding
curve.

6.1 Portfolio replication

The construction method for U is equivalent to the procedure for recovering preferences from
expenditures. It relies on the dual-conjugacy connection among portfolio value and trading
set, as first pointed out in the seminal paper by Angeris et al. (2021a). The construction of
the portfolio value starts from the negative indicator function of the trading set,

[−δS(K)] (R) =


0 if R ∈ S(K)

−∞ otherwise
, (33)

which differs from the standard indicator function δS(K) (R) in that it returns −∞ instead
of ∞ whenever R /∈ S(K). Given [−δS(K)], its Fenchel conjugate

[
−δ∗

S(K)

]
(P ) retrieves the

portfolio value:19

[
−δ∗

S(K)

]
(P ) ≡ inf

R

(
P · R −

[
−δS(K)

]
(R)

)
= V (P, K). (34)

Notice that duality yields an alternative proof that the portfolio value δ∗
S(K) is concave in P

since it is the pointwise infimum of a family of linear functions.
Likewise, if S(K) is convex (U is quasi-concave), the Fenchel-Moreau theorem ensures

that the trading set can be recovered from the portfolio value via double conjugation. In
other words, the biconjugate [−δ∗∗

S(K)](R) recovers the negative indicator of the trading set:

V ∗(R, K) ≡ inf
P

(
P · R − V (P, K)

)
= [−δ∗∗

S(K)](R) = [−δS(K)] (R) .

19Since [−δS(K)] is a concave function of P , Eq. (34) uses the concave Fenchel conjugate rather than the
more common convex conjugate, which is defined differently. For example, the convex conjugate of δS(K) is
δ∗
S(K) = supP

(
P · R − δS(K)(R)

)
.
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To the best of our knowledge, S (K) is convex for all the existing CFMMs so recovery via
dual conjugacy is widely applicable. If S (K) is not convex, biconjugation recovers instead
its convex closure.

Proposition 10. The portfolio value and the (negative) indicator of the trading set are dual
conjugates:

V (P, K) =
[
−δ∗

S(K)

]
(P ), and

[
−δS(K)

]
(R) = V ∗(R, K). (35)

Proof in Appendix A.
We give a practical demonstration of this technique in Appendix B where we explain how

to recover Uniswap’s trading set from its portfolio value function.

Example 3. Duality recovers Uniwap’s CFMM from V (P, K) = 2
√

K(P1P2).

Angeris et al. (2021a) show that the above replication technique can be used to emulate
more sophisticated financial products. For example, they construct a CFMM that replicates
a covered call option or a perpetual American put option.

6.2 Tradeoff between liquidity provision and trading

We now use duality to establish an inverse relation between the sensitivity to shocks of
impermanent losses and of trading costs. This finding, by proving that the preferences
of liquidity providers and traders are divergent, opens the way for a characterization of
the Pareto frontier given market fundamentals. For the sake of exposition, we present the
tradeoff for a two-asset pool although the analysis can be generalized.

Consider a 2-asset CFMM with initial reserves R = (Ri, Rj) and initial prices P = (pij, 1),
so that asset j is the numéraire and pij is the relative price of asset i. The expected cost
of buying x units of asset i according to a strategy centered around 0 with variance V(x)
satisfies the approximation

Ex

[
C
(
R − xi + q(x, R)j, R

)]
≈ 1

2 V(x) sij(R) (36)

when x is small relative to the CFMM’s reserves. Similarly, the expected impermanent loss
induced by a small change y, of mean 0 and variance V(y), in the price of i satisfies20

Ey

[
L (P + yi, P )

]
≈ 1

2 V(y) ℓii(P ). (37)

20Let Rx and P y denote updated reserves and prices. By Taylor-expanding C (Rx, R) around x = 0,
we get Ex

[
C (Rx, R)

]
= E(x) DxC (R, R) + E(x2)D2

xC (R, R) /2 + o(E(x2)). The first-order term is zero
since E(x) = 0 (and DxC (R, R) = 0). For the second-order term, E(x2)D2

xC (R, R) /2 = V(x)sij(R)/2.
Higher-order terms are negligible if V(x) is small. The reasoning is analogous for Ey

[
L (P y, P )

]
.
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We now show that, in equilibrium, sij(R) and ℓii(P ) are inversely proportional. Thus,
one cannot tune the trading function so as to make traders better off without simultaneously
making providers worse off. This is a consequence of the dual nature of equilibrium prices
and reserves, which allows us to treat them as inverse functions of each other.

Specifically, in Appendix D.2 we show that, having fixed a numéraire asset, there exists
by Assumption 1 a unique price vector given by the inverse of the Hicksian reserves h−1 :
Sb(K) → RN

+ , where Sb is the bonding curve defined in Eq. (3). Since the trading set is
convex, the separating hyperplane theorem guarantees that every point on the bonding curve
can be uniquely identified by the slope of a supporting hyperplane. Having defined h−1(R) =
(pij(R), 1), we can use the inverse function theorem to establish that the sensitivities sij(R)
and ℓii(P ) in Eqs. (36) and (37) are reciprocal of each other.

Proposition 11. At the no-arbitrage equilibrium, price impact and liquidity are reciprocal
to each other:

ℓii(P ) = 1
sij

(
h(P )

) , sij(R) = 1
ℓii(pij(R), 1) .

Proof in Appendix A.
Combining Eqs. (36) and (37) with Proposition 11, we see that the cost of trading is

proportional to the curvature of the bonding curve, captured by the price impact sij(R),
whereas impermanent losses are proportional to the liquidity ℓii(P ) given by the reciprocal
of such curvature. Therefore low curvature trading functions incentivize trading while high
curvature trading functions incentivize liquidity provision. All CFMMs are subject to this
fundamental tradeoff. Hence there cannot be a choice of trading function that dominates
others in all respects.

Fig. 9 illustrates this principle by comparing the impact of a price shock across two
CFMMs with different curvatures. Both panels show the impermanent losses resulting from
the response of the arbitrageur. The left-hand side panel uses a convex bonding curve while
the right-hand side panel uses a linear bonding curve. Comparing L(P ′, P ) and q(∆, R) in
the two panels, one can see that more curvature reduces the impermanent loss for liquidity
providers but increases the cost of trading.

7 Transaction Fees

In this section, we show how to incorporate transaction fees in the prior analysis. As Angeris
et al. (2021b) shows for Uniswap, a transaction fee τ ∈ (0, 1) on asset exchanges can be
incorporated into the CFMM by modifying condition (4) to scale the inputs by a factor of
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Figure 9: Tradeoff between impermanent losses and trading costs

(1 − τ). In this way, a fraction τ of the inputs only accrues to the liquidity pool without
counting as input for the asset exchange. The condition for withdrawing ∆i units of asset i

in exchange for ∆j units of asset j becomes

U(R − ∆i + (1 − τ)∆j) = U(R), (38)

where ∆i is a vector representing the change in reserves of asset i (which is non-zero only
for asset i) and ∆j is defined identically. Condition (38) can be used to determine the cost
of buying asset i in terms of asset j units as well as the revenue from selling asset j in terms
of asset i units.

By implicitly differentiating Eq. (38) as in the derivation of Eq. (7), one can see that
transaction fees create a bid-ask spread. The bid (buying) price for asset i is given by:

pbid
ij (R; τ) = pij(R) × 1

1 − τ
,

where pij(R) is the spot price of asset i quoted by a CFMM without fees, defined in Eq. (20).
Conversely, the ask (selling) price of asset i is given by:

pask
ij (R; τ) = pij(R) × (1 − τ).

The resulting bid-ask spread is thus

pbid
ij (R; τ) − pask

ij (R; τ) = pij(R) ×
[

1
1 − τ

− (1 − τ)
]

≈ pij(R) × τ
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for τ sufficiently small, as is typically the case in practice.21

No-Arbitrage Equilibrium with transaction fees

The addition of transaction fees causes the CFMM to track the reference market price only
within a no-arbitrage region. When the reference market price lies within the bid-ask spread,
no trade with the CFMM can be profitable. More precisely, let mij denote the market price
of asset i in terms of asset j. An arbitrageur can make a profit by buying asset i from the
CFMM and selling it to the reference market only if mij > pbid

ij (R; τ). On the other hand,
the arbitrageur can profit from buying asset i from the reference market and selling it to the
CFMM only if mij < pask

ij (R; τ). So the equilibrium no-arbitrage region is such that

mij

pij(R) ∈
[
1 − τ,

1
1 − τ

]
.

8 Profits and Losses from Liquidity Provision

The previous sections examined price impact and impermanent loss in a two-period setting.
In this section, we provide an introductory overview of how these concepts extend to a multi-
period framework and discuss their impact on the profits and losses associated with liquidity
provision.

We consider a set of periods t ∈ {1, . . . , T} and a liquidity pool for assets i and j, with
asset j being the numeraire. The price mij ≡ m of the risky asset in the reference market
evolves according to the sequence of prices {mt}T

t=1, so that the vector of asset prices is
{Pt}T

t=1 where Pt ≡ (mt, 1). In every period, arbitrageurs trade with the CFMM rebalancing
reserves if an arbitrage opportunity arises. If an arbitrage occurs in period t − 1, the CFMM
will enter period t with reserves Rt = h(Pt−1). Prices and reserves are initialized at t = 0
and their values are denoted P0 and R0.

As stated in Milionis et al. (2022, 2023), the profits and losses (P&L) of a liquidity
provider can be decomposed into the following three components:

P&LT = FeeT + MRiskT − LvRT . (39)

The first component, FeeT , accounts for the transaction fees accumulated in the liquidity
pool. The second component, MRiskT , is the market risk exposure. The third component,
LvRT , is a measure of adverse selection costs. Since we discussed fees in Section 7, we now
focus on the last two components of (39).

21The approximation uses the fact that (1 − τ)−1 = 1 + τ + O(τ2).
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Loss-versus-Rebalancing

Loss-versus-Rebalancing (LvR) is the period-by-period sum of the impermanent losses de-
fined in (31) and, in the absence of transaction fees, coincides with the arbitrage profits
realized over the whole time span:

LvRT =
T∑

t=1
L(Pt−1, Pt).

In LvR, the liquidity provider uses a rebalancing strategy as a benchmark: Each time a trade
moves the reserves of the risky asset in the CFMM, the liquidity provider replicates the same
asset movement in the reference market. That is, she adjusts her reference market holdings
of the risky asset Ri,t so that

Ri,t − Ri,t−1 =
(
hi,t − hi,t−1

)
,

as illustrated in Figure 10 for i = 1, j = 2. This strategy results in the liquidity provider
being long in the CFMM and short in the rebalancing portfolio.

(a) mt > mt−1 (b) mt < mt−1

Figure 10: Rebalancing strategy: the liquidity provider adjusts her holdings in the reference
market to offset changes in CFMM reserves.

Rebalancing Strategy as Delta-Hedging for CFMMs

A distinctive feature of the rebalancing strategy is that the liquidity provider is delta-hedging
her position, neutralizing the market risk stemming from changes in the price of the risky
asset. By replicating in the reference market the opposite asset movements occurring in the
CFMM, the liquidity provider effectively creates a market-neutral portfolio. To see this, we
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can quantify the market risk component of her portfolio by:

MRiskT =
T∑

t=1

[
hi,t−1 − Ri,t−1

]
· (Pi,t − Pi,t−1).

Under the rebalancing strategy, we have Ri,t−1 = hi,t−1, for all t, so the market risk
exposure is zero. In this way, by being short in the rebalancing portfolio, the liquidity
provider fully hedges the market risk, and her P&L reduces to:

Hedged P&LT = FeeT − LvRT .

This shows that the liquidity provider’s profits effectively consist of the fees earned minus
the adverse selection costs, as measured by LvR.

Impact of Trading Function Curvature on Profitability

The trade-off linking price impact and impermanent loss to the CFMM curvature, high-
lighted in Section 6.2, enters P&LT through the determination of FeeT and LvRT . The fee
income, FeeT , rises with the quantity of assets exchanged via the CFMM. Hence, FeeT is
positively correlated with CFMM liquidity, which in turn decreases as price impact is re-
duced. Consequently, a flatter bonding curve, which lowers price impact, leads to higher
FeeT . However, this comes at the expense of increasing the adverse selection component,
LvRT , as lower curvature amplifies impermanent losses. Higher curvature can instead miti-
gate impermanent losses, reducing LvRT . In order to maximize the liquidity provider’s overall
profits, the curvature of the CFMM must be adjusted to achieve an optimal balance between
these two opposing effects.

9 Conclusion

We have shown in this paper that standard microeconomic theory sheds a powerful light
on the inner workings and optimal design of CFMMs. First, we explained how the main
properties of CFMMs, such as their ability to provide reliable oracles for off-chain prices,
naturally follow from established results in consumer theory. Transposing the insights of
consumer theory enabled us to narrow the design space, for instance by showing that only
homothetic trading functions can prevent liquidity providers from scrambling the price signal.

After having established these fundamental results, we used our new tools to gather
deeper insights into the economic externalities connecting traders and liquidity providers.
Focusing first on traders, we provided explicit conditions under which their costs of using a
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CFMM are decreasing in the liquidity of the pool. Then, we turned our attention to liquidity
providers, explaining why their impermanent losses are decreasing in the curvature of the
bonding curve. Finally, we connected both sides, establishing that the externalities exerted
by liquidity providers and by traders are inversely proportional. This finding has important
implications for the design of CFMMs since it shows that the preferences of traders are
fundamentally divergent from that of liquidity providers: Traders favor CFMMs with low
curvature whereas liquidity providers favor CFMMs with high curvature. The challenge for
the designer therefore consists in identifying the curvature that strikes an optimal balance
between liquidity attraction and fees collection. Solving this mechanism design problem is
beyond the scope of the models considered in this paper since it requires specifying the law
of motion of prices. We intend to follow this roadmap in future research by leveraging the
apparatus laid-out in our paper and extending it to a dynamic setting.
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A Proofs

Proof of Proposition 3. Let U(R) = f(u(R)). Omitting the argument αR in the last of
the following equalities, we have that22

Dα

(
pij(αR)

)
= Dα

URi
(αR)

URj
(αR)

 =


(
∇uRi

(αR) · R
)

uRj
(αR) −

(
∇uRj

(αR) · R
)

uRi
(αR)

uRj
(αR)2


The last expression does not depend on f 2

u since it cancels out from the numerator and the
denominator. By Euler’s Theorem, u 1-homogeneous implies uRi

0-homogeneous for all i,
i.e. ∇uRi

(αR) · αR = 0 for all i, which implies ∇uRi
(αR) · R = 0 for all i given that α is a

scalar. It follows that the numerator of Dα

(
pij(αR)

)
is zero.

Proof of Lemma 1. Applying the quotient rule to compute D∆p (∆, R), we have

D∆p (∆, R) = D∆

URi
(Ri − ∆, Rj + q(∆; R))

URj
(Ri − ∆, Rj + q(∆; R))


=

(
URiRj

p − URiRi

)
URj

−
(
URjRj

p − URjRi

)
URi

U2
Rj

=

[
URiRj

(URi
/URj

) − URiRi

]
URj

−
[
URjRj

(URi
/URj

) − URjRi

]
URi

U2
Rj

,

with all derivatives evaluated at R∆. Multiplying the numerator and the denominator by
URj

yields sij(R∆) from Eq. (23), which is positive by the definition of quasi-concavity (see
Appendix D.1).

Proof of Lemma 3. Let us start by proving that the homotheticity of U(R) is sufficient for
having 1-homogeneity in qij(∆, R). So assume that U is homothetic. The quantity function
is 1-homogeneous if and only if qij(∆, R) = ∆pij(∆, R) + R · ∇R qij(∆, R). Rearranging the
terms, we obtain

R · ∇R qij(∆, R) = qij(∆, R) − ∆pij(∆, R). (40)

The gradient ∇R qij = (∂qij/∂R1 . . . , ∂qij/∂RN) contains the effects on the quantity function
22∇uRi(·) denotes the gradient vector of the i-th partial derivative of u. This should not be confused with

∇ui(·), which is the i-th element of the gradient of u.
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of supplying each asset individually. Implicit differentiation of Eq. (4) gives each of these
effects:

∂

∂Rk

qij(∆, R) =
URk

(R) − URk

(
R − ∆i + qij(∆, R)j

)
URj

(
R − ∆i + qij(∆, R)j

) . (41)

Before combining them, it is important to notice that Eq. (41) is invariant under mono-
tone transformation of U . To see this, let U = f ◦ u be a transformation of the trading
function u and let u ≡ u(R), u∆ ≡ u

(
R − ∆i + qij(∆, R)j

)
and f∆ ≡ f(u∆) for brevity:

∂

∂Rk

qij(∆, R) = ∂

∂Rk

f(u) − f(u∆)
f(u∆) =

fuuRk
− f∆

u u∆
Rk

f∆
u u∆

Rj

=
fu

f∆
u

uRk
− u∆

Rk

u∆
Rj

=
uRk

− u∆
Rk

u∆
Rj

(42)

since fu/f∆
u = 1 follows from differentiating both sides of Eq. (4). u produces also the same

qij(∆, R) and pij(∆, R) as U since these functions are defined on the bonding curve and are
therefore unchanged by a monotone transform.

Now, summation over k of the reserve-weighted effects in Eq. (41), taking u as the 1-
homogeneous representation of the trading function, gives

R · ∇R qij(∆, R) =
∇u(R) · R − ∇u

(
R − ∆i + qij(∆, R)j

)
· R

uRj

(
R − ∆i + qij(∆, R)j

) . (43)

By Euler’s theorem, the homogeneity of u implies that:

∇u(R) · R = u(R); (44)

∇u
(
R − ∆i + qij(∆, R)j

)
·
(
R − ∆i + qij(∆, R)j

)
= u

(
R − ∆i + qij(∆, R)j

)
= u(R), (45)

as swapping assets keeps the trading function constant. We can then use Eq. (45) to re-
express ∇u

(
R − ∆i + qij(∆, R)j

)
·R. Letting R∆ ≡ R−∆i+ qij(∆, R)j for brevity, we have

that ∇u
(
R∆

)
· R∆ = ∇u

(
R∆

)
· R − ∆ uRi

(R∆) + qij(∆, R) uRj
(R∆), using the basis vectors

to simplify.23 Thus,

∇u
(
R∆

)
· R = u(R) −

[
qij(∆, R)uRj

(R∆) − ∆ uRi
(R∆)

]
. (46)

Combining Eqs. (44) and (46) to simplify Eq. (43) gives exactly Eq. (40) since
uRj

(R∆)/uRj
(R∆) = 1 and uRi

(R∆)/uRj
(R∆) = pij(∆, R).

For the necessary part of the lemma, assume that q(∆, R) is 1-homogeneous. This is
23The basis vectors select the i-th and j-th element of the gradient: ∆uRi(R∆) = ∆

[
i · ∇u(R∆)

]
,

qij(∆, R)uRj (R∆) = qij(∆, R)
[
j · ∇u(R∆)

]
.
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possible only if the equalities in Eqs. (44) and (45) (and in turn Eq. (46)) are satisfied,
which require U to be a monotone transformation of a 1-homogeneous function u. Thus
homotheticity is also necessary.

Proof of Proposition 5. Corollary 2 and Eq. (23) imply

qij(∆, αR) =
∫ ∆

0
pij(x, αR) dx =

∫ ∆

0
pij

(
x

α
, R
)

dx <
∫ ∆

0
pij (x, R) dx = qij(∆, R).

Proof of Lemma 4. Letting P̄ ≡ αP + (1 − α)P ′,

V (P̄ , K) = αP · h(P̄ , K) + (1 − α)P ′ · h(P̄ , K)

≥ αP · h(P, K) + (1 − α)P ′ · h(P ′, K) = αV (P, K) + (1 − α)V (P ′, K).

The inequality holds from the definition of h(P, K) in Eq. (17).

Proof of Lemma 5. The separability of h(·) is obvious from the separability of V (·). To
prove the latter, we first show the necessary part of the proposition. U (R) being homothetic,
there exists a strictly increasing transformation such that ϕ

(
U (R)

)
= u (R) is homogenous

of degree one. Hence

V (P, K) = min
R

{
P · R| U (R) ≥ K

}
= min

R

{
P · R| u (R) ≥ ϕ (K)

}
= min

R

P · R

∣∣∣∣∣ u (R)
ϕ (K) ≥ 1

 = ϕ (K) min
R′

{
P · R′

∣∣∣∣u (R′
)

≥ 1
}

= ϕ (K) V (P, 1),

where R′ ≡ R/ϕ (K) and the penultimate equality uses the homogeneity of u (R) .

The sufficient part of the proposition assumes that the portfolio value is separable, i.e.
V (P, K) = ϕ (K) v (P ). By definition

U(R) = max
{

K| P · R ≥ ϕ (K) v (P ) for all P ∈ Rn
+

}
,

hence we have

u(R) = ϕ
(
U (R)

)
= max

{
K ′
∣∣∣P · R ≥ K ′v (P ) for all P ∈ Rn

+

}

with K ′ ≡ ϕ (K) . It is clear from the above definition that u(R) is homogenous of degree
one and so U(R) is homothetic.
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Proof of Proposition 8. Differentiation yields DP ′L(P ′, P ) = ∇P V (P ; K)−∇P ′V (P ′; K) =
h(P ; K)−h(P ′; K). So L(P ′, P ) has critical points at P ′ = αP , α > 0, since DP ′L(αP, P ) =
0. Differentiating twice, we obtain D2

P ′L(P ′, P ) = −D2
P ′V (P ′; K). Since V is concave in P ′,

D2
P ′E(P ′; V ) is negative semi-definite, so −D2

P ′V (P ′; K) is positive semi-definite. L(P ′, P )
is thus convex with global minimum L(P ′, P ) = 0 at P ′ = αP for all α > 0.

Proof of Proposition 10. We start by showing that the dual representation of the trading
set is the portfolio value. infR

(
P · R −

[
−δS(K)

]
(R)

)
is clearly achieved at R ∈ S(K),

giving [−δS(K)](R) = 0, as otherwise [−δS(K)](R) = −∞ and so P · R − [−δS(K)](R) would
diverge to infinity. Thus, we have

[
−δ∗

S(K)

]
(P ) = inf

R∈S(K)
P · R = min

R∈S(K)
P · R = V (P, K). (47)

To close the dual representation in the other direction, we take the concave conjugate of
V (P, K) = [−δ∗

S(K)](P ), which is

[
−δ∗∗

S(K)

]
(R) = inf

P

(
P · R −

[
−δ∗

S(K)

]
(P )

)
. (48)

If R ∈ S (K), then the minimum value of reserves that can generate utility K is by definition
equal to [−δ∗

S(K)] (P ) = V (P, K), which in turn implies
[
−δ∗∗

S(K)

]
(R) = 0. Conversely, if

R /∈ S (K), [−δ∗
S(K)] (P ) is equal to +∞, and so [−δ∗∗

S(K)] (R) = −∞. To summarize:

V ∗(R, K) =
[
−δ∗∗

S(K)

]
(R) =

 0 if R ∈ S (K)
−∞ otherwise

,

which is indeed the definition of [−δS(K)] (R).

Proof of Proposition 11. Suppose that the CFMM is initially in equilibrium with reserves
R at prices P . Appendix D.2 shows that the inverse function h−1(R) = (pij(R), 1) is a
well-defined bijection under Assumption 1. Then, by the inverse function theorem, we have
that

sij(R) = ∂pij(R − xi + q(x, R)j)
∂x

∣∣∣∣∣
x=0

= −

 ∂hi(P + yi)
∂y

∣∣∣∣∣
y=0

−1

= 1
ℓii(pij(R), 1);

ℓii(P ) = − ∂hi(P + yi)
∂y

∣∣∣∣∣
y=0

=
 ∂pij(R − xi + q(x, R)j)

∂x

∣∣∣∣∣
x=0

−1

= 1
sij(h(P )) .

The sign change after the second equality of both rows occurs because increasing the relative
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price corresponds to reducing the Hicksian reserves and vice-versa.

B Examples

Example 1. The analogy follows from proving that Hicksian reserves and portfolio value
for Uniswap and Balancer are equal.

Uniswap: UA(R) = R1R2. From the optimality condition P = λ∇UA (R) we get R1 =
P2R2, where asset 1 is our numéraire, so that P1 = 1. Reinserting this solution into the
trading function, R1 =

√
UA(R)P2, R2 =

√
UA(R)/P2, and the portfolio value reads V (P, KA)

= R1 + P2R2 = 2
√

KAP2, so that

V (P, KA) = ϕ (KA)
√

P2, where ϕ (KA) = 2
√

KA. (49)

Balancer: UB(R) = ∏n
i=1 Rwi

i . The optimality condition P = λ∇UB (R) reads

Pi = λ
wi

Ri

∏n

j=1

(
Rj

)wj = λ
wi

Ri

U(R), or Pi

Pj

= wi/Ri

wj/Rj

.

For tractability, we focus on the two-asset case. Setting P1 = 1, we get R1 =
P2R2w1/w2 and so UB(R) = (R1)w1 (R2)w2 =

(
w1
w2

P2R2
)w1 (R2)w2 . It follows that UB(R)

=
(

w1
w2

P2
)w1 (R2)w1+w2 . Now, solving R2 as a function of UB(R) and plugging the result back

into the expression of R1, we get

R2 =
UB(R)

(
w2

w1P2

)w1
 1

w1+w2

, R1 =
UB(R)

(
w1

w2P2

)w2
 1

w1+w2

.

The portfolio value is therefore given by

V (P, KB) = R1 + P2R2 = K
1

w1+w2
B

(w1P2

w2

)w2

+
(

w2

w1

)w1

P w2
2

 1
w1+w2

= K
1

w1+w2
B

(w1

w2

)w2

+
(

w2

w1

)w1
P

w2
w1+w2

2

= ϕ (KB) P
w2

w1+w2
2 , where ϕ (KB) =

(w1

w2

)w2

+
(

w2

w1

)w1
K

1
w1+w2
B .

Now, if we set w1 = w2 = 1/2, we get

V (P, KB) = ϕ (KB)
√

P2, where ϕ (KB) = 2KB.

42



Since KB =
√

KA (see Eq. 49), Uniswap and Balancer with N = 2 and w1 = w2 = 1/2 are
indeed equivalent.

Example 2. To see that U(R) defined implicitly in Eq. (11) is 1-homogeneous, it is sufficient
to prove homogeneity of

G(R, U) ≡ χ(R, U)
[
UN−1 ∑N

i=1 Ri − UN
]

+
∏N

i=1 Ri −
(

U

N

)N

.

χ(R, U) in Eq. (12) is clearly 0-homogeneous in (R,U). [UN−1 ∑N
i=1 Ri − UN ] is N -

homogeneous in (R,U), same as ∏N
i=1 Ri and (U/N)N . So G(R, U) is N -homogeneous in

(R,U), meaning G(αR, αU) = αNG(R, U). Thus, U(αR) = αU(R).

Example 3. The concave conjugate for the portfolio value V (P, K) = 2
√

K(P1P2) is

V ∗(R, K) = inf
P

(
P1R1 + P2R2 − 2

√
K(P1P2)

)
= − sup

P

(
2
√

K(P1P2) − (P1R1 + P2R2)
)

.

To compute the conjugate, we need to distinguish two cases. (i) If R1R2 < K, choose
Pi = λ/ (2Ri) for λ > 0. Then 2

√
K(P1P2) − (P1R1 + P2R2) = λ

[√
K

R1R2
− 1

]
> 0. This

expression diverges to infinity with λ, and so V ∗(R, K) = −∞. (ii) If R1R2 ≥ K,

P1R1 + P2R2 = 2P1R1 + 2P2R2

2 ≥
√

(2P1R1) (2P2R2) = 2
√

(R2R1) (P1P2) ≥ 2
√

K (P1P2),

where the first inequality is an application of the AM-GM inequality. We see that
2
√

K(P1P2) − (P1R1 + P2R2) is bounded from above by 0, hence its value is maximized
by letting P1, P2 and thus V ∗(R, K) converge to zero.

To summarize, we have V ∗(R, K) = 0 if R1R2 ≥ K; V ∗(R, K) = −∞ if R1R2 < K. The
conjugate of the portfolio value is indeed equal to the negative characteristic function of the
trading set V ∗(R, K) = [−δS(K)] (R).

C Single-Asset Liquidity Provision

We consider a liquidity pool of N ≥ 3 assets and suppose that the reserves of one of those
assets increase. When this occurs, the CFMM should make it cheaper to buy that asset and
costlier to sell it. Moreover, trades that do not involve the asset should not be affected by its
liquidity provision. An ideal CFMM therefore satisfies these three desiderata of single-asset
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liquidity provision:24

∂qij(∆, R)
∂Ri

≤ 0,
∂qij(∆, R)

∂Rj

≥ 0,
∂qij(∆, R)

∂Rk

= 0 for k ̸= i, j, (50)

To see which restrictions on the trading function result from Eq. (50), one can implicitly
differentiate qij(∆, R) with respect to the reserves of a generic asset k. For an homothetic
trading function U = f ◦ u, where u(R) is 1-homogeneous, we have that

∂qij(∆, R)
∂Rk

= uRk
(R) − uRk

(R∆)
uRj

(R∆) = 1
uRj

(R∆)

∫ ∆

0

[
uRkRi

(Rx) − uRkRj
(Rx)pij(x, R)

]
dx. (51)

with Rx = R − xi + qij(x, R)j (also for x = ∆), and pij(x, R) = uRi
(Rx)/uRj

(Rx). The first
equality holds by Eq. (42). The second is an application of the fundamental theorem of cal-
culus. Eq. (51) allows us to achieve the desiderata in Eq. (50) by imposing conditions on the
partial derivatives of the 1-homogeneous representation of the trading function. In particu-
lar, it is sufficient that u jointly satisfies three properties: (i) diminishing marginal utility:
uRiRi

≤ 0; (ii) increasing marginal cross-utility: uRiRj
≥ 0; (iii) separability: uki/ukj = ui/uj,

which corresponds to DRk
pij(∆, R) = 0. Properties (i) and (ii) imply quasi-concavity but

not vice versa. Goldman and Uzawa (1964) prove that (iii) holds for all i ̸= j ̸= k if and only
if u is a separable function (and U is its monotone transformation); that is, u = ∑N

i=1 ũi(Ri),
where each function ũi depends solely on Ri. To summarize, we have shown that:

Proposition 12. An homothetic CFMM satisfies the desiderata in Eq. (50) if its 1-
homogeneous representation u is such that uRiRi

≤ 0 for all i, uRiRj
≥ 0 for all i ̸= j,

and uki/ukj = ui/uj for all i ̸= j ̸= k. Under these conditions, u is quasi-concave and
separable.

D Mathematical Background

D.1 Geometry of quasi-concave functions

We now show that strict quasi-concavity is equivalent to DMRS; i.e. D∆MRSij(R∆) < 0,
where D∆MRSij(R∆) is the expression in Eq. (23). Quasi-concavity is what makes negative
the sign to the numerator of D∆MRSij(R∆) as the denominator, URi

(R∆), is always positive.
Concretely, a twice-continuously differentiable function U is strictly quasi-concave if and only
if its Hessian is negative definite along supporting hyperplanes to its level sets (see Fig. 11).

24The third desideratum is equivalent to the independence axiom in Schlegel et al. (2022).
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That is,25

x · D2U x < 0 for all x ∈
{
RN \ 0 : ∇U · x = 0

}
. (52)

Figure 11: Quasi-concavity

The numerator in Eq. (23) satisfies condition Eq. (52) because it corresponds to a
quadratic form of the Hessian D2U and of the skew gradient ∇⊥U . The latter rotates
the gradient counter-clockwise by 90 degrees, and it is therefore orthogonal to the gradient.
Precisely, the numerator of Eq. (52) is given by

∇⊥U · D2U ∇⊥U, with ∇⊥ =
−URj

URi

 and D2U =
URiRi

URiRj

URiRj
URjRj

 . (53)

Therefore, by Eq. (52), the numerator in Eq. (23) is negative.
Notice that quasi-concavity defined by Eq. (52) is equivalent to the assumption of posi-

tive Gaussian curvature mentioned by Angeris et al. (2020), as the former holds true when
−
(
∇⊥U · D2U ∇⊥U

)
/||∇U ||3 > 0 and vice-versa.

D.2 Duality and invertibility of the Hicksian reserves

To demonstrate rigorously and generally the invertibility of Hicksian reserves under As-
sumption 1, we introduce the concept of superdifferential and supergradient. For a concave
function f ∈ RN , a supergradient is a vector g ∈ RN such that

f(y) ≤ f(x) + g · (y − x) for all x, y. (54)
25The quadratic form x · D2U x is equivalent to x⊤D2Ux, where ⊤ denotes transposition. The latter

expression uses two matrix products; the former uses an inner product followed by a matrix product. We
favor the first format to avoid causing confusion with the ⊥ symbol in Eq. (53).
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The supergradient makes the left-hand side of Eq. (54) a global over-estimator of f(y) at
each x. The superdifferential ∂f is the (closed and convex) set of all supergradients of f .
For a singleton superdifferential, we also let ∂f denote its unique supergradient.

For the negative indicator function, we have that

∂[−δS(K)](R) =
{
P ∈ RN : P · R ≤ P · R′, for all R′ ∈ S(K)

}
.

Taking R on the bonding curve, it is clear that ∂[−δS(K)](R) gives exactly the prices P (R, K)
that minimize the portfolio value at reserves R. So the superdifferential is a singleton set
containing the equilibrium prices,

∂[−δS(K)](R) ≡ P (R) = λ · ∇U(R), (55)

where λ is pinned-down by the choice of numéraire. Conversely, the supergradient of the
dual conjugate V (P, K) = [−δ∗

S(K)](P ) is its gradient, given by the Hicksian reserves:

∂[−δ∗
S(K)](P ) = h(P, K) (56)

Combining Eqs. (55) and (56) we can see that conjugate supergradients are inverse functions
of each other; that is,

∂
[
−δ∗

S(K)

] (
∂
[
−δS(K)

]
(R)

)
= R, ∂

[
−δS(K)

] (
∂
[
−δ∗

S(K)

]
(P )

)
= P,

thereby establishing the existence of the inverse function

h−1 : Sb(K) → RN , where h−1(R) = P (R).
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