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Abstract

We define a transverse Dolbeault cohomology associated to any almost complex
structure j on a smooth manifold M . This we do by extending the notion of transverse
complex structure and by introducing a natural j-stable involutive limit distribution
with such a transverse complex structure. We relate this transverse Dolbeault cohomol-
ogy to the generalized Dolbeault cohomology of (M, j) introduced by Cirici and Wilson
in [3], showing that the (p, 0) cohomology spaces coincide. This study of transversality
leads us to suggest a notion of minimally non-integrable almost complex structure.

Introduction

Dolbeault cohomology is defined for a manifold endowed with an integrable almost complex
structure. There have been various ways to extend this cohomology to a manifold endowed
with a non integrable almost complex structure. An almost complex structure j is a
smooth field of endomorphisms of the tangent bundle whose square is minus the identity
(j2 = − Id). It induces a splitting of the complexified tangent bundle TMC = T 1,0

j ⊕ T 0,1
j

into ±i eigenspaces for j, a corresponding dual splitting of the complexified cotangent
bundle and a splitting of complex valued k-forms on M :

Ωk(M,C) = ⊕p+q=kΩp,q
j .

The exterior differential d has the property that

dΩp,q
j ⊂ Ωp−1,q+2

j ⊕ Ωp,q+1
j ⊕ Ωp+1,q

j ⊕ Ωp+2,q−1
j
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and splits accordingly as
d = µ̄⊕ ∂̄ ⊕ ∂ ⊕ µ.

An almost complex structure j is integrable if and only if d = ∂̄ ⊕ ∂, i.e. µ̄ = µ = 0, which
is equivalent to the vanishing of the Nijenhuis tensor (also called torsion) N j of j. The
operator ∂̄ defines then the Dolbeault cohomology of the complex manifold (M, j).

An important feature about this cohomology comes from Hodge theory [7] which relates
it to harmonic forms. This requires the choice of a Riemannian metric g compatible with j.
Many works are devoted to the study of properties of ∂̄-harmonic (p, q)-forms or variations
of those when j is not integrable; see for instance [10, 11], the recent review by Zhang of
Hodge theory for almost complex manifolds [12], and papers quoted there. In Hirzebruch’s
1954 problem list [6], a question attributed to Kodaira and Spencer concerning these spaces
asks whether the dimension of the space of ∂̄-harmonic (p, q)-forms depends on the choice
of the Riemannian metric, or only on the almost complex structure j. In 2020, Holt and
Zhang gave in [8] examples showing that the dimension may depend on the choice of the
metric. This raises the interest of a cohomology depending only on the almost complex
structure j.

A solution was given in 2021 by J. Cirici and S. Wilson who gave in [3] the definition
of a generalized Dolbeault cohomology associated to an almost complex structure j. It is
defined as the cohomology of the operator induced by ∂̄ on the cohomology spaces for the
operator µ̄. Some of these cohomology spaces are infinite dimensional in the non integrable
case [4].

In the present paper, we suggest another Dolbeault cohomology defined only in terms
of the almost complex structure j, which we call transverse Dolbeault cohomology. It is
defined as the (usual) Dolbeault cohomology of a natural transverse complex structure
induced by the given almost complex structure.
We consider the involutive j stable (generalized) distribution defined by the real part of the
limit of the derived flag of distributions associated to the +i eigenspace of j. It is a natural

involutive limit of a sequence of nested real distributions D∞j = ∪kD
(k)
j associated to j,

which contains the image of the Nijenhuis tensor N j . We extend the notion of transverse
complex structure to that setting. The cohomology we define is the cohomology of the ∂̄
operator restricted to a subspace of forms which are clearly in the kernel of µ̄: the forms
whose contraction and Lie derivative with respect to a vector field in D∞j vanish.

Equivalently, it is the cohomology of the operator ∂̄ restricted to the smallest C∞(M,C)-
submodule ΩD∞j (M) of smooth complex forms on the manifold, which has the property
that it consists of forms vanishing whenever contracted with a vector field in the image
of the Nijenhuis tensor of j, which is stable under the differential d and which splits into
(p, q) components relatively to j (i.e. for ω a k-form in the submodule, ω ◦ jr is in the
submodule for any r ≤ k, where ◦jr indicates the precomposition with j acting on the r-th
argument of ω).
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If one of the derived distribution is involutive and has constant rank and if the space of
leaves of its real part has a manifold structure making the canonical projection a submer-
sion, then j induces a complex structure on this quotient manifold and the cohomology we
define coincides with the Dolbeault cohomology of this space of leaves.

An almost complex structure is maximally non-integrable [1] when the image of the
Nijenhuis tensor at each point p spans the whole tangent space at p. For a maximally
non-integrable almost complex structure, all our transverse Dolbeault cohomology spaces
vanish. The first geometrical non-integrable almost complex structure was given by Eells
and Salamon in [5]; it arises on a twistor space when flipping the sign of the vertical part
of the standard integrable almost complex structure on this space and it is maximally non-
integrable; this property remains true for a similar construction on many twistor spaces [2].
Maximally non integrable almost complex structures are generic in high dimension : R.
Coelho, G. Placini, and J. Stelzig prove in [4] that in dimension 2n ≥ 10 any almost complex
structure on a 2n-dimensional manifold is homotopic to a maximally non-integrable one.

A minimality condition for a non-integrable almost complex structure is given by asking
the involutivity of the first derived distribution of the +i eigenspace of j. This corresponds
to the existence of a maximal transverse complex structure. Examples are given by complex
line bundles over complex manifolds with no holomorphic structure with the j naturally
defined when choosing a connection. Another example in an invariant situation is given
by Thurston’s example of a 4-dimensional compact symplectic manifold with no Kähler
structure endowed with an invariant j.

In section 1, we describe the derived flag of distributions associated to the +i eigenspace
of an almost complex structure j and the involutive real limit distribution D∞j .
In section 2, we define D-transverse objects when D = Γ∞(D) is the space of smooth
sections of a real smooth involutive distribution D (not necessarily of constant rank) or
an involutive limit of an increasing sequence of spaces of sections such as D∞j . The defini-
tions are chosen so that, in the case where D = Γ∞(D) with D of constant dimension and
such that the space of leaves for D, denoted by M/D, has a manifold structure making
the canonical projection p : M →M/D a submersion, D-transverse objects correspond to
objects on the space of leaves M/D. We define in the general context D-transverse vec-
tor fields, D-transverse almost complex and complex structures, D-transverse forms and
D-transverse Dolbeault cohomology.
In section 3, we define the transverse Dolbeault cohomology associated to an almost com-
plex structure j : it is the D-transverse Dolbeault cohomology in the sense of section 2 when
D is the real limit distribution D∞j defined in section 1. We prove that the p, 0-cohomology
spaces for this transverse cohomology coincide with the p, 0-cohomology spaces for the Dol-
beault cohomology introduced by Cirici and Wilson.
In section 4, we suggest a minimality condition for a non-integrable almost complex struc-
ture and we write this condition in a homogeneous framework.
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1 Derived distributions associated to an almost complex struc-
ture

The Nijenhuis tensor, also called torsion, associated to a smooth field k of endomorphisms
of the tangent bundle is the tensor of type (1, 2) defined by

Nk(X,Y ) := [kX, kY ]− k[kX, Y ]− k[X, kY ] + k2[X,Y ] ∀X,Y ∈ X(M), (1.1)

where X(M) is the Lie algebra of C∞ vector fields on M.
The Newlander-Nirenberg theorem asserts that an almost complex structure j on a mani-
fold M is integrable if and only if its Nijenhuis tensor N j vanishes identically.

Given an almost complex structure j on a manifold M , the image distribution on M ,
denoted ImN j , has for value at a point x ∈M the subspace (ImN j)x of the tangent space
TxM spanned by all values N j

x(X,Y ). Since N j
x(jX, Y ) = −jN j

x(X,Y ), this distribution
is stable by j. It is smooth (in the sense that in the neighborhood of any point, there
exists a finite number of smooth vector fields whose values at any point linearly generate
the distribution at that point) but the dimension of the distribution may not be constant.

One has the splitting of the complexified tangent bundle induced by j:

TMC = T 1,0
j ⊕ T 0,1

j

into ±i eigenspaces for j. We shall denote by T ±j the sections of the corresponding distri-
butions. We have the C∞(M,R)-linear bijections

A± : X(M)→ T ±j : X 7→ 1
2(X ∓ ijX).

Observe that, for any X,W ∈ X(M) one has :

X + iW = 1
2 ((X + jW )− ij(X + jW )) + 1

2 ((X − jW ) + ij(X − jW ))

= A+(X + jW ) +A−(X − jW ), (1.2)

and

[X − iεjX, Y − iε′jY ] = [X,Y ]− εε′[jX, jY ]− i
(
ε[jX, Y ] + ε′[X, jY ]

)
= A+

(
[X,Y ]− εε′[jX, jY ]− εj[jX, Y ]− ε′j[X, jY ]

)
(1.3)

+A−
(
[X,Y ]− εε′[jX, jY ] + εj[jX, Y ] + ε′j[X, jY ]

)
.

With ε = ε′ = 1, the above shows that the projection on T −j of [X − ijX, Y − ijY ] is given

by A−(−N j(X,Y )). Hence the bracket of two sections in T +
j is always an element of T +

j

iff the Nijenhuis tensor is zero. A rephrasing of Newlander-Nirenberg’s theorem is that j
is integrable iff the distribution T +

j (and hence T −j ) is involutive.
When a distribution is not involutive, one extends it to make it involutive in the fol-

lowing way.
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Definition 1.1. Given a smooth real (resp. complex) distribution D whose sections are
denoted D, one defines the derived flag of the distribution as the nested sequence of distri-
butions defined inductively by

D(0) = D D(1) = D + [D,D] D(i+1) = D(i) + [D(i),D(i)].

The limitD∞ := ∪kD(k) is called the involutive limit distribution; it is a C∞(M,R) submod-
ule (resp. C∞(M,C) submodule) of real (resp. complex) vector fields, and is “involutive”
in the sense that it is a Lie subalgebra of vector fields (i.e. closed under bracket of vector
fields).

The computation made above shows the following.

Proposition 1.2. The first derived distribution of T +
j is given by(

T +
j

)(1)
= T +

j + [T +
j , T

+
j ] = T +

j ⊕A
−(ImN j) = T +

j +
(
ImN j

)C
where ImN j denotes the sections of ImN j.

An almost complex structure j is said to be maximally non-integrable if ImN j = TM .
This happens iff the first derived distribution of T +

j consist of all complex valued vector
fields on M .

Proposition 1.3. The k-th derived distribution of T 1,0
j can be written as(

T 1,0
j

)(k)
=: T 1,0

j ⊕A−(D(k)
j ) = T 1,0

j +
(
D(k)
j

)C
.

where D(1)
j = ImN j and the real smooth distributions D(k)

j are stable under j and defined
inductively by

D(k+1)
j = D(k)

j +
∑

U∈D(k)
j

(ImLUj) + [D(k)
j ,D(k)

j ],

where ImLUj = { (LUj)X |X ∈ X(M) } denotes the image of the smooth field of endo-
morphisms of the tangent bundle given by the Lie derivative of the almost complex structure
j in the direction of the vector field U .

Proof. Using again X + iW = A+(X + jW ) +A−(X − jW ), we have

[X − ijX,U ] = [X,U ]− i[jX,U ] = A+ ([X,U ]− j[jX,U ]) +A− ([X,U ] + j[jX,U ])

= A+ ([X,U ]− j[jX,U ]) +A− ((LUj)(jX)) .

One proves inductively that the distributions D(k)
j are stable by j, observing that j anti-

commutes with LUj since j2 = − Id, and j[U,U ′] = [U, jU ′]− (LUj)(U ′).
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Proposition 1.4. The k-th derived distribution
(
T 1,0
j

)(k)
=: T 1,0

j ⊕A−(D(k)
j ) is involutive

iff D(k)
j is involutive and has the property that ImLUj ⊂ D(k)

j for each U ∈ D(k)
j .

The complex involutive limit distribution(
T 1,0
j

)∞
:= ∪k

(
T 1,0
j

)(k)
= T 1,0

j ⊕A−(∪kD
(k)
j ) (1.4)

is involutive (in the sense that the bracket of two elements in
(
T 1,0
j

)∞
is again in

(
T 1,0
j

)∞
).

The real limit distribution
D∞j := ∪kD

(k)
j (1.5)

is a C∞(M,R) submodule of real vector fields; it is involutive and has the property that

ImLUj ⊂ D∞j ∀U ∈ D∞j .

The first derived distribution of T 1,0
j ,

(
T 1,0
j

)(1)
= T 1,0

j +
(
ImN j

)C
, is involutive iff

[N, jX]− j[N,X] = (LN j)X ∈ ImN j ∀X ∈ X(M), ∀N ∈ ImN j . (1.6)

Proof. All statements except the last one are direct consequences of the former proposition.

Equation 1.6 is necessary for
(
T 1,0
j

)(1)
to be involutive; it will be sufficient iff it implies

6



that ImN j is involutive. This is true, because, for any N ∈ ImN j and any X,Y ∈ X(M)

[N j(X,Y ), N ] = [[jX, jY ], N ]− [j[jX, Y ], N ]− [j[X, jY ], N ]− [[X,Y ], N ]

= [[jX,N ], jY ] + [jX, [jY,N ]]− j[[jX, Y ], N ] + (LNj)([jX, Y ])

−j[[X, jY ], N ] + (LN j)([X, jY ])− [[X,N ], Y ]− [X, [Y,N ]]

= (LN j)([jX, Y ]) + (LN j)([X, jY ])

+[[jX,N ], jY ] + [jX, [jY,N ]]− j[[jX,N ], Y ]− j[jX, [Y,N ]]

−j[[X,N ], jY ]− j[X, [jY,N ]]− [[X,N ], Y ]− [X, [Y,N ]]

= (LN j)([jX, Y ]) + (LN j)([X, jY ])

+[j[X,N ], jY ]− [(LNj)(X), jY ] + [jX, j[Y,N ]]− [jX, (LNj)(Y )]

−j[j[X,N ], Y ] + j[(LNj)(X), Y ]− j[jX, [Y,N ]]

−j[[X,N ], jY ]− j[X, j[Y,N ]] + j[X, (LNj)(Y )]

−[[X,N ], Y ]− [X, [Y,N ]]

= (LN j)([jX, Y ]) + (LN j)([X, jY ])

−[(LNj)(X), jY ] + j[(LNj)(X), Y ]

−[jX, (LNj)(Y )] + j[X, (LNj)(Y )]

+N j([X,N ], Y ) +N j(X, [Y,N ])

= (LN j)([jX, Y ]) + (LNj)([X, jY ])

−(L(LN j)(X)j)(Y ) + (L(LN j)(Y )j)(X)

+N j([X,N ], Y ) +N j(X, [Y,N ])

which obviously belongs to ImN j , when (LN j)(X) ∈ ImN j for any N ∈ ImN j .

Remark 1.5. If the k-th derived distribution
(
T 1,0
j

)(k)
=: T 1,0

j ⊕ A−(D(k)
j ) is involutive

and regular, then D∞j = D(k)
j defines a foliation.

In a homogeneous context, with aG-invariant almost complex structure j on aG-homogeneous
space M , each derived distribution is G-invariant and regular, so there is always an integer

k such that
(
T 1,0
j

)(k)
is involutive. In that context D∞j = D(k)

j is a smooth real regular

involutive distribution which defines a foliation on M .

2 D-transverse structures

Let D = Γ∞(D) be the space of smooth sections of a real smooth involutive distribu-
tion D (not necessarily of constant rank) on a manifold M , or an involutive limit of an
increasing sequence of such spaces of sections D = ∪kD(k) with D(k) = Γ∞(D(k)) and
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D(k) + [D(k),D(k)] ⊂ D(k+1), as, for example, the space D∞j defined in 1.5.

We are going to define D-transverse objects. We start with the particular ideal situation
where D is the space of sections of a distribution D which is regular (i.e. of constant dimen-
sion) and such that the space of leaves for D, denoted by M/D, has a manifold structure
making the canonical projection p : M → M/D a submersion. In that case, D-transverse
objects translate, at the level of M , corresponding objects on the space of leaves M/D.
We then extend the definitions to our more general setting for D.

2.1 D-transverse vector fields

In the particular ideal situation described above, one can consider the pullback of the
tangent bundle T (M/D) and clearly

p∗T (M/D) ' TM/D =: Q.

The bundle Q is called the normal bundle and one denotes by Π : TM → Q the canonical
projection. There is an action of D on sections of Q: for F ∈ D and u ∈ Γ∞(M,Q);

LQFu := Π([F,U ]),

if U ∈ X(M) is a lift of u in the sense that Π ◦ U = u. A vector field on M/D can be
viewed as a section u of Q which is “constant” along the leaves in the sense that LQFu = 0
for F ∈ D.

In our general setting we define a transverse vector field as follows.

Definition 2.1. A D-transverse vector field is an equivalence class [U ] of a vector field
U ∈ X(M) which is D-foliated in the sense that

[F,U ] ∈ D for any F ∈ D,

the equivalence of foliated vector fields being defined by U ∼ U ′ iff U − U ′ ∈ D.

2.2 D-Transverse almost complex structures

In the ideal situation, an almost complex structure ĵ on M/D, gives a section j̃ of End(Q)
which squares to − Id and which is “constant” along the leaves in the sense that

L
End(Q)
F j̃ = 0 for any F ∈ D, where L

End(Q)
F j̃ = LQF ◦ j̃ − j̃ ◦ L

Q
F .

A lift of j̃ is a section k ∈ End(TM) such that j̃(Π(U)) = Π(kU); remark that

• Π(kF ) = 0 for all F ∈ D if and only if k(D) ⊂ D,

• j̃2(Π(U)) = −Π(U) iff Π(k2U) = −Π(U) iff k2U + U ∈ D, ∀U ∈ X(M);
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• (LQF ◦ j̃ − j̃ ◦ L
Q
F )Π(U) = 0 = Π([F, kU ]− k[F,U ])∀U ∈ X(M).

In our general setting we define a transverse almost complex structure as follows.

Definition 2.2. A D-transverse almost complex structure is the equivalence class [k] of a
section k of End(TM) such that k(D) ⊂ D, k2U + U ∈ D, ∀U ∈ X(M), and

(LFk)(U) = [F, kU ]− k[F,U ] ∈ D for all F ∈ D, U ∈ X(M),

the equivalence being defined by k ∼ k′ iff Im (k − k′) ⊂ D.

2.3 D-transverse complex structures

In the ideal situation, an almost complex structure ĵ on M/D is integrable if and only if its

Nijenhuis tensor vanishes. This will be true if and only if the torsion N j̃ corresponding to

the section j̃ of End(Q), N j̃(u, v) := [̃ju, j̃v]− j̃ [̃ju, v]− j̃[u, j̃v]− [u, v] vanishes for any u, v
sections of Q corresponding to vector fields on M/D, i.e. such that LQFu = 0 and LQF v = 0

for F ∈ D. Another way to formulate this condition is that a lift k ∈ End(TM) of j̃ must
satisfy

Π
(
[kU, kV ]− k[kU, V ]− k[U, kV ] + k2[U, V ]

)
= Π

(
Nk(U, V )

)
= 0

for any U, V foliated vector fields. Since the torsion Nk of k is a tensor and since the value
at a point of foliated vector fields generate the whole tangent space to M at that point in
this ideal situation, it is equivalent to ask that Nk takes its values in D.

In our general setting we define a transverse complex structure as follows.

Definition 2.3. A D-transverse complex structure is a D-transverse almost complex struc-
ture [k] (i.e. k is a section of End(TM), such that k(D) ⊂ D, k2U + U ∈ D, and
[F, kU ]− k[F,U ] ∈ D for all F ∈ D and all U ∈ X(M)) which has the property that

Nk(U, V ) = [kU, kV ]− k[kU, V ]− k[U, kV ] + k2[U, V ] ∈ D, for all U, V ∈ X(M).

2.4 D-transverse forms

Definition 2.4. A D-transverse -or basic- real or complex p-form is a p-form ω on M
such that

ι(F )ω = 0 and LFω = 0 ∀F ∈ D.

If the section k of End(TM) defines a D-transverse almost complex structure, a complex
D-transverse 1-form ω is of type (1, 0) –resp. (0, 1)– iff

ω(U + ikU) = 0, – resp. ω(U − ikU) = 0 ∀U ∈ X(M).
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Proposition 2.5. Given a D-transverse almost complex structure [k], there is a splitting
of complex D-transverse p-forms as a direct sum

Ω`
D(M) = ⊕p+q=`Ωp,q

D,[k].

Proof. Observe that any complex D-transverse 1-form ω splits as

ω = 1
2(ω − i ω ◦ k) + 1

2(ω + i ω ◦ k),

and this decomposition does not depend on the element k ∈ [k]. The form ω ◦ k is D-
transverse since ω ◦ k(F ) = 0 for F ∈ D because kF ∈ D and

LF (ω ◦ k) = LF (ω) ◦ k + ω ◦ LFk = 0

since LFk(U) ∈ D for any U ∈ X(M). Furthermore

(ω ∓ iω ◦ k)(U ± ikU) = ω(U + k2U) + iω(∓kU ± kU) = 0 ∀U ∈ X(M).

The same applies for complex D-transverse `-forms.

2.5 D-transverse Dolbeault cohomology

Assume again that the section k of End(TM) defines a D-transverse almost complex struc-
ture. The differential of a D-transverse form is again D-transverse, and one has

dΩp,q
D,[k] ⊂ Ωp+2,q−1

D,[k] ⊕ Ωp+1,q
D,[k] ⊕ Ωp,q+1

D,[k] ⊕ Ωp−1,q+2
D,[k] .

Indeed, for ω ∈ Ωp,q
D,[k] and for complex vector fields Zi,

dω(Z0, .., Zp) =
∑
r

(−1)rZr(ω(Z0, ..Ẑr.., Zp)) +
∑
r<s

(−1)r+sω([Zr, Zs], Z0, ..Ẑr..Ẑs.., Zp)

so that, for elements Zr = A±k Yr = Yr ∓ ikYr, it vanishes if there are not at least p − 1
elements of the form Zr = A+

k Yr and q − 1 elements of the form Zr = A−k Yr.
Assume now that the section k of End(TM) defines a D-transverse complex structure.

Then the projections of dω on Ωp+2,q−1
D,[k] and Ωp−1,q+2

D,[k] vanish; indeed

dω(A+
kX1, ..., A

+
kXp−1, A

−
k Y1, ..A

−
k Yq+2)

=
∑
±ω([A−k Yr, A

−
k Ys], A

+
kX1, ..., A

+
kXp−1, A

−
k Y1, ..Â

−
k Yr..Â

−
k Ys.., A

−
k Yq+2) = 0

because,

[Yr + ikYr, Ys + ikYs] = [Yr, Ys]− [kYr, kYs] + i[Yr, kYs] + i[kYr, Ys]

= A+
k ([Yr, Ys]− [kYr, kYs] + k[Yr, kYs] + k[kYr, Ys]) +

A−k ([Yr, Ys]− [kYr, kYs]− k[Yr, kYs]− k[kYr, Ys])

+i(k2 + Id)([Yr, kYs] + [kYr, Ys])

= A+
k (−Nk(Yr, Ys)) +A−k (...) + F with F ∈ DC
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and Nk(Yr, Ys) is in D when k defines a complex transverse structure.

Hence
dΩp,q
D,[k] ⊂ Ωp+1,q

D,[k] ⊕ Ωp,q+1
D,[k] ,

and we denote by ∂D,[k] and ∂̄D,[k] the corresponding projections.

Definition 2.6. The D-transverse Dolbeault cohomology induced by [k] is

Hp,q

D,[k],∂̄
(M) = Ker ∂̄D,[k]|Ωp,qD,[k]

/ Im ∂̄D,[k]|Ωp,q−1
D,[k]

.

Remark 2.7. In the ideal situation where D is regular and there is a manifold structure
on the space of leaves M/D such that p : M → M/D is a submersion, if [k] corresponds
to a complex structure ĵ on M/D, then the transverse Dolbeault cohomology is the usual
Dolbeault cohomology on the space of leaves:

Hp,q

D,[k],∂̄
(M) = Hp,q

ĵ,∂̄
(M/D).

3 Transverse Dolbeault cohomology.

3.1 Transverse complex structure induced by an almost complex struc-
ture

Let j be an almost complex structure on the manifold M and let D be a real generalized
involutive distribution, stable under j; by this we mean that D can be the space of smooth
sections of a smooth involutive distribution D (not necessarily of constant rank), stable
under j, or -as before- can be the involutive limit of a sequence of nested spaces of sections.

Following definitions 2.2 and 2.3, this j yields a D-transverse almost complex structure
iff

[F, jU ]− j[F,U ] ∈ D ∀F ∈ D, ∀U ∈ X(M),

and a complex D-transverse structure iff, furthermore, D contains the image of N j .

Proposition 3.1. j defines a complex D-transverse structure iff

T 1,0
j +D = T 1,0

j ⊕A−(D) = T 1,0
j +DC is involutive .

Then D ⊃ D∞j = ∪kD
(k)
j ⊃ ImN j.

Proof. This results directly from the computations made in the proof of proposition 1.3.

In particular j defines a complex structure transverse to D∞j and a corresponding D∞j -
transverse Dolbeault cohomology. The splitting of D∞j -transverse forms corresponds to

the usual splitting of forms on M relatively to j, Ωk(M,C) = ⊕p+q=kΩp,q
j , restricted to

D∞j -transverse forms.

11



3.2 Transverse Dolbeault cohomology and (p, 0)-spaces.

Definition 3.2. The j-transverse Dolbeault cohomology is the D∞j -transverse Dolbeault
cohomology induced by j

Hp,q
j trans(M) := Hp,q

D∞j ,[j],∂̄
(M) = Ker ∂̄D∞j ,[j]|Ωp,qD∞

j
,[j]
/ Im ∂̄D∞j ,[k]|Ωp,q−1

D∞
j
,[j]
,

and Ωp,q
D∞j ,[j]

= {ω ∈ Ωp,q
j | ι(X)ω = 0, LXω = 0, ∀X ∈ D∞j }.

Remark 3.3. If D∞j is regular, it defines a foliation with transverse complex structure
induced by j. If its space of leaves has a manifold structure making the canonical projection
a submersion, then the j transverse Dolbeault cohomology is the Dolbeault cohomology
of this space of leaves. Recall that for a G-invariant almost complex structure j on a G-
homogeneous space M , each derived distribution is G-invariant and regular, so D∞j always
defines a foliation.

Proposition 3.4. Let D be any regular involutive j-stable distribution such that the space
of leaves M/D has a manifold structure with p : M → M/D a submersion, and such that
j induces a complex structure on M/D. The D-transverse Dolbeault cohomology induced
by j coincides with the Dolbeault cohomology of the space of leaves, and maps into the
j-transverse Dolbeault cohomology.

Proposition 3.5. The space ΩD∞j (M) := ⊕p,qΩp,q
D∞j ,[j]

is the smallest C∞(M,C)-submodule

of the space Ω(M,C) of smooth complex forms on the manifold such that

• each form ω in it vanishes whenever contracted with a vector field in the image of the
Nijenhuis tensor of j,

ι(X)ω = 0, ∀X ∈ ImN j ;

• it is stable under the differential d;

• it splits into (p, q) components relatively to j, in the sense that for ω a k-form in
the submodule, ω ◦ jr is in the submodule for any r ≤ k, where ◦jr indicates the
precomposition with j acting on the r-th argument of ω.

Proof. All conditions are clearly satisfied by

ΩD∞j (M) = ⊕p,q
{
ω ∈ Ωp,q

j | ι(X)ω = 0, LXω = 0, ∀X ∈ D∞j
}
.

Reciprocally, one proceeds by induction, showing that a space of forms satisfying all three
conditions is included, for all k, in{

ω ∈ Ωp,q
j | ι(X)ω = 0, LXω = 0, ∀X ∈ D(k)

j

}
12



For a given k, let us consider a subspace of forms such that ι(X)ω = 0, ∀X ∈ D(k)
j ,

remembering that D
(1)
j = ImN j :

The second condition implies that ι(X)dω = LXω = 0, ∀X ∈ D(k)
j . Thus, one also

has that ι(Y )ω = 0 for any Y ∈ D(k)
j + [D(k)

j ,D(k)
j ] (using the fact that ι([X,X ′])ω =

(ι(X) ◦ LX′ − LX′ ◦ ι(X))ω).
The third condition implies then that ω ◦ LXjr = 0 which in turns implies that ι(Y )ω = 0

for all Y ∈ ImLXj when X ∈ D(k)
j .

This shows that ι(Y )ω = 0 for all Y ∈ D(k+1)
j and one proceeds inductively.

Proposition 3.6. The j-transverse Dolbeault cohomology is given in degree p, 0 by

Hp,0
j trans(M) :=

{
ω ∈ Ωp(M,C) | ι(Z)ω = 0, LZω = 0, ∀Z ∈

(
T 0,1
j

)∞
= T 0,1

j ⊕A−(D∞j )
}
.

Proof.

Hp,0

D∞j ,[j],∂̄
(M) =

{
ω ∈ Ωp,0

D∞j ,[j]
| ∂̄D∞j ,[j]ω = 0

}
=

{
ω ∈ Ωp(M,C) | ι(F )ω = 0, LFω = 0∀F ∈ D∞j ,

ι(U + ijU)ω = 0∀U ∈ X(M), ∂̄D∞j ,[j]ω = 0
}

=
{
ω ∈ Ωp(M,C) | ι(Z)ω = 0, ∀Z ∈ T 0,1

j +D∞j , LFω = 0, ∀F ∈ D∞j ,

dω(U + ijU, V1 − ijV1, . . . , Vp−1 − ijVp−1) = 0}

=
{
ω ∈ Ωp(M,C) | ι(Z)ω = 0, ∀Z ∈ T 0,1

j +D∞j , LFω = 0, ∀F ∈ D∞j ,

(A−U)(ω(A+V1, . . . , A
+Vp−1))−

∑
k

(ω(A+V1, . . . , [A
−U,A+Vk], . . . , A

+Vp−1)) = 0

}
=

{
ω ∈ Ωp(M,C) | ι(Z)ω = 0, LZω = 0, ∀Z ∈

(
T 0,1
j

)∞
= T 0,1

j +D∞j
}

3.3 Comparison with the generalized Dolbeault cohomology of an almost
complex structure

J.Cirici and S Wilson introduced in [3] a generalized Dolbeault cohomology associated to
an almost complex structure j on a manifold M in the following way.

One decomposes as before the complexified tangent bundle TMC = T 1,0
j ⊕ T 0,1

j , into
±i eigenspaces for j, and the dual decomposition of the complexified cotangent bundle
T ∗MC = (T ∗j )1,0⊕ (T ∗j )0,1 leads to the usual decomposition of the space of complex valued
k-forms on M into

Ωk(M,C) = ⊕p+q=kΩp,q
j .
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Then
dΩp,q

j ⊂ Ωp−1,q+2
j ⊕ Ωp,q+1

j ⊕ Ωp+1,q
j ⊕ Ωp+2,q−1

j

and the differential splits accordingly as

d = µ̄⊕ ∂̄ ⊕ ∂ ⊕ µ.

The fact that d2 = 0 is equivalent to

µ̄2 = 0, (3.1)

µ̄ ◦ ∂̄ + ∂̄ ◦ µ̄ = 0, (3.2)

µ̄ ◦ ∂ + ∂ ◦ µ̄+ ∂̄2 = 0, (3.3)

µ ◦ µ̄+ µ̄ ◦ µ+ ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0

µ ◦ ∂̄ + ∂̄ ◦ µ+ ∂2 = 0,

µ ◦ ∂ + ∂ ◦ µ = 0,

µ2 = 0.

Equation (3.1) shows that one can define the µ̄ cohomology spaces:

H
(p,q)
µ̄ = Ker µ̄|Ωp,qj / Im µ̄|

Ωp+1,q−2
j

. (3.4)

Equation (3.2) shows that ∂̄ induces a map ˜̄∂ on those µ̄ cohomology space

˜̄∂ : H
(p,q)
µ̄ → H

(p,q+1)
µ̄ : ω + Im µ̄ 7→ ∂̄ω + Im µ̄, (3.5)

and equation (3.3) shows that
(˜̄∂)2

= 0, so one can look at the corresponding cohomology
spaces

H
(p,q)
Dol (M) = Ker ˜̄∂|

H
(p,q)
µ̄

/ Im ˜̄∂|
H

(p,q−1)
µ̄

(3.6)

Those are the spaces of the generalized Dolbeault cohomology.

Proposition 3.7. The generalized Dolbeault and the transverse Dolbeault cohomology spaces
coincide in degrees (p, 0) :

H
(p,0)
Dol (M) = Hp,0

j trans(M)

Proof. We know that Hp,0
j trans(M) = Hp,0

D∞j ,[j],∂̄
(M) and, by proposition 3.6 we have

Hp,0
j trans(M) :=

{
ω ∈ Ωp(M,C) | ι(Z)ω = 0, LZω = 0, ∀Z ∈

(
T 0,1
j

)∞
= T 0,1

j ⊕A−(D∞j )
}
.

On the other hand
H

(p,0)
Dol (M) =

{
ω ∈ Ωp,0

j | µ̄ω = 0, ∂̄ω = 0
}
.
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Now, for ω ∈ Ωp,0
j , one has

µ̄ω = 0 ⇐⇒ dω(A−(Y ), A−(Z), A+(X1), ..., A+(Xp−1)) = 0

⇐⇒ ω([Y + ijY, Z + ijZ], X1 − ijX1, ...., Xp−1 − ijXp−1) = 0

⇐⇒ ι(N j(Y, Z))ω = 0.

So

H
(p,0)
µ̄ =

{
ω ∈ Ωp(M,C) | ι(W )ω = 0 ∀W ∈

(
T 0,1
j

)(1)
}
.

We have, for ω ∈ H(p,0)
µ̄ ⊂ Ωp,0

j

∂̄ω = 0 ⇐⇒ dω(Y + ijY,A+(X1), ..., A+(Xp)) = 0

⇐⇒ (Y + ijY )ω(A+(X1), ..., A+(Xp))

−
∑
i

ω(A+(X1), ., [Y + ijY,A+(Xi)], ..., A
+(Xp)) = 0

⇐⇒ LZω = 0 ∀Z ∈ T 0,1
j .

Using the fact that [LZ ,LZ′ ] = L[Z,Z′] and [ι(W ),LZ ] = ι([W,Z]), we get

H
(p,0)
Dol (M) =

{
ω ∈ Ωp(M,C) | ι(W )ω = 0 and LZω = 0 ∀Z ∈ T 0,1

j ,∀W ∈
(
T 0,1
j

)(1)
}

=

{
ω ∈ Ωp(M,C) | ι(Z)ω = 0 and LZω = 0 ∀Z ∈

(
T 0,1
j

)∞
= ∪k

(
T 0,1
j

)(k)
}

= Hp,0

D∞j ,∂̄
(M).

Remark 3.8. Since any element in ΩD∞j (M) = ⊕p,qΩp,q
D∞j ,[j]

(M) is in the kernel of µ̄, there

is always a map from ΩD∞j (M) to H
(p,q)
µ̄ mapping an element ω to [ω] and this induces a

map in cohomology:

Hp,q
j trans(M)→ H

(p,q)
Dol (M)

mapping the class in Hp,q
j trans(M) of a ∂̄-closed (p, q)-form ω in ΩD∞j (M) to the class in

H
(p,q)
Dol (M) of the ˜̄∂-closed element [ω] in H

(p,q)
µ̄ .

4 A notion of minimal non-integrability

Definition 4.1. We say that a non-integrable almost complex structure j on a manifold

M is minimally non-integrable if the first derived distribution of T 1,0
j ,

(
T 1,0
j

)(1)
= T 1,0

j +
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(
ImN j

)C
, is involutive. By proposition 1.4, this will be true iff

[N, jX]− j[N,X] = (LNj)X ∈ ImN j ∀X ∈ X(M),∀N ∈ ImN j .

We could ask furthermore that dim ImN j = 2 everywhere. Then we have a foliation,
with two-dimensional leaves carrying a complex structure, and with a transverse complex
structure.

As we have seen in prop 3.1, minimal non-integrability for j means that it has the
largest possible transverse complex structure.

4.1 Minimally non-integrable invariant almost complex structure on a
Lie group.

Let j be a left invariant almost complex structure on a Lie group G. Denoting by g the
Lie algebra of G and by J the endomorphism of g given by the value of j at the neutral
element e ∈ G, the Nijenhuis tensor N j is left invariant and its value at e is given by

NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] X,Y ∈ g.

ImN j is a smooth left invariant regular distribution whose value at e is the J-invariant
subspace ImNJ of g.

Proposition 4.2. Consider a left invariant almost complex structure j on a Lie group G
such that ImNJ satisfies

[N, JX]− J [N,X] ∈ ImNJ , ∀X ∈ g, N ∈ ImNJ . (4.1)

Then ImN j defines a foliation, the leaves carry an induced almost complex structure, and
j induces a transverse complex structure.
If the subgroup H corresponding to the subalgebra ImNJ is closed, one has a principal
fiber bundle p : G → G/H, whose base manifold (which is the leaf space) is complex, the
fibers (leaves) are almost complex and the projection is pseudo-holomorphic. The fibers
are complex if, furthermore, NJ(N,N ′) = 0 for all N,N ′ ∈ ImNJ ; this is always true if
dim ImNJ = 2.

Remark that condition (4.1) implies that ImNJ is a subalgebra of g and is automatically
satisfied if ImNJ is an ideal in g.

4.2 Minimally non-integrable invariant almost complex structure on a
homogeneous space.

Let G × M → M : (g, x) 7→ g · x =: ρ(g)x denote the action of a Lie group G on a
manifold M . Assume this action is transitive. Choosing a base point x0, its stabilizer
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will be denoted by H, so H = {g ∈ G | g · x0 = x0} is a closed subgroup of G and the
manifold M is diffeomorphic to G/H. We denote by π : G→M : g 7→ g · x0 the canonical
projection. Thus Tx0M identifies with g/h. For any element h ∈ H, the action ρ(h)∗x0

on Tx0M identifies with the action induced by Ad(h) and denoted Ãd(h) on the quotient
g/h. We denote by A∗ the fundamental vector field on M defined by an element A ∈ g
(i.e. A∗x = d

dt exp−tA · x|t=0); clearly A∗x0
= −π∗eA.

Assume that there exists an almost complex structure j on M which is G-invariant, i.e.
ρ(g)∗x ◦ jx = jg·x ◦ ρ(g)∗x for all g ∈ G. Invariance implies

LA∗j = 0 i.e. [A∗, jX] = j[A∗, X] ∀X ∈ X(M), ∀A ∈ g. (4.2)

The Nijenhuis tensor N j is invariant under the action of G. Its value at the base point is
obtained as follows

Proposition 4.3. ([9], thm 6.4, page 217) Let M be a G-homogeneous manifold endowed
with a G-invariant almost complex structure j. We choose a base point x0 ∈ M and a
linear map J : g→ g such that jx0A

∗ = (JA)∗x0
for all A ∈ g. Then

N j
x0

(A∗, B∗) =
(
−NJ(A,B)

)∗
x0

(4.3)

where NJ is defined in terms of the Lie bracket in g by

NJ(A,B) := [JA, JB]− J [JA,B]− J [A, JB]− [A,B] ∀A,B ∈ g.

Proof. Using the invariance of j, we have, for all A,B ∈ g,

N j(A∗, B∗) = [jA∗, jB∗] + j[B∗, jA∗]− j[A∗, jB∗]− [A∗, B∗] = [jA∗, jB∗] + [A∗, B∗]

We introduce an auxiliary torsion-free linear connexion ∇ on the manifold M . At the base
point x0, one has

[jA∗, jB∗]x0 = (∇jA∗jB∗ −∇jB∗jA∗)x0 = (∇(JA)∗jB
∗ −∇(JB)∗jA

∗)x0

= ([(JA)∗, jB∗] +∇jB∗(JA)∗ − [(JB)∗, jA∗]−∇jA∗(JB)∗)x0

=
(
j[(JA)∗, B∗] +∇(JB)∗(JA)∗ − j[(JB)∗, A∗]−∇(JA)∗(JB)∗

)
x0

= (j[JA,B]∗ + [(JB)∗, (JA)∗]− j[JB,A]∗)x0

= (J [JA,B] + [JB, JA]− J [JB,A])∗x0
.

Hence, N j(A∗, B∗)x0 = (−[JA, JB] + J [JA,B] + J [A, JB] + [A,B]∗)∗x0
= −NJ(A,B)∗x0

.

Proposition 4.4. Let M be a G-homogeneous manifold endowed with a G-invariant almost
complex structure j. We choose a base point x0 ∈M and a linear map J : g→ g such that
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jx0A
∗ = (JA)∗x0

for all A ∈ g. The distribution ImN j is involutive and gives a foliation
with transverse complex structure if and only if

[JA,NJ(B,C)]− J [A,NJ(B,C)] ∈ ImNJ + h ∀A,B,C ∈ g, (4.4)

with NJ defined as above NJ(A,B) = [JA, JB]− J [JA,B]− J [A, JB]− [A,B].

Proof. Since j in G-invariant, the tensor N j is G-invariant, hence, for all A ∈ g,

LA∗N
j = 0 i.e. [A∗, N j(X,Y )] = N j([A∗, X], Y ) +N j(X, [A∗, Y ]) ∀X,Y ∈ X(M).

(4.5)
The condition [jX,N ] − j[X,N ] ∈ ImN j for all X ∈ X(M) and for all N ∈ ImN j will
be satisfied at every point if it is satisfied at the base point. Since [jX,N ] − j[X,N ] is
tensorial in X, it is enough to verify it for X in the space of fundamental vector fields; since
it remains true if one multiplies N ∈ ImN j by a function, the condition will be satisfied if
and only if(

[jA∗, N j(B∗, C∗)]− j[A∗, N j(B∗, C∗)]
)
x0
∈ ImN j

x0
∀A,B,C ∈ g. (4.6)

Introducing again an auxiliary torsion-free linear connexion ∇ on the manifold M , we have(
[jA∗, N j(B∗, C∗)]

)
x0

=
(
[(JA)∗, N j(B∗, C∗)]−∇Nj(B∗,C∗)(jA

∗ − (JA)∗)
)
x0

=
(

[(JA)∗, N j(B∗, C∗)] +∇(NJ (B,C))∗(jA
∗ − (JA)∗)

)
x0

= [(JA)∗, N j(B∗, C∗)]x0 + [NJ(B,C)∗, jA∗ − (JA)∗]x0

=
(
[(JA)∗, N j(B∗, C∗)] + j[NJ(B,C)∗, A∗]− [NJ(B,C), JA]∗

)
x0

=
(
N j([JA,B]∗, C∗) +N j(B∗, [JA,C]∗)

)
x0

+
(
J [NJ(B,C), A]− [NJ(B,C), JA]

)∗
x0

=
(
−NJ([JA,B], C)−NJ(B, [JA,C])

+J [NJ(B,C), A]− [NJ(B,C), JA]
)∗
x0
.

On the other hand, we have(
j[A∗, N j(B∗, C∗)]

)
x0

=
(
jN j([A,B]∗, C∗) + jN j(B∗, [A,C]∗)

)
x0

=
(
−JNJ([A,B], C)− JNJ(B, [A,C])

)∗
x0
.

Hence(
[jA∗, N j(B∗, C∗)]− j[A∗, N j(B∗, C∗)]

)
x0

=
(
−NJ([JA,B], C)−NJ(B, [JA,C])

+J [NJ(B,C), A]− [NJ(B,C), JA]

+JNJ([A,B], C) + JNJ(B, [A,C])
)∗
x0
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and this is in ImN j
x0 = (ImNJ)∗x0

iff

[JA,NJ(B,C)]− J [A,NJ(B,C)] ∈ ImNJ + h.
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