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Abstract

Deep neural networks (DNNs) are known to have a fundamental sensitivity to
adversarial attacks, perturbations of the input that are imperceptible to humans
yet powerful enough to change the visual decision of a model [1]. Adversarial
attacks have long been considered the “Achilles’ heel” of deep learning, which
may eventually force a shift in modeling paradigms. Nevertheless, the formidable
capabilities of modern large-scale DNNs have somewhat eclipsed these early
concerns. Do adversarial attacks continue to pose a threat to DNNs?
In this study, we investigate how the robustness of DNNs to adversarial attacks
has evolved as their accuracy on ImageNet has continued to improve. We mea-
sure adversarial robustness in two different ways: First, we measure the smallest
adversarial attack needed to cause a model to change its object categorization
decision. Second, we measure how aligned successful attacks are with the features
that humans find diagnostic for object recognition. We find that adversarial attacks
are inducing bigger and more easily detectable changes to image pixels as DNNs
grow better on ImageNet, but these attacks are also becoming less aligned with the
features that humans find diagnostic for object recognition. To better understand
the source of this trade-off and if it is a byproduct of DNN architectures or the
routines used to train them, we turn to the neural harmonizer, a DNN training
routine that encourages models to leverage the same features humans do to solve
tasks [2]. Harmonized DNNs achieve the best of both worlds and experience attacks
that are both detectable and affect object features that humans find diagnostic for
recognition, meaning that attacks on these models are more likely to be rendered
ineffective by inducing similar effects on human perception. Our findings suggest
that the sensitivity of DNNs to adversarial attacks can be mitigated by DNN scale,
data scale, and training routines that align models with biological intelligence. We
release our code and data to support this goal.

1 Introduction

For at least a decade, it has been known that the behavior of deep neural networks (DNNs) can be
controlled by small “adversarial” perturbations of the input that are imperceptible to humans [1, 3].
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As DNNs are increasingly being incorporated into software and tools we use in our everyday lives,
their vulnerability to adversarial attacks is potentially an unsolved existential threat to the security and
safety of these architectures. However, over recent years, the danger of adversarial attacks has been
overshadowed by the ever-increasing scale-up of DNNs, and their resulting remarkable achievements
across vision, language, and robotics. Billion-parameter DNNs are being trained on internet-scale
datasets to perform tasks at levels that rival or surpass humans, bringing us tantalizingly closer to
intelligent systems that can transform our lives for the better. It is not known how the scale of DNNs
has affected their sensitivity to adversarial attacks.

Figure 1: We propose a new goal for adversarial robustness: Robust models are not only tolerant
to strong adversarial image perturbations, successful attacks also target object features that
humans find diagnostic for classification. Adversarial attacks that are large in size and aligned
with human perception are more likely to affect humans like they do models, which will neutralize
their effectiveness. Shown here are an image of a snow monkey, its corresponding human feature
importance map from ClickMe [4], and “untargeted” adversarial attacks from ℓ2 projected gradient
descent (PGD) on three different DNNs. One DNN can be attacked with a weak perturbation (as
measured by ℓ2 distance between clean and attacked images), and the successful attack is misaligned
with the ClickMe feature importance map according to the Spearman correlation between the two.
Another DNN is more tolerant to perturbations, but successful perturbations are still misaligned with
human perception (strong perturbation/weak alignment). A third DNN approaches our ideal result:
strong perturbations are needed for successful attacks, and those perturbations affect features humans
use for recognizing the object (the face), which renders these attacks more easily detectable and less
effective. Zoom in to see details of each attack.

There are a number of known ways to make DNNs more “robust” to adversarial attacks, meaning
that it will take a larger change in pixels between an attacked and clean image to trick a model [5].
For example, there are algorithmic defenses that can be incorporated into DNN inference [6] and
training routines that increase the adversarial robustness of DNNs [7–9]. These approaches carry two
key drawbacks. First, there is a well-established trade-off between a model’s adversarial robustness
and its task accuracy [10, 11]. Second, while improving a DNN’s robustness means that a stronger
perturbation is needed to attack it, there is no constraint on what parts of images are attacked. Humans
rely on certain features more than others to recognize objects [2,4,12,13], and if a DNN attack affects
features that are less important to humans for recognition, it may still prove be ignored or difficult to
notice [14] regardless of the perturbation strength (Fig. 1). We propose that for DNNs to be truly
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robust to adversarial attacks, then perturbations should induce large and detectable changes to the
object features that humans find diagnostic for recognition (Fig. 1).

There is reason to believe that the scaling laws which have helped DNNs reach their many recent
successes in vision and language may at least partially improve their adversarial robustness [15].
Large-scale vision transformers are as robust to non-adversarial image perturbations as humans
are, and it is possible that this means larger adversarial perturbations are needed to attack these
models [16, 17]. However, DNNs with high accuracy on ImageNet are also learning to recognize
objects with features that are misaligned with those used by humans [2]. It is not clear how these
features of large-scale DNN vision interact and whether or not they affect the adversarial robustness
of models.

Contributions. In this work, we evaluate a large and representative sample of DNNs from the past
decade to understand how their adversarial robustness has changed as they have evolved and improved
on ImageNet. We measure adversarial robustness in two ways: (i) the average ℓ2 distance between
clean and attacked images, which we refer to as “perturbation tolerance”, and (ii) the alignment
of attacks with object features that humans find diagnostic for recognition, which we refer to as
“adversarial alignment”. We discover the following:
• DNNs have experienced a significant increase in perturbation tolerance as they have improved on

ImageNet. In other words, the scale-up of DNNs that has happened over the past several years has
partially helped defend them from adversarial attacks.

• In contrast, successful attacks on DNNs are becoming significantly less aligned with the object
features that humans rely on for recognition [2, 18] as models grow more accurate at ImageNet.

• Vision transformers [16, 19] (ViTs) and convolutional neural networks (CNNs) are robust in
significantly different ways: ViTs have greater perturbation tolerance but CNNs have better
adversarial alignment. Most importantly, there is a pareto-front governing the trade-off between
these ways of measuring adversarial robustness, indicating that new approaches are needed for
human-like adversarial robustness.

• We achieve a partial solution to this goal with the neural harmonizer [2], a routine for aligning DNN
representations with humans that significantly improves perturbation tolerance and adversarial
alignment.

2 Methods

DNN model zoo. We measured the adversarial robustness of 283 DNNs, which are representative
of the variety of approaches used in computer vision today. There were 127 convolutional neural
networks (CNNs) trained on ImageNet [20–31, 31–33, 33–35, 35–43], 123 vision transformers [16,
19, 44–52] (ViT), and 15 CNN/ViT hybrid architectures that used a combination of both types
of circuits [53, 54]. Each model was implemented in PyTorch with the TIMM toolbox (https:
//github.com/huggingface/pytorch-image-models), using pre-trained weights downloaded
from TIMM. Additional details on these DNNs, including the licenses of each, can be found in
Appendix §A.

Neural Harmonizer. There is a growing body of work indicating that the representations and
perceptual behaviors of DNNs are becoming less aligned with humans as they improve on Ima-
geNet [2, 55, 56]. It has also been found that this misalignment can be partially addressed by the
neural harmonizer, a training routine that forces DNNs to learn object recognition using features that
are diagnostic for humans. As this approach has significantly improved the alignment of DNNs with
humans [2], we hypothesized that it would also improve the adversarial alignment of DNNs without
inhibiting their ability to accurately recognize objects.

Training DNNs for ImageNet with the neural harmonizer involves adding an another loss to cross-
entropy for object recognition optimization. The additional loss forces a model’s gradients to be as
similar as possible to feature importance maps collected from humans. Distances between DNN
and human feature imporance maps are computed at multiple scales by a function Pi(.), which
downsamples each map ϕ to N levels of a pyramid using a Gaussian kernel, with i ∈ {1, ..., N}. To
train a DNN with the neural harmonizer we seek to minimize

∑N
i ||Pi(g(fθ,x))− Pi(ϕ)||2 and

align DNN feature importance maps with humans at every level of the pyramid. To facilitate learning,
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feature importance maps from DNNs and humans are normalized and rectified before distances are
computed using z(.), a preprocessing function that takes a feature importance map ϕ and transforms
it to have 0 mean and unit standard deviation. Putting these pieces together, the completed neural
harmonizer loss involves computing the following:

LHarmonization =λ1

N∑
i

||(z ◦ Pi ◦ g(fθ,x))
+ − (z ◦ Pi(ϕ))

+||2 (1)

+ LCCE(fθ,x,y) + λ2

∑
i

θ2i (2)

We follow the original neural harmonizer training recipe to optimize 14 DNNs for object recognition
on ImageNet while relying on category-diagnostic features captured by ClickMe [2]: one VGG16, one
ResNet50_v2, one ViT_b16, one EfficientNet_b0, six versions of ConvNext Tiny, and four
versions of MaxViT Tiny. Each version was trained with different settings of λ1 and λ2, which
controlled the relative strength of losses for object recognition and alignment, respectively (see
Appendix §B for details).

Figure 2: The perturbation tolerance of DNNs has significantly increased as they have improved
on ImageNet. Each dot denotes a DNN’s ImageNet accuracy vs. its average ℓ2 robustness radius
to ℓ2 PGD attacks, which we call “perturbation tolerance”. Arrows show the change of a DNN in
both dimensions after it has been trained with the neural harmonizer. There is a significant positive
correlation between ImageNet accuracy and perturbation tolerance (ρs = 0.70, p < 0.001). Error
bars denote standard error, and variance may be so small for some models that they are not visible.

ClickMe is a large-scale effort for capturing feature importance maps from human participants
that highlight parts of objects that are relevant and irrelevant for recognition. For example, these
maps focus on the faces of animals, the wheels and fronts of cars, and the wings and cockpits of
airplanes [57]. Models were trained for object recognition using the ImageNet training set and
ClickMe human feature importance maps for the nearly 200,000 images that had annotations. The
training was done on Tensorflow 2.0 with 8 V4 TPU cores per model. An object recognition loss
was computed for every image, and the full harmonization loss was only computed for those images
that had human feature importance maps. Batches of 512 images and feature importance maps
were augmented with random left-right flips and mixup [58] during training. Model weights were
optimized using SGD with momentum, label smoothing [59], a learning rate of 0.3, and a cosine
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learning rate schedule consisting of a five epoch warm-up followed by learning rate decays at steps 30,
50, and 80. We also trained versions ViT_b16, EfficientNet_b0, ConvNext Tiny, and MaxViT
Tiny with crossentropy but not the complete neural harmonizer as controls, and refer to these as
harmonizer control models.

Adversarially robust DNNs We also tested the perturbation tolerance and adversarial align-
ment of robust DNNs. We trained four Robust ResNetv2-50s to be tolerant to ℓ∞-bounded
attacks using a standard procedure [7, 60] (code from https://github.com/microsoft/
robust-models-transfer). A DNN’s robustness to these attacks is controlled by a hyperpa-
rameter ϵ, and we trained versions with ϵ ∈ 0.001, 0.01, 0.05, 0.1 and the same training setup used
for models trained with the neural harmonizer.

Experimental stimuli. We selected 1000 images at random from the ImageNet validation set which
also had ClickMe feature importance maps. Each image was from a different ImageNet category,
and images were preprocessed with each model’s specific procedure before computing adversarial
attacks.

Adversarial attacks. Ever since the introduction of adversarial attacks [1], the field has exploded
with variations that trade-off speed for effectiveness. In our study, we were interested in using attacks
that (i) could be applied to our model zoo and stimulus set in a reasonable amount of time, (ii)
would approach the smallest perturbation needed to change a model’s behavior, and (iii) yielded
continuous-valued perturbations that could be compared to ClickMe feature importance maps to
measure their alignment with human perception. One candidate for these criteria is the popular Fast
Gradient Sign Method (FGSM [61]), which is renowned for its time efficiency. However, its attacks
are suboptimal [7], and it belongs to the L∞ attack category which only captures the sign of an attack
at every pixel and is poorly suited for computing correlations with human feature importance maps.
We instead turned to ℓ2 Projected Gradient Descent (PGD [7]), which fits each of our criteria. ℓ2 PGD
iteratively searches for the smallest possible image perturbation within a fixed ϵ ball that changes
model behavior.

For each model in our zoo, we ran a single ℓ2 PGD attack for 3 iterations and used binary search to
find the minimum perturbation tolerance with ϵ ∈ 0.001, 10 on every ImageNet image in our stimulus
dataset. We also constrained attacks to fall within the pixel range of natural images (i.e. [0, 255]). We
report perturbation tolerance as the ℓ2 distance between a clean version of an image and the minimum
ϵ attacked-version. All attacks were successful for every image and model. We used NVIDIA TITAN
8 GPUs for generating adversarial attacks, which took between 30 and 240 minutes per model for the
complete 1000-image stimulus dataset.

3 Results

DNNs are becoming more tolerant to adversarial attacks as they improve on ImageNet. We
used ℓ2 PGD to attack the object recognition decisions of every DNN in our model zoo for the
1000 images in our stimulus set. We computed perturbation tolerance scores for each DNN as the
average ℓ2 distance between clean images and the attacked versions found by PGD that changed its
recognition decision. Surprisingly, as DNNs have improved on ImageNet, their perturbation tolerance
has also improved, significantly (Fig. 2, ρs = 0.70, p < 0.001). As a point of comparison, the
most accurate DNN we tested, the eva_giant_patch14_336.m30m_ft_in22k_in1k, rivaled the
perturbation tolerance of Robust ResNetv2-50s (i.e., trained for perturbation tolerance) despite
being approximately 22% more accurate on ImageNet. We also found a shift in perturbation tolerance
based on model architecture. ViTs were significantly more tolerant to perturbations than CNNs
(Fig. 2, red vs. blue, T (122) = 9.12, p < 0.001). We found that this pattern of results replicated
when using ℓ∞ PGD instead of ℓ2 PGD (Appendix §C, ρs = 0.72, p < 0.001). In other words, the
continued optimization of DNNs for performance on ImageNet holds promise for building models
that are as robust to image perturbations as any approach designed specifically to build such tolerance.

Successful adversarial attacks are becoming less aligned with human perception. We propose
that an adversarially robust DNN should not only be tolerant to strong image perturbations, successful
attacks should also target features that humans find diagnostic for object recognition. In this way, even
if an attack is successful, it will affect humans like it does DNNs, making the image more difficult to
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Figure 3: Successful adversarial attacks on DNNs are becoming less aligned with human
perception as they have improved on ImageNet. Each dot denotes a DNN’s ImageNet accuracy vs.
the average Spearman correlation between successful attacks an images’ human feature importance
maps from ClickMe. We call this correlation a DNN’s adversarial alignment. Arrows show the change
of a DNN in both dimensions after it has been trained with the neural harmonizer. Error bars denote
standard error, and variance may be so small for some models that they are not visible.

recognize and reducing the potency of the attack. To measure the alignment of a model’s adversarial
attacks with humans, we turned to ClickMe, a large-scale dataset of human feature importance maps
for ImageNet [57]. We then measured a DNN’s adversarial alignment with humans as the average
Spearman correlation between ClickMe maps and successful adversarial attacks for every image in
our stimulus set.

As DNNs have improved on ImageNet, the alignment of their attacks with human percep-
tion has dropped significantly (Fig. 3, ρs = −0.53, p < 0.001). The 89.57% accurate
eva_giant_patch14_336.m30m_ft_in22k_in1k has a ρs = −0.15 adversarial alignment with
humans, whereas the 78.98% accurate MixNet-L has a ρs = 0.38 adversarial alignment with humans.
In contrast to our findings with perturbation tolerance, CNNs were on average significantly more
adversarially aligned with humans than ViTs (Fig. 3, red vs. blue, T (122) = −18.73, p < 0.001).

DNNs trade-off between perturbation tolerance and adversarial alignment. After plotting the
perturbation tolerance of each DNN in our zoo against its adversarial alignment, we found a striking
pattern: DNNs either have a strong tolerance to perturbations and misaligned attacks or successful
attacks are weak in strength but moderately aligned with human perception. The partial outlier to this
pattern is DNNs trained for adversarial robustness, which are tolerant to strong perturbations and
have moderate adversarial alignment, but are also relatively inaccurate on ImageNet.

We reasoned that another approach for breaking the perturbation strength and adversarial alignment
trade-off we observed is to train models for alignment with human perception. One solution to this
problem is the neural harmonizer, which can significantly improve the representational alignment
of DNNs with human perception while also maintaining or slightly improving model accuracy on
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Figure 4: DNNs trade-off between adversarial alignment perturbation tolerance. Each dot
denotes a DNN’s average Spearman correlation between successful attacks and images’ human
feature importance maps from ClickMe vs. the ℓ2 distance between successfully attacked and clean
images. We call these scores adversarial alignment and perturbation tolerance, respectively. Arrows
show the change of a DNN in both dimensions after it has been trained with the neural harmonizer.
Error bars denote standard error, and variance may be so small for some models that they are not
visible.

ImageNet [2], unlike adversarial robustness training [7]. Indeed, we found that a harmonized
ResNet50 approached an adversarially-trained ResNet50 in average perturbation tolerance
(14.69 vs. 23.95) while being 14% more accurate on ImageNet (Fig. 2). We also observed that
successful attacks on harmonized DNNs were significantly more aligned with human perception than
any other DNN, and they break the perturbation tolerance and adversarial alignment trade-off faced by
nearly all other DNNs (average alignment of harmonized DNNs vs. the most aligned unharmonized
DNN, T (999) = 15.63, p < 0.001, Fig. 4).

Successful adversarial attacks on harmonized models target features that humans rely on for recog-
nition: for example, distorting the face of a monkey but leaving the rest of an image untouched
(Fig. 5). All other DNNs, including ones trained for adversarial robustness, have attacks that affect
image context as much or more than they do the foreground object. While large-scale and highly
accurate DNNs like the ViT have high perturbation tolerance, meaning that successful attacks can
be visible and detectable by eye (Appendix Fig. S1-2), these patterns of noise may be ignored as
inconsequential image distortions [62] since they rarely affect features that are diagnostic for humans.

4 Related work

Adversarial attacks and human perception. Adversarial attacks represent a major threat to safety
and security because they are hard or impossible to detect by eye. This feature of adversarial attacks
– their perceptibility or lack thereof – has also made them a popular source for study in the vision
sciences. It has been suggested that even though adversarial attacks look nonsensical, humans can
nevertheless decipher their meaning [63]. Similarly, there is evidence that adversarial attacks on
CNNs can transfer to humans in rapid psychophysics experiments [64] and that DNNs trained for
adversarial robustness and neurons in primate inferotemporal cortex share a similar tolerance to
adversarial perturbations [65]. On the other hand, others have claimed that the similarities between
the adversarial robustness of DNN and human vision can be arbitrarily controlled by experimental
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Figure 5: ℓ2 PGD adversarial attacks for DNNs. Plotted here are ImageNet images, human feature
importance maps from ClickMe, and adversarial attacks for a variety of DNNs. Attacked images are
included for the image of a monkey at the top (zoom in to see attack details). The red box shows
inanimate categories, and the blue box shows animate categories.

design and stimulus choices [14, 62, 66]. Our findings enrich and reconcile these disparate claims by
demonstrating that adversarial robustness, as it is commonly used to describe perturbation tolerance,
need not entail alignment with humans. DNNs that achieve perturbation tolerance and adversarial
alignment will bring us one step closer towards artificial vision systems that see like humans do.

Aligning the visual strategies of humans and machines. Taken to its extreme, it is possible that a
DNN can have arbitrarily high tolerance to adversarial perturbations, but those perturbations could
occur in a single, unnoticeable, pixel on the boundary of an image [14]. This is one of the many
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reasons why there is a growing urgency in the field of computer vision to ensure that DNNs that
rival human performance on image benchmarks can achieve their successes with visual strategies
that are interpretable and at least partially consistent with those of humans. There has been progress
made towards this goal by evaluating or co-training DNNs with data on human attention and saliency,
gathered from eye tracking or mouse clicks during passive or active viewing [57, 67–70]. Others
have achieved similar success by comparing the behaviors of models to humans, either by computing
and optimizing for distances between patterns of behavior [71–74], or by combining behavioral data
with human eye tracking [75]. Another direct comparison of human and DNN alignment involved
identifying the minimal image patch needed by each for object recognition [13, 76]. While the
ClickMe data we used here for harmonizing DNNs is significantly larger than any of these other
efforts, we suspect that they hold similar promise in helping DNNs improve the human perceptual
alignment of adversarial attacks.

5 Discussion

DNN scale provides valuable protection against the strength of adversarial attacks. Perhaps
the biggest breakthrough in artificial intelligence since the release of AlexNet is the finding that
scaling the number of parameters in DNNs and the size of their datasets for training can help them
rival and outperform humans on challenging tasks [16, 77]. Here, we show that scale also provides
concomitant benefits to the perturbation tolerance of DNNs: the size of an adversarial attack needed
to affect today’s most largest-scale and most-accurate DNNs is significantly greater than ever before.
This trend also appears to be accelerating, with ViTs growing tolerant at a faster rate than ever
before. DNN scale may be sufficient for “defanging” adversarial attacks by making them detectable
to humans.

DNN scale worsens their adversarial alignment with human perception. As the perturbation
tolerance of DNNs has improved with ImageNet accuracy, successful attacks on accurate models
have begun to consistently affect parts of object images that humans find less important or completely
irrelevant for recognition. In other words, DNN scale is at best only a partial solution to adversarial
robustness, and it is important for the field of computer vision to explore new approaches to alignment
to ensure that adversarial attacks target features humans rely on for behavior. Thus, even if adversarial
attacks are successful, they will be ineffective because they induce the same behaviors in humans as
they do in DNNs.

The neural harmonizer is a short-term solution to adversarial robustness. Harmonized DNNs
achieve the best of both worlds of adversarial robustness: they have high perturbation tolerance, and
successful attacks target features humans rely on for object recognition. We suspect that scaling the
neural harmonizer to larger and more accurate DNNs, and expanding the size of ClickMe (potentially
with pseudo-labels on internet-scale datasets), will bring the field closer to models that are sufficiently
robust to adversarial attacks. The success of the neural harmonizer also suggests that there is a
fundamental misalignment of the training routines used for large-scale DNNs today, and it is possible
that advances could also be made without ClickMe feature importance maps by inducing more human-
like developmental principles onto models. We release our code and data to support continued progress
towards adversarial robustness (https://serre-lab.github.io/Adversarial-Alignment/).

Limitations. We relied on ℓ2 PGD for our experiments because it is relatively fast and a “universal
first-order adversary” [7], meaning that it is the strongest possible adversarial attack on a DNN that
relies on first-order information. While this might suggest that our results are specific to ℓ2 PGD, we
found they translate to ℓ∞ PGD (Appendix §C). Moreover, in a very small-scale experiment we found
a similar pattern of results with the highly-effective but extremely slow-to-compute Carlini-Wagner
(CW) attack [78] (Appendix §C). Thus, our findings are likely a general feature of adversarial attacks
on DNNs.

Broader impacts. Adversarial attacks have posed an immense problem for the security and safety
of DNNs since their discovery. If a DNN’s behavior can be controlled by an imperceptible pattern of
noise added by a bad actor, then how can they ever be trusted in our everyday lives? We show that
the scaling trends that are driving progress in computer vision today offer a partial solution to these
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attacks, and new approaches for inducing representational alignment between DNNs and humans can
potentially close the remaining gap.
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A DNN Model Zoo

We comprehensively evaluated the adversarial robustness of DNNs on a large sample of models
from the TIMM toolbox [79]. These DNNs, available under the Apache 2.0 license, are intended for
non-commercial research purposes. The complete list of DNNs we evaluated on can be in Table S1
below.

Architecture Model Versions

CNN

VGG 8

ResNet 8

EfficientNet 7

ConvNext 6

MobileNet 10

Inception 3

DenseNet 4

RegNet 22

Xception 4

MixNet 4

DPN 6

DarkNet 1

NFNet 11

TinyNet 5

LCNet 3

DLA 12

MnasNet 4

CSPNet 3

ViT

General ViT 8

MobileViT 10

Swin 22

MaxViT 14

DeiT 24

CaiT 10

XCiT 28

EVA 5

Hybrid
VOLO 8

CoAtNet 13
Table S1: A list of models selected from TIMM library.

B Neural Harmonizer Training

In our work, we followed the original neural harmonizer training recipe to train and harmonize 14
DNNs for object recognition on the ImageNet [80] dataset. By adjusting the regularization terms
λ1 and λ2, we controlled the relative importance of losses for object recognition and human feature
alignment during training. We sampled as many λ1 and λ2 settings as possible given our resources,
and included all versions in our experiments. In total, we trained one VGG16, one ResNet50_v2,
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Model Accuracy (%) Human Alignment (%) Note
VGG 69.3 61.5 λ = 2

ResNet 50 77.17 45.0 λ = 2

EfficientNet B0 77.51 52.3 λ = 20

ViT B16 75.7 72.6 λ = 5

ConvNext Tiny v1 75.9 73.2 λ = 1

ConvNext Tiny v2 75.8 73.3 λ = 2

ConvNext Tiny v3 75.8 74.5 λ = 3

ConvNext Tiny v4 75.5 72.1 λ = 5

ConvNext Tiny v5 75.6 71.1 λ = 8

ConvNext Tiny v6 75.4 73.2 λ = 10

MaxViT Tiny v1 78.6 45.3 λ = 1

MaxViT Tiny v2 78.4 46.8 λ = 2

MaxViT Tiny v3 78.5 57.6 λ = 5

MaxViT Tiny v4 78.1 59.0 λ = 10
Table S2: DNN architectures trained with the neural harmonizer.

one ViT_b16, one EfficientNet_b0, six variations of ConvNext Tiny, and four variations of
MaxViT Tiny (Table S2). Note that we did not attempt to harmonize models pre-trained on datasets
other than ImageNet because the ClickMe feature importance dataset we used contained annotations
on a subset of images in ImageNet.

C Adversarial attacks

ℓ2 PGD. The core idea of the Projected Gradient Descent (PGD) attack is to cast adversarial attacks
as a constrained optimization problem. PGD leverages the (first-order) gradient information of the
model to optimize adversarial attacks while keeping the perturbation size δ within certain constraints.
Each step of the PGD attack that we used in our experiments can be presented as follows:

δ := P (δ + α∇δ loss (fθ(x+ δ), y)) (3)

, where fθ refers to DNN, α means step size, and P denotes the projection onto the ball of interest.
In our experiments, we used the ℓ2 PGD to attack the object recognition decisions of DNNs. This
attack aims to generate adversarial images by perturbing the input data within a bounded ℓ2 norm or
Euclidean ball, iteratively moving an attacked image representation to the closest point on the circle
of a particular radius ϵ centered at the image representation origin ( i.e ∥δ∥2 = ϵ).

To obtain the perturbation tolerance of DNNs, the objective is to find the minimum ϵ that causes the
failure of model identification for each image. In our approach, we iteratively refined the value of ϵ
using binary search, to efficiently find the minimum ϵ. We started by setting a lower-bound epsilon
value ϵl and an upper-bound epsilon value ϵu based on empirical knowledge. The lower-bound value
represents the minimum perturbation that we assumed could result in misclassification, while the
upper-bound value was initially set to a large value that we expected would always result in model
failure. In each iteration of the binary search, we perturbed the clean image with a midpoint value
between ϵl and ϵu. Then, we evaluated the generated adversarial example by feeding it into the
DNN model. If the model correctly identified the adversarial examples, we adjusted the lower-bound
epsilon value ϵl to the midpoint. However, if the model made the wrong prediction, we updated the
upper-bound epsilon value ϵu to the midpoint, narrowing down the search range accordingly. We
repeated this process until the difference between the upper-bound and lower-bound epsilon values
was less than a predefined threshold, indicating that we had converged to a minimum perturbation
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Algorithm 1 Find the minimum perturbation tolerance of an DNN model.
Input: a DNN Fθ, image-label pairs (X ,Y), ℓ2 PGD function P , ℓ2 norm function N ,

lower-bound epsilon ϵl, upper-bound epsilon ϵu, threshold k.
Output: minimum perturbation tolerance t.
T ← [ ]
for xi, yi in X ,Y do

l, r ← ϵl, ϵu
while r − l ≥ k do

m← l + (r − l)/2
x̂i, ŷi ← P(xi, yi,m,Fθ)
if yi ̸= ŷi then

r ← m
else

l← m
ϵ← r
x̂i, ŷi ← P(xi, yi,m,Fθ)
T . append(N (xi, x̂i))

t← mean(T )
return t

tolerance of that single image. At this point, we averaged the ℓ2 distortions between the clean image
and their corresponding adversarial example. The pseudocode is shown in Alg. 1.

ℓ2 PGD Attack on Large-scale DNNs. Large-scale and highly accurate DNNs, especially ViT-
based models, exhibit a high perturbation tolerance; successful attacks can often result in visible
perturbations. However, these visually noticeable patterns of noise do not always affect image features
that humans rely on for recognizing objects.

Our study highlights the behavior of six large-scale ViT-based models that demonstrate excep-
tional performance on the ImageNet dataset, achieving Top-1 accuracy of over 86% (Fig. S1 and
Fig. S2). These DNNs exhibit high perturbation tolerance, but also have low alignment with hu-
man perception, complicating their detection and interpretation by human observers. For example,
eva_giant_patch14_336.m30m_ft_in22k_in1k has the highest object recognition performance
among these six ViT-based models, along with the highest perturbation tolerance. However, its adver-
sarial alignment score is negative and anticorrelated with features humans rely on for recognition: the
attack primarily affects the background regions instead of the foreground object. The observation
suggests that there is a trade-off between perturbation tolerance and adversarial alignment, especially
for large-scale and high-accuracy models.

Results of ℓ∞ PGD Attack. Our earlier findings highlight the valuable protection that the DNN
scale offers against adversarial attacks. Notably, we also found this finding holds true when consider-
ing the ℓ∞ PGD attack, as can been seen from Fig. S3. This translation of results to ℓ∞ PGD attacks
(correlation between ℓ2 and ℓ∞ perturbation tolerance: ρs = 0.72, p < 0.001, Fig. S3) provides
additional evidence supporting the promising impact of optimizing DNNs for ImageNet performance
in building robust models that can withstand image perturbations. This further strengthens the idea
that DNNs with higher accuracy on ImageNet tend to display increased resilience against adversarial
perturbations.

ℓ2 Carlini-Wagner & ℓ2 PGD Attacks. Despite the power of the Carlini-Wagner (C&W) attack, it
is known for being extremely slow to compute, which not only requires more gradient steps than PGD
but also requires the tuning of an extra parameter denoted c. To understand if they are correlated with
the PGD attacks we relied on throughout this work, we ran a small-scale survey of DNN tolerance to
CW attacks, involving 50 CNNs and 50 ViTs from our model zoo, and 100 images from our 1000
image stimulus set. We found a similar pattern of results with CW as we did with the ℓ2 PGD attack
(perturbation tolerance: ρs = 0.71, p < 0.001, Fig. S4; adversarial alignment: ρs = 0.87, p < 0.001,
Fig. S5).
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Figure S1: ℓ2 PGD attack on large-scale models. Plotted here are ImageNet images, human feature
importance maps from ClickMe, and adversarial attacks for 6 large-scale and high-accuracy DNNs.
The red box shows inanimate categories, and the blue box shows animate categories.
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Figure S2: ℓ2 PGD attack on large-scale models. Plotted here are ImageNet images, human feature
importance maps from ClickMe, and adversarial attacks for 6 large-scale and high-accuracy DNNs.
The red box shows inanimate categories, and the blue box shows animate categories.
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Figure S3: The perturbation tolerance of DNNs based on ℓ∞ PGD attack increases as they have
improved on ImageNet.

Figure S4: A comparison between ℓ2 PGD attack and ℓ2 C&W attack on perturbation tolerance.

19



Figure S5: A comparison between ℓ2 PGD attack and ℓ2 C&W attack on adversarial alignment.
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