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Abstract

We study the structure of bialgebras in cointeraction on noncrossing partitions appearing
in the theory of free probability. Its first coproduct is given by separation of the blocks of
the partitions into two parts, with respect to the nestings, while the second one is given
by fusion of blocks. This structure implies the existence of a unique polynomial invariant
onep respecting the product and both coproducts: we give a combinatorial interpretation
of this polynomial invariant, study its values at —1 and use it for the computation of the
antipode. We also give several results on its coefficients, in the simplest case where the
considered noncrossing partitions have no nesting. This leads to unexpected links with
harmonic nested sums, Riordan arrays and generalized Stirling numbers. This polynomial
invariant is related to other ones, counting increasing or strictly increasing maps for the
nesting order on noncrossing partitions, through the action of several characters.
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Introduction

Noncrossing partitions have a rich combinatorics which has been used for example in the theory
of free probability |2, B, 13, 14]. They can be given several algebraic structures which are used
to study relations between cumulants and moments in the theory of free probability [5, 4]. In
the present article, we study the double bialgebraic structure on noncrossing partitions, already
defined in [6] with operadic tools, and its applications to polynomial invariants. The presentation
is based here on our construction of contraction-extraction coproducts [L0] in the context of
species.
We shall denote by NCP the set of noncrossing partitions:

L L et
NCP =< LLLd, et e then vy w1y,
Lo e c

Graphically, noncrossing partitions will be represented with legs (vertical segments), united in
blocks by horizontal segments. The gradation which is used here is not given by the number of
legs as usual, but rather by the number of blocks, see Definition 2.1l The object which will be
considered all along the text is the polynomial algebra generated by NCP, which we denote by
K[NCP]: a basis of this algebra is given by commutative monomials in noncrossing partitions.
In order to avoid confusion between these monomials and non connected noncrossing partitions,
the product of K|[NCP] is denoted by -. For example, in K|NCP], | - LI, | Ll and LI | are
pairwise different. The first coproduct, introduced in Proposition [2.6] is given by separation of
the blocks of a noncrossing partitions into two parts respecting the nesting order relation. For
example,

Al =1®1+1@],

L
NN

)
Al =L1®1+1eL],
Al =111+1x! I +2I®],
ALY =LLI®@1+1®LLl,
AL =l Iel+1oU I+ Ul + @ L,
AlLh=lHe1+1e! LI+ eI+ 1L,
ALl = L4J®1+1®LU+¢J®|
(1

lT1Iel+1l I T+l (-1+21 ) +3l I

This gives a Hopf algebra, graded in two different ways, firstly by the number of legs of non-
crossing partitions, secondly by the number of blocks. Using the formalism defined in [10], we
give K[NCP] a second coproduct, given by fusion of blocks (Proposition . For example,

sy =@,
s(L) = LleLl,
s =1l l+Lel |,
Sy =LIIgLLl,
S h=U el 1+l I,
50 Ly =1 el 1+l L,
sy =gty iier !,
(1

—lel i+l Ur el 1+ el 1.

These two coproducts were also studied in [6], with applications to the theory of free probability.
We obtained that (K[NCP],m,A,d) is a bialgebra in cointeraction (we shall here call these



objects double bialgebras), that is to say that the bialgebra (K[NCP],m,A) is a bialgebra in
the category of right comodules over the bialgebra (K[NCP],m,d), with the coaction given by
¢ itself. The most remarkable property that this implies is

(A®Id)od =mi3210 (0 @) oA,

where m1 324 : KINCP]®* — K[NCP]®? send a1 ® a2 ® a3 ® a4 to a1 @ az @ az - ay.

Let us give a few reminders on the results we obtained on double bialgebras, see [7, [§] for
a detailed exposition. More detailed can be found in the first section of this text. Recall first
that the polynomial algebra K[X] is also a double bialgebra, with its multiplicative coproducts
defined by

AX)=X®1+1®X, 5(X)=X®X.

A polynomial invariant is a bialgebra morphism from (K[NCP],m,A) to (K[X], m,A). Then,
there exists a unique polynomial invariant ¢aep which is also a bialgebra morphism from
(KINCP],m,d) to (K[X],m,d). If 7 is a noncrossing partition,

Pnep(m 2 o A1) )X(X—l)...(X—n—i-l)

n! ’

where €5 is the counit of § and A are the iterated reduced coproducts associated to A.
We give a combinatorial interpretation of ¢acep(m) in Proposition for any integer N,
onep(m)(N) counts the number of N-valid colorations of 7, that is to say maps f from
to {1,..., N} such that the two following conditions are satisfied:

e If b, b/ are two blocks of 7 such that ¥’ is nested into b, then f(b) < f(¥).

e If b and b” are two different blocks of 7 such that f(b) = f(b"”) and max(b) < min(b"), then
there exists a block o’ of 7 intersecting | max(b), min(b")[ such that f(b') < f(b) = f(b").

The second condition will be called the b-condition. We give in Proposition an inductive way
to compute this chromatic polynomial ¢prep(m). We obtain, for example,

onep(LL]) = X, onep(L 1) = X(X = 1),
ber(l L) = X(X 1), over( 1) = KEZD,

3
oner( 1) = x(x 1) (x - 3)).
To this polynomial invariant is attached a character paep, defined by

pnep(z) = onep(z)(—1),
for any x € K|[NCP]. The antipode of (K[NCP],m,A) is then given by

S = (unvep ®1d) o 0.

We show that this character can be inductively computed (Lemmas ?? and ??), and we prove
that it sends any noncrossing partition to a product of Catalan numbers.

We then turn to the computation ¢gprep(m), when 7 has no nesting. In this case, oacp ()
depends only on the number n of blocks of m. We decompose these polynomials, first in the

X(X-1)...(X - 1

( ) n'( n )> , then in the basis of monomials
: n=0

(X™)n=0- In the first case, their coefficients are inductively given in Proposition . Closed

basis of Hilbert polynomials (



formulas for certain of these coefficients are given in Corollary[3.7] with the help of multiple nested
harmonic sums. In the second case, Proposition shows that these coefficients are related to
the exponentiation of a particular infinite matrix, namely the Riordan array of (1+ X, X (14 X)).
We also give a combinatorial interpretation of the coefficient of X™ and X" ! in ¢pep(7) when
m has n blocks in Corollaries and [3.I6, using a particular invertible character Acp of
(K[NCP],m,d). This character is also related to the infinitesimal generator of X (1 + X), see
Proposition [3.17], and to generalized Stirling numbers, see Example [3.5

We introduce two other bialgebra morphisms A and A® from (K[NCP], m, A) to (K[X], m, A),
counting colorations where the b-condition is abandoned and, in the A case, the increasing con-
dition is weakened (Theorem [3.20)). For example,

A(LLD) = X, AS(LL) = X,

A(LD ) = X2, AL 1) = X2,

A(l L) = X2, As(I L) = X2,

A(ILI):X(XJFI) AS(ILI):X<X_1)
2 2

Al L) = X3, AL D) = X3

These two morphisms are related by a duality principle: for any noncrossing partition 7,
A(m)(X) = (=) A* () (= X).

We also show in Corollary that they are related to ¢aep trough two simple characters A
and \®, such that

A= (dncp ®A) 09, A* = (pnep @ N®) 0 6.

The inverses p and p® for the convolution associated to ¢ of these characters are also studied.
Note that

dnep = (A@u)od = (A*@pu’)od.

We give a simple formula for p® in Proposition and a more complicated way to compute p
in Proposition

Finally, in the last section of this paper, we prove that there is no double bialgebra mor-
phism from K[NVCP] to the double bialgebras of hypergraphs [11] or mixed graphs [12], sending
a noncrossing partition to a sum of hypergraphs or to a mixed graph, showing in this way the
specificity of the combinatorics of noncrossing partitions, see Proposition

Acknowledgments. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 0.1. 1. We denote by K a commutative field of characteristic zero. Any vector
space in this text will be taken over K.

2. For any n € N, we denote by [n] the set {1,...,n}. In particular, [0] = &.

3. If (C,A) is a (coassociative but not necessarily counitary) coalgebra, we denote by A
the n-th iterated coproduct of C: A® =1de, A = A and if n > 2,

A® — (A@IE"V) 0 AT s ¢ s B,

4



4. If (B,m,A) is a bialgebra of unit 1z and of counit £p, let us denote by B, = Ker(ep) its
augmentation ideal. We define a coproduct on By by

Vx e B, Alx) =Az) —2®1lp—1p®=x.

Then (B, A) is a coassociative (generally not counitary) coalgebra. In consequence, we
shall be able to consider the iterated reduced coproducts A~ D, with n > 1.

5. For any n > 1, we denote by H,(X) the n-th Hilbert polynomial:

() = XAt D g gy

By convention, Hy = 1.

1 Reminders

1.1 On species

We denote by Set the category of finite sets with bijections and by Vect the category of vector
spaces. A (linear) species is a functor P from Set to Vect. Let P be a species. We fix the
notations:

e For any finite set X, the vector space associated to X by P is denoted by P[X].

e For any bijection o : X — Y between two finite sets, the linear map associated to o by
P is denoted by P[o] : P[X] — P[Y].

Note that for any finite set X, P[Idx]| = Idp[x] and that for any bijections ¢ : X — Y and
7:Y — Z between finite sets, P(7 o o) = P(7) o P(0).

Let P and Q be two species. A morphism between P and Q is a natural transformation
between the two functors P and Q, that is to say, for any finite set X, a linear map fx :
P[X] — P[Y] such that for any bijection o : X — Y between two finite sets, the following
diagram commutes:

PIx] 2L ppyy
Ix ify
Q[X] ——=Q[Y]

Q[o]

Species form a symmetric monoidal category, with the Cauchy tensor product ®: if P and
Q are two species, for any finite set X,

PRQ[X]= P PY]®Q[Z],

X=YuZzZ

and if 0 : X — Y is a bijection between two finite sets, then

PRQo]= @ Ploy]®Qol

X=YuLZ
For any species P and Q, the flip cp.q : P® Q — Q ® P is defined by the following: for any
pair (X,Y) of disjoint sets,

c .{P[X]®Q[Y] — QY]®P[X]
PQ- T®Y — y®uc.



A twisted algebra (resp. coalgebra, bialgebra) is an algebra (resp. coalgebra, bialgebra) in
the symmetric monoidal category of species with the Cauchy tensor product. Let us now give
more details.

A twisted algebra is a pair (P, m) where P is a species and, for any pair (X,Y") of disjoint
finite sets, myy : P[X]®P[Y] — P[X w1 Y] is a linear map, with the following properties:

e If (X,Y) and (X',Y’) are two pairs of disjoint finite sets, and if ¢ : X — X’ and
7:Y — Y’ are bijections, then the following diagram commutes:

P[X|®P[V] =Y~ P[X L Y]
P[U]®P[T]l/ lP[Uu’r]
P[X®P[Y']—P[X' UY]

X!y
e The product m is associative: for any triple (X,Y, Z) of pairwise disjoint sets,
mxuy,z o (mxy ®ldp[z)) = mx yuz o (Idpx] @ my,z).
e The product m has a unit 1p € P[J]: for any finite set X, for any = € P[X],
mg x(lp@z) = mx z(z@1p) = .

A twisted coalgebra is a pair (P,A) where P is a species and for any pair (X,Y’) of finite
sets, Axy : P[X Y] — P[X]®P[Y] is a linear map, with the following properties:

e If (X,Y) and (X', Y’) are two pairs of disjoint finite sets, and if o : X — X' and
7:Y — Y’ are bijections, then the following diagram commutes:
Axy
P[X uY]—=P[X]|®P[Y]
P[ou‘r]l \LP[O’]@P[T]
P X' 0uY']|—P[X'|®P[Y]

AX’,Y,

e The coproduct A is coassociative: for any triple (X, Y, Z) of pairwise disjoint finite sets,
(Axy ®Idp[z)) o AxLy,z = (ldpz) ® Ay,z) o Ax yLz-

e The coproduct A has a counit ep € P[]|*: for any finite set X,
(ea ®Idp[x)) 0 Ag x = (Idp[x] ®en) 0 Ax o = Idp[x-

A twisted bialgebra is a triple (P,m, A) such that:

e (P,m) is a twisted algebra. Its unit is denoted by 1p.

e (P,A) is a twisted coalgebra. Its counit is denoted by ea.

e For any pairs (X1, X2) and (Y1, Ys) of disjoint finite sets, such that X7 1 Xo = Y7 1 Ys,
Ay, v, 0Mx, Xo = (MX, AV, Xony: @ MY, AYs, X2nYa)

o (Idp[x;nvi] ® cPx) e, Xonyi] @ 1dP[x,nY2))
0 (Ax,Av1,X1AYs @ AXynY), XonYs)-



e For any z,y € P[], ea(zy) = ea(®)ea(y).

° A®7®(1P) =1p®1p and ep(lp) = 1.

The bosonic Fock functor [1] sends any species P to

i = Pn]
FP] = %colnv(P[n]) = 9:90 Vect(Plo|(p) —p|oeS,, pe P[n])

This is a functor of symmetric monoidal categories from species to (graded) vector spaces. There-
fore, if P is a twisted algebra (resp. coalgebra, bialgebra), then F[P] is a (graded) algebra (resp.
coalgebra, bialgebra).

1.2 On double bialgebras
We refer to [7, 8, 0] for the details.

Definition 1.1. A double bialgebra is a family (B, m, A, ) such that:

1. (B,m,A) and (B,m,d) are bialgebras. Their common unit is denoted by 1g. The counits
of A and § are respectively denoted by e and ;.

2. (B,m,A) is a bialgebra in the category of right comodules over (B, m,d), with the coaction
0, seen as a coaction over itself. This is equivalent to the two following assertions:

Vz € B, (ea®Idp) 0 d(z) = ea(z)1p,
(A ®IdB) 00 = mi,3,24 © (5@6) @) A,

where m13924 : B® 5 B®3 sends 11 @ 0 @ 23 @ x4 to 1 @ x3 @ xox4. Note that
m1,3,.24 © (0 ®0) is in fact the coaction of B® B.

An example of double bialgebra is given by the usual polynomial algebra K[X], with its usual
product m and the two (multiplicative) coproducts defined by

AX)=X®1+1®X, I(X)=X®X.
The counits are given by

oo KX — K . KX
A1 P(X) — P(0), 1P

Proposition 1.2. Let (B,m,A,J) be a double bialgebra.

1. We denote by Char(B) the set of characters of B, that is to say the set of algebra morphisms
from B to K. This sets inherits two associative and unitary products defined by

VA, € Char(B), Axp=(A®u)oA, Axp=(A®pu)od.
The units of the products = and x are respectively ean and 5.

2. Let (A,m,A) be a bialgebra. We denote by Mp_.o the set of bialgebra morphisms from
(B,m,A) to (A,m,A). Then the monoid (Char(B),*) acts on Mp_,4 via the following
right action:

m.{MBHAXChaI‘(B) — MB‘)A
' (0, 0) > pemA=(p®N) o0

7



The double structure allows to find the antipode for the first structure, whenever it exists:
Theorem 1.3. [9, Corollary 2.3] Let (B, m,A,d) be a double bialgebra.

1. Then (B,m,A) is a Hopf algebra if, and only if, the character e5 has an inverse ug for
the convolution product = dual to A. Moreover, if this holds, the antipode of (B,m,A) is
given by

S = (MB ®IdB) 0 4.

2. Let ¢p : B —> K|[X] be a double bialgebra morphism. Then €5 has an inverse for the
convolution product =, given by

{ B — K
HEZ 2 v op(a)(-1).

A double bialgebra (B, m, A, §) is connected if the reduced coproduct A is locally nilpotent:
in other words, for any x € Ker(ea), there exists n > 1 such that A (z) = 0. If so, we obtain
more results:

Theorem 1.4. Let (B, m,A,0) be a connected double bialgebra.

1. There exists a unique double bialgebra morphism ¢p from B to K[X]. Moreover,

Va € Ker(ep), ¢p(x) = Z e?k o AF=D(2)Hy,(X).
k=1

2. The two following maps are bijective, inverse one from the other:

{ Char(B) — Mp kx| Mp_kix) — Chgr(Bl) .
A — (ZSB«\N\)\, (;5 —> { SN d)(x)(l)
3. For any X\ € Char(B), for any x € Ker(ea),

dp e Az) = i A&k o A=) () Hy (X).
k=1

2 Bialgebraic structures on noncrossing partitions

2.1 Reminders on noncrossing partitions
Definition 2.1. A noncrossing partition is a partition © of a set [n] with n € N, such that
Vo#b em Ve, z€b, Yy, tel, T <y <z<t does not hold.

The elements of m are called its blocks. The number of blocks of a moncrossing partition w is
denoted by |m|. The set of noncrossing partitions with k blocks is denoted by NCPj,.

We shall represent noncrossing partitions by diagrams. Elements of [n] will be represented by
vertical segments, from left to right, related by horizontal segments corresponding to the blocks.

For example, the noncrossing partition {{1, 4}, {2}, {3}} is represented by L,

Note that for any k > 1, NCP} is an infinite set. For example,
NCPy = {l; Ly LLI; LI ..
NePy = (Lt L e e tho ety o e Yy,
NePs =g Lt e L e ety oy,
NCP ={l 111 ..).
By convention, NCPy = .



Definition 2.2. Let X be a finite set. We denote by NCP[X] the set of bijections f between
an element ™ of NCP‘X| and X. If o : X — Y is a bijection between two finite sets and
f:m — X is an element of NCP[X], we put NCP[o]|[f] = oo f:7m — Y. This defines a
species NCP, which linearization is denoted by NCP: for any finite set X,

NCP[X] = Vect(NCP[X]).

Notations 2.1. the elements of NCP[X] can be described as noncrossing partitions which blocks
are indexed by the set X. Such an objectf : 1 —> X will be denoted by m = (73 )zex, where for
any v € X, m, = f~!(x). We shall represent graphically the elements of NCP[X], the index of
the blocks being attached to their leftmost leg.

Ezxample 2.1.

12 21 1 2 2 1 1 2 21 IT Qi

AN ERR RN AN AN EN]
2 1
1 2 1 2 2 1 1 2 2 1
NEPRl= LU LYy L L L e, g

IT Qi 1 T 2 i 1 2 2 1

AR AR TEAR RN RN
123132 213231312 321
RRREERERRRRRERNER!

1 2 3 1 32 2 1 3 2 31 3 1 2 3 2 1
IRANTEERER RN AR ERRRERN)
1 2 3 1 3 2 21 3 2 3 1 31 2 3 2 1
RERRRERREE RN RN REEE)

1 2 3 1 3 2 21 3 2 31 2 31 31 2

weppj =4 VTLL L i, b

IT 31:|3 ZZi 32T 13i 23T 1
EERNEERRENR} L, .,

‘3 2 P 3 1 2 ‘1

12| 13| le 23| 31| 32|
REERREEREEANREEN AR AEN)

123 132 213 231 312 321
C L ey e ey ey ey

- J

Notations 2.2. We shall consider the species Com o NCP: for any finite set X,

ComoNCP[X]= P (@ NCP[1]>,

~e€[X] \IeX/~

where £[X] is the set of all equivalence relations on X. As Com is a commutative twisted
algebra and the endofunctor Fowep of the category of species is compatible with the Cauchy
tensor product, Com o NCP is naturally a commutative twisted algebra. Its product is denoted
by -. In other terms, a basis of ComoNCP[X] is given by commutative monomials of noncrossing
partitions 7y -. . .-m, where for any 7, m; is indexed by a nonempty set I;, such that Iy .. .0l = X.
The unit is the empty monomial 1 € Com o NCP[].

Ezxample 2.2.

Com o NCP|[1] = Vect(NCP[1]),

1 2 2

Com o NCP[2] = Vect(N'CP[2]) @ Vect (i J LT L u)

Note that



2.2 The first coproduct

Let us now define a coproduct on the twisted algebra Com o NCP.

Notations 2.3. Let m = (7;)zex be an X-indexed noncrossing partition and let Y < X. We

put Iy = U my and we denote by fy the unique increasing bijection from Iy to [|Iy]]. The
yey
Y-indexed noncrossing partition Ty 18

My = (fY(Wy))yEY-

Graphically, my is obtained by deleting the blocks of @ which are not indexed by an element of
Y. By convention, m g = 1. Note that mx = .

Definition 2.3. Let m = (73)zex be an X-indexed noncrossing partition and I < X. We put

I' = U 7z € [n], which we decompose into connected components I1 Ui ... u I, that is to say:
zel

e For any i€ [k], I is an interval of [n].

e For any i€ [k — 1], max(I]) < min(]

Z-‘rl) -1

We shall say that I is an ideal of 7 if for any i € [k], I} is the union of blocks of m. If I is an
ideal of w, we put
7T|.[ = H 7T|]£.
i€[k]

FEzample 2.3. Let us consider

L1 Lle NCP[T].

Then {2,3,4,5,6} is an ideal of 7. The associated connected components are {2,3,4}, {6,7,8}
and {10,11}, and

5 6
||

2 3 4 1 T
Tasane = LI L1 mam = LLLLT L

Let us give a more usual characterization of the ideals of a noncrossing partitions, with the
help of a classical order on the blocks.

Definition 2.4 (Nesting order). Let m a noncrossing partition. We define a relation on 7 by
Vb, b €, b <;V < b < [min(bh), max(b)].
Then <, is a partial order on .

Lemma 2.5. Let m = (73 )zex be an X-indexed noncrossing partition and I < X. Then I is an
ideal of 7 if, and only if,

Vr,ye X, (el and mp <7 my) =y € 1.

Proof. =. Let m, # my € m, with x € I and 7, <; m,. As I is an ideal of , there exists a
connected component I/ containing m,. As m, € [min(n,), max(m,)] € I}, y € I.

<. Let 1, be a block of 7 intersecting I]. Let us assume that min(m,) ¢ I/. As J is the
union of blocks of 7, min(r,) € I, so belongs to a I]', with p < i. By definition of the connected
components, there exists k € [n]\J, such that max(/}) < k < min(I}). This element k belongs to
a block m, of 7. Then min(m,) < k € m, < min(I]) < max(m;). As 7 is noncrossing, 7, < my.
As Iis an ideal, y € I, so k € I': this is a contradiction, so min(r,) € I/. Similarly, max(m,) € I .
As I! is an interval, m, < I]. Therefore, I/ is the union of the blocks of 7 it intersects. O

10



Proposition 2.6. Let X = I u J be a finite set and 1 € NCP[X]|. We define Aj j(m) €
NCP[I] ® Com o NCP[J] by

A(r) = {771 ®m.y of J is an ideal of ,

0 otherwise.

We extend A as an algebra morphism from Com o NCP to Com o NCP®2. Then the triple
(Com o NCP,m, A) is a twisted bialgebra.

Proof. By definition, A is an algebra morphism. Let 7 € NCP[X]. As ¢ and X are obviously
ideals of ,

Agx(m)=1@m, Axg(m)=m®1,

Therefore, A has a counit ea, defined as the linear map from Com o NCP[(J] to K sending 1
to 1.

Let us assume that X = I u J u K. Let m € NCP[X]. We use the notations of Definition
2.3l

M ® 1_[ (70K ® H (M) g0k K

(Id ® AJ,K) e] AI,JHK(F) — ie[p] ie[p]
if Ju K ideal of m and K n (J u K), ideal of m(;_ k), for any p,

0 otherwise

mMr®m. g @m  if Ju K and K ideals of T,

0 otherwise

(F‘]u(])lj ® (7T|IUJ)|-'] ®7T\K if Ju K and K ideals of ™,

0 otherwise

== (A[}J@Id) o A[I_,J’K(’]T).

|
—

By multiplicativity, A is coassociative. O

Let us now apply the Fock functor 7 on Com o NCP. As an algebra, F[Com o NCP] is
described as follows.

Definition 2.7. We denote by K[NCP] be free commutative algebra generated by NCP. Its
product will be denoted by -. A basis of KINCP] is given by commutative monomials in NCP,
and the unit is the empty monomial 1.

Observe that in K[NCP],
I Ll =111, I L1 L, LI L, | L LI

Applying the Fock functor F on Com o NCP, we obtain the following coproduct on the algebra
F|Com o NCP] = K|NCP]: for any noncrossing partition 7 of [n],

A(r) = Z T

J ideal of w

n]\J ® .- (1)

Colored version can also obtained, using the colored Fock functor of [I0] — we won’t use them in
this paper.
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Erample 2.4.

Ah=l®1+1®],

AL =L@l +1® L,

Al =11@1+1x! I+2I®],

ALY =L1@1+1® L1,

A=l Iol+1U I+ I+ 1L,
AlLh=lHe1+1e! LI+ eI+ 1oL,
Ay =ther+1et+ Lel,
AllTh=lTI1+1x! I l+la(-1+21 1)+3l I®I.

This coproduct is also introduced in [6], with operadic methods.

2.3 The extraction-contraction coproduct

Recall that £ is the species which associates to any finite set X the set of equivalence relations
on X.

Definition 2.8. Let m be an X-indexed noncrossing partition and ~€ [ X].

1. For any T € X/ ~, we put mz = |_|7ry, We put w/ ~= (Wf)iex/w. This defines an
YET

X/ ~-indexed partition.
2. We shall say that ~€ &[] if X/ ~e NCP[X/ ~].

3. We put 7 |.~= H iz This defines an element of Com o NCP[X].
TEX [~

Proposition 2.9. For any X-indezed noncrossing partition, for any ~€ E[X], we put

b () = {w/~®w |~ if ~€ &[n],

0 otherwise.

We extend this by multiplicativity to Com o NCP. More precisely, if X = X7 u...u Xg and if
Jor any i, m; € NCP[X;], then, for any ~€ E[X],

9= {mmxf(m) coBaxa(mR) i ~= (v aXP) LU (v nXD),

of(my-oooom ‘
0 otherwise.

Then § is a contraction-extraction coproduct on Com o NCP in the sense of [10)], compatible
with m and A.

Proof. Let m € NCP[X] and let ~, ~'e £[X], with ~'©~. We denote by = the equivalence on
X/ ~" induced by ~.

()~ /=@ (n/ =@ |~

(0~ ®Id) o dur(m) = if ~'e &:[n] and = € & [r/ ~'], (2)
0 otherwise.
7w/~ @ | ~)/ ~ @ |.~) |~

(Id®d) o d(m) = if ~e & [r] and ~'e E.[7 |.~], (3)

0 otherwise.
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Note that, as indexed partitions or monomials of indexed partitions,

(m/ ~)/~ =7/~ (m/ ~) |~ =(r[~)/~, (m[~) [~ =~

Let us assume that ~'e & [n] and = € &[n/ ~']. Then (n/ ~')/= = 7/ ~ is noncrossing,
so ~€ &[mr]. Moreover, (n/ ~') | = = (7 |~)/ ~' is noncrossing as m/ ~' is noncrossing, so
~'e E[m |.~]. Conversely, let us assume that ~€ &[] and ~'e & [n |.~]. Then (x/ ~')/= =
7/ ~ is noncrossing, so = € [/ ~']. Moreover, (7/ ~') | = = (7 |~)/ ~' is noncrossing, so
~e Efm | ~]. As ~S~, ~e & ).

Finally, the two conditions in and are equivalent. This gives the coassociativity of §
when applied to any noncrossing partition, then, by multiplicativity, the coassociativity of 4.

Let now m € NCP[X] and let ~, ~'e £[X], without ~'S~. This means that at least one
class of ~ is not the union of the classes of ~’ that it contains. Hence, denoting by Ty, ..., Ty
the classes of ~, ~ is not equal to the union of the parts ~' NZ7. Consequently,

(5~/(7T |~) = 6~/(7T|51 MR ﬂ-‘fk) = 0.
We obtain that (Id ® /) o 6. = 0.
Let €5 be the twisted algebra morphism from Com o NCP to Com defined by

1 if 7 has only one block,

0 otherwise.

vr e NCP[X], es| X|(m) = {

Let m € NCP[X]. The unique ~€ &.[X] such that 7 |.~ is a monomial which all factors are non-
crossing partitions with only one block is the equality of X, which we denote by ~;1. Moreover,
7/ ~1= m. Hence, €5 is a right counit for 6. The unique ~e £.[X] such that 7/ ~ has only one
block is the equivalence ~o on X with only one class. As 7 |.~g= 7, €5 is a left counit for 4.

Let X and Y be two disjoint sets, m € NCP[X u Y], ~xe E[X] and ~ye E[Y]. We put

~=~x L~y

(/) ~)ix/ ~x &/ ~) .y @m |-~
(Ax/my,y /oy ®Id) 0 d(m) = if ~e &|n] and Y/ ~y is an ideal of 7/ ~, (4)

0 otherwise.

(mx)/ ~x ®(m.y)/ ~y ®(mx)| ~x -(m.y)] ~v

if Y is an ideal of 7
mi324 0 (0x ®y) o Axy(m) = ’
~XE EC[W\X] and ~y€ gc[m.Y]a

0 otherwise.

Note that, as indexed partitions or as monomials of indexed partitions,

() ~) [ (X/) ~x) = (mx)/ ~x, (7 >y = () ~v, 7~ = ((mx)] ~x) - ((75)] ~v)-

Let us assume that ~e &[r] and Y/ ~y is an ideal of w/ ~. Let Z,7' € m, such that
T <, T and T € Y. We denote by w : (X 1Y) — (X 0uY)/ ~ the canonical surjection.
Then @ (7) </ @w(T') in 7/ ~. As Y/ ~y is an ideal of 7/ ~, w(T') € Y/ ~y, 507 € Y. By
restriction, (7 | X)/ ~x= (7/ ~) | X/ ~x is noncrossing as 7/ ~ is noncrossing, so ~x€ &[m|x].
Similarly, ~ye€ E[m y].

Let us now assume that Y is an ideal of 7, ~x€ &[mx] and ~ye &[m y]. Let 7,7 €
(XuY)/ ~.

13



elfTeY/ ~yand ¥ € X/ ~x, as ~y€ 50[7r‘_y], ~y is compatible with the connected
components of Y, as defined in Definition Hence, 7 cannot cross 7z. Similarly, if
T€X/~x and T € Y/ ~y, then 7z cannot cross mz.

e If both 7,7 belong to X/ ~x, As (m|x)/ ~x= (7/ ~)|x/~y Is noncrossing, mz cannot
cross my. Similarly, if both Z,Z’ belong to Y/ ~y, then 7z cannot cross .

So ~€ &|m]. By contraction, Y/ ~y is an ideal of 7/ ~.

Finally, the two conditions in and are equivalent. This gives the compatibility of ¢
and A. O

Applying the Fock functor F on ComoNCP, we obtain the following coproduct on K[NCP]:
for any noncrossing partition ,

[6(m) = > 7/ ~@r|~. (6)
~e&.[r]

Colored versions could also be obtained with colored Fock functors [L0] (when the space of colors
is a commutative and cocommutative, not necessarily unitary bialgebra).

Ezample 2.5. In KINCP],

sy = 1@,
s(L) = LleLl,

s =11el- 1+l

s =111eLLl,

S(LI h=1L1Tell-I+L1LI®Ll I

50 Ly =1Uel- 1+l LI,

sy =g+ e,

SATh =111l I+l I+l L+l Dl T+Lliel 1.

This is the second coproduct of [6].

3 Polynomial invariants

3.1 Fundamental polynomial invariants

As a double bialgebra, K[NVCP] is the symmetric algebra generated by noncrossing partitions,
with the two multiplicative coproducts defined by and @ We denote by ¢acp the unique
double bialgebra morphism from K[NCP] to K[X], see Theorem [1.4] For any 7 € NCP,

Pnep(m Z > es(min)es(m.1,) - - - €5(m). 1, ) Hi(X)

k=1 =l u..uly,
Vpe[k],Ipu...ulgideal of

= es(mp1))es(mp.p-1(2) - - €6(T). =1 (max( ) Himax(r) (X)),
!

where the sum runs over all surjective maps f : 7 —> [max(f)] such that for any b, b’ € 7,

<V = f(b) < f(V).

Moreover, due to the definition of €5, the term corresponding to f is not zero if, and only if|
for any ¢ > 1, m y-1(; is a monomial of noncrossing partitions with only one block each, and
T f-1(1) 18 @ noncrossing partition with only one block. If this holds, then the contribution of f
is 1. Reformulating:
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Proposition 3.1. For any noncrossing partition w, for any n € Nxg, dnep(G)(n) is the number
of maps f : ™ —> [n] such that, for any b,b’ € 7,

o Ifb<,V and b # 1, then f(b) < f(V).
o If f(b) = f(b') and max(b) < min(b'), then there exists b” € w such that

] max(b), min()[~b" # & and FOB) < £(b) = F(B).

Such a map [ will be called a valid n-coloration of .

Ezample 3.1. 1. A valid n-coloration of 7 = L s a map f : [3] — [n] such that

f1) < f(2), JF) < fB3), f(2) # f3).
Therefore, for any n > 1,
oep( 1y = M= D022
We obtain that
oreptl 1y - K=K =2)
2. A valid n-coloration of | | |'is a map f : [3] — [n] such that
fF) # f(2), f(2) # f(3), f) =fB)= f(2) < f(1).

Therefore, for any n > 1,

onep(l 1 D (n) =n(n—1)(n—2)+n(n2_1)=n(n—1) (n—;))

The first term correspond to the valid n-colorations with f(1) # f(3) and the second with
f(1) = f(3). We obtain that

onep(l 1) = X(X —1) (X_Z)

3. See Table 4| at the end of the article for more examples of paep (7).
Let us now give an inductive way to compute these chromatic polynomials.
Notations 3.1. Let 7 be a noncrossing partition. We denote by Base(r) the set of blocks of 7

which are minimal for the partial order <.

Proposition 3.2. Let m be a noncrossing partition. Then

onep(m)(X + 1) = pnep(T)

+ > ower (T min()) SN (7). [min(s),max(s)]\b) ENCP (7] max(b) 00
beBase()

Together with ¢arep(m)(0) = 0, this characterizes parep ().

Proof. Let n > 1 and let f : 7 —> [n + 1] be a (n + 1)-valid coloration of w. By the increasing
condition, f~!(1) is included in Base(w). If it is not empty, by the second condition, it is
reduced to a singleton. In the first case, it corresponds, up to a lift of 1, to a n-valid coloration
of m. In the second case, denoting {b} = f~1(1), it corresponds to a n-valid coloration of
TM|[1,min(b)[ * |[min(b),max(b)]\b * T[] max(),c0[- SUmming, we obtain the announced result. ]
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3.2 Antipode
In order to compute the antipode, we put, for any noncrossing partition 7,
pnep(m) = dnep(m)(—1).
This defines a character of K[NCP]. Theorem [1.3|states that the antipode of (K[NCP],m,A)
is
S = (unvep ® Idgpyepy) © 6.

1 2
Notations 3.2. We denote by cat,, = —i—l( n) is the n-th Catalan number.
n n

| n Joft]2[3]4[5]6[7[8 [9]10 |
[cat, [[1[1[2]5]14[42]132]429 ] 1430 | 4862 | 16796 |

Recall that for any k = 1,

k

caty = Z cat;_jcaty_;. (7)
i=1

The number of noncrossing partitions of [n] is cat,. The formal series of Catalan numbers is

1—-+4/1-4X

e0]
C = Z cat, X" = 5%

n=0
For more details, see Entry A000108 of the OEIS [15].

Proposition 3.3. The character vnep on KINCP] can be computed by induction on the number
of blocks, putting for any noncrossing partition m of [n],
,LLN(ﬁJ(?T) = (_1)‘Base(ﬂ)‘Cat|Base(7r)\/-U\/’C7> (7T|.[n]\Base(7r)) :
The antipode S of (K[NCP], m,A) is given on any noncrossing partition © by
S(m)= > unep(r/ ~)m|.~.
~€e&[n]

Proof. We evaluate the formula of Proposition [3.2]in X = —1. We obtain

pnep(m) == > ine (T min) D HNCP (). fmin(s)max(s)]\6) PACP (T max(b) 00
beBase()

We prove the formula for paep(m) by induction on k = |Base(m)|. We put Base(w) = {b1, ..., bi}
with max(b;) + 1 = min(b;41) for any i € [k — 1]. Tf k = 1, then pnep(T|Base(pi)) = —1, which
immediately gives the result. If £ > 2, then, by the induction hypothesis,

!
pnep(m) = = > pnep (T max(vs o)) ENCP (T frmin b:),max(b) )b EANCP (T fmin b1, +0])

=1
k .
= = > (1) eati 1 paep (7). {1 mas(b )\ (b1 onobi 1)) HNCP (). [min(b:),mas(be)])\b: )
=1
(—1)*

) caty e () fmin(bis a4+ 00[\(br s 10 0bi))

k
= (=1)*unep (W\.[n]\Base(ﬂ-)) Z cat;—jcaty—;
i=1
= (=1)*catipner (7). [\Base(r)) -
We used for the last equality. O
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Remark 3.1. A direct induction proves that the sign of paep(m) is (—=1)71.
See Table 4] at the end of the article for examples of pacp ().

Example 3.2. Here are a few examples of antipodes.

S hy==I1+21-1,
Slth==1T1+@a+2+2)1-11=51-1-1
=—l11+51-11=51-1-1,
Shith==l1T1+2+0)l-11-=6G+5+5+2+2+2)1-1-11
+2+1+1+2) -1 T+1401-1-1-1
==l L1 1+30- 0 1=211-1-L1+6l-111T+141-1-1-1.

3.3 More results on ¢,¢p for basic noncrossing partitions

Let us now give a way to compute the polynomial ¢arcp (), when 7 = Base(n).

Proposition 3.4. Let m be a nonempty noncrossing partition such that m = Base(w). Then
dnep(m) is a polynomial Py which depends uniquely on |r|, characterized by Po(X) =1 and

k
Py(X +1) = Pe(X) + Y Pica(X) P i(X),

Vk “ (8)

WV
—

P(0) = 0.

Proof. This is a direct consequence of Proposition if b is the i-th block of 7 (totally ordered
from left to right), then my mine)[ is @ partition 7’ with i — 1 blocks such that Base(r') = 7,
| [min(b),max(b)]\b = 1 and ] max(b),c0[ & partition 7" with |w| — 4 blocks such that Base(n”) =
7. ’ ’ O
Notations 3.3. For any n > 1, we denote by J,, the noncrossing partition {{1},...,{n}}:
Jp =1, Jo=11, J3=111 Jo=1111...
By their combinatorial nature, it is natural to decompose these polynomials P, in the basis
of Hilbert polynomials (H;(X));>0. We put
e}
Po(X) = > ainHi(X). (9)
i=1

By construction of P,(X) = ¢ncp(Jn), the scalar a; ,, is the number of surjective valid n-colorings
¢ : [n] — [i] of J,, that is to say the number of surjective maps ¢ : [n] — [¢] such that

Vp,r € [n], (p < rand c(p) = c(r)) = (g €lp,r[, c(q) < c(p)).
The following proposition allows to compute inductively these coefficients a; y:

Proposition 3.5. Let 1 < @ < n. The coefficients a;, defined by (@) can be computed by
wmduction on i by

On,1 tf 1=1,
(5]
a" = - k 1
" (” o )ai_l,n_k ifi>2.
k=1
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Proof. Let by ,, be the number of parts I of [n] with k elements such that for all 4,5 € I, |i—j| # 1.
This condition will be called the b-condition. Then

brg = |{(i1, ... ix) € NF 1

<
= {1,k eNF 1< <fo< ... <jp <n—k+1}
_n—k—i—l
_ L)
n+1

with j, = ¢, —p + 1 for any p. Note that this coefficient is zero if k > [2] If i = 1, then

i <i1+1<ip<...<ip—1+1<ip<n}

ain =1if n =1, and 0 otherwise. If 4 > 2, for any surjective map c : [n] — [i],
e c~!(i) is a nonempty part I of [n], satisfying the b-condition.

e Identifying (Jn)‘[n]\l with J,_, where k = |I|, the restriction of ¢ to this noncrossing
partitions is an element of PV (J,,_j), of maximum ¢ — 1.

n+1
n [ATJ
n—k+1
Hence, Qi p = Z bk,nai—l,n—k = Z ( k )ai—l,n—k~ O
k=1 k=1

Proposition 3.6. Let i,n > 1. If i > n, then a;, =0. If n > 2! then ain = 0.

Proof. The combinatorial interpretation of a;, (as particular surjective maps from [n] to [i])
implies that if i > n, a; , = 0. Let us consider

P(X,Y) = ), Pe(X)Y" e QIXI[[V]].
k=0

Then implies that
P(X +1,Y)=P(X,Y) +YP(X,Y)%

Moreover, P(0,Y) = 1. An easy induction then proves that P(N,Y") is a polynomial of Q[Y] of
degree 2V — 1 for any N € N. Hence, P,,(N) = 0 if n > 2. This gives, if n > 2%,

0 N N
Po(N) = Y ainHi(N) = an< . ) +0=0.
=1 1=0

As the coefficients a;, belong to N, we obtain that a;, = 0if i < N and n > 2N In other
words, if n > 2*, then a;, = 0. O

Ezample 3.3. The following array contains the first values of a; p:

im[1]2]3]4] 5] 6] 7] 8 | 9 10
1 [1Joflo[o] oo 0 0 0 0
2 fol2[1lo0o]l 0] 0 0 0 0 0
3 Jojo[el10] 8 | 4 1 0 0 0
4 [fofofJol24] 86 [172] 254 | 302 298 244
5 ojo[0] 0 |120] 756 |2734| 7484 | 17164 | 34612
6 ojo[olo | 0 [720]7092] 40148 | 172168 | 621348
7 lolo[olo ] o | 0 [5040] 71856 | 585108 | 3589360
g ojo[olo] o] 0O 0 |40320 | 787824 | 8720136
9 folofolo] o] 0O 0 0 | 362880 | 9329760
10 ofofolo]l o] o 0 0 0 3628800
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It seems that these coefficients are not so well known. For example, no entry of the OEIS
[15] contains the term 172168 = ag 9. However, we can obtain explicit formulas for some of these

terms, involving multiple nested harmonic sums.

1
Notations 3.4. if n,ky,... ky =1, we put Gu(k1,..., kp) = 2 —
I<ni<..<np<n nll N npp

Corollary 3.7.

Vn > 1, app = nl,
1
Vn = 2, ap—1,n = n! (n;— —(n(1)>,
n (3n —2)(n? +n + 6)
Vn > 3, weon =0l [ Co(1,1) — ¢ (1 .
" -z = ! (61, 1) = a1y + H =20

The sequence (an—1,n)n=2 ts Entry A31853 in the OEIS [15)].

Proof. For any n > 2, by Proposition

n
Gnn = <1>an1,n1 +0= nNanp—1,n—1,

as, if k = 2, a1 n—r = 0. Consequently, a, , = n!.
For any n > 3, by Proposition

n41
" B [i] n—k+1 "
n—1l,n — k n—2,n—k

k=1

n n n—1 40
1 an—2,n—1 9 an—2,n—2

(n=1)n—2)
2

=Nan-2n-1 T+

Therefore, if n > 3,
Gp—1,n _ an—2n—1 4 1 . l
n! n—1! 2 n

As a1 2 = 0, the result follows by directly.
If n > 4, by Proposition [3.5]

an—2n 1 n n—1 n—2
o = -] 1 ap—3n—1 + 9 n—3,n—2 + 3 Gn-3n—3

an—3,n—1 n n—2 an—3,n—2 n (TL - 3)(” - 4) (n—3n—3
(n—1)! 2n  (n—2)! 6n(n—1) (n—3)!"

As a1 3 = 0, and with the preceding formulas, we deduce that

T ,624 (i B zi) <k§1 - <k2<1>) Py W

k=4

The result then follows by tedious manipulations of sums.

O

Let us now give a way to compute the coefficients of P,,(X) in the basis of monomials (X*)en.
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Proposition 3.8. Let M = (M )i >1 be the infinite matriz defined by

l

e

My, = (k'—l> i

0 k<l

Then

Py(X) 1
Pi(X 0
1(X) — X In(M) 0

Py (X)

Proof. For any n € N, we put
o0}
Po(X) = ) binX',
k=0

and we consider the infinite vectors B() = (bin—1)n=1. Then BO) = (01,n)n=1, and for any
n > 1, From Proposition [3.5] if i > 2,

_i LR
= n—k i—1,k i—1,n-

If A® is the infinite vector (@in—1)n=1, we obtain that if n > 2, then A = (M — I)A("*l),
which is still true if i = 1. Therefore, for any i > 0, AW = (M —I1)* A where A©®) = (01,n)n>1-

Let us now compute the coefficient of X? in Hy(X) for any k,n. We consider the formal
series X
FXY) = Y Hy(X)Y*h =) (k)Y’“ = (1+Y)¥ e Q[[X, Y]]
k=0 k=0
Therefore,

> 02)[?’“ (0)YF = aa)igi 0,Y) = (In(1 + Y)"(1 + Y)™)
k=0

X=0 = In(1 +Y)".

o0
Let us put In(1 + Y)i = Z%}kY’“. Asforanyn > 1, P, = Z agnHp(X), the coefficient of X
k k=1
m P, is
31
bi,n = kZ E’Yi,kak:,n'
=1

In other words,

P N 1 ;
BY =5 > iAW = 5 (Z Yige(M — I)’f) BO = S m(M)'BO.

We then obtain
Py(X) o0 O i
PX) | =3 BOX' = <Z = 1n(M)iXi> BO) = XI(M) g0), O



Remark 3.2. M is the Riordan array of (1 + X, X(1 + X)), see Entries A005119 and A030528
of the OEIS. Consequently, the first column of In(M), that is to say B(), gives the coefficients
of the infinitesimal generator of X (1 4+ X)), up to signs and multiplications by factorials, giving
Entry A005119 of the OFEIS.

Erample 3.4.
b =X,
P,=X?—-X,
2
P4=X4—133)@+6X2—85))X7
P X5 771)2(4 N 89;(3 B 17155(2 N 316X7
5 4 3 2
Pi— x5 871)0( N 1756X B 2816X N 2156X B 15175)(7
b xr o 228X0 ISO0LXD o SSLXS 177X 649X

20 30 6 20 30
Remark 3.3. Tt could be conjectured seeing these examples that P, is a polynomial with alter-
nating signs, as are the chromatic polynomials for graphs. This is true till n = 28 but fails for
n = 29:
6897956948587X28 R 14277306976985617719653 o 37449570182565026
80313433200 2679791554440 37182145

Proposition 3.9. Let k,n > 1. Then Pi(n) = 0 if, and only if, k > 2" — 1.

Py = X% —

Proof. =>. Let us assume that k < 2" —1 and let us prove that Py(n) # 0. We define a sequence
D,, = (dn1,...,dp2n—1) of length 2" — 1 for any n > 1 by the following process: D; = (1) and
for any n = 2,

Dn = (TL, dn7171, n, dnfl,g, n,...,n, dn,Lan—l,l, n)

For example,

-D2 = (27 172)7
D3 = (3727371737273)7
Dy = (4,3,4,2,4,3,4,1,4,3,4,2,4,3,4).
In the sequence D, by construction, if ¢ < k£ and d,,; = d, , then there exists j such that

i < j<kandd,; <dp;. So D, isa n-valid coloration of Jon_1. By restriction to its first £
letters, it is a n-valid coloration of Ji, so Pi(n) # 0.

<. Let us assume that Px(n) # 0 and let us prove that k£ < 2" — 1. By hypothesis, there
exists a valid n-coloration f of J,,. Let us prove by induction that |f~1(i)] < 2! by induction
oni. If i = 1, by the b condition, at most one element of [k] is sent by f to 1, so |f~1(1)] < 1.
Let us assume the result at all ranks < ¢. By the b-condition, two elements sent by f to i are
separated by at least one element of f~!([i — 1]). By the induction hypothesis,

-1 <2+ 4272 =2 - 1

So, there can be at most 20! elements in f~!(i). Finally,

n

k=i|f_1(i)|<22i_1<2”—1. O
i=1

i=1
Remark 3.4. In other term, the chromatic number of Ji, that is to say the minimal n such that
Ji has a valid n-coloration, is the smallest integer greater that or equal to logy(k + 1).
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3.4 Homogeneous polynomial invariants

The number of blocks of noncrossing partitions induces a graduation of (K[NCP],m,A) (notice
that ¢ is not homogeneous for this graduation). It is connected (that is to say K[NCP]p = K), but
its other homogeneous components are not finite dimensional. With the help of [9, Propositions
3.10 and 5.2], we can associate a homogeneous morphism ¢q : (K[NCP], m, A) — (K[X],m, A)
to the element p € K[INCP]F such that u(r) = 1 for any noncrossing partition 7 with only one
block (and pu takes the value 0 on any other monomial in noncrossing partitions).

Definition 3.10. Let w be a noncrossing partition with n blocks. We denote by le(w) the number
of linear extensions of (m, <), that is to say bijections f : ™ —> [n] such that

Vb, b e, b<,b = fb) < f(V).
By construction of the coproduct A, for any noncrossing partition 7 with n blocks,
p® o AN (1) = le(n).
Therefore, the morphism associated to p is given by the following Proposition:

Proposition 3.11. Let ¢y : KINCP] — K[X] be the algebra morphism such that
1
Vr e NCP, o (m) = T:':)

Then ¢q is a bialgebra morphism from (K[NCP],m,A) to (K[X],m,A). Considering the char-
acter \g = €5 0 ¢y,

||

le()

N
Moreover, with the notations of Proposition and Theorem [1.4), o = dncp <~ Ao.
See Table 4] at the end of the article for examples of Ao(7).

Vr e NCP, Ao(T)

3.5 Invertible characters

In order to study invertible characters of (K[NCP],m,¢), let us introduce a second graduation.
Let m = w1 -... -7 be a monomial in noncrossing partitions. The length of 7 is k and is denoted
by lg(m). The number of blocks of 7 is

|| = |mi| + ...+ |7k

Finally, the degree of 7 is
deg(m) = |7| — 1g(n).
Note that this belongs to N.

Lemma 3.12. With this degree, (K[NCP],m,d) is a graded bialgebra. In particular, KINCP]o
1s the subalgebra generated by noncrossing partitions with only one block.

Proof. Let m, 7' be monomials in noncrossing partitions. Then
|m -] = |z] + |7, lg(m - ') = lg(m) +1g(').
we obtain that deg(m - 7') = deg(w) +deg(n’): the product is homogeneous. Let m = 7y - - - 7 be
a monomial in noncrossing partitions, and let ~;€ &.[m;] for any i. Then, by definition of &[],
|7T1 |.~1 | +...+|7l'k |~~k | = |71'1|+...+|7Tk| = |7T|,
lg(ﬂ'l |.~1) + ...+ lg(ﬂk |~k) = C1(~1) +...+ C](~k)7
|7T1/ ~1 | + ...+ |7Tk/ ~f | = C1(~1) + ...+ Cl(~k),
lg(m1/ ~1) + ... +1g(m/ ~k) = k,
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where cl(~;) is the number of classes of ~;. Combining these equalities, we obtain that
deg(m/ ~q1 '7Tk/ Nk) + deg(m |.~1 ce e TE |~k) = |7T| —k= deg(ﬁ).
Therefore, the coproduct § is homogeneous. O

Proposition 3.13. Let X be a character of (KINCP],m). It is invertible for the convolution
product = associated to § if, and only if, for any noncrossing partition m with only one block,

A(m) # 0.

Proof. We apply [12], Proposition 3.9] with the preceding graduation, with the family of group-
like elements of noncrossing partitions with only one block. O

In particular, for any noncrossing partition 7 with only one block, Ao(7) = 1, so Ag is
invertible. Its inverse is denoted by Anep. Therefore,

PnCP = o e~ ANep. (10)
Consequently:

Corollary 3.14. For any noncrossing partition m,

o= T werln )1<1(/)> el
~€e&.[r]

In particular, the degree of parep(m) is ||, Awvep(7) is the coefficient of X in daep(m) and Ao()
is the coefficient of XI™ in ¢prep(m).

Proof. The formula for ¢pcp is a direct consequence of (10). If ~e &[n], then cl(~) < |x],
so the degree of ¢nep () is smaller than |w|. There is only one element ~;€ £ [m] such that
cl(~p) = |r|: it is the equality of m. Moreover, m | - ~1 is a product of noncrossing partitions
with a unique block, so Ayep (7 |.~1) = 1, whereas m/ ~1= 7. Therefore, the coefficient of X!l
is ¢arep(m) is Ao(m), which is non zero: the degree of ¢acp () is |m|.

There is only one element ~oe E.[r] such that cl(~g) = 1: for any b, b’ € m, b ~¢ b/. Moreover,
le(m/ ~o)
cl(~o)!
dnep(m) is Avep(m). O

7 |.~po= m and 7/ ~¢ has only one block, so = 1: consequently, the coefficient of X in
Let us now give an interpretation of the coefficient of XI™=1 in ¢rep(n).
Definition 3.15. Let ™ a noncrossing partition and let b, V' be two different blocks of .

o We shall say that (b,b') is a close pair if max(b) < min(b') and [max(b) + 1, min(b') — 1] s
a union of blocks of w.

e We shall say that (b,b') is a nested pair if b < V' and if for any V' € w,

bV <o bl =1 =bort’ =V.

If (b,V') is a close or a nested pair of w, we denote by 7/(b,b") the partition which blocks are bt/
and the other blocks of w. By definition of close and nested pairs, it is a noncrossing partition.

Corollary 3.16. Let w be a noncrossing partition with n blocks. Then ¢acp () is a polynomial
of degree n. The coefficient of X" is

L S e/ + N le(m/(b, 1))

(|| = 1)!
(| | ) (b, V') close pair of ™ (b,V') nested pair of =
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Proof. Let ~€ E.[r] such that cl(~) = |r| — 1. There exists exactly one class of ~ made of two
blocks b and ¥, and the other classes are made of only one blocks. Two possibilities can occur:

e Up to a permutation of b and V', (b,b') is a close pair. Then 7/ ~= 7/(b,b’). Moreover,
7 |.~ is a monomial made of noncrossing partitions with only one block and a noncrossing
partition with two non nested blocks. Hence, A\o(7 |.~) = 1. As 7 |.~ is a skew-primitive
element for 6, Ayep(m|.~) = —1.

e Up to a permutation of b and V', (b,b') is a nested pair. Then 7/ ~= 7/(b,b"). Moreover,
7 |.~ is a monomial made of noncrossing partitions with only one block and a noncrossing
partition with two nested blocks. Hence, Ao(m |.~) = 7 As 7 |.~ is a skew-primitive

1

element for 6, Aep(m|.~) = ~3

The result on the coefficient of X/™—! immediately follows. O

Ezample 3.5. 1. Let us consider J,, (see Notation [3.3), with n > 2. Then P, = ¢nep(Jp) is
a monic polynomial of degree n, as A\o(J,,) = 1. Moreover Jn has no nested pair, any any
(i,7) with 1 < i < j < n is a close pair of J,,. Therefore, the coefficient of X"~ in J,, is

Z Z = n(,(1) —n.

1<jsn—1k= 1

w\H

hane- 3 - 3 S-

1<izj<n ) 1<isn—1

Consequently, ((n—1)!b,, 1.5 )n>0 is the sequence of generalized Stirling numbers, see Entry
A001705 in the OEIS [15].

2. See Table 4] at the end of the article for examples of Aep ().

Let us give more results about Aep(Jp).

Proposition 3.17. The sequence ((n — 1)!Anvep(Jn))nz=1 s (up to the signs) the infinitesimal
generator of X (1 + X), see Entries A005119 and A179199 of the OEIS [15]]. Consequently,

[5] .
1 n—i+1
Vn =2, wvep(Jn) = 1 2 ( i+l >)\NC79(Jn—i)-
i=1

Proof. This is a direct consequence of Proposition Remark and the recursive formula
given in Entry A005119 of the OEIS. O

Ezxample 3.6.

[ n Ji[23[4]5] 6 [ 7] 8 [ 9 | 10

3
3 8131 157 | 649 9427 | 19423 6576
2

1] -1 el el e -
Avep(Jn) 316 15 | 30 210 | 210 35

Remark 3.5. Tt could be conjectured from these values that the sign of Aep(Jy,) is (—1)"+! for
any n. This is false. The first counterexample is

37449570182565026
37182145

Avep(Jag) = —

Other counterexamples can be found for n = 30, 33, 34, 38, 39, 42, 43, 47, 48, 51, 52, 55, 56.
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3.6 Linear extensions

Let us first generalize some combinatorial notions from noncrossing partitions to monomial of
noncrossing partitions.

Definition 3.18. Let P = 7y -...-m; be a monomial in noncrossing partitions. The set of blocks
of P is
BI(P)=m u...ump.

We also put |P| = |BI(P)|. The set BI(P) is partially ordered by <p=<r, u...u <x,. An ideal
of P is a subset I of BI(P) such that

Vb, b’ € BI(P), (bel andb<pl)= (b el).
With this definition, we can write, for any monomial in noncrossing partitions,

A(P) = Z Prippg® P ;.
J ideal of P

Definition 3.19. Let P be a monomial in noncrossing partitions and let n > 1.
1. A n-linear extension of P is a map f : BI(P) — [n] such that
Vb, b € BI(P), b<pb = fb) < f).
The set of n-linear extensions of P is denoted by Lin(P,n).
2. A strict n-linear extension of P is a map f : BI(P) — [n] such that
Vb, b € BI(P), (b<pb and b#1b) = f(b) < f(V).
The set of strict n-linear extensions of P is denoted by Lin®(P,n).
Remark 3.6. Obviously, Lin®(P,n) € Lin(P,n) for any n > 1.

Theorem 3.20. 1. For any monomial P in noncrossing partitions, there exists a unique
A(P)(X) € K[ X], such that

Y > 1, A(P)(n) = [Lin(P,n)|.

Moreover, the extension of A as a linear map from K|NCP] to K[ X] is a Hopf algebra map
from (KINCP],m,A) to (K[X], m,A).

2. For any monomial P in noncrossing partitions, there exists a unique A*(P)(X) € K[X],
such that

Vn > 1, A*(P)(n) = |Lin®(P,n)|.

Moreover, the extension of A® as a linear map from KINCP] to K[X] is a Hopf algebra
map from (K[NCP],m,A) to (K[X], m,A).

Proof. We only prove the first point. The proof of the second point is very similar. Let us first
consider a monomial P in noncrossing partitions. For any k > 1, let us denote by I (P) the
number of surjective k-linear extensions of P. Note that if k¥ > |P|, [(P) = 0. Then, for any
n=l1,

|P|

ILin(P,n)| = ;;1 1u(P) (Z) .
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We therefore take P
P

A(P) = > p(P)Hp(X) € K[X].
k=1
Then, for any n = 1, A(P)(n) = |Lin(P, n)|.

By convention, A(1) = 1. If P # 1, then

|P|

0
APYO) = Y i(P)( ) =0,

50 eA0A(P) = 0 = ea(P). Let us now prove the compatibility of A with the products. Let P, Q) be
two monomials in noncrossing partitions. Then BI(P-Q) = BI(P) uBl(Q) and <p.g=<p v <g.
As a consequence, for any n > 1,

Lin(P - Q,n) = {f U g | (f,9) € Lin(P,n) x Lin(Q,n)}.
Taking the cardinalities, we obtain that for any n = 1,
A(P - Q)(n) = A(P)()AQ)(n).

This gives A(P - Q) = A(P)A(Q).

Let us finally prove the compatibility of A with the coproducts A. We fix a monomial P in
noncrossing partitions. Let m,n > 1. If f € Lin(P,m + n), then:

e f1({m+1,...,m+n})is an ideal of P, which we denote I;.

° f‘BI(p)\If is a m-linear extension of Pripyg,-

e fir —mis a n-linear extension of B 1,

Conversely, if I is an ideal of P, f € Lin(Pgjpys,m) and g € Lin(P ;,n) the the following
belongs to Lin(P, m + n):

BI(P) — [m+n]

s [sorern
g(b) +mifbel.

Taking the cardinalities, we obtain that

A(P)(m +n) = 2 APy 1) (M)A(P 1)(n).
I ideal of P

Identifying K[X, Y] and K[X|®?, we obtain that for any m,n > 1,

Ao A(P)(m,n) = (A®A) o A(P)(m,n).
Therefore, Ao A = (A®A) o A. O
Corollary 3.21. Let A and \* be the characters of KINCP] defined by

KNCP] — K

A { KINCP] — K 5 {1 if m = Base(m),

TeENCP — 1, AT m e NCP ‘
0 otherwrse.

Then, with the notations of Proposition and Theorem 1.4

A = dnep e A, A® = gnep e A (11)
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Proof. We use the bijection of Theorem We define two elements of Char(K[NCP]) by

V€ KINCP], Az) = Ax)(1), A (z) = A°(z)(1).
Theorem gives . It remains to prove the formulas for A and A®. Let 7 be a noncrossing
partition. As the unique map f : Bl(w) — [1] is indeed a linear extension of ,

A7) = A(m)(1) = |Lin(m, 1)| = 1.

Moreover, the unique map f : Bl(m) — [1] is a strict linear extension of = if, and only if,
m = Base(r), so
1 if m = Base(r),
0 otherwise.

M (m) = A*(m)(1) = |Lin®(7,1)| = {

Proposition 3.22 (Duality principle). For any © € NCP,
A(m)(X) = (=D)ITA* (m) (= X).
Proof. Let us consider the two maps
br { K[X] — K[X] bo { KINCP] — K[NCP]
P(X) +— P(-X), Te NCP — (=17,
The map ¢ is a bialgebra isomorphism (it is in fact the antipode of K[X]) and, as the bialgebra

(KINCP],m,A) is graded by the number of blocks, ¢ is also a bialgebra map. By composition,
¢ = ¢1 0 A® o ¢ is a bialgebra map. Moreover, for any m € NCP,

$(r) = (=1)TA () (= X).

By Theorem there exists a (unique) v € Char(K[NCP]) such that ¢ = paep e v. Is is
now enough to prove that v = . For any = € NCP,

v(m) = ¢(m)(1) = (1) A% (m)(-1),
s0 it is enough to prove that for any noncrossing partition m, A*(7)(—1) = (—1)I"l.We proceed
by induction on |x|. If |7| = 1, then A®(7) = X and the result holds. Let us assume that
|7| = 2 and that the result holds for any noncrossing partition 7’ with |7/| < |x|. If f € Lin®(w),
observe that f~!(1) < Base(m). Conversely, if B € Base(r) and g € Lin®(m|. g, n), one defines
f € Lin’(m,n+ 1) by

lifbe B
Vbem, fb) = hoes )
g(b) + 1 otherwise.

Consequently,

M@+ = Y A(map)X).
BcBase()

Taking X = —1 and using the induction hypothesis on 7 np when B # (&, we obtain
A*(m)(0) = e5(m) = 0
=MD+ Y Amap) (1)

&< BCBase()

—A@-D+ Y (ke

< BSBase(m)

— @D+ DTS -

BcBase()
= A1)~ (-1)",

Note that Z (—=1)/Bl = 0, as Base(r) # . Finally, the result holds for 7. O
BcBase(r)
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Corollary 3.23. For any 7 € NCP, A(nr) = (=1)"IX* 0 S().

Proof. From the proof of the duality principle, with the same notations, A = ¢1 0 A% o ¢ =
SoAfo¢pe. As A® is a bialgebra morphism, A = Ao S o ¢y. Evaluating this in 7 and then taking
X =1 gives the result. O

Notations 3.5. By Proposition [3.13] both A and A® are invertible for the convolution product
*, dual to the coproduct 6. We denote by p and p® their respective inverses. We immediately
obtain

dnep = A e p, dnep = A7 e .
Let us first compute p°.

0 if ™ # Base(w),

Proposition 3.24. For any 7 € NCP, p®(w) = {( i1 g Base(r)
- if m = Base(m).

Proof. For any noncrossing partition ,

Nxpt(m) =es(m) = Y, A/ ~)u(m).

~e&c[r]

We denote by w1, ..., 7, the connected components of 7, totally ordered from left to right. As
A% only charges noncrossing partitions equal to their bases, in this sum we restrict ourselves with
~ which classes are unions of consecutive 7;, which gives

n
es(m) = Z Z (T Ty ) o (T g 1 - = T b, ) -
k=1n1+-+np=n,
n1,...,Np=1

Let us assume firstly that = # Base(w) and let us show that pu®(w) = 0. Observe that
es(m) = 0. We proceed by induction on n. If n = 1, we immediately obtain that 0 = p*(m). If
n = 2, for any ni,...,ni = 1 such that ny + --- + ngy = n, at least one of the noncrossing par-
titions Py y...on;41 - -+ Pnygegnyy, 15 Dot equal to its base. Therefore, if k& > 2, by the induction
hypothesis, it vanishes under p®. We obtain 0 = p*(m) + 0, which ends this proof by induction.

Let us now assume that m = Base(m). We define a sequence (ap)n>1 by

lifn=1,

n
an = —Z Z Qp, -G, if 0> 2.
k

=2n1+--+ng=n,
N1y =1
Let us prove that p°(7) = a| by induction on |r|. If |r| = 1, then p’(m) =1 = a1. If 7| = 2,
the induction hypothesis gives

n
0= 'LLS(TF) + Z 2 ,LLS(’]Tl e 7Tn1) e ,U,S(7Tn1+...+nk71+1 e 7Tn1+...+nk)

k=2ni1+-+nr=n,
ni,...,ng=1

=M+, D an ...an,

k=2ni+--+ng=n,
ni,...,Np=1

= ,US(TF) — Qp,
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so pu*(m) = a,. It remains to prove that a, = (—1)"~! for any n > 1. Let us consider the formal
0

series A = Z ar X" € X[[X]]. By definition of the sequence (an)n>1,
k=1

e o] e 0]
DI N

=2 k=2n1+--+ni=n,
ni,y...,NEp=1

=X—§: D an XM ap, X™

k=2ni+-+ng=n,

nl,...,'n,kZl
ee)
=X - > At
k=2
AQ
=X — .
1-A

A X
Hence, T4~ X and A= T x which finally implies that a,, = (=1)" ! for any n > 1. O

This finally gives:

Proposition 3.25. For any noncrossing partition 7, ¢ycp(m) = Z (=D)AL~ =IAS () ).
~€e&.[m]

In order to describe y, we shall introduce a family of characters:
Proposition 3.26. For any q € K, we define v, € Char(K[NCP]) by
KINCP] — K
Y3 e NCP e {qif|ﬂ|=1,

0 otherwise.

In particular, v1 = €5. Then:
1. For any \ € Char(K[NCP)), for any ™€ NCP, X x v,(m) = ¢I™\(r).
2. For any q,¢' €K, vy * g = Yqq -
3. If ¢ # 0, g is invertible for x, and ;™ e = Y41
4. For any A € Char(K[NCP)), for any m € NCP, ~4 * AN(w) = g\(7).

Proof. 1. For any m € NCP,

Axg(m) = D0 A/ ~)yglm [~).
~€e[r]

Let us consider ~e &[] such that v4(m |~) # 0: m |~ is a monomial of noncrossing partitions
with a single block, which means that ~ is the equality ~; of w. Therefore,

Ax 9 (m) = A/ ~1)(m |~1) = Alm)g™,

2. In the particular case where A = y,, for any m € NCP,

qq¢ if |x| =1,

0 otherwise.

Yo *Ya(m) = ¢y () = {
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SO Vg * g = Vgq'-
3. Easy consequence of 2.

4. For any m € NCP,
Y x AT = D ) ~)A ).

~€e€.[r]

Let us consider ~e &[] such that v,(7/ ~) # 0: m/ ~ is a noncrossing partition with a single
block, which means that ~ is equivalence ~y on 7 with a single class. Therefore,

Vg * M) = Yq(m/ ~0)A(m |.~0) = gA(m). O
Lemma 3.27. For any A € Char(K[NCP]), Ao S = unep * .

Proof. Recall that S = (uyep ® Idgpaepy) © 0. Therefore,

Ao S =Xo(uvepr @Ldgnepy) 06 = (nvep @A) 06 = pnep * A O
Lemma 3.28. ppcp * uncp = €5.-

Proof. By Lemma for A = e,
€505 = pNCP * €5 = UNCP-
Still by this Lemma, with A = paep,
NP * fiNCP = [INep © S = €50 57 = €5.

Indeed, as K[NCP] is commutative, S? = Idgpnep)- O
Proposition 3.29. In Char(K[NCP]), A = unep* N *y_1 and p = y_1*pu** upnep. Moreover,

Ve NC,P, /J“(ﬂ-) = Z (_1)C1(~)1UJNC77(P |~)7
~e&.[r],
m/~=Base(r/~)

where cl(~) is the number of classes of ~.

Proof. By Corollary [3.23] Lemma [3.27) and Proposition 1, A = pnep * A° xv_1. By propo-
sition 3 and Lemma [3.28] the inverses (for ) of v_; and pprep are themselves, so

*

po= X = e () T g = v x e x pvep
By Proposition 4, for any noncrossing partition ,

p(m) = = * pnep(m) = = Do p(w/ ~uwep(P|~).
~€e&.[r]

The formula then comes from Proposition O

Ezample 3.7. See Table 4] at the end of the article for examples of p®(7) and p(7).

Corollary 3.30. Let m € NCP, such that m = Base(w). Then u(m) = (—1)‘”|*1catw_1.
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Proof. Let m € NCP, such that m = Base(w). The blocks of 7 are denoted by 1, ..., m,, totally
ordered from left to right. If ~€ &.[n] such that 7/ ~= Base(w/ ~), then the classes of ~ are
formed by consecutive ;. This gives

n
pm) =S () nep (T Tn) e AP (Tt 1 - Tty

k=1ni+-+ng=n,
N, Nzl

n
= Z Z (—D)kFmtFecat, o caty, .

k=1ni1+-+nr=n,
ni,...,nE=1

We put, for any n > 1,

n
ap, = Z Z (—1)ktmt et L caty,

k=1ni+-+ni=n,
[ ST ng=1

so that u(m) = aj|. We consider the formal series

A=Y a, X" e Q[X]]. C=Y catyxn = L-VIZAR ”;X_M _1eQ[[X]].
n=1

n=1
By definition of a,,
S C(—X)
A= ~DFo(=x)kF = /L
LD = e

Replacing the expression of C' in this formula and working out, we obtain

1—-+/1+4X

A= 2

=X(1+C0(-X)) = i (—1)"Leat,_1 X™,

n=1

which gives the result for u(m). O

4 Combinatorial morphisms from noncrossing partitions to graphs

We now turn to the bialgebras of hypergraphs or mixed graphs defined in [11, 12]. We obtain
the following negative results:

Proposition 4.1. 1. Let \ € {n,c}. There exists no double bialgebra morphism 1 from
K[NCP] to the double bialgebra of hypergraphs (F[H], m, A, 6™ of [11], such that 1 (J3)
is a sum of hypergraphs.

2. There exists no double bialgebra morphism ¢ from K[NCP] to the double bialgebra of mized
graphs Ha of [12], such that 1 (J3) is a mized graph.

Proof. 1. Let ¢ be such a morphism. Then ¢acep o9 : KINCP] — K[X] is a double bialgebra
morphism by composition, so is equal to ¢.p.. Hence, there exists a sum of hypergraphs G; +
-+ G = ¢(J3) such that

5X2  3X
-t

.. = 3
Gehr(G1+---+G) =X 5 5

This contradicts [11, Proposition 2.5], stating that the coefficients of ¢.pn.(H) are integers for
any hypergraph.
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2. Let ¢ be such a morphism. Then ¢aep o ¥ : KINCP] — K[X] is a double bialgebra
morphism by composition, so is equal to ¢.,,.. Hence, there exists a mixed graph G = (J3)
such that

5X% 33X
T T
By [12, Proposition 3.14|, G has no cycle and has three vertices. It is not a graph, as for any
graph G, the coefficients of ¢nep(G) = Pup(G) are integers. As it is not divisible by X2, G
is connected. It is not one of the mixed graphs of [12] Example 3.2]. So G is one of the four
following mixed graphs:

¢ch7'(G) = X3

Glz 5 G2: )

But for any of these graphs, ¢cnr(Gi)(2) = 0, whereas ¢.n,(G)(2) = 1. So such a ¢ does not
exist. O

Remark 4.1. Of course, there exist double bialgebra morphisms from K[NCP] to F[H] or to
Hg. For example, observe that the two following define double bialgebra morphisms:

X — o X +— .

)

{K[X] — F[H] {K[X] — He

The composition with ¢.p, gives two double bialgebra morphisms, which of course do not satisfy
the combinatorial conditions of Proposition (4.1}
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Table 1: examples
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