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Abstract

We study the structure of bialgebras in cointeraction on noncrossing partitions appearing

in the theory of free probability. Its �rst coproduct is given by separation of the blocks of

the partitions into two parts, with respect to the nestings, while the second one is given

by fusion of blocks. This structure implies the existence of a unique polynomial invariant

ϕNCP respecting the product and both coproducts: we give a combinatorial interpretation

of this polynomial invariant, study its values at �1 and use it for the computation of the

antipode. We also give several results on its coe�cients, in the simplest case where the

considered noncrossing partitions have no nesting. This leads to unexpected links with

harmonic nested sums, Riordan arrays and generalized Stirling numbers. This polynomial

invariant is related to other ones, counting increasing or strictly increasing maps for the

nesting order on noncrossing partitions, through the action of several characters.
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Introduction

Noncrossing partitions have a rich combinatorics which has been used for example in the theory
of free probability [2, 3, 13, 14]. They can be given several algebraic structures which are used
to study relations between cumulants and moments in the theory of free probability [5, 4]. In
the present article, we study the double bialgebraic structure on noncrossing partitions, already
de�ned in [6] with operadic tools, and its applications to polynomial invariants. The presentation
is based here on our construction of contraction-extraction coproducts [10] in the context of
species.

We shall denote by NCP the set of noncrossing partitions:

NCP �

$'&
'%

; , ; , , , , ;

, , , , , , ,

, , , , , , , . . .

,/.
/- .

Graphically, noncrossing partitions will be represented with legs (vertical segments), united in
blocks by horizontal segments. The gradation which is used here is not given by the number of
legs as usual, but rather by the number of blocks, see De�nition 2.1. The object which will be
considered all along the text is the polynomial algebra generated by NCP, which we denote by
KrNCPs: a basis of this algebra is given by commutative monomials in noncrossing partitions.
In order to avoid confusion between these monomials and non connected noncrossing partitions,
the product of KrNCPs is denoted by �. For example, in KrNCPs, � , and are
pairwise di�erent. The �rst coproduct, introduced in Proposition 2.6, is given by separation of
the blocks of a noncrossing partitions into two parts respecting the nesting order relation. For
example,

∆p q � b 1� 1b ,

∆p q � b 1� 1b ,

∆p q � b 1� 1b � 2 b ,

∆p q � b 1� 1b ,

∆p q � b 1� 1b � b � b ,

∆p q � b 1� 1b � b � b ,

∆p q � b 1� 1b � b ,

∆p q � b 1� 1b � b p � � 2 q � 3 b .

This gives a Hopf algebra, graded in two di�erent ways, �rstly by the number of legs of non-
crossing partitions, secondly by the number of blocks. Using the formalism de�ned in [10], we
give KrNCPs a second coproduct, given by fusion of blocks (Proposition 3.8). For example,

δp q � b ,

δp q � b ,

δp q � b � � b ,

δp q � b ,

δp q � b � � b ,

δp q � b � � b ,

δp q � b � � b ,

δp q � b � � � p � � q b � � b .

These two coproducts were also studied in [6], with applications to the theory of free probability.
We obtained that pKrNCPs,m,∆, δq is a bialgebra in cointeraction (we shall here call these
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objects double bialgebras), that is to say that the bialgebra pKrNCPs,m,∆q is a bialgebra in
the category of right comodules over the bialgebra pKrNCPs,m, δq, with the coaction given by
δ itself. The most remarkable property that this implies is

p∆b Idq � δ � m1,3,24 � pδ b δq �∆,

where m1,3,24 : KrNCPsb4 ÝÑ KrNCPsb3 send a1 b a2 b a3 b a4 to a1 b a3 b a2 � a4.

Let us give a few reminders on the results we obtained on double bialgebras, see [7, 8] for
a detailed exposition. More detailed can be found in the �rst section of this text. Recall �rst
that the polynomial algebra KrXs is also a double bialgebra, with its multiplicative coproducts
de�ned by

∆pXq � X b 1� 1bX, δpXq � X bX.

A polynomial invariant is a bialgebra morphism from pKrNCPs,m,∆q to pKrXs,m,∆q. Then,
there exists a unique polynomial invariant ϕNCP which is also a bialgebra morphism from
pKrNCPs,m, δq to pKrXs,m, δq. If π is a noncrossing partition,

ϕNCPpπq �
8̧

k�0

ϵbn
δ � ∆̃pn�1qpπqXpX � 1q . . . pX � n� 1q

n!
,

where ϵδ is the counit of δ and ∆̃pn�1q are the iterated reduced coproducts associated to ∆.
We give a combinatorial interpretation of ϕNCPpπq in Proposition 3.1: for any integer N ,
ϕNCPpπqpNq counts the number of N -valid colorations of π, that is to say maps f from π
to t1, . . . , Nu such that the two following conditions are satis�ed:

� If b, b1 are two blocks of π such that b1 is nested into b, then fpbq   fpb1q.
� If b and b2 are two di�erent blocks of π such that fpbq � fpb2q and maxpbq   minpb2q, then
there exists a block b1 of π intersecting smaxpbq,minpb2qr such that fpb1q   fpbq � fpb2q.

The second condition will be called the b-condition. We give in Proposition 3.2 an inductive way
to compute this chromatic polynomial ϕNCPpπq. We obtain, for example,

ϕNCPp q � X, ϕNCPp q � XpX � 1q,

ϕNCPp q � XpX � 1q, ϕNCPp q � XpX � 1q
2

,

ϕNCPp q � XpX � 1q
�
X � 3
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.

To this polynomial invariant is attached a character µNCP , de�ned by

µNCPpxq � ϕNCPpxqp�1q,

for any x P KrNCPs. The antipode of pKrNCPs,m,∆q is then given by

S � pµNCP b Idq � δ.

We show that this character can be inductively computed (Lemmas ?? and ??), and we prove
that it sends any noncrossing partition to a product of Catalan numbers.

We then turn to the computation ϕNCPpπq, when π has no nesting. In this case, ϕNCPpπq
depends only on the number n of blocks of π. We decompose these polynomials, �rst in the

basis of Hilbert polynomials

�
XpX � 1q . . . pX � n� 1q

n!



n¥0

, then in the basis of monomials

pXnqn¥0. In the �rst case, their coe�cients are inductively given in Proposition 3.5. Closed
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formulas for certain of these coe�cients are given in Corollary 3.7, with the help of multiple nested
harmonic sums. In the second case, Proposition 3.8 shows that these coe�cients are related to
the exponentiation of a particular in�nite matrix, namely the Riordan array of p1�X,Xp1�Xqq.
We also give a combinatorial interpretation of the coe�cient of Xn and Xn�1 in ϕNCPpπq when
π has n blocks in Corollaries 3.14 and 3.16, using a particular invertible character λNCP of
pKrNCPs,m, δq. This character is also related to the in�nitesimal generator of Xp1 � Xq, see
Proposition 3.17, and to generalized Stirling numbers, see Example 3.5.

We introduce two other bialgebra morphisms Λ and Λs from pKrNCPs,m,∆q to pKrXs,m,∆q,
counting colorations where the b-condition is abandoned and, in the Λ case, the increasing con-
dition is weakened (Theorem 3.20). For example,

Λp q � X, Λsp q � X,

Λp q � X2, Λsp q � X2,

Λp q � X2, Λsp q � X2,

Λp q � XpX � 1q
2

, Λsp q � XpX � 1q
2

,

Λp q � X3, Λsp q � X3.

These two morphisms are related by a duality principle: for any noncrossing partition π,

ΛpπqpXq � p�1q|π|Λspπqp�Xq.

We also show in Corollary 3.21 that they are related to ϕNCP trough two simple characters λ
and λs, such that

Λ � pϕNCP b λq � δ, Λs � pϕNCP b λsq � δ.

The inverses µ and µs for the convolution associated to δ of these characters are also studied.
Note that

ϕNCP � pΛb µq � δ � pΛs b µsq � δ.

We give a simple formula for µs in Proposition 3.24 and a more complicated way to compute µ
in Proposition 3.29.

Finally, in the last section of this paper, we prove that there is no double bialgebra mor-
phism from KrNCPs to the double bialgebras of hypergraphs [11] or mixed graphs [12], sending
a noncrossing partition to a sum of hypergraphs or to a mixed graph, showing in this way the
speci�city of the combinatorics of noncrossing partitions, see Proposition 4.1.

Acknowledgments. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 0.1. 1. We denote by K a commutative �eld of characteristic zero. Any vector
space in this text will be taken over K.

2. For any n P N, we denote by rns the set t1, . . . , nu. In particular, r0s � H.

3. If pC,∆q is a (coassociative but not necessarily counitary) coalgebra, we denote by ∆pnq

the n-th iterated coproduct of C: ∆p0q � IdC , ∆
p1q � ∆ and if n ¥ 2,

∆pnq �
�
∆b Id

bpn�1q
C

	
�∆pn�1q : C ÝÑ Cbpn�1q.
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4. If pB,m,∆q is a bialgebra of unit 1B and of counit εB, let us denote by B� � KerpεBq its
augmentation ideal. We de�ne a coproduct on B� by

@x P B�, ∆̃pxq � ∆pxq � xb 1B � 1B b x.

Then pB�, ∆̃q is a coassociative (generally not counitary) coalgebra. In consequence, we
shall be able to consider the iterated reduced coproducts ∆̃pn�1q, with n ¥ 1.

5. For any n ¥ 1, we denote by HnpXq the n-th Hilbert polynomial:

HnpXq � XpX � 1q . . . pX � n� 1q
n!

P KrXs.

By convention, H0 � 1.

1 Reminders

1.1 On species

We denote by Set the category of �nite sets with bijections and by Vect the category of vector
spaces. A (linear) species is a functor P from Set to Vect. Let P be a species. We �x the
notations:

� For any �nite set X, the vector space associated to X by P is denoted by PrXs.
� For any bijection σ : X ÝÑ Y between two �nite sets, the linear map associated to σ by
P is denoted by Prσs : PrXs ÝÑ PrY s.

Note that for any �nite set X, PrIdXs � IdPrXs and that for any bijections σ : X ÝÑ Y and
τ : Y ÝÑ Z between �nite sets, Ppτ � σq � Ppτq �Ppσq.

Let P and Q be two species. A morphism between P and Q is a natural transformation
between the two functors P and Q, that is to say, for any �nite set X, a linear map fX :
PrXs ÝÑ PrY s such that for any bijection σ : X ÝÑ Y between two �nite sets, the following
diagram commutes:

PrXs Prσs //

fX
��

PrY s
fY
��

QrXs
Qrσs

// QrY s

Species form a symmetric monoidal category, with the Cauchy tensor product b: if P and
Q are two species, for any �nite set X,

PbQrXs � à
X�Y\Z

PrY s bQrZs,

and if σ : X ÝÑ Y is a bijection between two �nite sets, then

PbQrσs � à
X�Y\Z

Prσ|Y s bQrσ|Zs.

For any species P and Q, the �ip cP,Q : P bQ ÝÑ Q bP is de�ned by the following: for any
pair pX,Y q of disjoint sets,

cP,Q :

"
PrXs bQrY s ÝÑ QrY s bPrXs

xb y ÞÝÑ y b x.
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A twisted algebra (resp. coalgebra, bialgebra) is an algebra (resp. coalgebra, bialgebra) in
the symmetric monoidal category of species with the Cauchy tensor product. Let us now give
more details.

A twisted algebra is a pair pP,mq where P is a species and, for any pair pX,Y q of disjoint
�nite sets, mX,Y : PrXs bPrY s ÝÑ PrX \ Y s is a linear map, with the following properties:

� If pX,Y q and pX 1, Y 1q are two pairs of disjoint �nite sets, and if σ : X ÝÑ X 1 and
τ : Y ÝÑ Y 1 are bijections, then the following diagram commutes:

PrXs bPrY s mX,Y //

PrσsbPrτ s
��

PrX \ Y s
Prσ\τ s
��

PrX 1s bPrY 1smX1,Y 1
// PrX 1 \ Y 1s

� The product m is associative: for any triple pX,Y, Zq of pairwise disjoint sets,

mX\Y,Z � pmX,Y b IdPrZsq � mX,Y\Z � pIdPrXs bmY,Zq.

� The product m has a unit 1P P PrHs: for any �nite set X, for any x P PrXs,

mH,Xp1P b xq � mX,Hpxb 1Pq � x.

A twisted coalgebra is a pair pP,∆q where P is a species and for any pair pX,Y q of �nite
sets, ∆X,Y : PrX \ Y s ÝÑ PrXs bPrY s is a linear map, with the following properties:

� If pX,Y q and pX 1, Y 1q are two pairs of disjoint �nite sets, and if σ : X ÝÑ X 1 and
τ : Y ÝÑ Y 1 are bijections, then the following diagram commutes:

PrX \ Y s ∆X,Y //

Prσ\τ s
��

PrXs bPrY s
PrσsbPrτ s
��

PrX 1 \ Y 1s
∆X1,Y 1

// PrX 1s bPrY 1s

� The coproduct ∆ is coassociative: for any triple pX,Y, Zq of pairwise disjoint �nite sets,

p∆X,Y b IdPrZsq �∆X\Y,Z � pIdPrZs b∆Y,Zq �∆X,Y\Z .

� The coproduct ∆ has a counit ε∆ P PrHs�: for any �nite set X,

pε∆ b IdPrXsq �∆H,X � pIdPrXs b ε∆q �∆X,H � IdPrXs.

A twisted bialgebra is a triple pP,m,∆q such that:

� pP,mq is a twisted algebra. Its unit is denoted by 1P.

� pP,∆q is a twisted coalgebra. Its counit is denoted by ε∆.

� For any pairs pX1, X2q and pY1, Y2q of disjoint �nite sets, such that X1 \X2 � Y1 \ Y2,

∆Y1,Y2 �mX1,X2 � pmX1XY1,X2XY1 bmX1XY2,X2XY2q
� pIdPrX1XY1s b cPrX1XY2,X2XY1s b IdPrX2XY2sq
� p∆X1XY1,X1XY2 b∆X2XY1,X2XY2q.
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� For any x, y P PrHs, ε∆pxyq � ε∆pxqε∆pyq.
� ∆H,Hp1Pq � 1P b 1P and ε∆p1Pq � 1.

The bosonic Fock functor [1] sends any species P to

FrPs �
8à

n�0

coInvpPrnsq �
8à

n�0

Prns
VectpPrσsppq � p | σ P Sn, p P Prnsq .

This is a functor of symmetric monoidal categories from species to (graded) vector spaces. There-
fore, if P is a twisted algebra (resp. coalgebra, bialgebra), then FrPs is a (graded) algebra (resp.
coalgebra, bialgebra).

1.2 On double bialgebras

We refer to [7, 8, 9] for the details.

De�nition 1.1. A double bialgebra is a family pB,m,∆, δq such that:

1. pB,m,∆q and pB,m, δq are bialgebras. Their common unit is denoted by 1B. The counits
of ∆ and δ are respectively denoted by ε∆ and ϵδ.

2. pB,m,∆q is a bialgebra in the category of right comodules over pB,m, δq, with the coaction
δ, seen as a coaction over itself. This is equivalent to the two following assertions:

@x P B, pε∆ b IdBq � δpxq � ε∆pxq1B,
p∆b IdBq � δ � m1,3,24 � pδ b δq �∆,

where m1,3,24 : Bb4 ÝÑ Bb3 sends x1 b x2 b x3 b x4 to x1 b x3 b x2x4. Note that
m1,3,24 � pδ b δq is in fact the coaction of B bB.

An example of double bialgebra is given by the usual polynomial algebra KrXs, with its usual
product m and the two (multiplicative) coproducts de�ned by

∆pXq � X b 1� 1bX, δpXq � X bX.

The counits are given by

ε∆ :

"
KrXs ÝÑ K
P pXq ÞÝÑ P p0q, ϵδ :

"
KrXs ÝÑ K
P pXq ÞÝÑ P p1q.

Proposition 1.2. Let pB,m,∆, δq be a double bialgebra.

1. We denote by CharpBq the set of characters of B, that is to say the set of algebra morphisms
from B to K. This sets inherits two associative and unitary products de�ned by

@λ, µ P CharpBq, λ � µ � pλb µq �∆, λ � µ � pλb µq � δ.

The units of the products � and � are respectively ε∆ and ϵδ.

2. Let pA,m,∆q be a bialgebra. We denote by MBÑA the set of bialgebra morphisms from
pB,m,∆q to pA,m,∆q. Then the monoid pCharpBq, �q acts on MBÑA via the following
right action:

ø :

"
MBÑA � CharpBq ÝÑ MBÑA

pϕ, λq ÞÝÑ ϕø λ � pϕb λq � δ.
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The double structure allows to �nd the antipode for the �rst structure, whenever it exists:

Theorem 1.3. [9, Corollary 2.3] Let pB,m,∆, δq be a double bialgebra.

1. Then pB,m,∆q is a Hopf algebra if, and only if, the character ϵδ has an inverse µB for
the convolution product � dual to ∆. Moreover, if this holds, the antipode of pB,m,∆q is
given by

S � pµB b IdBq � δ.
2. Let ϕB : B ÝÑ KrXs be a double bialgebra morphism. Then ϵδ has an inverse for the

convolution product �, given by

µB :

"
B ÝÑ K
x ÞÝÑ ϕBpxqp�1q.

A double bialgebra pB,m,∆, δq is connected if the reduced coproduct ∆̃ is locally nilpotent:
in other words, for any x P Kerpε∆q, there exists n ¥ 1 such that ∆̃pnqpxq � 0. If so, we obtain
more results:

Theorem 1.4. Let pB,m,∆, δq be a connected double bialgebra.

1. There exists a unique double bialgebra morphism ϕB from B to KrXs. Moreover,

@x P KerpεBq, ϕBpxq �
8̧

k�1

ϵbk
δ � ∆̃pk�1qpxqHkpXq.

2. The two following maps are bijective, inverse one from the other:

"
CharpBq ÝÑ MBÑKrXs

λ ÞÝÑ ϕBø λ,

$&
%

MBÑKrXs ÝÑ CharpBq
ϕ ÞÝÑ

"
B ÝÑ K
x ÞÝÑ ϕpxqp1q.

3. For any λ P CharpBq, for any x P Kerpε∆q,

ϕBø λpxq �
8̧

k�1

λbk � ∆̃pk�1qpxqHkpXq.

2 Bialgebraic structures on noncrossing partitions

2.1 Reminders on noncrossing partitions

De�nition 2.1. A noncrossing partition is a partition π of a set rns with n P N, such that

@b � b1 P π, @x, z P b, @y, t P b1, x   y   z   t does not hold.

The elements of π are called its blocks. The number of blocks of a noncrossing partition π is
denoted by |π|. The set of noncrossing partitions with k blocks is denoted by NCPk.

We shall represent noncrossing partitions by diagrams. Elements of rns will be represented by
vertical segments, from left to right, related by horizontal segments corresponding to the blocks.

For example, the noncrossing partition tt1, 4u, t2u, t3uu is represented by .

Note that for any k ¥ 1, NCPk is an in�nite set. For example,

NCP1 � t ; ; ; ; . . .u,
NCP2 � t ; , ; , , , , , , ; . . .u,
NCP3 � t ; , , , , , ; . . .u,
NCP4 � t ; . . .u.

By convention, NCP0 � H.
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De�nition 2.2. Let X be a �nite set. We denote by NCPrXs the set of bijections f between
an element π of NCP |X| and X. If σ : X ÝÑ Y is a bijection between two �nite sets and
f : π ÝÑ X is an element of NCPrXs, we put NCPrσsrf s � σ � f : π ÝÑ Y . This de�nes a
species NCP, which linearization is denoted by NCP: for any �nite set X,

NCPrXs � VectpNCPrXsq.

Notations 2.1. the elements of NCPrXs can be described as noncrossing partitions which blocks
are indexed by the set X. Such an objectf : π ÝÑ X will be denoted by π � pπxqxPX , where for
any x P X, πx � f�1pxq. We shall represent graphically the elements of NCPrXs, the index of
the blocks being attached to their leftmost leg.

Example 2.1.

NCPr1s �
"

1

,
1

,
1

,
1

, . . .

*
,

NCPr2s �

$'''''&
'''''%

1 2

,
2 1

,
1 2

,
2 1

,
1 2

,
2 1

,
1

2

,
2

1

,
1

2

,
2

1

,
1 2

,
2 1

,
1 2

,
2 1

,
1

2

,
2

1

,
1

2

,
2

1

,
1 2

,
2 1

, . . .

,/////.
/////-
,

NCPr3s �

$''''''''''''''''&
''''''''''''''''%

1 2 3

,
1 3 2

,
2 1 3

,
2 3 1

,
3 1 2

,
3 2 1

,
1 2 3

,
1 3 2

,
2 1 3

,
2 3 1

,
3 1 2

,
3 2 1

,
1 2 3

,
1 3 2

,
2 1 3

,
2 3 1

,
3 1 2

,
3 2 1

,
1 2 3

,
1 3 2

,
2 1 3

,
2 3 1

,
2 3 1

,
3 1 2

,
1

2
3

,
1

3
2

,
2

1
3

,
2

3
1

,
3

1
2

,
3

2
1

,
1 2

3

,
1 3

2

,
2 1

3

,
2 3

1

,
3 1

2

,
3 2

1

,
1

2 3

,
1

3 2

,
2

1 3

,
2

3 1

,
3

1 2

,
3

2 1

, . . .

,////////////////.
////////////////-

.

Notations 2.2. We shall consider the species Com �NCP: for any �nite set X,

Com �NCPrXs � à
�PErXs

� â
IPX{�

NCPrIs
�
,

where ErXs is the set of all equivalence relations on X. As Com is a commutative twisted
algebra and the endofunctor F�NCP of the category of species is compatible with the Cauchy
tensor product, Com�NCP is naturally a commutative twisted algebra. Its product is denoted
by �. In other terms, a basis ofCom�NCPrXs is given by commutative monomials of noncrossing
partitions π1�. . .�πk, where for any i, πi is indexed by a nonempty set Ii, such that I1\. . .\Ik � X.
The unit is the empty monomial 1 P Com �NCPrHs.
Example 2.2.

Com �NCPr1s � VectpNCPr1sq,

Com �NCPr2s � VectpNCPr2sq `Vect

�
1

�
2

,
1

�
2

,
2

�
1

,
1

�
2

, . . .




Note that

1

�
2

�
2

�
1

,
1

�
2

�
1 2

,
1

�
2

�
2

�
1

,
1

�
2

�
1 2

.
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2.2 The �rst coproduct

Let us now de�ne a coproduct on the twisted algebra Com �NCP.

Notations 2.3. Let π � pπxqxPX be an X-indexed noncrossing partition and let Y � X. We

put IY �
¤
yPY

πy and we denote by fY the unique increasing bijection from IY to r|IY |s. The

Y -indexed noncrossing partition π|Y is

π|Y � pfY pπyqqyPY .
Graphically, πY is obtained by deleting the blocks of π which are not indexed by an element of
Y . By convention, π|H � 1. Note that π|X � π.

De�nition 2.3. Let π � pπxqxPX be an X-indexed noncrossing partition and I � X. We put

I 1 �
¤
xPI

πx � rns, which we decompose into connected components I 11 \ . . .\ I 1k, that is to say:

� For any i P rks, I 1i is an interval of rns.
� For any i P rk � 1s, maxpI 1iq   minpI 1i�1q � 1.

We shall say that I is an ideal of π if for any i P rks, I 1i is the union of blocks of π. If I is an
ideal of π, we put

π|�I �
�¹

iPrks

π|I 1i .

Example 2.3. Let us consider

π �
1

2
3

4 5 6
7

P NCPr7s.
Then t2, 3, 4, 5, 6u is an ideal of π. The associated connected components are t2, 3, 4u, t6, 7, 8u
and t10, 11u, and

π|�t2,3,4,5,6u �
2

3

�
4

�
5 6

, π|t1,7u �
1 7

.

Let us give a more usual characterization of the ideals of a noncrossing partitions, with the
help of a classical order on the blocks.

De�nition 2.4 (Nesting order). Let π a noncrossing partition. We de�ne a relation on π by

@b, b1 P π, b ¤π b
1 ðñ b1 � rminpbq,maxpbqs.

Then ¤π is a partial order on π.

Lemma 2.5. Let π � pπxqxPX be an X-indexed noncrossing partition and I � X. Then I is an
ideal of π if, and only if,

@x, y P X, px P I and πx ¤π πyq ùñ y P I.
Proof. ùñ. Let πx � πy P π, with x P I and πx ¤π πy. As I is an ideal of π, there exists a
connected component I 1i containing πx. As πy � rminpπxq,maxpπyqs � I 1i, y P I.

ðù. Let πx be a block of π intersecting I 1i. Let us assume that minpπxq R I 1i. As J is the
union of blocks of π, minpπxq P I 1, so belongs to a I 1p with p   i. By de�nition of the connected
components, there exists k P rnszJ , such that maxpI 1pq   k   minpI 1iq. This element k belongs to
a block πy of π. Then minpπxq   k P πy   minpI 1iq ¤ maxpπxq. As π is noncrossing, πx ¤π πy.
As I is an ideal, y P I, so k P I 1: this is a contradiction, so minpπxq P I 1i. Similarly, maxpπyq P I 1i.
As I 1i is an interval, πx � I 1i. Therefore, I

1
i is the union of the blocks of π it intersects.

10



Proposition 2.6. Let X � I \ J be a �nite set and π P NCPrXs. We de�ne ∆I,Jpπq P
NCPrIs bCom �NCPrJs by

∆pπq �
#
π|I b π|�J if J is an ideal of π,

0 otherwise.

We extend ∆ as an algebra morphism from Com �NCP to Com �NCPb2. Then the triple
pCom �NCP,m,∆q is a twisted bialgebra.

Proof. By de�nition, ∆ is an algebra morphism. Let π P NCPrXs. As H and X are obviously
ideals of π,

∆H,Xpπq � 1b π, ∆X,Hpπq � π b 1,

Therefore, ∆ has a counit ε∆, de�ned as the linear map from Com �NCPrHs to K sending 1
to 1.

Let us assume that X � I \ J \K. Let π P NCPrXs. We use the notations of De�nition
2.3.

pIdb∆J,Kq �∆I,J\Kpπq �

$''''&
''''%
π|I b

�¹
iPrps

pπ|pJ\Kqiq|J b
�¹

iPrps

pπ|pJ\Kqiq|�K

if J \K ideal of π and K X pJ \Kqp ideal of π|pJ\Kqp for any p,

0 otherwise

�
#
π|I b π|�J b π|�K if J \K and K ideals of π,

0 otherwise

�
#
pπ|I\Jq|I b pπ|I\Jq|�J b π|�K if J \K and K ideals of π,

0 otherwise

� p∆I,J b Idq �∆I\J,Kpπq.

By multiplicativity, ∆ is coassociative.

Let us now apply the Fock functor F on Com �NCP. As an algebra, FrCom �NCPs is
described as follows.

De�nition 2.7. We denote by KrNCPs be free commutative algebra generated by NCP. Its
product will be denoted by �. A basis of KrNCPs is given by commutative monomials in NCP,
and the unit is the empty monomial 1.

Observe that in KrNCPs,

� � � , � � , � � , � .

Applying the Fock functor F on Com �NCP, we obtain the following coproduct on the algebra
FrCom �NCPs � KrNCPs: for any noncrossing partition π of rns,

∆pπq �
¸

J ideal of π

π|rnszJ b π|�J . (1)

Colored version can also obtained, using the colored Fock functor of [10] � we won't use them in
this paper.
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Example 2.4.

∆p q � b 1� 1b ,

∆p q � b 1� 1b ,

∆p q � b 1� 1b � 2 b ,

∆p q � b 1� 1b ,

∆p q � b 1� 1b � b � b ,

∆p q � b 1� 1b � b � b ,

∆p q � b 1� 1b � b ,

∆p q � b 1� 1b � b p � � 2 q � 3 b .

This coproduct is also introduced in [6], with operadic methods.

2.3 The extraction-contraction coproduct

Recall that E is the species which associates to any �nite set X the set of equivalence relations
on X.

De�nition 2.8. Let π be an X-indexed noncrossing partition and �P ErXs.
1. For any x P X{ �, we put πx �

§
yPx

πy. We put π{ �� pπxqxPX{�. This de�nes an

X{ �-indexed partition.

2. We shall say that �P Ecrπs if X{ �P NCPrX{ �s.

3. We put π |���
�¹

xPX{�

π|x. This de�nes an element of Com �NCPrXs.

Proposition 2.9. For any X-indexed noncrossing partition, for any �P ErXs, we put

δ�pπq �
#
π{ � bπ |�� if �P Ecrπs,
0 otherwise.

We extend this by multiplicativity to Com �NCP. More precisely, if X � X1 \ . . .\Xk and if
for any i, πi P NCPrXis, then, for any �P ErXs,

δ�pπ1 � . . . � πkq �
#
δ�XX2

1
pπ1q � . . . � δ�XX2

1
pπkq if �� p� XX2

1 q \ . . .\ p� XX2
kq,

0 otherwise.

Then δ is a contraction-extraction coproduct on Com �NCP in the sense of [10], compatible
with m and ∆.

Proof. Let π P NCPrXs and let �,�1P ErXs, with �1��. We denote by � the equivalence on
X{ �1 induced by �.

pδ� b Idq � δ�1pπq �

$'&
'%
pπ{ �1q{� b pπ{ �1q|� b π |��1

if �1P Ecrπs and � P Ecrπ{ �1s,
0 otherwise.

(2)

pIdb δ�1q � δ�pπq �

$'&
'%
π{ � bpπ |��q{ �1 bpπ |��q |��1

if �P Ecrπs and �1P Ecrπ |��s,
0 otherwise.

(3)
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Note that, as indexed partitions or monomials of indexed partitions,

pπ{ �1q{� � π{ �, pπ{ �1q | � � pπ |�q{ �1, pπ |��q |��1 � π |��1 .

Let us assume that �1P Ecrπs and � P Ecrπ{ �1s. Then pπ{ �1q{� � π{ � is noncrossing,
so �P Ecrπs. Moreover, pπ{ �1q | � � pπ |�q{ �1 is noncrossing as π{ �1 is noncrossing, so
�1P Ecrπ |��s. Conversely, let us assume that �P Ecrπs and �1P Ecrπ |��s. Then pπ{ �1q{� �
π{ � is noncrossing, so � P Ecrπ{ �1s. Moreover, pπ{ �1q | � � pπ |�q{ �1 is noncrossing, so
�1P Ecrπ |��s. As �1��, �1P Ecrπs.

Finally, the two conditions in (2) and (3) are equivalent. This gives the coassociativity of δ
when applied to any noncrossing partition, then, by multiplicativity, the coassociativity of δ.

Let now π P NCPrXs and let �,�1P ErXs, without �1��. This means that at least one
class of � is not the union of the classes of �1 that it contains. Hence, denoting by x1, . . . , xk
the classes of �, �1 is not equal to the union of the parts �1 Xx2i . Consequently,

δ�1pπ |��q � δ�1pπ|x1
� . . . � π|xk

q � 0.

We obtain that pIdb δ�1q � δ� � 0.

Let εδ be the twisted algebra morphism from Com �NCP to Com de�ned by

@π P NCPrXs, εδrXspπq �
#
1 if π has only one block,

0 otherwise.

Let π P NCPrXs. The unique �P EcrXs such that π |�� is a monomial which all factors are non-
crossing partitions with only one block is the equality of X, which we denote by �1. Moreover,
π{ �1� π. Hence, ϵδ is a right counit for δ. The unique �P EcrXs such that π{ � has only one
block is the equivalence �0 on X with only one class. As π |��0� π, εδ is a left counit for δ.

Let X and Y be two disjoint sets, π P NCPrX \ Y s, �XP ErXs and �Y P ErY s. We put
���X \ �Y .

p∆X{�X ,Y {�Y
b Idq � δ�pπq �

$'&
'%
pπ{ �q|X{ �X bpπ{ �q|�Y b π |��

if �P Ecrπs and Y { �Y is an ideal of π{ �,
0 otherwise.

(4)

m1,3,24 � pδX b δY q �∆X,Y pπq �

$''''&
''''%

pπ|Xq{ �X bpπ|�Y q{ �Y bpπ|Xq| �X �pπ|�Y q| �Y

if Y is an ideal of π,

�XP Ecrπ|Xs and �Y P Ecrπ|�Y s,
0 otherwise.

(5)

Note that, as indexed partitions or as monomials of indexed partitions,

pπ{ �q | pX{ �Xq � pπ|Xq{ �X , pπ{ �q|�Y � pπ|�Y q{ �Y , π |�� � ppπ|Xq| �Xq � ppπ|�Y q| �Y q.

Let us assume that �P Ecrπs and Y { �Y is an ideal of π{ �. Let x, x1 P π, such that
x ¤π x1 and x P Y . We denote by ϖ : pX \ Y q ÝÑ pX \ Y q{ � the canonical surjection.
Then ϖpxq ¤π{� ϖpx1q in π{ �. As Y { �Y is an ideal of π{ �, ϖpx1q P Y { �Y , so x

1 P Y . By
restriction, pπ | Xq{ �X� pπ{ �q | X{ �X is noncrossing as π{ � is noncrossing, so �XP Ecrπ|Xs.
Similarly, �Y P Ecrπ|�Y s.

Let us now assume that Y is an ideal of π, �XP Ecrπ|Xs and �Y P Ecrπ|�Y s. Let x, x1 P
pX \ Y q{ �.
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� If x P Y { �Y and x1 P X{ �X , as �Y P Ecrπ|�Y s, �Y is compatible with the connected
components of Y , as de�ned in De�nition 2.3. Hence, πx1 cannot cross πx. Similarly, if
x P X{ �X and x1 P Y { �Y , then πx cannot cross πx1 .

� If both x, x1 belong to X{ �X , As pπ|Xq{ �X� pπ{ �q|X{�X
is noncrossing, πx cannot

cross πx1 . Similarly, if both x, x1 belong to Y { �Y , then πx cannot cross πx1 .

So �P Ecrπs. By contraction, Y { �Y is an ideal of π{ �.

Finally, the two conditions in (4) and (5) are equivalent. This gives the compatibility of δ
and ∆.

Applying the Fock functor F on Com�NCP, we obtain the following coproduct on KrNCPs:
for any noncrossing partition π,

rδpπq �
¸

�PEcrπs
π{ � bπ |�� . (6)

Colored versions could also be obtained with colored Fock functors [10] (when the space of colors
is a commutative and cocommutative, not necessarily unitary bialgebra).

Example 2.5. In KrNCPs,
δp q � b ,

δp q � b ,

δp q � b � � b ,

δp q � b ,

δp q � b � � b ,

δp q � b � � b ,

δp q � b � � b ,

δp q � b � � � p � � q b � � b .

This is the second coproduct of [6].

3 Polynomial invariants

3.1 Fundamental polynomial invariants

As a double bialgebra, KrNCPs is the symmetric algebra generated by noncrossing partitions,
with the two multiplicative coproducts de�ned by (1) and (6). We denote by ϕNCP the unique
double bialgebra morphism from KrNCPs to KrXs, see Theorem 1.4. For any π P NCP,

ϕNCPpπq �
8̧

k�1

¸
π�I1\...\Ik,

@pPrks,Ip\...\Ikideal of π

ϵδpπ|I1qϵδpπ|�I2q . . . ϵδpπ|�IkqHkpXq

�
¸
f

ϵδpπ|f�1p1qqϵδpπ|�f�1p2qq . . . ϵδpπ|�f�1pmaxpfqqqHmaxpfqpXq,

where the sum runs over all surjective maps f : π ÝÑ rmaxpfqs such that for any b, b1 P π,
b ¤π b

1 ùñ fpbq ¤ fpb1q.
Moreover, due to the de�nition of ϵδ, the term corresponding to f is not zero if, and only if,
for any i ¡ 1, π|�f�1piq is a monomial of noncrossing partitions with only one block each, and
π|f�1p1q is a noncrossing partition with only one block. If this holds, then the contribution of f
is 1. Reformulating:
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Proposition 3.1. For any noncrossing partition π, for any n P N¡0, ϕNCPpGqpnq is the number
of maps f : π ÝÑ rns such that, for any b, b1 P π,

� If b ¤π b
1 and b � b1, then fpbq   fpb1q.

� If fpbq � fpb1q and maxpbq   minpb1q, then there exists b2 P π such that

smaxpbq,minpb1qrXb2 � H and fpb2q   fpbq � fpb1q.

Such a map f will be called a valid n-coloration of π.

Example 3.1. 1. A valid n-coloration of π � is a map f : r3s ÝÑ rns such that

fp1q   fp2q, fp1q   fp3q, fp2q � fp3q.

Therefore, for any n ¥ 1,

ϕNCPp qpnq � npn� 1qpn� 2q
3

.

We obtain that

ϕNCPp q � XpX � 1qpX � 2q
3

.

2. A valid n-coloration of is a map f : r3s ÝÑ rns such that

fp1q � fp2q, fp2q � fp3q, fp1q � fp3q ùñ fp2q   fp1q.

Therefore, for any n ¥ 1,

ϕNCPp qpnq � npn� 1qpn� 2q � npn� 1q
2

� npn� 1q
�
n� 3

2



.

The �rst term correspond to the valid n-colorations with fp1q � fp3q and the second with
fp1q � fp3q. We obtain that

ϕNCPp q � XpX � 1q
�
X � 3

2



.

3. See Table 4 at the end of the article for more examples of ϕNCPpπq.
Let us now give an inductive way to compute these chromatic polynomials.

Notations 3.1. Let π be a noncrossing partition. We denote by Basepπq the set of blocks of π
which are minimal for the partial order ¤π.

Proposition 3.2. Let π be a noncrossing partition. Then

ϕNCPpπqpX � 1q � ϕNCPpπq
�

¸
bPBasepπq

ϕNCPpπ|r1,minpbqrqϕNCPpπ|�rminpbq,maxpbqszbqϕNCPpπ|smaxpbq,8rq.

Together with ϕNCPpπqp0q � 0, this characterizes ϕNCPpπq.
Proof. Let n ¥ 1 and let f : π ÝÑ rn� 1s be a pn� 1q-valid coloration of π. By the increasing
condition, f�1p1q is included in Basepπq. If it is not empty, by the second condition, it is
reduced to a singleton. In the �rst case, it corresponds, up to a lift of 1, to a n-valid coloration
of π. In the second case, denoting tbu � f�1p1q, it corresponds to a n-valid coloration of
π|r1,minpbqr � π|rminpbq,maxpbqszb � π|smaxpbq,8r. Summing, we obtain the announced result.
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3.2 Antipode

In order to compute the antipode, we put, for any noncrossing partition π,

µNCPpπq � ϕNCPpπqp�1q.
This de�nes a character of KrNCPs. Theorem 1.3 states that the antipode of pKrNCPs,m,∆q
is

S � pµNCP b IdKrNCPsq � δ.

Notations 3.2. We denote by catn � 1

n� 1

�
2n

n



is the n-th Catalan number.

n 0 1 2 3 4 5 6 7 8 9 10

catn 1 1 2 5 14 42 132 429 1430 4862 16796

Recall that for any k ¥ 1,

catk �
ķ

i�1

cati�1catk�i. (7)

The number of noncrossing partitions of rns is catn. The formal series of Catalan numbers is

C �
8̧

n�0

catnX
n � 1�?

1� 4X

2X
.

For more details, see Entry A000108 of the OEIS [15].

Proposition 3.3. The character νNCP on KrNCPs can be computed by induction on the number
of blocks, putting for any noncrossing partition π of rns,

µNCPpπq � p�1q|Basepπq|cat|Basepπq|µNCP
�
π|�rnszBasepπq

�
.

The antipode S of pKrNCPs,m,∆q is given on any noncrossing partition π by

Spπq �
¸

�PEcrπs
µNCPpπ{ �qπ |�� .

Proof. We evaluate the formula of Proposition 3.2 in X � �1. We obtain

µNCPpπq � �
¸

bPBasepπq

µNCPpπ|r1,minpbqrqµNCPpπ|�rminpbq,maxpbqszbqµNCPpπ|smaxpbq,8rq.

We prove the formula for µNCPpπq by induction on k � |Basepπq|. We put Basepπq � tb1, . . . , bku
with maxpbiq � 1 � minpbi�1q for any i P rk � 1s. If k � 1, then µNCPpπ|Baseppiqq � �1, which
immediately gives the result. If k ¥ 2, then, by the induction hypothesis,

µNCPpπq � �
ķ

i�1

µNCPpπ|r1,maxpbi�1qsqµNCPpπ|�rminpbiq,maxpbiqsqzbiqµNCPpπ|rminpbi�1,�8rq

� �
ķ

i�1

p�1qi�1cati�1µNCPpπ|�r1,maxpbi�1qszpb1Y...Ybi�1qqµNCPpπ|�rminpbiq,maxpbiqsqzbiq

p�1qk�icatk�iµNCPpπ|�rminpbi�1,�8rzpbi�1Y...Ybkqq

� p�1qkµNCP
�
π|�rnszBasepπq

� ķ

i�1

cati�1catk�i

� p�1qkcatkµNCP
�
π|�rnszBasepπq

�
.

We used (7) for the last equality.
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Remark 3.1. A direct induction proves that the sign of µNCPpπq is p�1q|π|.
See Table 4 at the end of the article for examples of µNCPpπq.

Example 3.2. Here are a few examples of antipodes.

Sp q � � � 2 � ,
Sp q � � � p1� 2� 2q � � 5 � �

� � � 5 � � 5 � � ,
Sp q � � � p2� 1q � � p5� 5� 5� 2� 2� 2q � �

� p2� 1� 1� 2q � � 14 � � �
� � � 3 � � 21 � � � 6 � � 14 � � � .

3.3 More results on ϕNCP for basic noncrossing partitions

Let us now give a way to compute the polynomial ϕNCPpπq, when π � Basepπq.

Proposition 3.4. Let π be a nonempty noncrossing partition such that π � Basepπq. Then
ϕNCPpπq is a polynomial P|π| which depends uniquely on |π|, characterized by P0pXq � 1 and

@k ¥ 1,

$'&
'%
PkpX � 1q � PkpXq �

ķ

i�1

Pi�1pXqPk�ipXq,

Pkp0q � 0.

(8)

Proof. This is a direct consequence of Proposition 3.2: if b is the i-th block of π (totally ordered
from left to right), then π|r1,minpbqr is a partition π1 with i � 1 blocks such that Basepπ1q � π1,
π|rminpbq,maxpbqszb � 1 and π|smaxpbq,8r a partition π2 with |π| � i blocks such that Basepπ2q �
π2.

Notations 3.3. For any n ¥ 1, we denote by Jn the noncrossing partition tt1u, . . . , tnuu:

J1 � , J2 � , J3 � , J4 � , . . .

By their combinatorial nature, it is natural to decompose these polynomials Pn in the basis
of Hilbert polynomials pHipXqqi¥0. We put

PnpXq �
8̧

i�1

ai,nHipXq. (9)

By construction of PnpXq � ϕNCPpJnq, the scalar ai,n is the number of surjective valid n-colorings
c : rns ÝÑ ris of Jn, that is to say the number of surjective maps c : rns ÝÑ ris such that

@p, r P rns, pp   r and cppq � cprqq ùñ pDq Psp, rr, cpqq   cppqq.

The following proposition allows to compute inductively these coe�cients ai,n:

Proposition 3.5. Let 1 ¤ i ¤ n. The coe�cients ai,n de�ned by (9) can be computed by
induction on i by

ai,n �

$''&
''%
δn,1 if i=1,

rn�1
2 s¸

k�1

�
n� k � 1

k



ai�1,n�k if i ¥ 2.
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Proof. Let bk,n be the number of parts I of rns with k elements such that for all i, j P I, |i�j| � 1.
This condition will be called the b-condition. Then

bk,l � |tpi1, . . . , ikq P Nk, 1 ¤ i1   i1 � 1   i2   . . .   ik�1 � 1   ik ¤ nu|
� |tpj1, . . . , jkq P Nk, 1 ¤ j1   j2   . . .   jk ¤ n� k � 1u|

�
�
n� k � 1

k



,

with jp � ip � p � 1 for any p. Note that this coe�cient is zero if k ¡
�
n� 1

2

�
. If i � 1, then

ai,n � 1 if n � 1, and 0 otherwise. If i ¥ 2, for any surjective map c : rns ÝÑ ris,
� c�1piq is a nonempty part I of rns, satisfying the b-condition.

� Identifying pJnq|rnszI with Jn�k, where k � |I|, the restriction of c to this noncrossing
partitions is an element of PV pJn�kq, of maximum i� 1.

Hence, ai,n �
ņ

k�1

bk,nai�1,n�k �
rn�1

2 s¸
k�1

�
n� k � 1

k



ai�1,n�k.

Proposition 3.6. Let i, n ¥ 1. If i ¡ n, then ai,n � 0. If n ¥ 2i, then ai,n � 0.

Proof. The combinatorial interpretation of ai,n (as particular surjective maps from rns to ris)
implies that if i ¡ n, ai,n � 0. Let us consider

PpX,Y q �
8̧

k�0

PkpXqY k P QrXsrrY ss.

Then (8) implies that

PpX � 1, Y q � PpX,Y q � Y PpX,Y q2.
Moreover, Pp0, Y q � 1. An easy induction then proves that PpN,Y q is a polynomial of QrY s of
degree 2N � 1 for any N P N. Hence, PnpNq � 0 if n ¥ 2N . This gives, if n ¥ 2N ,

PnpNq �
8̧

i�1

ai,nHipNq �
Ņ

i�0

ai,n

�
N

i



� 0 � 0.

As the coe�cients ai,n belong to N, we obtain that ai,n � 0 if i ¤ N and n ¥ 2N . In other
words, if n ¥ 2i, then ai,n � 0.

Example 3.3. The following array contains the �rst values of ai,n:

izn 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 0 2 1 0 0 0 0 0 0 0

3 0 0 6 10 8 4 1 0 0 0

4 0 0 0 24 86 172 254 302 298 244

5 0 0 0 0 120 756 2734 7484 17164 34612

6 0 0 0 0 0 720 7092 40148 172168 621348

7 0 0 0 0 0 0 5040 71856 585108 3589360

8 0 0 0 0 0 0 0 40320 787824 8720136

9 0 0 0 0 0 0 0 0 362880 9329760

10 0 0 0 0 0 0 0 0 0 3628800
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It seems that these coe�cients are not so well known. For example, no entry of the OEIS
[15] contains the term 172168 � a6,9. However, we can obtain explicit formulas for some of these
terms, involving multiple nested harmonic sums.

Notations 3.4. if n, k1, . . . , kp ¥ 1, we put ζnpk1, . . . , kpq �
¸

1¤n1 ... np¤n

1

nk11 . . . n
kp
p

.

Corollary 3.7.

@n ¥ 1, an,n � n!,

@n ¥ 2, an�1,n � n!

�
n� 1

2
� ζnp1q



,

@n ¥ 3, an�2,n � n!

�
ζnp1, 1q � n

2
ζnp1q � p3n� 2qpn2 � n� 6q

24n



.

The sequence pan�1,nqn¥2 is Entry A31853 in the OEIS [15].

Proof. For any n ¥ 2, by Proposition 3.5,

an,n �
�
n

1



an�1,n�1 � 0 � nan�1,n�1,

as, if k ¥ 2, an�1,n�k � 0. Consequently, an,n � n!.

For any n ¥ 3, by Proposition 3.5,

an�1,n �
rn�1

2 s¸
k�1

�
n� k � 1

k



an�2,n�k

�
�
n

1



an�2,n�1 �

�
n� 1

2



an�2,n�2 � 0

� nan�2,n�1 � pn� 1q!pn� 2q
2

.

Therefore, if n ¥ 3,
an�1,n

n!
� an�2,n�1

pn� 1q! �
1

2
� 1

n
.

As a1,2 � 0, the result follows by directly.

If n ¥ 4, by Proposition 3.5,

an�2,n

n!
� 1

n!

��
n

1



an�3,n�1 �

�
n� 1

2



an�3,n�2 �

�
n� 2

3



an�3,n�3




� an�3,n�1

pn� 1q! �
n� 2

2n

an�3,n�2

pn� 2q! �
pn� 3qpn� 4q
6npn� 1q

an�3,n�3

pn� 3q! .

As a1,3 � 0, and with the preceding formulas, we deduce that

an�2,n

n!
�

ņ

k�4

�
1

2
� 1

k


�
k � 1

2
� ζk�2p1q



�

ņ

k�4

pk � 3qpk � 4q
6kpk � 1q .

The result then follows by tedious manipulations of sums.

Let us now give a way to compute the coe�cients of PnpXq in the basis of monomials pXkqkPN.
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Proposition 3.8. Let M � pMk,lqk,l¥1 be the in�nite matrix de�ned by

Mk,l �
$&
%
�

l

k � l



if k ¥ l,

0 if k   l.

Then �
����

P0pXq
P1pXq
P2pXq

...

�
���� eX lnpMq

�
����

1
0
0
...

�
���.

Proof. For any n P N, we put

PnpXq �
8̧

k�0

bi,nX
i,

and we consider the in�nite vectors Bpiq � pbi,n�1qn¥1. Then Bp0q � pδ1,nqn¥1, and for any
n ¥ 1, From Proposition 3.5, if i ¥ 2,

ai,n �
n�1̧

k�1

�
n� k � 1

k



ai�1,n�k

�
n�1̧

k�1

�
k � 1

n� k



ai�1,k

�
ņ

k�0

�
k � 1

n� k



ai�1,k � ai�1,n.

If Apiq is the in�nite vector pai,n�1qn¥1, we obtain that if n ¥ 2, then Apiq � pM � IqApi�1q,
which is still true if i � 1. Therefore, for any i ¥ 0, Apiq � pM � IqiAp0q, where Ap0q � pδ1,nqn¥1.

Let us now compute the coe�cient of Xi in HkpXq for any k, n. We consider the formal
series

fpX,Y q �
¸
k¥0

HkpXqY k �
¸
k¥0

�
X

k



Y k � p1� Y qX P QrrX,Y ss.

Therefore,

¸
k¥0

diHk

dXi
p0qY k � Bif

BXi
p0, Y q � �lnp1� Y qip1� Y qX�

|X�0
� lnp1� Y qi.

Let us put lnp1� Y qi �
¸
k

γi,kY
k. As for any n ¥ 1, Pn �

8̧

k�1

ak,nHkpXq, the coe�cient of Xi

in Pn is

bi,n �
8̧

k�1

1

i!
γi,kak,n.

In other words,

Bpiq � 1

i!

8̧

k�1

γi,kA
pkq � 1

i!

�
8̧

k�1

γi,kpM � Iqk
�
Bp0q � 1

i!
lnpMqiBp0q.

We then obtain�
��

P0pXq
P1pXq

...

�
�� 8̧

i�0

BpiqXi �
�

8̧

i�0

Xi

i!
lnpMqiXi

�
Bp0q � eX lnpMqBp0q.
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Remark 3.2. M is the Riordan array of p1 � X,Xp1 � Xqq, see Entries A005119 and A030528
of the OEIS. Consequently, the �rst column of lnpMq, that is to say Bp1q, gives the coe�cients
of the in�nitesimal generator of Xp1 �Xq, up to signs and multiplications by factorials, giving
Entry A005119 of the OEIS.

Example 3.4.

P1 � X,

P2 � X2 �X,

P3 � X3 � 5X2

2
� 3X

2
,

P4 � X4 � 13X3

3
� 6X2 � 8X

3
,

P5 � X5 � 77X4

12
� 89X3

6
� 175X2

12
� 31X

6
,

P6 � X6 � 87X5

10
� 175X4

6
� 281X3

6
� 215X2

6
� 157X

15
,

P7 � X7 � 223X6

20
� 1501X5

30
� 115X4 � 851X3

6
� 1767X2

20
� 649X

30
.

Remark 3.3. It could be conjectured seeing these examples that Pn is a polynomial with alter-
nating signs, as are the chromatic polynomials for graphs. This is true till n � 28 but fails for
n � 29:

P29 � X29 � 6897956948587

80313433200
X28 � � � � � 14277306976985617719653

2679791554440
X2 � 37449570182565026

37182145
X.

Proposition 3.9. Let k, n ¥ 1. Then Pkpnq � 0 if, and only if, k ¡ 2n � 1.

Proof. ùñ. Let us assume that k ¤ 2n�1 and let us prove that Pkpnq � 0. We de�ne a sequence
Dn � pdn,1, . . . , dn,2n�1q of length 2n � 1 for any n ¥ 1 by the following process: D1 � p1q and
for any n ¥ 2,

Dn � pn, dn�1,1, n, dn�1,2, n, . . . , n, dn�1,2n�1�1, nq.
For example,

D2 � p2, 1, 2q,
D3 � p3, 2, 3, 1, 3, 2, 3q,
D4 � p4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4q.

In the sequence Dn, by construction, if i   k and dn,i � dn,k, then there exists j such that
i   j   k and dn,j   dn,i. So Dn is a n-valid coloration of J2n�1. By restriction to its �rst k
letters, it is a n-valid coloration of Jk, so Pkpnq � 0.

ðù. Let us assume that Pkpnq � 0 and let us prove that k ¤ 2n � 1. By hypothesis, there
exists a valid n-coloration f of Jn. Let us prove by induction that |f�1piq| ¤ 2i�1 by induction
on i. If i � 1, by the b condition, at most one element of rks is sent by f to 1, so |f�1p1q| ¤ 1.
Let us assume the result at all ranks   i. By the b-condition, two elements sent by f to i are
separated by at least one element of f�1pri� 1sq. By the induction hypothesis,

|f�1pri� 1sq| ¤ 20 � . . .� 2i�2 � 2i�1 � 1.

So, there can be at most 2i�1 elements in f�1piq. Finally,

k �
ņ

i�1

|f�1piq| ¤
ņ

i�1

2i�1 ¤ 2n � 1.

Remark 3.4. In other term, the chromatic number of Jk, that is to say the minimal n such that
Jk has a valid n-coloration, is the smallest integer greater that or equal to log2pk � 1q.
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3.4 Homogeneous polynomial invariants

The number of blocks of noncrossing partitions induces a graduation of pKrNCPs,m,∆q (notice
that δ is not homogeneous for this graduation). It is connected (that is to sayKrNCPs0 � K), but
its other homogeneous components are not �nite dimensional. With the help of [9, Propositions
3.10 and 5.2], we can associate a homogeneous morphism ϕ0 : pKrNCPs,m,∆q ÝÑ pKrXs,m,∆q
to the element µ P KrNCPs�1 such that µpπq � 1 for any noncrossing partition π with only one
block (and µ takes the value 0 on any other monomial in noncrossing partitions).

De�nition 3.10. Let π be a noncrossing partition with n blocks. We denote by lepπq the number
of linear extensions of pπ,¤πq, that is to say bijections f : π ÝÑ rns such that

@b, b1 P π, b ¤π b
1 ùñ fpbq ¤ fpb1q.

By construction of the coproduct ∆, for any noncrossing partition π with n blocks,

µbn �∆pn�1qpπq � lepπq.
Therefore, the morphism associated to µ is given by the following Proposition:

Proposition 3.11. Let ϕ0 : KrNCPs ÝÑ KrXs be the algebra morphism such that

@π P NCP, ϕ0pπq � lepπq
|π|! X

|π|.

Then ϕ0 is a bialgebra morphism from pKrNCPs,m,∆q to pKrXs,m,∆q. Considering the char-
acter λ0 � ϵδ � ϕ0,

@π P NCP, λ0pπq � lepπq
|π|! .

Moreover, with the notations of Proposition 1.2 and Theorem 1.4, ϕ0 � ϕNCP ø λ0.

See Table 4 at the end of the article for examples of λ0pπq.

3.5 Invertible characters

In order to study invertible characters of pKrNCPs,m, δq, let us introduce a second graduation.
Let π � π1 � . . . �πk be a monomial in noncrossing partitions. The length of π is k and is denoted
by lgpπq. The number of blocks of π is

|π| � |π1| � . . .� |πk|.
Finally, the degree of π is

degpπq � |π| � lgpπq.
Note that this belongs to N.

Lemma 3.12. With this degree, pKrNCPs,m, δq is a graded bialgebra. In particular, KrNCPs0
is the subalgebra generated by noncrossing partitions with only one block.

Proof. Let π, π1 be monomials in noncrossing partitions. Then

|π � π1| � |π| � |π1|, lgpπ � π1q � lgpπq � lgpπ1q.
we obtain that degpπ �π1q � degpπq�degpπ1q: the product is homogeneous. Let π � π1 � � �πk be
a monomial in noncrossing partitions, and let �iP Ecrπis for any i. Then, by de�nition of Ecrπis,

|π1 |��1 | � . . .� |πk |��k | � |π1| � . . .� |πk| � |π|,
lgpπ1 |��1q � . . .� lgpπk |��kq � clp�1q � . . .� clp�kq,

|π1{ �1 | � . . .� |πk{ �k | � clp�1q � . . .� clp�kq,
lgpπ1{ �1q � . . .� lgpπk{ �kq � k,
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where clp�iq is the number of classes of �i. Combining these equalities, we obtain that

degpπ1{ �1 � � �πk{ �kq � degpπ1 |��1 � � �πk |��kq � |π| � k � degpπq.
Therefore, the coproduct δ is homogeneous.

Proposition 3.13. Let λ be a character of pKrNCPs,mq. It is invertible for the convolution
product � associated to δ if, and only if, for any noncrossing partition π with only one block,
λpπq � 0.

Proof. We apply [12, Proposition 3.9] with the preceding graduation, with the family of group-
like elements of noncrossing partitions with only one block.

In particular, for any noncrossing partition π with only one block, λ0pπq � 1, so λ0 is
invertible. Its inverse is denoted by λNCP . Therefore,

ϕNCP � ϕ0ø λNCP . (10)

Consequently:

Corollary 3.14. For any noncrossing partition π,

ϕNCPpπq �
¸

�PEcrπs
λNCPpπ |��q lepπ{ �q

clp�q! X
clp�q.

In particular, the degree of ϕNCPpπq is |π|, λNCPpπq is the coe�cient of X in ϕNCPpπq and λ0pπq
is the coe�cient of X |π| in ϕNCPpπq.
Proof. The formula for ϕNCP is a direct consequence of (10). If �P Ecrπs, then clp�q ¤ |π|,
so the degree of ϕNCPpπq is smaller than |π|. There is only one element �1P Ecrπs such that
clp�0q � |π|: it is the equality of π. Moreover, π | � �1 is a product of noncrossing partitions
with a unique block, so λNCPpπ |��1q � 1, whereas π{ �1� π. Therefore, the coe�cient of X |π|

is ϕNCPpπq is λ0pπq, which is non zero: the degree of ϕNCPpπq is |π|.

There is only one element �0P Ecrπs such that clp�0q � 1: for any b, b1 P π, b �0 b
1. Moreover,

π |��0� π and π{ �0 has only one block, so
lepπ{ �0q
clp�0q! � 1: consequently, the coe�cient of X in

ϕNCPpπq is λNCPpπq.
Let us now give an interpretation of the coe�cient of X |π|�1 in ϕNCPpπq.

De�nition 3.15. Let π a noncrossing partition and let b, b1 be two di�erent blocks of π.

� We shall say that pb, b1q is a close pair if maxpbq   minpb1q and rmaxpbq� 1,minpb1q� 1s is
a union of blocks of π.

� We shall say that pb, b1q is a nested pair if b ¤π b
1 and if for any b2 P π,

b ¤π b
2 ¤π b

1 ùñ b2 � b or b2 � b1.

If pb, b1q is a close or a nested pair of π, we denote by π{pb, b1q the partition which blocks are b\b1
and the other blocks of π. By de�nition of close and nested pairs, it is a noncrossing partition.

Corollary 3.16. Let π be a noncrossing partition with n blocks. Then ϕNCPpπq is a polynomial
of degree n. The coe�cient of Xn�1 is

� 1

p|π| � 1q!

�
� ¸
pb, b1q close pair of π

lepπ{pb, b1qq � 1

2

¸
pb, b1q nested pair of π

lepπ{pb, b1qq
�
.
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Proof. Let �P Ecrπs such that clp�q � |π| � 1. There exists exactly one class of � made of two
blocks b and b1, and the other classes are made of only one blocks. Two possibilities can occur:

� Up to a permutation of b and b1, pb, b1q is a close pair. Then π{ �� π{pb, b1q. Moreover,
π |�� is a monomial made of noncrossing partitions with only one block and a noncrossing
partition with two non nested blocks. Hence, λ0pπ |��q � 1. As π |�� is a skew-primitive
element for δ, λNCPpπ |��q � �1.

� Up to a permutation of b and b1, pb, b1q is a nested pair. Then π{ �� π{pb, b1q. Moreover,
π |�� is a monomial made of noncrossing partitions with only one block and a noncrossing

partition with two nested blocks. Hence, λ0pπ |��q � 1

2
. As π |�� is a skew-primitive

element for δ, λNCPpπ |��q � �1

2
.

The result on the coe�cient of X |π|�1 immediately follows.

Example 3.5. 1. Let us consider Jn (see Notation 3.3), with n ¥ 2. Then Pn � ϕNCPpJnq is
a monic polynomial of degree n, as λ0pJnq � 1. Moreover, Jn has no nested pair, any any
pi, jq with 1 ¤ i   j ¤ n is a close pair of Jn. Therefore, the coe�cient of Xn�1 in Jn is

bn�1,n � �
¸

1¤i j¤n

1

j � i
�

¸
1¤i¤n�1

n�i̧

k�1

1

k
�

¸
1¤j¤n�1

j̧

k�1

1

k
� nζnp1q � n.

Consequently, ppn�1q!bn�1,nqn¥0 is the sequence of generalized Stirling numbers, see Entry
A001705 in the OEIS [15].

2. See Table 4 at the end of the article for examples of λNCPpπq.
Let us give more results about λNCPpJnq.

Proposition 3.17. The sequence ppn � 1q!λNCPpJnqqn¥1 is (up to the signs) the in�nitesimal
generator of Xp1�Xq, see Entries A005119 and A179199 of the OEIS [15]. Consequently,

@n ¥ 2, λNCPpJnq � � 1

n� 1

rn2 ş

i�1

�
n� i� 1

i� 1



λNCPpJn�iq.

Proof. This is a direct consequence of Proposition 3.8, Remark 3.2 and the recursive formula
given in Entry A005119 of the OEIS.

Example 3.6.

n 1 2 3 4 5 6 7 8 9 10

λNCPpJnq 1 �1 3

2
�8

3

31

6
�157

15

649

30
�9427

210

19423

210
�6576

35

Remark 3.5. It could be conjectured from these values that the sign of λNCPpJnq is p�1qn�1 for
any n. This is false. The �rst counterexample is

λNCPpJ29q � �37449570182565026

37182145
.

Other counterexamples can be found for n � 30, 33, 34, 38, 39, 42, 43, 47, 48, 51, 52, 55, 56.
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3.6 Linear extensions

Let us �rst generalize some combinatorial notions from noncrossing partitions to monomial of
noncrossing partitions.

De�nition 3.18. Let P � π1 � . . . �πk be a monomial in noncrossing partitions. The set of blocks
of P is

BlpP q � π1 \ . . .\ πk.

We also put |P | � |BlpP q|. The set BlpP q is partially ordered by ¤P�¤π1 \ . . .\ ¤πk
. An ideal

of P is a subset I of BlpP q such that

@b, b1 P BlpP q, pb P I and b ¤P b1q ùñ pb1 P Iq.

With this de�nition, we can write, for any monomial in noncrossing partitions,

∆pP q �
¸

J ideal of P

P|BlpP qzJ b P|�J .

De�nition 3.19. Let P be a monomial in noncrossing partitions and let n ¥ 1.

1. A n-linear extension of P is a map f : BlpP q ÝÑ rns such that

@b, b1 P BlpP q, b ¤P b1 ùñ fpbq ¤ fpb1q.

The set of n-linear extensions of P is denoted by LinpP, nq.
2. A strict n-linear extension of P is a map f : BlpP q ÝÑ rns such that

@b, b1 P BlpP q, pb ¤P b1 and b � b1q ùñ fpbq   fpb1q.

The set of strict n-linear extensions of P is denoted by LinspP, nq.
Remark 3.6. Obviously, LinspP, nq � LinpP, nq for any n ¥ 1.

Theorem 3.20. 1. For any monomial P in noncrossing partitions, there exists a unique
ΛpP qpXq P KrXs, such that

@n ¥ 1, ΛpP qpnq � |LinpP, nq|.

Moreover, the extension of Λ as a linear map from KrNCPs to KrXs is a Hopf algebra map
from pKrNCPs,m,∆q to pKrXs,m,∆q.

2. For any monomial P in noncrossing partitions, there exists a unique ΛspP qpXq P KrXs,
such that

@n ¥ 1, ΛspP qpnq � |LinspP, nq|.

Moreover, the extension of Λs as a linear map from KrNCPs to KrXs is a Hopf algebra
map from pKrNCPs,m,∆q to pKrXs,m,∆q.

Proof. We only prove the �rst point. The proof of the second point is very similar. Let us �rst
consider a monomial P in noncrossing partitions. For any k ¥ 1, let us denote by lkpP q the
number of surjective k-linear extensions of P . Note that if k ¡ |P |, lkpP q � 0. Then, for any
n ¥ 1,

|LinpP, nq| �
|P |̧

k�1

lkpP q
�
n

k



.
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We therefore take

ΛpP q �
|P |̧

k�1

lkpP qHkpXq P KrXs.

Then, for any n ¥ 1, λpP qpnq � |LinpP, nq|.

By convention, Λp1q � 1. If P � 1, then

ΛpP qp0q �
|P |̧

k�1

lkpP q
�
0

k



� 0,

so ε∆�ΛpP q � 0 � ε∆pP q. Let us now prove the compatibility of Λ with the products. Let P,Q be
two monomials in noncrossing partitions. Then BlpP �Qq � BlpP q\BlpQq and ¤P �Q�¤P \ ¤Q.
As a consequence, for any n ¥ 1,

LinpP �Q,nq � tf \ g | pf, gq P LinpP, nq � LinpQ,nqu.
Taking the cardinalities, we obtain that for any n ¥ 1,

ΛpP �Qqpnq � ΛpP qpnqΛpQqpnq.
This gives ΛpP �Qq � ΛpP qΛpQq.

Let us �nally prove the compatibility of Λ with the coproducts ∆. We �x a monomial P in
noncrossing partitions. Let m,n ¥ 1. If f P LinpP,m� nq, then:

� f�1ptm� 1, . . . ,m� nuq is an ideal of P , which we denote If .

� f|BlpP qzIf is a m-linear extension of P|BlpP qzIf .

� f|I �m is a n-linear extension of P|�If .

Conversely, if I is an ideal of P , f P LinpP|BlpP qzI ,mq and g P LinpP|�I , nq the the following
belongs to LinpP,m� nq: $'&

'%
BlpP q ÝÑ rm� ns

b ÞÝÑ
#
fpbq if b R I,
gpbq �m if b P I.

Taking the cardinalities, we obtain that

ΛpP qpm� nq �
¸

I ideal of P

ΛpP|BlpP qzIqpmqΛpP|�Iqpnq.

Identifying KrX,Y s and KrXsb2, we obtain that for any m,n ¥ 1,

∆ � ΛpP qpm,nq � pΛb Λq �∆pP qpm,nq.
Therefore, ∆ � Λ � pΛb Λq �∆.

Corollary 3.21. Let λ and λs be the characters of KrNCPs de�ned by

λ :

"
KrNCPs ÝÑ K
π P NCP ÞÝÑ 1,

λs :

$'&
'%

KrNCPs ÝÑ K

π P NCP ÞÝÑ
#
1 if π � Basepπq,
0 otherwise.

Then, with the notations of Proposition 1.2 and Theorem 1.4,

Λ � ϕNCP ø λ, Λs � ϕNCP ø λs. (11)
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Proof. We use the bijection of Theorem 1.4. We de�ne two elements of CharpKrNCPsq by
@x P KrNCPs, λpxq � Λpxqp1q, λspxq � Λspxqp1q.

Theorem 1.4 gives (11). It remains to prove the formulas for λ and λs. Let π be a noncrossing
partition. As the unique map f : Blpπq ÝÑ r1s is indeed a linear extension of π,

λpπq � Λpπqp1q � |Linpπ, 1q| � 1.

Moreover, the unique map f : Blpπq ÝÑ r1s is a strict linear extension of π if, and only if,
π � Basepπq, so

λspπq � Λspπqp1q � |Linspπ, 1q| �
#
1 if π � Basepπq,
0 otherwise.

Proposition 3.22 (Duality principle). For any π P NCP,

ΛpπqpXq � p�1q|π|Λspπqp�Xq.
Proof. Let us consider the two maps

ϕ1 :

"
KrXs ÝÑ KrXs
P pXq ÞÝÑ P p�Xq, ϕ2 :

"
KrNCPs ÝÑ KrNCPs
π P NCP ÝÑ p�1q|π|π.

The map ϕ is a bialgebra isomorphism (it is in fact the antipode of KrXs) and, as the bialgebra
pKrNCPs,m,∆q is graded by the number of blocks, ϕ2 is also a bialgebra map. By composition,
ϕ � ϕ1 � Λs � ϕ2 is a bialgebra map. Moreover, for any π P NCP,

ϕpπq � p�1q|π|Λspπqp�Xq.
By Theorem 1.4, there exists a (unique) ν P CharpKrNCPsq such that ϕ � ϕNCP ø ν. Is is
now enough to prove that ν � λ. For any π P NCP,

νpπq � ϕpπqp1q � p�1q|π|Λspπqp�1q,
so it is enough to prove that for any noncrossing partition π, Λspπqp�1q � p�1q|π|.We proceed
by induction on |π|. If |π| � 1, then Λspπq � X and the result holds. Let us assume that
|π| ¥ 2 and that the result holds for any noncrossing partition π1 with |π1|   |π|. If f P Linspπq,
observe that f�1p1q � Basepπq. Conversely, if B � Basepπq and g P Linspπ|�πzB, nq, one de�nes
f P Linspπ, n� 1q by

@b P π, fpbq �
#
1 if b P B,
gpbq � 1 otherwise.

Consequently,
ΛspπqpX � 1q �

¸
B�Basepπq

Λspπ|�πzBqpXq.

Taking X � �1 and using the induction hypothesis on π|�πzB when B � H, we obtain

Λspπqp0q � ϵδpπq � 0

� Λspπqp�1q �
¸

H�B�Basepπq

Λspπ|�πzBqp�1q

� Λspπqp�1q �
¸

H�B�Basepπq

p�1q|π|�|B|

� Λspπqp�1q � p�1q|π|
�
� ¸

B�Basepπq

p�1q|B| � 1

�


� Λspπqp�1q � p�1q|π|.
Note that

¸
B�Basepπq

p�1q|B| � 0, as Basepπq � H. Finally, the result holds for π.
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Corollary 3.23. For any π P NCP, λpπq � p�1q|π|λs � Spπq.

Proof. From the proof of the duality principle, with the same notations, Λ � ϕ1 � Λs � ϕ2 �
S �Λs �ϕ2. As Λs is a bialgebra morphism, Λ � Λs �S �ϕ2. Evaluating this in π and then taking
X � 1 gives the result.

Notations 3.5. By Proposition 3.13, both λ and λs are invertible for the convolution product
�, dual to the coproduct δ. We denote by µ and µs their respective inverses. We immediately
obtain

ϕNCP � Λø µ, ϕNCP � Λs
ø µs.

Let us �rst compute µs.

Proposition 3.24. For any π P NCP, µspπq �
#
0 if π � Basepπq,
p�1q|π|�1 if π � Basepπq.

Proof. For any noncrossing partition π,

λs � µspπq � ϵδpπq �
¸

�PEcrπs
λspπ{ �qµspπq.

We denote by π1, . . . , πn the connected components of π, totally ordered from left to right. As
λs only charges noncrossing partitions equal to their bases, in this sum we restrict ourselves with
� which classes are unions of consecutive πj , which gives

ϵδpπq �
ņ

k�1

¸
n1�����nk�n,
n1,...,nk¥1

µspπ1 . . . πn1q . . . µspπn1�����nk�1�1 . . . πn1�����nk
q.

Let us assume �rstly that π � Basepπq and let us show that µspπq � 0. Observe that
ϵδpπq � 0. We proceed by induction on n. If n � 1, we immediately obtain that 0 � µspπq. If
n ¥ 2, for any n1, . . . , nk ¥ 1 such that n1 � � � � � nk � n, at least one of the noncrossing par-
titions Pn1�����ni�1 . . . Pn1�����ni�1 is not equal to its base. Therefore, if k ¥ 2, by the induction
hypothesis, it vanishes under µs. We obtain 0 � µspπq � 0, which ends this proof by induction.

Let us now assume that π � Basepπq. We de�ne a sequence panqn¥1 by

an �

$''&
''%
1 if n � 1,

�
ņ

k�2

¸
n1�����nk�n,
n1,...,nk¥1

an1 . . . ank
if n ¥ 2.

Let us prove that µspπq � a|π| by induction on |π|. If |π| � 1, then µspπq � 1 � a1. If |π| ¥ 2,
the induction hypothesis gives

0 � µspπq �
ņ

k�2

¸
n1�����nk�n,
n1,...,nk¥1

µspπ1 . . . πn1q . . . µspπn1�����nk�1�1 . . . πn1�����nk
q

� µspπq �
ņ

k�2

¸
n1�����nk�n,
n1,...,nk¥1

an1 . . . ank

� µspπq � an,
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so µspπq � an. It remains to prove that an � p�1qn�1 for any n ¥ 1. Let us consider the formal

series A �
8̧

k�1

akX
k P XrrXss. By de�nition of the sequence panqn¥1,

A � X �
8̧

n�2

8̧

k�2

¸
n1�����nk�n,
n1,...,nk¥1

an1 . . . ank
Xn

� X �
8̧

k�2

¸
n1�����nk�n,
n1,...,nk¥1

an1X
n1 . . . ank

Xnk

� X �
8̧

k�2

Ak

� X � A2

1�A
.

Hence,
A

1�A
� X and A � X

1�X
, which �nally implies that an � p�1qn�1 for any n ¥ 1.

This �nally gives:

Proposition 3.25. For any noncrossing partition π, ϕNCPpπq �
¸

�PEcrπs
p�1qblpπ|��q�1Λspπ{ �q.

In order to describe µ, we shall introduce a family of characters:

Proposition 3.26. For any q P K, we de�ne γq P CharpKrNCPsq by

γq :

$'&
'%

KrNCPs ÝÑ K

π P NCP ÞÝÑ
#
q if |π| � 1,

0 otherwise.

In particular, γ1 � ϵδ. Then:

1. For any λ P CharpKrNCPsq, for any π P NCP, λ � γqpπq � q|π|λpπq.
2. For any q, q1 P K, γq1 � γq � γqq1 .

3. If q � 0, γq is invertible for �, and γ��1
q � γq�1.

4. For any λ P CharpKrNCPsq, for any π P NCP, γq � λpπq � qλpπq.
Proof. 1. For any π P NCP,

λ � γqpπq �
¸

�PEcrπs
λpπ{ �qγqpπ |�q.

Let us consider �P Ecrπs such that γqpπ |�q � 0: π |� is a monomial of noncrossing partitions
with a single block, which means that � is the equality �1 of π. Therefore,

λ � γqpπq � λpπ{ �1qγqpπ |�1q � λpπqq|π|.

2. In the particular case where λ � γq1 , for any π P NCP,

γq1 � γqpπq � q|π|γq1pπq �
#
qq1 if |π| � 1,

0 otherwise.
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So γq1 � γq � γqq1 .

3. Easy consequence of 2.

4. For any π P NCP,
γq � λpπq �

¸
�PEcrπs

γqpπ{ �qλpπ |�q.

Let us consider �P Ecrπs such that γqpπ{ �q � 0: π{ � is a noncrossing partition with a single
block, which means that � is equivalence �0 on π with a single class. Therefore,

γq � λpπq � γqpπ{ �0qλpπ |��0q � qλpπq.

Lemma 3.27. For any λ P CharpKrNCPsq, λ � S � µNCP � λ.

Proof. Recall that S � pµNCP b IdKrNCPsq � δ. Therefore,

λ � S � λ � pµNCP b IdKrNCPsq � δ � pµNCP b λq � δ � µNCP � λ.

Lemma 3.28. µNCP � µNCP � ϵδ.

Proof. By Lemma 3.27, for λ � ϵδ,

ϵδ � S � µNCP � ϵδ � µNCP .

Still by this Lemma, with λ � µNCP ,

µNCP � µNCP � µNCP � S � ϵδ � S2 � ϵδ.

Indeed, as KrNCPs is commutative, S2 � IdKrNCPs.

Proposition 3.29. In CharpKrNCPsq, λ � µNCP �λs �γ�1 and µ � γ�1 �µs �µNCP . Moreover,

@π P NCP, µpπq �
¸

�PEcrπs,
π{��Basepπ{�q

p�1qclp�qµNCPpP |��q,

where clp�q is the number of classes of �.

Proof. By Corollary 3.23, Lemma 3.27 and Proposition 3.26-1, λ � µNCP � λs � γ�1. By propo-
sition 3.26-3 and Lemma 3.28, the inverses (for �) of γ�1 and µNCP are themselves, so

µ � λ��1 � γ��1
�1 � pλsq��1 � µ��1

NCP � γ�1 � µs � µNCP .

By Proposition 3.26-4, for any noncrossing partition π,

µpπq � �µs � µNCPpπq � �
¸

�PEcrπs
µspπ{ �qµNCPpP |��q.

The formula then comes from Proposition 3.24.

Example 3.7. See Table 4 at the end of the article for examples of µspπq and µpπq.

Corollary 3.30. Let π P NCP, such that π � Basepπq. Then µpπq � p�1q|π|�1cat|π|�1.
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Proof. Let π P NCP, such that π � Basepπq. The blocks of π are denoted by π1, . . . , πn, totally
ordered from left to right. If �P Ecrπs such that π{ �� Basepπ{ �q, then the classes of � are
formed by consecutive πi. This gives

µpπq �
ņ

k�1

¸
n1�����nk�n,
n1,...,nk¥1

p�1qkµNCPpπ1 . . . πn1q . . . µNCPpπn1�����nk�1�1 . . . πn1�����nk
q

�
ņ

k�1

¸
n1�����nk�n,
n1,...,nk¥1

p�1qk�n1�����nkcatn1 . . . catnk
.

We put, for any n ¥ 1,

an �
ņ

k�1

¸
n1�����nk�n,
n1,...,nk¥1

p�1qk�n1�����nkcatn1 . . . catnk
,

so that µpπq � a|π|. We consider the formal series

A �
8̧

n�1

anX
n P QrrXss, C �

8̧

n�1

catnX
n � 1�?

1� 4X

2X
� 1 P QrrXss.

By de�nition of an,

A �
8̧

k�1

p�1qkCp�Xqk � Cp�Xq
1� Cp�Xq .

Replacing the expression of C in this formula and working out, we obtain

A � 1�?
1� 4X

2
� Xp1� Cp�Xqq �

8̧

n�1

p�1qn�1catn�1X
n,

which gives the result for µpπq.

4 Combinatorial morphisms from noncrossing partitions to graphs

We now turn to the bialgebras of hypergraphs or mixed graphs de�ned in [11, 12]. We obtain
the following negative results:

Proposition 4.1. 1. Let $ P tX,�u. There exists no double bialgebra morphism ψ from
KrNCPs to the double bialgebra of hypergraphs pFrHs,m,∆, δp$qq of [11], such that ψpJ3q
is a sum of hypergraphs.

2. There exists no double bialgebra morphism ψ from KrNCPs to the double bialgebra of mixed
graphs HG of [12], such that ψpJ3q is a mixed graph.

Proof. 1. Let ψ be such a morphism. Then ϕNCP � ψ : KrNCPs ÝÑ KrXs is a double bialgebra
morphism by composition, so is equal to ϕchr. Hence, there exists a sum of hypergraphs G1 �
� � � �Gk � ψpJ3q such that

ϕchrpG1 � � � � �Gkq � X3 � 5X2

2
� 3X

2
.

This contradicts [11, Proposition 2.5], stating that the coe�cients of ϕchrpHq are integers for
any hypergraph.
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2. Let ψ be such a morphism. Then ϕNCP � ψ : KrNCPs ÝÑ KrXs is a double bialgebra
morphism by composition, so is equal to ϕchr. Hence, there exists a mixed graph G � ψpJ3q
such that

ϕchrpGq � X3 � 5X2

2
� 3X

2
.

By [12, Proposition 3.14], G has no cycle and has three vertices. It is not a graph, as for any
graph G, the coe�cients of ϕNCPpGq � PchrpGq are integers. As it is not divisible by X2, G
is connected. It is not one of the mixed graphs of [12, Example 3.2]. So G is one of the four
following mixed graphs:

G1 � /.-,()*+
??

??
??

??
///.-,()*+

��
��
��
��

/.-,()*+

, G2 � /.-,()*+

��?
??

??
??

? ///.-,()*+

��
��
��
��

/.-,()*+

,

G3 � /.-,()*+ ///.-,()*+

��
��
��
��

/.-,()*+

__????????

, G4 � /.-,()*+ ///.-,()*+

/.-,()*+

__????????

??��������

.

But for any of these graphs, ϕchrpGiqp2q � 0, whereas ϕchrpGqp2q � 1. So such a ψ does not
exist.

Remark 4.1. Of course, there exist double bialgebra morphisms from KrNCPs to FrHs or to
HG. For example, observe that the two following de�ne double bialgebra morphisms:"

KrXs ÝÑ FrHs
X ÞÝÑ ,

"
KrXs ÝÑ HG

X ÞÝÑ .

The composition with ϕchr gives two double bialgebra morphisms, which of course do not satisfy
the combinatorial conditions of Proposition 4.1.
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π ϕNCPpπq µNCPpπq λ0pπq λNCPpπq µspπq µpπq
X �1 1 1 1 1

X �1 1 1 1 1

XpX � 1q 2 1 �1 �1 �1
X �1 1 1 1 1

XpX � 1q 2 1 �1 �1 �1
XpX � 1q 2 1 �1 �1 �1
XpX � 1q

2
1

1

2

1

2
0 �1

XpX � 1q
�
X � 3

2



�5 1

3

2
1 2

X �1 1 1 1 1

XpX � 1q 2 1 �1 �1 �1
XpX � 1q 2 1 �1 �1 �1
XpX � 1q

2
1

1

2
�1

2
0 �1

XpX � 1q
2

1
1

2
�1

2
0 �1

XpX � 1q 2 1 �1 �1 �1
XpX � 1q

2
1

1

2
�1

2
0 �1

XpX � 1q
�
X � 3

2



�5 1

3

2
1 2

XpX � 1q
�
X � 3

2



�5 1

3

2
1 2

XpX � 1q
�
X � 3

2



�5 1

3

2
1 2

XpX � 1q2 �2 1 1 0 3

XpX � 1q2 �2 1 1 0 3

XpX � 1qpX � 2q
3

�2 1

3

2

3
0 2

XpX � 1qpX � 2q
�
X � 4

3



14 1 �8

3
�1 �5

Table 1: examples
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