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Abstract

This paper addresses the problem of full model estimation for non-parametric finite mixture mod-
els. It presents an approach for selecting the number of components and the subset of discriminative
variables (i.e., the subset of variables having different distributions among the mixture components)
by considering an upper bound on the number of components (this number being allowed to increase
with the sample size). The proposed approach considers a discretization of each variable into B
bins and a penalization of the resulting log-likelihood. Considering that the number of bins tends
to infinity as the sample size tends to infinity, we prove that our estimator of the model (number of
components and subset of relevant variables for clustering) is consistent under a suitable choice of
the penalty term. The relevance of our proposal is illustrated on simulated and benchmark data.

Keywords: Empirical process, Latent class model, Locally conic model, Model selection, Non-
parametric mixture model.

1 Introduction

Finite mixture models permits to achieve clustering by estimating the distribution of the observed vari-
ables (McLachlan and Peel, 2000; Fruhwirth-Schnatter et al., 2019). This paper focuses on a full model
selection (i.e., estimation of the number of components and detection of the subset of the relevant
variables for clustering) for non-parametric mixture models where no assumptions are made on the com-
ponent distribution except to be defined as a product of univariate densities (see Chauveau et al. (2015)
for a review). Thus, we consider a sample composed of n independent observations X1, . . . ,Xn where
Xi = (Xi1, . . . , XiJ)

⊤ ∈ X is the vector composed of the J variables collected on subject i defined over
the space X = X1 × . . . × XJ where each Xj is compact1. Each Xi is identically distributed according
to the non-parametric mixture of K components defined by the density

g(xi) =

K∑
k=1

πk

J∏
j=1

ηkj(xij), (1)

where π = (π1, . . . , πK)⊤ is a finite dimensional parameter belonging to the simplex of size K, SK =

{u ∈ [0, 1]K :
∑K

k=1 uk = 1} and where the univariate densities ηkj constitute infinite dimensional
parameters and are supposed to be strictly positive except on a set of Lebesgue measure zero. Model
(1) has been used in different fields like in behavioral science (Clogg, 1995), econometry (Hu et al., 2013;
Compiani and Kitamura, 2016) or sociology (Hagenaars and McCutcheon, 2002). One standard situation
where the conditional independence assumption implied by (1) holds true, is the framework of standard
repeated measure random effect model, where the subject-level effect is replaced by a component-level

1This assumption is made for ease of writing. It could seem restrictive, but real data can always be considered as
generated from a compactly supported density. Indication on how to relax this assumption is given in the following
sections.
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effect. Among the recent developments related to (1), one can cite the papers of Hall and Zhou (2003),
Hall et al. (2005) and Allman et al. (2009) who studied the parameter identifiability, while Benaglia et al.
(2009), Levine et al. (2011) and Zheng and Wu (2020) proposed different algorithms for estimating the
parameters when the number of components K is known.

Even if the estimation of the groups is a key-point for clustering, estimating the number of components
in (1) was still an open problem until recently. Thus, before the works of Kasahara and Shimotsu (2014),
Bonhomme et al. (2016), Bonhomme et al. (2016) and Kwon and Mbakop (2021), no tools were available
for selecting the number of components K. This was the main drawback of non-parametric mixture
models compared to parametric mixture models which allow model selection through information criteria.
The two recent papers of Kasahara and Shimotsu (2014) and Kwon and Mbakop (2021) introduced two
approaches for determining the smallest value of K such that (1) holds true. Kasahara and Shimotsu
(2014) provide an estimation of the lower bound of the number of components by considering a partition of
the support of each variable (e.g., using a decomposition into bins) and by using the identifiability of the
latent class model (i.e., mixture models where each component is a product of multinomial distributions).
This discretization allows to consider the tensor defining the probability of each event while the rank of
this tensor permits to derive a lower bound on K. Note that previous works on non-parametric mixture
models considered a bin decomposition (i.e., a specific discretization method) to estimate non-parametric
mixture models or study their identifiability but not for model selection (Hettmansperger and Thomas,
2000; Cruz-Medina et al., 2004; Elmore et al., 2004). However, Kasahara and Shimotsu (2014) do not
provide a method for selecting the discretization (i.e., number of elements, locations of those elements).
Thus, their method is only consistent to a lower bound ofK (see Section 2.3 in Kwon and Mbakop (2021)).
The works of Bonhomme et al. (2016), Bonhomme et al. (2016) and Bonhomme et al. (2017) consider
transformed moments for density estimation. Moreover, in the Section 5 of Supplementary material of
Bonhomme et al. (2016) a rank-based procedure using the approach of Kleibergen and Paap (2006) is
proposed to estimate the number of components. Thus, this result generalizes the approach of Kasahara
and Shimotsu (2014) by allowing other types of approximating functions than the discretization (i.e.,
orthogonal serie approximation, e.g. Jacobi or Hermite polynomials) to apply rank-based approaches
for estimating the number of components. Alternatively, Kwon and Mbakop (2021) consider an integral
operator, identified from the distribution of X, that has a rank equal to K. Noting that the singular
values of operators are stable under perturbations (to handle the fact that this operator is estimated
from the observed sample), a thresholding rule allowing to count the number of non-zero singular values
provides a consistent estimator of K. One advantage of the approach of Kwon and Mbakop (2021) is to
avoid the use of discretization, even if some connections can be established with the approach of Kasahara
and Shimotsu (2014) (see Section 2.3 in Kwon and Mbakop (2021)). One elegant property of the methods
of Kasahara and Shimotsu (2014) and Kwon and Mbakop (2021) is that both methods determine an
estimator of K without performing the density estimation for different numbers of clusters. Thus, those
methods start with a step of model selection followed by the estimation of the parameters for the selected
model. This is quite unusual because, when model selection is conducted for parametric mixture models
via an information criterion, parameter estimation needs to be first performed for each competing model
in order to compute the information criterion. The approaches of Kasahara and Shimotsu (2014) and
Kwon and Mbakop (2021) are mainly based on the distribution of a couple of variables. Thus, if the
number of variables J is large, computational issues can arise while considering all possible pairs of
variables. It restricts the use of their methods to data sets composed of few variables. This is also the
case for the other rank-based approaches as they rely on transformed moments of multivariate variables
(see Section 3.1 in Bonhomme et al. (2016)). Moreover, the nature of all those approaches makes
impossible a variable selection.

Selecting variables is challenging in clustering because the role of a variable (relevant or irrelevant for
clustering) is defined from the partition which is unobserved. Thus, the selection of the variables and the
clustering need to be performed simultaneously. Note that selecting the variables in clustering has two
strong benefits: it improves the accuracy of the estimators (Azizyan et al., 2013) because it reduces the
number of estimators to be considered and it facilitates the interpretation of the different components
as it only has to be made on the subset of discriminative variables. In a non-model based framework,
regularization methods can be used to achieve variable selection in clustering (Friedman and Meulman,
2004; Pan and Shen, 2007; Witten and Tibshirani, 2010). Among these approaches, the sparse K-means
(Witten and Tibshirani, 2010) is the most popular because it requires small computational overhead
and is able to manage very high-dimensional datasets. The approach uses a lasso-type penalty to select
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the set of variables which are relevant for the clustering. The selection of the number of components is
a difficult issue since probabilistic tools are not available and its results are sensitive to the structure
of the penalty term. The authors proposed to perform model selection with an extension of the gap
statistics (Tibshirani et al., 2001). In model-based clustering, Tadesse et al. (2005) define a variable as
irrelevant for clustering if its distribution is equal among all the mixture components. A third type of
variable, the redundant ones, has been introduced by Raftery and Dean (2006). A redundant variable
is a variable that has the same conditional distribution given the relevant variables for each component.
However, this type of variable cannot be considered for model (1), as it requires to model intra-component
dependencies. The model-based framework implies that the selection of the variables falls in the scope of
model selection. Thus, in the paper, we define the objective of full model selection by the double objective
of estimating the number of components K and the subset of relevant variables Ω as well. In a parametric
framework, variable selection can be performed via information criterion (see Tadesse et al. (2005), Dean
and Raftery (2010) and Marbac and Sedki (2017)) but it leads to computational issues because the
number of competing models is of order 2J . To circumvent this issue, Marbac et al. (2019) present a
modified EM algorithm (Dempster, A. P. and Laird, N. M. and Rubin, D. B., 1977; Green, 1990) that
permits to simultaneously perform the variable selection via the Bayesian Information Criterion (BIC;
Schwarz (1978)) and the maximum likelihood estimation, for a fixed number of components. Thus, the
algorithm only needs to be run for all the possible numbers of components. Note that all existing methods
of variables selection in model-based clustering are restricted to parametric distributions. Thus, if the
parametric assumptions are violated, biased estimates of the number of components or on the subset of
discriminative variables can be provided.

This paper addresses the issue of full model selection for non-parametric mixture models defined by
(1). To the best of our knowledge, this paper presents the first method that permits a full-model selection
(i.e., estimation of K and Ω) for non-parametric multivariate mixture models. This double objective
is not covered by the rank-based methods (Kasahara and Shimotsu (2014), Bonhomme et al. (2016) or
Kwon and Mbakop (2021)) that consider, by nature, that all the variables are relevant for clustering and
hence that do not consider the objective of variable selection. Moreover, the proposed method allows
many variables to be managed, which makes it a complementary work to the rank-based methods, even
in the case where all the variables are considered to be relevant and only the number of components
needs to be estimated. As proposed by Tadesse et al. (2005), we consider two types of variables: the
relevant variables and the irrelevant variables for clustering. Thus, variable j is said to be irrelevant
for clustering if η1j = . . . = ηKj and the variable j is said to be relevant for clustering otherwise. A
model M = {K,Ω} is defined by the number of components K and the indices of the relevant variables
Ω ⊆ {1, . . . , J}. Therefore, considering the task of full model selection in (1) implies that each Xi is
identically distributed according to a non-parametric mixture of K components defined by the density

gM,ψ(xi) =

∏
j∈Ω̄

η1j(xij)

 K∑
k=1

πk

∏
j∈Ω

ηkj(xij)

 , (2)

where Ω̄ = {1, . . . , J} \ Ω contains the indices of the irrelevant variables for clustering and ψ ∈ ΨM

groups the finite dimensional parameters π = (π1, . . . , πK)⊤ ∈ SK and the infinite dimensional param-
eters composed of the univariate densities ηkj . The space of competing models is defined by an upper
bound Kmax on the number of components while each variable can be relevant or not. The upper bound
on the number of components is supposed to be known but is allowed to tend to infinity as the sample
size tends to infinity. To achieve the full model selection, we use a discretization of each continuous
variable into B bins. The number of bins tends to infinity with the sample size to ensure the consistency
of the approach. Indeed, if B would be fixed, the estimated model could be a sub-model of the true
model (i.e., the number of components and the subset of the discriminative variables could be underes-
timated). The distribution of the resulting discretized variables follows a latent class model where each
component is a product of multinomial distributions (Goodman, 1974). Thus, despite the fact that other
decompositions (e.g., Jacobi or Hermite polynomials) are used for rank-based methods, we choose to
use the discretization to obtain ”categorical” variables. This discretization is convenient, because model
selection can then be achieved, for the resulting latent class model, by using the penalized likelihood
(e.g., BIC) whose consistency has been proven for a large class of finite mixture models in Keribin (2000)
and in particular for multivariate multinomial mixtures in Toussile and Gassiat (2009). Moreover, thanks
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to the discretization, a specific EM algorithm optimizing the penalized likelihood can be used for simul-
taneously detecting the subset of the relevant variables and estimating the model parameters (Marbac
et al., 2019), for a known number of components. Thus, by considering an upper-bound of the number
of components, the full-model selection can be achieved. Unlike in Kasahara and Shimotsu (2014), the
procedure provides a consistent estimation on the univariate densities of the components ηkj from the
discretized data. Therefore, we prove the consistency of the procedure for a wide range of numbers of
bins B, at an appropriate rate that we detail in the paper. In this paper, for ease of reading, we consider
that the number of bins used for the discretization is the same for each variable, but the method can be
extended to different numbers of bins per variables. Note that the proof of the consistency is written by
considering an upper-bound of the number of components (see Theorem 1). This assumption was made
to ensure the consistency of penalized log-likelihood for parametric mixture (Keribin, 2000). However,
this assumption is also implicitly made by the rank-based method of Kasahara and Shimotsu (2014) and
Bonhomme et al. (2016), since the number of components cannot exceed the number of elements used
in the decomposition (otherwise, Assumption 1 in Bonhomme et al. (2016) as well as Assumption 3 in
Bonhomme et al. (2017) cannot hold true for instance). Note that, by the use of the integral operators,
Kwon and Mbakop (2021) do not need such an assumption. In this paper, we also provide sufficient
conditions on the growth of both B and Kmax that lead to the consistency of the procedure by allowing
the upper bound on the number of components to tend to infinity as the sample size tends to infinity
(see Corollary 1). This case is not covered by the rank-based methods, as in Kasahara and Shimotsu
(2014) and Bonhomme et al. (2016), since the number of elements used in their decomposition is fixed.
Obviously, their procedures could be developed with an increasing number of elements, but the rate of
increasing should be investigated since the results of Kleibergen and Paap (2006) cannot be applied on
matrices with increasing dimensions (and fixed rank). Note that the consistency of the proposed proce-
dure cannot be stated directly by using the consistency of information criterion for parametric mixture
models (Keribin, 2000; Toussile and Gassiat, 2009) because the parameters space depends on B and thus
increases with the sample size. The growth rate of B is mainly driven to avoid underestimation of the
model while the range of the penalty is mainly driven to avoid overestimation of the model. Note that for
categorical data, a non-asymptotic oracle inequality is obtained in Bontemps and Toussile (2013), which
permits a data-driven choice of the penalty through slope heuristics. The case of model underestimation
is analyzed by extending the proof of Keribin (2000) in order to deal with the increasing dimension of
the parameter space. In the case of model overestimation, the asymptotic distribution of the likelihood
ratio is investigated by performing a locally conic parametrization (Dacunha-Castelle and Gassiat, 1997,
1999) of the model obtained on the discretized data. An upper bound of the likelihood ratio is obtained
by controlling, on the one hand, the deviation of the likelihood ratio from its asymptotic distribution by
using results on empirical processes stated in Chernozhukov et al. (2014) and, on the other hand, the
supremum of the asymptotic distribution by applying deviation results on Gaussian processes (Dudley,
2014).

The proposed method uses a discretization that provides an estimator of the densities of the compo-
nents. However, we advise to use the proposed approach only for model estimation. When the model has
been selected, we suggest to use a kernel-based method for density estimation. Indeed, the bin-density
estimates are known to be outperformed by kernel-based estimators. Thus, for a real data analysis,
we advise to use the proposed approach for model selection then, for the selected model, to perform
density estimation with an EM-like algorithm (Benaglia et al., 2009) or by maximizing the smoothed
log-likelihood (Levine et al., 2011). The final partition is thus computed from the model selected by the
proposed method and the densities estimated via a kernel method.

The papers is organized as follows. Section 2 details the discretization step. Section 3 states the
consistency of the procedure. Section 4 presents the algorithm used for the full model selection. Sec-
tion 5 starts by numerical experiments that compare the proposed approach to standard approaches of
variable selection in clustering, then it presents the analysis of benchmark data which illustrates the
relevance of the procedure and introduces some extensions of the approach. Section 6 gives a conclu-
sion. Mathematical details and supplementary numerical experiments are presented in Supplementary
Materials.
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2 Model selection by bin estimation and penalized log-likelihood

This section considers the estimation of the number of components K as well as the subset Ω of relevant
variables for clustering for model (2), from a n-sampleX1, . . . ,Xn withXi ∈ X with X = X1×. . .×XJ , J
being fixed and Xj being compact. The method is based on the discretization of each variable into B non-
overlapping bins2 IBj1, . . . , IBjB such that ∪B

b=1IBjb = Xj and for any (b, b′) with b ̸= b′, IBjb∩IBjb′ = ∅.
Thus, we consider the function σBjb with b ∈ {1, . . . , B}, such that σBjb(xij) = 1 if xij ∈ IBjb and
σBjb(xij) = 0 if xij /∈ IBjb, and we denote by lBjb the size of the bin IBjb. The discretized variables
follow a latent class model where each component is a product of J multinomial distributions having B
levels each. Therefore, the pdf of the discretized subject i is

fM,B,θ(xi) =
∏
j∈Ω̄

B∏
b=1

(
αB1jb

lBjb

)σBjb(xij)
 K∑

k=1

πk

∏
j∈Ω

B∏
b=1

(
αBkjb

lBjb

)σBjb(xij)
 , (3)

where θ groups the component proportions πk and the probabilities αBkjb that one subject arisen from
component k takes level b for the variable j when this variable is discretized into B bins. The parameter

space is given by the product of simplexes SK × S
K|Ω|+(J−|Ω|)
B , where |Ω| denotes the cardinal of the set

of discriminative variables Ω. Note that fM,B,θ is an approximation of gM,ψ and that this approximation
becomes more accurate when B tends to infinity. The discretized version fM0,B,θ0 of the true density g0
will be denoted by f0,B . The limitation to densities with compact support may seem to be restrictive,
but real data can always be considered as generated from a compactly supported density, i.e., over the
range of the data, since we cannot get any information about what happens outside this range without
additional assumptions. Thus, the proposed method can be directly extended to distributions defined on
non-compact spaces by focusing on density estimation made on the convex hull of the data and assuming
that the density is zero outside. Indeed, as discussed at the end of Section 3.1, this will not impact the
results of likelihood-based methods, as they will never be evaluated outside this range. Note that, in such
a case, assumptions should be made on the tails of the distribution in order to ensure that the growth of
the convex hull still permits to satisfy the assumptions of the theorem and in particular Assumptions 4.

The probabilities αBkjb are unknown and must be estimated from the observed sample. This esti-
mation can be achieved by maximizing the log-likelihood defined by

ℓn(fM,B,θ) =

n∑
i=1

ln fM,B,θ(xi).

The maximum likelihood statistics for a model M and B bins per variables is

Tn,M,B = sup
θ∈ΘM,B,ε

ℓn(fM,B,θ),

where, in order to avoid numerical issues, we introduced a threshold ε such that the parameter space

becomes ΘM,B,ε = SK,ε × S
K|Ω|+(J−|Ω|)
B,ε , with ε > 0 being the minimal value of all the elements defined

in the simplexes, i.e., SB,ε = {u ∈ RB : ub > ε,
∑B

b=1 ub = 1}. Note that the use of such a threshold is
quite usual in this framework (see Toussile and Gassiat (2009); Bontemps and Toussile (2013)). Under
the condition that Bε tends to zero as B goes to infinity and ε to zero, the parameter space ΘM,B,ε

converges to the whole parameter space. Note that, due to the growth rate of B which will be stated
by Assumption 4(i) in the next section, it is sufficient to set ε−1 = O(nα+1) for some α > 0. This
maximization can be achieved via an Expectation-Maximization algorithm (EM algorithm; Dempster,
A. P. and Laird, N. M. and Rubin, D. B. (1977)).

The penalized likelihood is defined by subtracting from the maximum likelihood statistics a penalty
term an,M,B which takes into account the sample size and the complexity of model M . Thus, we obtain
the following information criterion

Wn,M,B = Tn,M,B − an,M,B . (4)

2Alternatively, one could use different numbers of bins per variables as long as all those numbers respect Assumptions
3 and 4 given in the next section. Here, for ease of reading, we focus on the case where all variables are discretized with
the same number of bins.
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Depending on the choice of an,M,B in (4), different well-known criteria can be considered. Among them
one can cite the Akaike criterion (AIC; Akaike (1970)) or the Bayesian Information Criterion (BIC;
Schwarz (1978)) which are obtained with an,M,B = ν and an,M,B = ν log(n)/2 respectively, where ν
denotes the model complexity that is defined for (3) by ν = (K − 1) + |Ω|K(B − 1) + (J − |Ω|)(B − 1).

We consider the set of competing models M defined by all the mixture models with at most Kmax

components and at least three relevant variables (for identifiability reasons), so that

M = {M = {K,Ω} : K ≤ Kmax,Ω ⊆ {1, . . . , J} and |Ω| ≥ 3}.

The definition of the set of the competing models M implies that a knowledge of an upper bound
of the number of components Kmax is known. Note that this assumption was also made to prove the
consistency of the estimator provided by penalized log-likelihood for parametric mixture models (Keribin,
2000). Moreover, for the approach of Kasahara and Shimotsu (2014), the number of bins used in the
discretization of each variable is an upper bound on the number of components (see Proposition 1 in
Kasahara and Shimotsu (2014)). Similarly, the approaches based on transformed moments implicitly
consider an upper bound of the number of components that is defined as number of moments considered
in the procedure (otherwise Assumption 3 in Bonhomme et al. (2017) cannot hold true). To the best
of our knowledge, only the approach of Kwon and Mbakop (2021) does not require an upper bound on
the number of components thanks to the use of integral operators. In the next section, we give sufficient
conditions to consistently estimate the model when Kmax is fixed. However, we also provide a corollary
that gives sufficient conditions to maintain the consistency when the upper bound of the number of
components is allowed to tend to infinity with the sample size (note that the true model, including the
number of components, does not change with the sample size).

The estimator M̂n,B of the model maximizes the penalized likelihood as follows

M̂n,B = argmax
M∈M

Wn,M,B .

The study of the asymptotic properties of the estimator M̂n,B is covered by the approach of Keribin
(2000) only if the number of intervals B does not increase with the sample size n. However, in such
a case, due to the discretization, the approach would provide an estimator that converges to a model
included into the true model. Indeed, we only obtain a lower bound on the number of components and
a subset of the discriminative variables. By increasing the number of intervals with n, we avoid the
issues due to the loss of identifiability. However, we need to investigate the behavior of the statistics
Tn,M,B and to study the convergence of Tn,M,B/n to the minimum Kullback divergence, which requires
controlling empirical processes defined on space having increasing dimension. The next section presents
statistical guarantees of the proposed approach.

3 Convergence in probability of the estimator

This section investigates the convergence in probability of M̂n,B . It starts by presenting the assumptions
required to obtain this convergence, which is then stated.

3.1 Assumptions

The consistency of the estimator is established under four sets of assumptions described below. Assump-
tion 1 and Assumption 2 state the constraints on the model and on the distribution of the components
respectively. Assumption 3 gives some conditions on the penalty term. Finally, Assumption 4 gives some
conditions on the discretization.

Assumption 1. The number of variables is at least three ( i.e., 3 ≤ J) and each proportion πk > 0 is
not zero. Moreover, there exists Υ ⊆ {1, . . . , J} such that |Υ| = 3 and for any j ∈ Υ the univariate
densities ηkj are linearly independent.

Assumption 2. (i) There exists a function τ in L1(g0ν) such that: ∀M ∈ M and ∀ψ ∈ ΨM ,
| ln gM,ψ| < τ ν-a.e.
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(ii) There exists a positive constant L < ∞ such that ∀j ∈ {1, . . . , J} and ∀xj ∈ Xj, |η′kj(xj)| ≤ L.

(iii) Each variable j is defined on a compact space Xj and its densities for each component k, denoted
by ηkj, are strictly positive except on a set of Lebesgue measure zero.

Assumption 3. (i) an,M,B is an increasing function of K, |Ω| and B.

(ii) For any model M , an,M,B/n tends to 0 as n tends to infinity.

(iii) For any model M , B/an,M,B tends to 0 as n tends to infinity.

(iv) For any models M and M̃ with M ⊂ M̃ , the limit inf of a
n,M̃,B

/an,M,B is strictly larger than one
as n tends to infinity.

Assumption 4. (i) The number of bins B tends to infinity with n in the following way limn→∞ B =
∞ and limn→∞ B(ln2 n)/n1/2 = 0.

(ii) The length of each bin is not zero and satisfies, for any j ∈ {1, . . . , J} and any b ∈ {1, . . . , B},
l−1
Bjb = O(B).

(iii) Let IjB be the set of the upper bounds of the B intervals, then, for any value xj ∈ Xj, d(xj , IjB)
tends to zero as B tends to infinity.

Assumption 1 is derived from the conditions of identifiability for finite mixtures of non-parametric
product measures (see Theorems 8 and 9 in Allman et al. (2009)). Because Theorems 8 and 9 in Allman
et al. (2009) consider all the variables as relevant for clustering, we need to extend their assumptions such
that there are at least three relevant variables to obtain the identifiability of the model (2). Note that
this assumption implies the identifiability of the parameters that is required for the proposed method
since it relies on the penalized likelihood. Remark that this assumption is not required by the rank-based
methods.

Assumption 2 gives sufficient conditions on the component distributions to ensure that the results
of Dacunha-Castelle and Gassiat (1999) can be applied to the mixture model obtained after discretiza-
tion. Note that Assumption 2(iii) was used to obtain a lower bound on minj,b,k

∫
IBjb

ηkj(xj)dxj (see

Section A.3.4). However, unlike Kasahara and Shimotsu (2014) and Kwon and Mbakop (2021), Assump-
tion 2(iii) does not allow for the support of relevant variables to vary across different mixture components
and does not allow for some of the variables in X to be discrete. In econometrics, support variations are
often used to justify the full-rank condition needed for the identification of finite mixture models (see
An et al. (2010)). Since we do not have guarantees on the proposed procedure when Assumption 2(iii)
does not hold true, we investigate its performances on numerical experiments by considering mixture of
uniform distributions with disjoint supports in Section B.4 of the supplementary material.

Assumption 3 presents standard conditions for penalized likelihood model selection in the case of
embedding models. It generalizes the usual conditions for selecting the number of components (Keribin,
2000; Gassiat, 2002; Chambaz et al., 2006) to the case of feature selection for mixture models. Condi-
tions (i) and (iii) permit avoiding the overestimation of the model (i.e., overestimation of the number
of components or of the support of the relevant variables), while condition (ii) permits avoiding the
underestimation of the model by making the penalty term negligible with respect to the model bias.
Note that Assumption 3 allows the BIC penalty to be considered.

Even if Assumption 1 provides sufficient conditions to obtain the identifiability of model (2), after
the discretization, model (3) could be not identifiable if the number of intervals B were fixed. As an
example, one can consider a bi-component mixture model with equal proportions defined with a first
component following a product of J ≥ 3 beta distributions Be(α, α) and a second component following
a product of J ≥ 3 beta distributions Be(2α, 2α), with α ≥ 1. This model is identifiable but the model
(3) defined after the discretization of each variable into two bins of equal size (e.g., for any j, σj1(u) = 1
if 0 ≤ u ≤ 1/2, σj1(u) = 0 if 1/2 < u ≤ 1 and σj2(u) = 1− σj1) is not identifiable (i.e., the two mixture
components follow the same distribution for the discretized data). However, if the number of bins is
strictly larger than two and if each interval has a length not equal to zero, then the model (3) becomes
identifiable.

The model identifiability is obtained by Assumption 4 that states conditions on the discretization. In
particular, the number of levels has to tend to infinity when the sample size increases in such a way that
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the size of the largest interval tends to zero when the sample size tends to infinity. However, its growth
rate has to be upper bounded, which is a key point to control the convergence of the estimators. Note
that Assumption 4(iii) uses the same ideas as Lemma 17 in Allman et al. (2009) and that this condition is
not stringent. For instance the bounds of the intervals can be determined by the quantiles 1/B, . . . , B/B.
In addition, the sizes ljb can vary from one bin to another. This is for instance the case when we consider
the quantiles. However, we cannot allow a bin to be exponentially small with n, in order to keep the
asymptotic behavior of our estimator which is stated in the next subsection. Note that Assumption 4
allows to consider the rate B = n1/3 that is usual for bin-density estimation. Finally, since we have
an upper bound Kmax on the number of components, it could be natural to consider discretizations
with at most Kmax bins. Indeed, from Kasahara and Shimotsu (2014), it is known that there exists
at least one discretization ensuring the identification of K. Therefore, considering Kmax bins for each
discretization could be reasonable. However, because the discretization ensuring the identification of K
is unknown (see the counter-example described in the previous paragraph), this approach is not feasible
in practice and so we make B tends to infinity (at an appropriate rate to control the convergence of the
maximum likelihood statistics). If a procedure would be developed to obtain the discretization ensuring
the identification of K, then it would permit to consider a fixed-size discretization. Note that consistency
of the procedure of Kasahara and Shimotsu (2014) (and not consistency to a lower bound of K) could
be obtained by allowing the number of bins to increase with the sample size, if a control of the statistic
of Kleibergen and Paap (2006) could be obtained with an increasing dimension matrix having fixed
rank. Similar reasoning could be extended to methods based on transformed moments of the univariate
distributions (Bonhomme et al. (2016), Bonhomme et al. (2016) and Bonhomme et al. (2017)) to avoid
the assumptions made on rank of some matrices (see for instance Assumption 3 in Bonhomme et al.
(2017)). Indeed, such an assumption could not be satisfied for a fixed number of transformed moments.
Thus, considering an increasing number of transformed moments would permit avoiding this assumption
but would imply to control the accuracy of the estimator and also to adapt the procedure described in
Section 5 of the supplementary material of Bonhomme et al. (2016) to the case of matrices with increasing
dimensions. Finally, note that increasing B ensures that the model is not underestimated because of
the discretization. Increasing B can thus be seen as a reduction of the bias. However, by giving an
upper bound on the increase of B, a control of the supremum of the maximum likelihood statistics can
be obtained. Upper bounding B can thus be seen as a sufficient condition to control the variance of the
estimators.

Finally, the assumption on the compactness of Xj can be relaxed if some densities defined on R are
wanted to be considered. In such case, the estimates of the densities are considered on the compact
[mini xij ,maxi xij ] defined from the observed sample, and the estimates of the densities are zero outside
this interval. It could be seen as adding two bins outside the range of the data, with associated parameters
αBkjb being equal to zero. However, note that if the densities are defined on R then the convex hull of
the data will grow with the sample size. Thus, assumptions on the tails of the distributions should be
made to ensure that Assumptions 4 still hold. Note that those assumptions are similar to those ensuring
the consistency of density estimation per histogram.

3.2 Convergence in probability of the estimator

We state the consistency of the estimator M̂n,B then we give its (sketch of) proof. Note that the proof of
all the numbered equations are given in Section A of the Supplementary Materials. Finally, we explain
the key points of the proof which are different from the proof of the consistency of information criteria
for parametric mixture models stated in Keribin (2000).

Theorem 1. Assume that independent data arise from (2) with the true model M0 = {K0,Ω0}, that
Assumptions 1, 2, 3 and 4 hold true, and that the set of competing models M is defined with a known
upper bound for the number of clusters Kmax. Then, M̂n,B converges in probability to M0.

Proof of Theorem 1. The proof is divided into three parts: the case where M0 is underestimated (i.e.,
K < K0 or Ω0 ̸⊆ Ω), the case where the subset of the relevant variables is overestimated with K0 (i.e.,
K = K0 and Ω0 ⊊ Ω) and the case where the number of components and the subset of relevant variables
are overestimated (i.e., K > K0 and Ω0 ⊆ Ω).
• Part 1: We consider the case where M0 is underestimated. Thus, we consider the set of models

N1 = {M = {K,Ω} ∈ M : K < K0 or Ω0 ̸⊆ Ω}.
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The probability to underestimate the true model can be upper-bounded as follows

P(M̂n,B ∈ N1) ≤
∑

M∈N1

P(Wn,M,B −Wn,M0,B ≥ 0).

For any gM,ψ given by model (2), Assumption 2(i) implies that Eg0 [ln gM,ψ] is defined. The Kullback-
Leibler divergence from model M to the true distribution g0 is defined by

KL(g0,GM ) := inf
ψ∈ΨM

Eg0

[
ln

g0
gM,ψ

]
.

Noting that by definition N1 = {M ∈ M : K < K0}∪ {M ∈ M : ∃j0 ∈ Ω0 such that j0 /∈ Ω}, the model
M0 is not included in any model of N1. Therefore, using the definition of N1 and the identifiability of
g0 (ensured by Assumption 1), for each M ∈ N1, there exists some δM > 0 such that KL(g0,GM ) ≥ δM .
In Section A.1 of the Supplementary Materials, we prove the following asymptotic bound in probability:

1

n
(Tn,M,B − ℓn(g0)) ≤ −δM + oP(1). (5)

The proof of (5) holds true for the true model M0 but, in this case, δM0 = 0, which implies that
1
n |Tn,M0,B − ℓn(g0)| = oP(1). Noting that 1

n (Wn,M,B − Wn,M0,B) = 1
n (Tn,M,B − ℓn(g0) + ℓn(g0) −

Tn,M0,B −an,M,B +an,M0,B) and using the properties of the penalty (see Assumption 3), we deduce that
for any M ∈ N1

1

n
(Wn,M,B −Wn,M0,B) ≤ −δM + oP(1).

Therefore, noting that δM > 0 and that the cardinal of N1 is fixed and finite, we have

lim
n→∞

P(M̂n,B ∈ N1) = 0. (6)

Thus, the probability of underestimating the model tends to zero as n tends to infinity.
• Part 2: We consider the case where the number of components is correct but the subset of the relevant
variables is overestimated. Thus, we consider a model M ∈ N2 where

N2 = {M = {K,Ω} ∈ M : K = K0 and Ω0 ⊊ Ω}.

We have the following upper-bound

P(M̂ ∈ N2) ≤
∑

M∈N2

P(Wn,M,B ≥ Wn,M0,B) =
∑

M∈N2

P
(
Tn,M,B − Tn,M0,B

an,M0,B
≥ an,M,B

an,M0,B
− 1

)
.

Noting that N2 = {M = {K,Ω} ∈ M : K = K0;∀j0 ∈ Ω0, j0 ∈ Ω and ∃j1 ∈ Ω, j1 /∈ Ω0}, we have
that true model M0 is included in any model of N2 leading that the Kullback-Leibler divergence from
any model M to g0 is null. Since for any M ∈ N2, we have δM = 0, the reasoning used to demonstrate
that M0 is not underestimated cannot be used here. However, the models on N2 are identifiable because
K = K0. Thus, using usual results on likelihood ratio, for a fixed value of B, 2 (Tn,M,B − Tn,M0,B) is
asymptotically distributed like a χ2(∆) where ∆ is given by the difference of the dimensions of both
parameter spaces ∆ = (B − 1)(K − 1)(|Ω| − |Ω0|). However, since B tends to infinity as n tends to
infinity, the control of (Tn,M,B − Tn,M0,B) has to be made carefully, see Section A.2, in order to state
that under Assumption 3 (iii)

Tn,M,B − Tn,M0,B

an,M0,B
= oP(1). (7)

For any M ∈ N2, Assumption 3 (iv) implies that an,M,B/an,M0,B − 1 > 0, thus, as the cardinal of N2 is
finite and does not depend on B, we can conclude that

lim
n→∞

P(M̂ ∈ N2) = 0. (8)

• Part 3: We consider the case where the number of components and the subset of the relevant variables
are overestimated. Thus, we consider a model M ∈ N3 where

N3 = {M = {K,Ω} ∈ M : K0 < K ≤ Kmax and Ω0 ⊆ Ω}.
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Note that N3 = M\ {N1 ∪N2 ∪M0}. The probability of overestimating the model (i.e., M̂ ∈ N3) can
be upper-bounded by

P(M̂ ∈ N3) ≤
∑

M∈N3

P(Wn,M,B ≥ Wn,M0,B).

Note that for any M ∈ N3, we have δM = 0 and thus the reasoning used to demonstrate that M0 is
not underestimated cannot be used. Moreover, because for M ∈ N3, K > K0, the model suffers from a
loss of identifiability implying that the likelihood ratio must be carefully investigated. We have, for any
M ∈ N3

P (Wn,M,B ≥ Wn,M0,B) = P
(
Tn,M,B − ℓn(f0,B)

an,M0,B
≥ an,M,B

an,M0,B
− 1

)
.

First, we establish an upper-bound of the probability of {Wn,M,B ≥ Wn,M0,B} which holds true for any
value of B (see (11)). We then show that, under Assumptions 1-4, the terms of this upper-bound tend
to zero with the sample size even if B grows with the sample size.
The distribution of Tn,M,B − ℓn(f0,B) can be established for any value of B by applying the locally-conic
parametrization proposed by Dacunha-Castelle and Gassiat (1997, 1999) on model (3), and noting that
Assumption 2 holds true, we can rewrite the log-likelihood ratio as in the proof of Lemma 3.3 in Keribin
(2000)

Tn,M,B − ℓn(f0,B)

= sup

{
sup
d∈DB

1

2
G2
n(d)1Gn(d)≥0; sup

d1∈D1B ,d2∈D2B

1

2

(
G2
n(d1) + G2

n(d2)1Gn(d2)≥0

)}
(1 + oP(1)) (9)

where, for each function d, Gn(d) = n−1/2
∑n

i=1 d(Xi); the considered spaces of functions as well as the
definition of f0,B are detailed in Section A.3 of the Supplementary Material. Note that

sup
d∈DB

1

2
G2
n(d)1Gn(d)≥0 ≤ 1

2

(
sup
d∈DB

Gn(d)

)2

.

In addition, as D1B and D2B are subspaces of DB , we have

sup
d1∈D1B ,d2∈D2B

1

2

(
G2
n(d1) + G2

n(d2)1Gn(d2)≥0

)
≤

(
sup

d∈DB,s

Gn(d)

)2

,

where DB,s is the symmetrized space DB ∪ (−DB). Therefore, we deduce that

Tn,M,B − ℓn(f0,B) ≤

(
sup

d∈DB,s

Gn(d)

)2

(1 + oP(1)).

Thus, using the fact that DB,s is a symmetric space, we obtain that, for any ε > 0, for n sufficiently
large, {

Tn,M,B − ℓn(f0,B)

an,M0,B
> 4ε

}
⊂

{∣∣∣∣∣ sup
d∈DB,s

Gn(d)

∣∣∣∣∣ > 2
√
εan,M0,B

}
. (10)

Note that under our Assumptions, for a fixed value B⋆ of B, supd∈DB⋆,s
Gn(d) converges in distribution

to supd∈DB⋆,s
ξd (see Section A.3 in the Supplementary Materials) as n goes to infinity. However, as in

our context, B goes to infinity with n, leading that DB,s grows with n. We cannot directly conclude

that the probability of the event
{∣∣∣supd∈DB,s

Gn(d)
∣∣∣ > 2

√
εan,M0,B

}
tends to zero as n tends to infinity.

The previous equation implies that for any value of B,

P
(
Tn,M,B − ℓn(f0,B)

an,M0,B
> ε

)
≤

P

(∣∣∣∣∣ sup
d∈DB,s

ξd

∣∣∣∣∣ > √
εan,M0,B

)
+ P

(∣∣∣∣∣ sup
d∈DB,s

Gn(d)− sup
d∈DB,s

ξd

∣∣∣∣∣ > √
εan,M0,B

)
, (11)

10



where (ξd)d is a Gaussian process indexed by DB,s, with covariance the usual Hilbertian product on
L2
f0,B

.
In Section A.4, we show that, under Assumption 2, we can control the deviation of the supremum of

a Gaussian process indexed by a space with increasing dimension. Thus, we can control the first term on
the right-hand side of (11) by using existing deviation bounds for the supremum of Gaussian processes,
leading that

lim
n→∞

P

(
sup

d∈DB,s

ξd >
√
εan,M0,B

)
= 0. (12)

In Section A.5, using the results on the approximation of suprema of general empirical processes by a
sequence of suprema of Gaussian processes (Chernozhukov et al., 2014), we control the approximation
of suprema of general empirical processes by a sequence of suprema of Gaussian processes indexed on a
space with increasing dimension. Thus, we can control the second term on the right-hand side of (11)
by using existing deviation bounds for the supremum of Gaussian processes, which leads to

lim
n→∞

P

(∣∣∣∣∣ sup
d∈DB,s

Gn(d)− sup
d∈DB,s

ξd

∣∣∣∣∣ > √
εan,M0,B

)
= 0. (13)

Combining (12) and (13), we have for any ε > 0,

lim
n→∞

P
(
Tn,M,B − ℓn(f0,B)

an,M0,B
> ε

)
= 0. (14)

Noting that for any M ∈ N3, Assumption 3 implies that an,M,B/an,M0,B − 1 > 0 and noting that the
cardinal of N3 is finite and fixed (it does not depend on B), we obtain that

lim
n→∞

P(M̂ ∈ N3) = 0, (15)

which concludes the third part.
Combining equations (6), (8) and (15) leads to the convergence in probability of M̂ to M0.

Some comments: Note that the arguments used in Keribin (2000) to prove that underestimation is
avoided, cannot be used here. Indeed, the proof of Theorem 2.1 in Keribin (2000) considers parameters
that are defined on fixed dimensional space and thus cannot be used to obtain (5). In our context, we
require that B tends to infinity with n (see Assumption 4) to ensure the identifiability and thus the

convergence of infθ Eg0

[
ln fM0,B,θ⋆

M0,B
− ln fM,B,θ

]
to a quantity lower-bounded by δM where θ⋆M0,B

=

argmaxθ∈ΘM0,B
Eg0 [ln fM0,B,θ] (this convergence is ensured by Assumption 2(ii), as discussed in the

proof of (5)). Note that the existence of θ⋆M0,B
is ensured by the fact that ΘM0,B is compact and that

the Kullback-Leibler divergence is continuous.
Note also that the arguments used in Keribin (2000) to prove that overestimation is avoided cannot

be used here either. Indeed, despite the fact that Tn,M,B⋆ −ℓn(f0,B⋆) converges in distribution for a fixed
B⋆ and that 1/an,M,B⋆ tends to 0, we cannot directly conclude that P ([Tn,M,B − ℓn(f0,B)] /an,M,B > ε)
tends to zero as n tends to infinity, for any ε > 0 and any M ∈ N3. Indeed, in our context, the event
{[Tn,M,B − ℓn(f0,B)] /an,M,B > ε} is included in an event which involves a supremum over a functional
space with increasing dimension (see (10)) since we require that B tends to infinity with n to avoid the
underestimation (see Assumption 4).

Note that Part 2 is proven by making use of some results of Part 3, because any model in N2 can be
included in a model of N3, see Section A.2. However, an alternative proof of Part 2 could be obtained by
following the same reasoning as in the proof of Part 3 by noting that an equation similar to (9) should
be computed for a model belonging to N2. Such an equation would be slightly different from (9) since
there is no loss of identifiability for models in N2 while such a loss occurs for models in N3.
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3.3 Relaxing the knowledge on the upper bound of the number of compo-
nents

Theorem 1 considers an upper bound on the number of componentsKmax that holds fixed with the sample
size. However, in practical applications, the range of the possible values of K0 can be unknown leading
that Kmax is unknown too. Therefore, in this section, we extend the proposed method by allowing the
upper bound on the number of components Kmax to increase with the sample size. Thus, the consistency
of the procedure is ensured without any knowledge on the number of components, since there exists a
sample size that ensures that Kmax > K0. Since considering an increasing value of Kmax implies that
the space of the competing models as well as the space of the parameters have increasing dimensions,
the increase of both Kmax and B must be done at rates that are related to each other. The following
corollary gives sufficient condition to state the consistency of M̂n,B,K with an increasing upper bound of
the number of components. Note that despite the fact that the upper bound of components is allowed to
increase with the sample size, the true number of components K0 as well as the true subset of relevant
variables Ω0 do not change with the sample size. Thus, M0 stays fixed as n grows.

Corollary 1. Assume that independent data arise from (2) with true model M0 = {K0,Ω0} and that
Assumptions 1, 2, 3 and 4 hold true except Assumption 3.(iii) and Assumption 4.(i). If Kmax and B are
two integers which tend to infinity with n, limn→∞ Kmax = ∞ and limn→∞ B = ∞, and which satisfy
limn→∞(BKmax + lnKmax)/an,M,B = 0 and limn→∞ K2

maxB(ln2 n)/n1/2 = 0 then M̂n,B converges in
probability to M0.

To prove Corollary 1, first note that the spaces N1 and N2 hold fixed as Kmax tends to infinity and
thus (6) and (8) still hold true. Note that N3 increases as Kmax tends to infinity and that for any
model M ∈ N3, we have from Section A.4 and Section A.5 in the Supplementary Materials that for some
positive constant C

P
(
Tn,M,B − ℓnf0,B

an,M0,B
> ε

)
≤ 2 exp

(
−
√
εan,M0,B − κ̃

√
(Kmax − 1) +KmaxBJ

2ς2ξ

)
+ C

(
γn +

lnn

n

)
,

with γn = 4(bcKmaxBJ lnn)2

εan,M0,Bn1/2 . Noting that card(N3) < card(M) < Kmax2
J , we have

P(M̂ ∈ N3) ≤ Kmax2
J

(
2 exp

(
−
√
εan,M0,B − κ̃

√
(Kmax − 1) +KmaxBJ

2ς2ξ

)
+ C

(
γn +

lnn

n

))
.

The proof is concluded by noting that the conditions limn→∞(BKmax + lnKmax)/an,M,B = 0 and
limn→∞ K2

maxB(ln2 n)/n1/2 = 0 imply that the term in the right-hand side of the previous equation
tends to zero as n tends to infinity.

Note that the previous corollary only allows for a slow increase of Kmax. For instance, if a BIC-like
penalty is used, sinceKmax does not appear in the penalty term, thenKmax should satisfy limn→∞(Kmax+
lnKmax)/ lnn = 0. However, even if only a slow increase of Kmax can be considered, the previous Corol-
lary avoids the use of a fixed upper bound for the number of components (as n tends to infinity) and thus
a consistent approach can be obtained even if there is no information about the range of the possible
values of K0.

4 Estimation of the best model

The estimation of M̂n,B requires an optimization over a discrete space whose cardinal is of order 2JKmax.
Thus, an exhaustive approach computing Wn,M,B for each M in M is not doable in practice. As the
combinatorial issue is mainly due to the feature selection, we follow the approach of Marbac et al.
(2019) that consists of simultaneously performing feature selection and parameter estimation, with a
fixed number of components, via a specific EM algorithm optimizing the penalized likelihood. Thus, for
a fixed value of K, the goal of the algorithm is to estimate

M̂n,B,K = argmax
{M={K,Ω} with Ω⊆{1,...,J} and |Ω|≥3}

Wn,M,B .
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The following EM algorithm permits the estimation of the model parameters and the detection of the
subset of relevant variables, for a fixed number of components K. This algorithm ensures that the
penalized log-likelihood increases at each iteration. Thus, parameter estimation is achieved by maximum
likelihood and model selection is done with an information criterion with penalty an,K,Ω,M = νK,Ω,Mcn
where νK,Ω,M = (K − 1) + |Ω|K(B − 1) + (J − |Ω|)(B − 1) is the number of model parameters. The
algorithm considers a fixed number of components K and starts at an initial point {Ω[0], θ[0]}. Its
iteration [r] is composed of two steps:
E-step Computation of the fuzzy partition

t
[r]
ik :=

π
[r−1]
k

∏
j∈Ω[r−1]

∏B
b=1

(
α
[r−1]
Bkjb

)σBjb(xij)

∑K
ℓ=1 π

[r−1]
ℓ

∏
j∈Ω[r−1]

∏B
b=1

(
α
[r−1]
Bℓjb

)σBjb(xij)
,

M-step Maximization of the expectation of the penalized complete-data log-likelihood over Ω and θ
such

Ω[r] = {j : ∆[r]
j > 0}, π[r]

k =
n
[r]
k

n
and α

[r]
Bkjb =

{
α̃
[r]
Bkjb if j ∈ Ω[r]

ᾱBkjb otherwise
,

where

∆
[r]
j =

n∑
i=1

B∑
b=1

σBjb(xij)

K∑
k=1

t
[r]
ik ln

(
α̃
[r]
Bkjb

ᾱBkjb

)
− (K − 1)(B − 1)cn

is the difference between the maximum of the expected value of the penalized complete-data log-likelihood
obtained when variable j is relevant and when it is irrelevant, with

α̃
[r]
Bkjb =

1

n
[r]
k

n∑
i=1

t
[r]
ik σjb(xij), ᾱBkjb =

1

n

n∑
i=1

σjb(xij) and n
[r]
k =

n∑
i=1

t
[r]
ik .

Note that, when less than three variables get a positive value for ∆
[r]
j , the M-step selects in Ω[r] the

three variables having the largest values of ∆
[r]
j . To obtain the pair Ω and θ maximizing the penalized

observed-data log-likelihood, for a fixed number of components, many random initializations of this
algorithm should be done. Hence, the model (i.e., K and Ω) and the parameters maximizing the
penalized observed-data log-likelihood are obtained by performing this algorithm for every values of
K between 1 and Kmax. By considering cn = (lnn)/2, this algorithm carries out the model selection
according to the BIC.

From the previous algorithm, we obtain an estimator of the model and of its parameters. Indeed,
α̂Bkjb/lBjb estimates the density ηkj(u) for any u such that σjb(u) = 1. However, the bin-based density
estimators are generally outperformed by kernel-based estimators. Thus, we advise to use the proposed
approach only for model estimation. Then, for the selected model, kernel-based density estimates pro-
vided by the EM-like algorithm (Benaglia et al., 2009) or by maximizing the smoothed log-likelihood
(Levine et al., 2011) should be considered. However, note that establishing asymptotic properties of
those kernel-based density estimators is still an open question.

5 Numerical experiments

5.1 Investigating the impact of the discretization

The proposed procedure implies to define a number of bins B as well as the location of the bins. Despite
the fact that the discretization must respect Assumptions 3 and 4, there are many ways to perform
this discretization. Two natural procedures can be considered for the discretization: one can consider a
discretization of each [mini xij ,maxi xij ] into B bins of equal sizes (as it is done for histograms) or one
can consider a discretization based on the empirical quantiles 1/B,...,B/B implying that σjb(u) = 1 only
if u ∈ [qjb−1, qjb] and σjb(u) = 0 otherwise, with qj0 = mini xij , qjB = maxi xij and qjb is the empirical
quantile of order b/B for b = 1, . . . , B − 1. Moreover, only a growth rate for the number of bins B is
stated by Assumption 4. Thus, we could consider different rates for the growth of B with n: [n1/7],
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[n1/6], [n1/5], [n1/4] and [n1/3]. This section presents a numerical experiment that aims at providing
some advises on the procedure of discretization.

Data are generated from a mixture with three components considering well-balanced clusters (i.e.,
equal proportions πk = 1/3) and unbalanced clusters (i.e., π1 = 7/12, π2 = 3/12 and π3 = 2/12).

The density of Xi given Zi is a product of J univariate densities such that Xij =
∑K

k=1 zikδkj + ξij
where all the ξij are independent and where δku = τ if u is a multiple of k and δkj = 0 otherwise,
which implies all the variables are relevant for clustering. Three distributions are considered for the
ξij (standard Gaussian, Student with three degrees of freedom and Laplace) and different values of J
are considered while the value of τ is defined to obtain a theoretical misclassification rate of 5%. For
each setup, 100 replicates are generated. Table 1 presents the percentage of replicates where the method
selects the true number of components obtained for well-balanced clusters, by considering Kmax = 6 and
different procedures of discretization and J = 6 relevant variables. Table 2 presents the percentage of
replicates where the method selects the true number of components obtained for the unbalanced clusters,
by considering Kmax = 6 and different procedures of discretization J = 6 relevant variables. Section B.1
presents similar results obtained with J = 12 and J = 24 variables.

Table 1: Percentage where the method selects the true number of components from data generated from
the well-balanced clusters when a discretization is done with quantiles or equal-size bins and different
number of bins [n1/7], [n1/6], [n1/5], [n1/4] and [n1/3], for different families of components and J = 6
variables (all the variables being relevant).

Method Band. Gaussian Student Laplace
sample size sample size sample size

100 250 500 1000 100 250 500 1000 100 250 500 1000

quantile n1/7 72 100 100 100 91 100 100 100 86 100 100 100
n1/6 72 100 100 100 91 100 100 100 86 100 100 100
n1/5 66 100 100 100 79 100 100 100 77 100 100 100
n1/4 66 100 100 100 79 100 100 100 77 100 100 100
n1/3 1 92 100 100 6 96 100 100 3 95 100 100

equal-size n1/7 9 81 100 100 0 3 78 98 0 0 47 98
n1/6 9 69 100 100 0 0 11 98 0 0 15 98
n1/5 0 69 100 100 0 0 11 79 0 0 15 98
n1/4 0 69 100 100 0 0 1 47 0 1 78 100
n1/3 0 4 100 100 0 1 30 91 0 10 91 100

Table 2: Percentage where the method selects the true number of components from data generated from
the unbalanced clusters when a discretization is done with quantiles or equal-size bins and different
number of bins [n1/7], [n1/6], [n1/5], [n1/4] and [n1/3], for different families of components and J = 6
variables (all the variables being relevant).

Method Band. Gaussian Student Laplace
sample size sample size sample size

100 250 500 1000 100 250 500 1000 100 250 500 1000

quantile n1/7 3 72 98 100 19 79 100 100 16 72 100 100
n1/6 3 73 100 100 19 92 100 100 16 88 100 100
n1/5 3 73 100 100 19 92 100 100 11 88 100 100
n1/4 3 51 97 100 19 67 100 100 11 74 100 100
n1/3 0 5 22 99 0 8 49 100 0 15 57 100

equal-size n1/7 1 21 68 100 0 0 7 15 0 0 3 7
n1/6 1 4 60 100 0 0 1 15 0 0 0 7
n1/5 0 4 60 100 0 0 1 0 0 0 0 8
n1/4 0 3 37 100 0 0 0 0 0 0 6 93
n1/3 0 0 8 97 0 0 0 10 0 0 4 68
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Results illustrate the consistency of the method and show that the choice of the number of bins
impacts the results for small samples. Moreover, the case of unbalanced data is more complex and
thus the proposed method requires a larger sample size that for the well-balance case. Based on this
experiment, we advise to use B levels defined by the B empirical quantiles. Moreover, considering a large
increasing rate for B seems to deteriorate the results, so we advice to use B = [n1/6] or B = [n1/7]. Note
that those advises are only based on this numerical experiment. For small sample sizes, other procedures
should be more efficient for some specific distributions of the components. However, the discretization
procedure that we advise, respects Assumption 3 and 4 and seems to have a good behavior in all the
situations considered during the experiment.

5.2 Comparing the methods for selecting the number of components

In this section, we assess the performance of our estimator of the number of components without consider-
ing the task of variable selection (i.e., Ω = {1, . . . , J} is supposed to be known). We consider the estimator
K̂ obtained with a BIC penalty and B levels defined by the empirical quantiles 1/B,...,B/B implying
that σjb(u) = 1 only if u ∈ [qjb−1, qjb] and σjb(u) = 0 otherwise, with qj0 = mini xij , qjB = maxi xij and
qjb the empirical quantile of order b/B for b = 1, . . . , B − 1. Three values of B are investigated: [n1/5],
[n1/6] and [n1/7], where [.] denotes the closest integer. Our estimator is compared to the procedure of
Kwon and Mbakop (2021) SVT and to the procedures of Kasahara and Shimotsu (2014) max ave-rk+

statistics with M0 = 4. For the comparison, we consider the simulation setup of Kasahara and Shimotsu
(2014). This setup originally considers four designs with two variables and one design with eight vari-
ables (Design 5). Our approach cannot be used when only two variables are observed for identifiability
issues. This is a drawback of the proposed method that requires the parameter identifiability (ensured
by Assumption 1) since this method relies on the penalized log-likelihood. Note that the case of bivariate
data can be handled by Kasahara and Shimotsu (2014), despite the fact that the model parameters can-
not be non-parametrically identified for such mixture models (Hall and Zhou, 2003). Indeed, Kasahara
and Shimotsu (2014) show that the number of components K can be identified for bivariate data under
weaker conditions than Assumption 1 which do not ensure the parameter identifiability. Note that the
approaches of Kasahara and Shimotsu (2014) and Kwon and Mbakop (2021) are based on estimators
of bivariate density and we advise to use these methods for bivariate data (in this case variable selec-
tion does not make sense). However, these methods suffer from computational issues if the number of
variables is large (explaining that we do not run these methods on the next section) while the proposed
method does not suffer from this problem. This illustrates the complementarity of the three approaches.
We simulate 1000 samples of size n = 500 and of size n = 2000 from a mixture of three Gaussian dis-
tributions (see numerical experiments in Kasahara and Shimotsu (2014) and Kwon and Mbakop (2021))
defined with equal proportions, centers µ1 = (0, 0, 0, 0, 0, 0, 0, 0)⊤, µ2 = (1, 2, 0.5, 1, 0.75, 1.25, 0.25, 0.5)⊤

and µ3 = (2, 1, 1, 0.5, 1.25, 0.75, 0.5, 0.25)⊤ and covariance matrices equal to the identity matrix of size
eight.

Table 3: Empirical probabilities of selecting the different numbers of clusters.

n = 500 n = 2000
K = 1 K = 2 K = 3 K ≥ 4 K = 1 K = 2 K = 3 K ≥ 4

BIC with B = n1/7 0.000 0.996 0.004 0.000 0.000 0.517 0.483 0.000
BIC with B = n1/6 0.001 0.999 0.000 0.000 0.000 0.876 0.124 0.000
BIC with B = n1/5 0.001 0.999 0.000 0.000 0.000 0.992 0.008 0.000

SVT 0.000 0.992 0.008 0.000 0.000 0.493 0.507 0.000
ave-rk 0.142 0.810 0.047 0.001 0.005 0.776 0.214 0.005

AIC by ave-rk 0.012 0.867 0.119 0.003 0.000 0.587 0.399 0.013
BIC by ave-rk 0.284 0.715 0.001 0.000 0.035 0.942 0.023 0.000
HQ by ave-rk 0.078 0.909 0.013 0.000 0.004 0.878 0.117 0.001

Table 3 presents the outcome of the simulation. Note that the results of the approaches of Kasahara
and Shimotsu (2014) and Kwon and Mbakop (2021) arise from Section 4 in Kwon and Mbakop (2021)
and thus are not obtained on the same samples. For n = 500, all the procedures performs poorly by
mainly selecting two components. The best approach is the AIC (ave-risk) procedure. The proposed
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approach obtains similar results than the SVT approach which are worse than those of the AIC procedure.
However, when the sample size increases (n = 2000), the SVT approach obtains the best results (the
true number of components is detected 50.7% of time). The proposed method obtains also good results
(the true number of components is detected 48.3% of time) when B = [n1/7] but its results deteriorate
when the number of levels grows faster (i.e., B = [n1/6] and B = [n1/5]). This illustrates that the results
of the proposed method are sensitive to the choice of the number of levels used for the discretization,
for a fix sample size. However, all the growth rates of the number of levels respecting Assumption 4.(i)
provide consistent estimator as illustrated by the additional experiments presented in Section B of the
Supplementary Materials.

5.3 Comparing the methods for a full model selection

This section compares approaches for a full model selection (i.e., estimation of the subset of the relevant
variables and on the number of components) on simulated data. We compare the proposed approach
with a BIC applied on a Gaussian mixture model, with the sparse K-means approach and with the
non-parametric approach considering all the variables as relevant. The results of the proposed clustering
method are obtained by performing full model selection with B levels defined by the empirical quantiles
1/B,...,B/B where B = [n1/6] and a BIC like penalty and then by estimating the mixture components
for the selected model by maximizing the smoothed log-likelihood with a bandwidth, for variable j, equal
to σ̂jn

−1/5 where σ̂j is the empirical standard deviation of variable j. Thus, when the discretization is
performed, the model selection can be achieved via the R package VarSelLCM (Marbac and Sedki, 2019)
then, when the best model is selected, the maximization of the smoothed log-likelihood is achieved via
the R package mixtools (Benaglia et al., 2009). The parametric mixture model considers that all the
components are Gaussian (this approach is also implemented in the R package VarSelLCM) and uses
the BIC to perform model selection. The sparse K-means approach is implemented in the R package
sparcl (Witten and Tibshirani, 2010) and consists in the sparse K-means algorithm initialized with the
partition provided by the sparse hierarchical ascendant classification with the “average” method. The
sparse K-means estimates weights for the variables and thus we consider that a variable is claimed to
be relevant if its weight is more than ι and that a variable is irrelevant if its weight is less than ι,
where the small threshold ι = 10−6 is introduced to avoid numerical issues. Finally, the non-parametric
mixture model is implemented the R package mixtools (Benaglia et al., 2009) and considers the estimator
maximizing the smoothed log-likelihood with a bandwidth, for variable j, equal to σ̂jn

−1/5 where σ̂j

is the empirical standard deviation of variable j. To compare the different methods of clustering, we
generate data from a mixture with three components and equal proportions (πk = 1/3). The density of

Xi given Zi is a product of univariate densities such that Xij =
∑K

k=1 zikδkj + ξij where all the ξij are
independent and where δ11 = δ12 = δ23 = δ24 = δ35 = δ36 = τ , while all remaining δkj = 0, which implies
that only the first six variables are relevant for clustering. Three distributions are considered for the ξij
(standard Gaussian, Student with three degrees of freedom and Laplace) and the value of τ is defined
to obtain a theoretical misclassification rate of 5% (τ is equal to 1.94, 2.60 and 2.52 for the Gaussian,
Student and Laplace distributions respectively). In the Section B of the Supplementary Materials, all
the experiments are also run with theoretical misclassification rates equal to 10% and 15%.

Selection of the discriminative features To investigate the performances of the competing meth-
ods for feature selection, we first consider the situation with a known number of components. Thus, the
model selection consists in performing the feature selection. We consider the methods which automat-
ically provide an estimator of the relevant variables (i.e., the proposed method, sparse K-means and
VarSelLCM). Accuracy of this selection is measured by sensitivity (probability to detect as relevant a
true discriminative variable) and specificity (probability to detect as irrelevant a true non discriminative
variable). Table 4 and 5 present the sensibility and the specificity obtained by the proposed approach
and the parametric approach. They exhibit an advantage of the parametric method when the distribu-
tion is well-specified, but only for small samples (n = 100). The reason is that, for such samples, the
proposed method only finds a part of the relevant variables. However, both methods perform well for
larger samples. Moreover, the proposed method obtains similar results for the two other distributions of
the components while the results of the parametric approach are strongly deteriorated for both sensibility
and specificity, especially for heavy tailed distributions (e.g., Student distribution).
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Table 4: Mean of the sensitivity (Sen.: card(Ω̂∩Ω)/6) for the feature selection obtained by the proposed
method (Proposed method), the parametric method (VarSelLCM) and the sparse K-means (Sparcl)
on 100 replicates for each scenario with theoretical misclassification rate of 5%, when the number of
components is known.

Proposed method VarSelLCM Sparcl
n n n

Component J 100 250 500 100 250 500 100 250 500
Gaussian 20 0.81 1.00 1.00 1.00 1.00 1.00 0.86 0.91 0.95

50 0.66 0.99 1.00 0.96 1.00 1.00 0.91 0.95 0.97
100 0.35 0.70 1.00 0.69 1.00 1.00 0.78 0.97 0.98

Student 20 0.82 1.00 1.00 0.35 0.42 0.50 0.74 0.80 0.81
50 0.69 1.00 1.00 0.10 0.13 0.21 0.72 0.74 0.79
100 0.53 0.90 1.00 0.08 0.15 0.15 0.56 0.74 0.79

Laplace 20 0.86 1.00 1.00 0.93 1.00 1.00 0.81 0.83 0.81
50 0.72 1.00 1.00 0.55 1.00 1.00 0.89 0.91 0.91
100 0.52 0.89 1.00 0.19 0.89 1.00 0.82 0.95 0.94

Table 5: Mean of the specificity (Spe.: card(Ω̂c ∩ Ωc)/(J − 6)) for the feature selection obtained by
the proposed method (Proposed method), the parametric method (VarSelLCM) and the sparse K-means
(Sparcl) on 100 replicates for each scenario with theoretical misclassification rate of 5%, when the number
of components is known.

Proposed method VarSelLCM Sparcl
n n n

Component J 100 250 500 100 250 500 100 250 500
Gaussian 20 0.98 1.00 1.00 1.00 1.00 1.00 0.79 0.66 0.50

50 0.98 1.00 1.00 1.00 1.00 1.00 0.71 0.45 0.30
100 0.98 1.00 1.00 1.00 1.00 1.00 0.75 0.39 0.22

Student 20 0.97 1.00 1.00 0.70 0.57 0.47 0.77 0.58 0.61
50 0.98 1.00 1.00 0.74 0.66 0.58 0.79 0.83 0.62
100 0.98 1.00 1.00 0.76 0.69 0.63 0.85 0.85 0.76

Laplace 20 0.98 1.00 1.00 0.94 0.96 0.97 0.76 0.85 0.83
50 0.98 1.00 1.00 0.92 0.97 0.97 0.75 0.78 0.74
100 0.99 1.00 1.00 0.92 0.97 0.98 0.75 0.62 0.64

Full model selection We now compare both non-parametric and parametric approaches on their
performances for full model selection. Table 6 presents the statistics on the number of components
selected by both approaches. Again, when the distribution of the components is well-specified, the
parametric approach obtains better results on small samples because the proposed approach tends to
underestimate the number of components. However, when the sample size increases, both methods
perform similarly. When the distribution of the components is not Gaussian, the parametric method
performs poorly and asymptotically overestimates the number of components with probability one. The
proposed method is consistent for any number of variables, however, it tends to underestimate the number
of components for small samples.

Table 7 presents the sensitivity and the specificity for feature selection obtained by both approaches
when the number of components is also estimated. Again, results show the benefits of the proposed
approach when the parametric assumptions are violated. In such a case, the parametric approach over-
estimates the number of components and, for heavy tail distributions (e.g., Student distribution), this
approach tends to overestimate the subset of relevant variables. Moreover, for the small samples, the
sensitivity is quite low explaining the tendency of overestimating the number of components.

Accuracy of the partition We are now interested in investigating the accuracy of the estimated
partition. Thus, we compute the Adjusted Rand index (Hubert and Arabie, 1985) between the true
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Table 6: Probability to select the true number of components (Tr.) and to overestimate it (Ov.) obtained
by the proposed method (Proposed method) and the parametric method (VarSelLCM) on 100 replicates
for each scenario with theoretical misclassification rate of 5%, by performing a selection of the variables.

Component J Proposed method VarSelLCM
n = 100 n = 250 n = 500 n = 100 n = 250 n = 500
Tr. Ov. Tr. Ov. Tr. Ov. Tr. Ov. Tr. Ov. Tr. Ov.

Gaussian 20 0.46 0.00 1.00 0.00 1.00 0.00 0.94 0.00 1.00 0.00 1.00 0.00
50 0.27 0.00 0.98 0.00 1.00 0.00 0.86 0.01 1.00 0.00 1.00 0.00
100 0.05 0.00 0.62 0.00 1.00 0.00 0.54 0.00 1.00 0.00 1.00 0.00

Student 20 0.56 0.00 1.00 0.00 1.00 0.00 0.62 0.15 0.18 0.80 0.00 1.00
50 0.37 0.00 1.00 0.00 1.00 0.00 0.81 0.13 0.36 0.64 0.02 0.98
100 0.13 0.00 0.82 0.01 1.00 0.00 0.70 0.29 0.22 0.78 0.01 0.99

Laplace 20 0.57 0.00 1.00 0.00 1.00 0.00 0.77 0.08 0.34 0.66 0.00 1.00
50 0.33 0.00 1.00 0.00 1.00 0.00 0.40 0.00 0.51 0.49 0.01 0.99
100 0.15 0.00 0.88 0.01 1.00 0.00 0.09 0.00 0.61 0.21 0.01 0.99

Table 7: Mean of the sensitivity (Sen.: card(Ω̂∩Ω)/6) and the specificity (Spe.: card(Ω̂c∩Ωc)/(J−6)) for
the feature selection obtained by the proposed method (Proposed method) and the parametric method
(VarSelLCM) on 100 replicates for each scenario with theoretical misclassification rate of 5%, when the
number of components also is estimated.

Component J Proposed method VarSelLCM
n = 100 n = 250 n = 500 n = 100 n = 250 n = 500

Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. Sen. Sep.
Gaussian 20 0.97 0.82 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00

50 0.95 0.74 1.00 0.99 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00
100 0.94 0.59 1.00 0.94 1.00 1.00 0.99 0.87 1.00 1.00 1.00 1.00

Student 20 0.96 0.86 1.00 1.00 1.00 1.00 0.67 0.37 0.66 0.72 0.56 0.97
50 0.96 0.79 1.00 1.00 1.00 1.00 0.73 0.09 0.68 0.15 0.59 0.24
100 0.95 0.70 1.00 0.98 1.00 1.00 0.76 0.09 0.72 0.13 0.67 0.13

Laplace 20 0.97 0.87 1.00 1.00 1.00 1.00 0.92 0.90 0.96 1.00 0.91 1.00
50 0.97 0.80 1.00 1.00 1.00 1.00 0.86 0.44 0.97 1.00 0.96 1.00
100 0.95 0.72 1.00 0.99 1.00 1.00 0.84 0.13 0.96 0.83 0.98 1.00

partition and the estimators of the partition given by the non-parametric and the parametric methods
when K is known and then when it is estimated. Moreover, to illustrate the benefit of feature selection,
we also estimate the partition by considering the full variables as relevant and the true number of
components. Results are presented in Table 8. Thus, when the parametric assumptions are satisfied, the
parametric approach outperforms the proposed approach only on small samples (few observations with
respect to the number of variables), whenever the number of components is known or not. However, when
the parametric assumptions are violated, the proposed approach strongly outperforms the parametric
approach. Note that, when the number of irrelevant variables increases, the approach considering all
the variables for clustering performs poorly (see results with J = 100), illustrating the benefit of feature
selection for clustering.

5.4 Benchmark data

This section illustrates our procedure on four real data sets. The first data set illustrates the advantage
of the procedure for selecting the number of components while the second data set sheds light on the
importance of variable selection. The third data set shows that the procedure can be easily extended
to the case of mixed-type data sets (a data set composed of continuous and categorical data). The last
data set shows that the procedure can also be used to cluster data with non-ignorable missingness by
considering the semi-parametric mixture models defined in Du Roy de Chaumaray and Marbac (2023).
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Table 8: Mean values of the Adjusted Rand Index (ARI) obtained on the resulting partition when feature
selection is performed with the true number of components by the proposed method (proposed.K-known)
and by the parametric method (VarSelLCM.K-known), by the sparse K-means (Sparcl.K-known) and
by the model considering all the variables as relevant components (mixtools.K-known) and when the
full model selection (feature selection and estimation of the number of components) is achieved by the
proposed approach (proposed.K-unknown) and the parametric approach (VarSelLCM.K-unknown). Data
are generated with theoretical misclassification rate of 5%

J Method K known Gaussian Student Laplace
sample size sample size sample size

100 250 500 100 250 500 100 250 500
20 Proposed yes 0.67 0.84 0.85 0.66 0.81 0.83 0.70 0.83 0.84

VarSelCLM yes 0.81 0.85 0.86 0.15 0.12 0.10 0.65 0.77 0.79
sparcl yes 0.70 0.72 0.76 0.54 0.61 0.60 0.64 0.62 0.61

mixtools yes 0.71 0.81 0.83 0.59 0.72 0.78 0.68 0.80 0.82
Proposed no 0.61 0.85 0.85 0.62 0.82 0.84 0.66 0.83 0.84

VarSelCLM no 0.79 0.85 0.86 0.15 0.38 0.53 0.62 0.70 0.62
50 Proposed yes 0.56 0.84 0.85 0.56 0.81 0.84 0.62 0.84 0.84

VarSelCLM yes 0.79 0.85 0.85 0.01 0.00 0.00 0.34 0.75 0.77
sparcl yes 0.66 0.78 0.80 0.45 0.51 0.58 0.61 0.67 0.68

mixtools yes 0.33 0.71 0.79 0.22 0.51 0.66 0.30 0.66 0.77
Proposed no 0.51 0.84 0.85 0.56 0.81 0.84 0.56 0.84 0.84

VarSelCLM no 0.77 0.85 0.85 0.00 0.00 0.03 0.24 0.69 0.64
100 Proposed yes 0.30 0.61 0.85 0.43 0.73 0.83 0.42 0.75 0.84

VarSelCLM yes 0.55 0.84 0.86 0.00 0.00 0.00 0.10 0.65 0.77
sparcl yes 0.41 0.78 0.82 0.27 0.47 0.52 0.42 0.70 0.71

mixtools yes 0.12 0.36 0.74 0.09 0.18 0.41 0.11 0.29 0.64
Proposed no 0.34 0.69 0.85 0.42 0.75 0.83 0.44 0.79 0.84

VarSelCLM no 0.62 0.84 0.86 0.00 0.00 0.00 0.04 0.58 0.64

Swiss banknotes data We consider the Swiss banknotes data set (Flury, 1988) containing six mea-
surements (length of bill, width of left edge, width of right edge, bottom margin width, top margin width
and length of diagonal) made on 100 genuine and 100 counterfeit old-Swiss 1000-franc bank notes. This
data set is available in the R package mclust (Scrucca et al., 2016). The status of the banknote (genuine
or counterfeit) is also known. We perform the clustering of the bills based on the six morphological
measurements and we evaluate the resulting partition with the status of the bills. Considering all the six
morphological measurements as relevant for clustering, the proposed method detects two clusters which
are strongly similar to the status of the bill (the ARI is 0.98 and only one genuine bill is assigned to
the cluster grouping all the counterfeit bills). Clustering with Gaussian mixture models provides more
components (mclust selects three components and VarSelLCM selects four components) and a partition
related but different to the status of the bill (the ARI is 0.84 and 0.48 for mclust and VarSelLCM re-
spectively). When a full model selection (feature selection and estimation of the number of components)
is performed, the proposed method still selects two components and detects all the variables as relevant.
Thus, a full model selection approach provides the same results as a method used for selecting the clusters
by considering all the variables as relevant. Moreover, the Gaussian mixture models obtains less relevant
results because VarSelLCM considers that all the measurements are relevant and thus obtains the same
results as without performing feature selection.

Chemical properties of coffees We consider the data set collected by Streuli (1973) that reports on
the chemical composition of coffee samples collected from around the world. A total of 43 samples were
collected from 29 countries, with beans from both Arabica and Robusta species, which is often considered
as a pertinent partition. This data is available in the R package pgmm (McNicholas et al., 2015). We
cluster the different coffees based on twelve chemical constituents. A full Gaussian mixture clustering
implemented in mclust estimates three clusters and provided an ARI of 0.38. The same partition is
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obtained when the clustering is performed by VarSelLCM with a full model selection conducted according
to the BIC (all the variables are detected as relevant for clustering). Again, similar results are obtained
by the non-parametric mixture if the proposed method is used to select the number of components.
However, if we perform a full model selection, only five of the twelve variables are detected as relevant
for clustering and only two components are estimated. Moreover, this simpler model provides a perfect
recovery of the species (ARI=1.00). This illustrates the importance of variable selection for clustering.
Note that McNicholas and Murphy (2008) proposed a parsimonious Gaussian mixture model where
parsimonious constraints are made on the covariance matrices of the Gaussian distributions, that also
provides a perfect recovery of the partition.

Cleveland data set We consider the Cleveland dataset (available at https://www.kaggle.com/

ronitf/heart-disease-uci/version/1). This data set is composed of n = 303 subjects. Each subject
is described by eight categorical variables having between two and six levels and five continuous vari-
ables. The ”goal” field refers to the presence of heart disease in the patient (no presence vs presence).
Model (2) can be easily extended to the case of mixed-type data (data set composed of continuous and
categorical variables). Indeed, if variable j is categorical then ηkj is the probability mass function of a
multinomial distribution. Thus, the discretization procedure used for model selection is applied only on
the continuous variables while the number of levels for the categorical variables is fixed (i.e., it is not
defined from the sample size). When the model is selected, the estimation of the extension of model (2)
can be easily achieved by maximizing the smoothed log-likelihood via an MM algorithm. The proposed
approach detects the true number of clusters (i.e., two) while the approach implemented in VarSelLCM
overestimates it since it selects six components. Moreover, by considering ten variables as relevant for
clustering, our procedure returns a more relevant partition with respect to the occurrence of heart disease
because it obtains an ARI equals to 0.37 while the procedure implemented in VarSelLCM obtains an
ARI equal to 0.12.

Echocardiogram data set We consider the Echocardiogram Data Set (Salzberg, 1988) freely available
in the R package MNARclust. This data set is composed by n = 132 subjects who suffered from heart
attack at some point in the past. The task is generally to determine from the other variables whether or
not the patient will survive at least one year. The data set is composed by 5 continuous variables: age at
heart attack (missing rate 4.5%), fractional shortening (a measure of contractility around the heart, lower
numbers are increasingly abnormal, missing rate 6.0%), epss (E-point septal separation, another measure
of contractility, larger numbers are increasingly abnormal, missing rate 11.4%), lvdd (left ventricular end-
diastolic dimension; this is a measure of the size of the heart at end-diastole; large hearts tend to be sick
hearts, missing rate 8.3%) and wall-motion-score (a measure of how the segments of the left ventricle are
moving, missing rate 3.0%); one binary variable pericardial effusion (pericardial effusion is fluid around
the heart, 0=no fluid, 1=fluid, missing rate 0.7%). We also have one binary variable which can be used as
a partition among the subjects: still alive (0=dead at end of survival period, 1=still alive). This binary
variable is not used for clustering but permits to evaluate the accuracy of the estimated partition. Among
the variables used for clustering there is 5.7% of missing values and 19.1% of the subjects have at least
one missing value. Moreover, the variable still alive has only one missing value. Du Roy de Chaumaray
and Marbac (2023) perform the cluster analysis of this data set by considering an extension of (2) to
the case of mixed-type data (data set composed of one binary and five continuous variables) with non-
ignorable missingness process. Again, to use the proposed approach, we only discretize the continuous
data. Moreover, to deal with the non-ignorable missingness, the absence of response is defined as a
level of each variable. Performing a full model selection, the proposed approach detects three clusters.
This results was suggested in Du Roy de Chaumaray and Marbac (2023) with empirical analysis of the
evolution of the smoothed log-likelihood with respect to the number of clusters. Moreover, the proposed
approach selects three relevant variables (fractional.shortening, epss and lvdd). Note that these three
variables are detected as the most discriminative one for the missingness process and for their conditional
distribution within component given the fact that the variable is observed (see Figures D.7 and D.8 in
Du Roy de Chaumaray and Marbac (2023)). Finally, note that the procedure returns a partition which
is partially related to the indicator of surviving after the study since the ARI is 0.19.

20



6 Conclusion

In this paper, we introduced a novel approach for a full model selection (number of components and
subset of relevant variables for clustering) in multivariate finite mixture models. Thus, this approach is
the first that allows variable selection for non-parametric mixture models. Under mild assumptions on the
distributions of the observed variables, we showed that the model can be identified using a discretization
of the data into bins and the penalized log-likelihood of the resulting distribution. Ranges are given for
the number of bins and the penalty term to ensure the consistency of the procedure. With a careful
reading of our proof, a finite-sample size control of the probability of overestimating the model can be
obtained.

Since different discretizations satisfy the sufficient conditions leading the consistency of the estimators,
numerical experiments have been conducted to provide advice about the choice of this tuning parameters.
Based on the results, we recommend to use a discretization of the data based on the empirical quantiles
where the number of bins is defined by [n1/6]. Note that due to the discretization, the proposed method
implies an approximation of the density via histograms. Thus, we recommend to use the method only for
model selection, then to use an usual kernel-based method for estimating the parameters of the selected
model.

In this paper, we consider that each Xij is a scalar variable. However, the conditional independence
structure of the mixture model may be more plausible for groups of components of Xi. As suggested
by a reviewer, the proposed method can be extended to this framework. Hence, the model defined by
(2) holds true when each xij is a vector. The proposed method can be used for selecting the number of
components and the groups of components of Xi that are relevant for clustering, as long as the groups
of components of Xi which are conditionally independent are known. In such case, a discretization into
B cells is performed on each vector xij . Thus, model (3) still holds true where lBjb corresponds to
the volume of the b-th cell in the partition of the support of the vector Xij . Despite the fact that the
procedure remains consistent, the performances of this method could be deteriorated if the dimension of
Xij is large, because it involves non-parametric estimators for multivariate densities.

7 Data availability statement

The data underlying the illustration of this article were derived from sources in the public domain:
the Swiss banknotes data set (Flury, 1988) is available in the R package mclust (Scrucca et al., 2016),
the data set collected by Streuli (1973) that reports on the chemical composition of coffee samples
is available in the R package pgmm (McNicholas et al., 2015), the Cleveland data set is available at
https://www.kaggle.com/ronitf/heart-disease-uci/version/1 and the Echocardiogram Data Set
(Salzberg, 1988) is available in the R package MNARclust.
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