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Abstract: TiO2-SiO2-Fe2O3 heterojunction using the ceramic technique was used in this
study to investigate its effectiveness as a photocatalyst for Rhodamine B (RhB) dye degrada-
tion. Structural, optical, and morphological characterizations of the synthesized materials
were carried out by X-ray diffraction (XRD), photoluminescence analysis (PL), scanning
electron microscopy (SEM-EDS), and diffuse reflectance spectroscopy (DRS) to calculate
the gap energy. In addition, a degradation rate of around 97% was obtained at a pH of 8,
an initial RhB concentration of 10 mg·L−1, a TS-1F semiconductor dosage of 1 g·L−1, and a
reaction time of 210 min. The ability of photocatalysis to degrade RhB at different ratios,
pH, and with/without H2O2 in aqueous media was evaluated under UV light, visible light
(250 W), and sunlight. When it comes to the degradation of RhB under visible light (250 W)
and sunlight, respectively, the influence of the n–p junction showed promising results for
the degradation of RhB. In contrast, there was no discernible photocatalytic activity under
UV light, which proves that the absorbance switched from UV to visible, demonstrating
the decrease in the band gap energy. Additionally, an analysis of the procedure’s cost-
effectiveness and reusability through an economic study revealed that the synthesized
material was interesting in terms of both cost and sustainability.

Keywords: nanoparticles; photocatalytic activity; rhodamine B; heterojunction; TiO2-Fe3O4-
SiO2

1. Introduction
Numerous carcinogenic and poisonous organic dyes are present in industrial effluents,

posing a serious risk to human health and the environment. Many wastewater treatment
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techniques have been investigated recently, among which the advanced oxidation processes
(AOPs) have shown to be successful in degrading contaminants.

Wastewater from the textile industry contains a variety of dyes that, without proper
treatment before disposal, become harmful to flora and fauna. Eliminating organic dyes
from wastewater is thus a crucial step. These dyes are usually classified depending on
their chromophore groups into various classes, including azo, anthraquinone, indigoid,
phthalocyanine, sulfur, and triphenylmethane derivatives [1]. It has been estimated that
around 7105 tons of 1000 different classes of dyes and pigments are produced every year [1].
Most of these dyes are dangerous; when they are discharged into rivers and streams, they
cause structural changes that are harmful to the environment and ecosystems because
they severely reduce aquatic life’s ability to absorb oxygen and harm aquatic flora and
wildlife [2].

Several wastewater treatment processes have been successfully implemented for
dye removal, including ozonation and UVC lamp technologies; nevertheless, each of
these procedures has drawbacks [3]. Pollutants are transferred between steps of filtration,
which calls for regular maintenance, as these techniques consume a tremendous amount
of energy. Furthermore, membrane filtration, heterogeneous photocatalysis [4], adsorp-
tion [5,6], ultrasonic treatment [7], and coagulation-flocculation [8] were usually used as
water purification techniques. Among all these techniques, heterogeneous photocatalysis is
an advanced oxidation technique that has become one of the most effective processes for
removing persistent pollutants based on the use of the optical properties of semiconductors.

Photocatalysis is based [9,10] on the excitation of a semiconductor by a light source,
which generates the migration of electrons e− from the valence band (BV) to the conduction
band (BA). The generated electrons react with water to form hydroxide radicals, which can
break down organic molecules into carbon dioxide and water [11].

Of all the materials examined, titanium dioxide (TiO2) is the most widely used semi-
conductor in water treatment for its low cost, stability, and non-toxicity. Nevertheless, two
drawbacks reduce its application: (i) a large band gap (3.0–3.2 eV), which allows photo-
catalytic activity only in the ultraviolet, and (ii) rapid electron–hole pairs recombination,
which reduces its photocatalytic activity [4]. As a result, numerous attempts have been
undertaken to dope the transition metal and nanocomposites in order to increase TiO2

absorptive capacity to visible light. An alternate method of improving semi-conductors’
visible light photocatalytic activity is doping them with non-metal elements.

The TiO2-SiO2 mixture considerably improves the adsorption phenomenon on the
silica surface, which in turn improves the photocatalytic properties of the composite
compared with TiO2 alone [12]. According to Babyszko et al. (2022), the addition of SiO2

prevents TiO2 from crystallizing. Additionally, compared to TiO2 (18 nm), Ramamoorthy
et al. (2016) reported a decrease in the crystallite size of TiO2-SiO2 (9–12 nm) [13,14]. The
distance that photogenerated electrons and holes can move to the regions of activity on the
TiO2 surface is shortened by the reduction in size of the TiO2-SiO2 particles. TiO2-SiO2 is a
more effective photocatalyst than TiO2 because it enhances the efficiency of the electron–
hole redox process while concurrently lowering the recombination rate of photoinduced
electrons and holes.

In addition, the incorporation of SiO2 increases the amount of water and hydroxyl
groups retained on the surface, which improves the hydrophilic and photocatalytic perfor-
mances [15–17]. However, the combination of TiO2 with SiO2 does not improve the visible
photocatalytic activity of TiO2; in order to increase it in the visible range, it is important to
incorporate a third material, which allows for the absorption of photons of sunlight [18].

Researchers’ attention has recently been drawn to the production of Fe2O3-TiO2-
based nanocomposite photocatalysts because of its effectiveness in eliminating impurities
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from water [19,20]. For Fe2O3-TiO2 materials fabrication, various chemical and physical
methods, including the sol–gel process, sonochemical method, electrochemical deposi-
tion, evaporation-induced self-assembly, atomic layer deposition (ALD), mechanochemical
synthesis, hydrothermal preparation techniques [21], ultrasonic-assisted co-precipitation
method, ethanol-assisted hydrothermal method, and thermal decomposition method [19]
can be used. In a previously published paper, the synthesis of Fe2O3-TiO2 composite
nanotubes was studied obtaining an ideal dosage of 5.9 at% [22]. Furthermore, Fe2O3-TiO2

nanoparticles (NPs), when exposed to sunlight, demonstrated more photocatalytic activity
for the purification of water than TiO2. Moreover, iron increases the absorption of visible
light by adding new levels to TiO2’s band gap [23]. Iron serves as an electron trap and
facilitates the separation of electrons and holes produced by photolysis. Iron is also an inex-
pensive, non-toxic, and readily available metal element for real-world applications [23,24].

The aim of this work was to investigate, for the first time, the photodegradation
efficiency of Rhodamine B (RhB) over the heterojunction of TiO2-SiO2-Fe2O3 composites
at different operating conditions under visible and solar light in order to optimize the
degradation performance of the catalyst against RhB. In addition, its solid-state physico-
chemical, phase structure, microstructure, and optical properties were investigated using
a variety of analytical methods, including scanning electron microscopy (SEM), Fourier
transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). Moreover, the cost
and reusability of this catalyst were studied in detail in order to use it on an industrial scale.

2. Material and Methods
2.1. Chemicals

High purity (analytical grade) reagents were used in this study, including iron (III) ox-
ide (Fe2O3, 99.9%, MW = 159.69 g mol−1), titanium oxide (TiO2, 99.5%, MW = 79.89 g mol−1),
Rhodamine B (479.02 g mol−1), SiO2 (60.08 g mol−1), NaOH (39.99 g mol−1), HCl
(36.47 g mol−1), and H2O2 (34.01 g mol−1), which were obtained from Sigma Aldrich
(Darmstadt, Germany). All materials were used without any additional purification
steps. Deionized water (DI) was obtained from local sources and used in the experi-
mental procedures.

2.2. Synthesis of TiO2-SiO2-Fe2O3 NPs

In order to fix the adequate ratio between TiO2-SiO2 and Fe2O3, different percentages
were used and designated TS-1F, TS-2F, TS-3F, TS-5F, TS-10F, the compositions being
(40)SiO2-(60 − x)TiO2-(x)Fe2O3, with x (wt%) = 1, 2, 3, 5, and 10%, respectively. They were
combined and ground for two hours in a ceramic mortar before being calcined for four to
six hours at 600 ◦C. In order to choose the best material, we used an Evolution 220 UV–vis
spectrophotometer (Thermo Fisher Scientific, Illkirch-Graffenstaden, France) to carry out an
optical examination to assess the gap energy of each material, calculate the photoexcitation
wavelength range, and evaluate the photodegradation efficiency. Due to the results detailed
below, the percentage of the Fe2O3 compound was set at 1% for the remainder of the work.

2.3. Characterization

The morphology and elemental composition at the surface of the synthesized materials
were examined using scanning electron microscopy (FEI Quanta 200, SEM model, Hillsboro,
OR, USA). The crystalline phases were investigated using X-ray diffraction (Empyrean
Panalytical diffractometer model, Malvern Panalytical, Malvern, UK) at 40 kV using Cu
Kα radiation (λ = 1.54178 Å). Fourier transform infrared (FT-IR) spectra were obtained
with a Jasco 4200 (Tokyo, Japan) spectrometer in the 4000–400 cm−1 range to investigate
the functional characteristics of the materials. The reflectance spectra were obtained using



Water 2025, 17, 168 4 of 19

an Evolution 220 UV–visible spectrophotometer model. The Kubelka–Munk method was
used to acquire the absorption spectra. A Shimadzu 6000 spectrophotometer (Kyoto,
Japan) was employed to acquire photoluminescence spectra by exciting the sample with
330 nm radiation.

In addition, the point of zero charge for pHzpc (pH value at which there is no net
charge on the catalyst surface) was determined according to the following procedure. A
series of bottles containing 50 mL of 0.1 M NaCl solutions were prepared. The pH of the
bottles was adjusted to values from 2 to 10 by adding a few drops of 0.1 M NaOH or 0.1 M
HCl aqueous solutions. Thereafter, each container received 0.15 g of dried catalyst. The
suspensions were mixed for 48 h at room temperature at 150 rpm. After filtering each
solution, a fresh pH reading named pHfinal was obtained with a pH meter. Plotting of the
pHfinal = f (pHinitial) curve was done. The pH at which the curve crossed the first bisector
line was identified as the pHzpc value [25].

2.4. Photocatalytic Experiments

The photocatalytic activity of the synthesized materials was examined in a closed
reactor. The reactor containing 100 mL of solution and 0.5 g of TS-xF was placed on
an orbital shaker (Stuart SSL1, Paris, France) in a batch cylindrical glass reactor, which
prevented any form of external light from passing through. The solution was stirred for
60 min at 20 ◦C to realize adsorption–desorption equilibrium. Photocatalytic tests were
carried out with a 27 W UVA lamp (wavelength = 254 nm, Philips, Suresnes, France)
and a 250 W «visible lamp» (high-pressure mercury), and photolysis tests were conducted
without a semiconductor. In all experiments, the distance between the dye aqueous solution
and the source was maintained constant at 10 cm. The following work was carried out with
a TS-1F and 0.1 g/100 mL of semiconductor in the presence of sunlight. The supernatant
was collected every 15 min. After that, a centrifugation at 10,509 RCF for 10 min occurred to
separate the semiconductor from the RhB dye. The concentration was determined using a
UV–vis spectrophotometer (PhotoLab 6100, Xylem, Washington, DC, USA) at the maximum
absorption wavelength of RhB (555 nm). The photodegradation elimination efficiency % of
RhB was determined according to the following equation:

Elimination efficiency % = [(C0 − C)/C0] × 100 (1)

where C0 is the initial concentration of RhB (mg L−1) and C is the residual concentration of
RhB (mg L−1) after photodegradation.

In addition, the dye removal kinetics were obtained using the pseudo-first order
non-linear model equation:

−dC/dt = kC (2)

Ct = C0 exp(−kt) (3)

where Ct is the concentration of the RhB dye at the known time t, k is the rate constant of
pseudo-first order dye removal, and C0 is the concentration of RhB at t = 0 min.

Recycling tests were carried out under the following conditions: pH = 8, C0 = 10 mg L−1,
T = 25 ◦C, and 0.1 g/100 mL semiconductor dosage. The photocatalyst was washed and
dried after each use.

In addition, experiments with the addition of H2O2 were carried out to evaluate the
effect of oxidant addition on the degradation rate of RhB. On the other hand, experiments
were conducted to examine the effect of different free radicals on the photodegradation
process of RhB using various scavengers, including EDTA, isopropanol, and acrylamide,
which were tested as scavengers for h+, •OH, and O2

•−, respectively [26,27].
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3. Results and Discussion
3.1. Material Characterization
3.1.1. X-Ray Powder Diffraction

The crystalline structures of TiO2-SiO2, Fe2O3, and the ternary composite TiO2-SiO2-
Fe2O3 were examined using X-ray diffractograms. The high crystallinity of the materials
was revealed by a series of highly intense peaks in the diffraction spectrum (Figure 1). The
TiO2 and SiO2 crystalline phases were identified as tetragonal anatase (JCPDS 01-073-1764)
and hexagonal silicon oxide (01-085-0794), respectively. The rhombohedral hematite phase
(JCPDS 00-013-0534) was clearly identified for Fe2O3. The ternary heterojunctions showed
the presence of peaks characteristic of the three constituent phases, while the absence of
additional phases confirmed the purity and the successful formation of the heterojunction
(see Figure 1).
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Average crystallite size was calculated by applying Scherrer’s equation as:

D = 0.9λ/(β cos θ) (4)

where D is the crystallite size (nm), β is the half-width of the diffraction band, θ is the Bragg
diffraction angle (peak position in radians), and λ is the X-ray wavelength equal to 0.154 nm.
Thus, the average crystallite size of the TS-1F was determined to be 36.05 nm [28,29].

3.1.2. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (EDS-SEM)

Investigations were conducted using scanning electron microscopy (SEM) to examine
the morphology of the nanomaterials. The morphologies of Fe2O3 (a), TiO2-SiO2 (b), and the
heterojunction TS-1F (c) are shown in Figure 2. It is evident that following the placement of
Fe2O3, the morphology of TS-1F underwent a significant change. Fe2O3 nanoparticles with
a size of 22 nm were deposited homogeneously onto TiO2-SiO2 nanoparticles (size = 35 nm).
Furthermore, SiO2 particles were larger than those of TiO2 and Fe2O3 based on the data
acquired, and TiO2-SiO2 and Fe2O3 nanoparticles had strong contact with one another.
The approximate size of the crystals determined from SEM data was within the 30–37 nm
range, which was found to be comparable with X-ray diffraction observations. Furthermore,
the elemental mapping spectra image shows the distribution of Fe2O3 on the surface of
TiO2-SiO2 at different ratios (1, 5, and 10%), as shown in Figure 3. The elements Ti, Si, and
Fe were found to be uniformly distributed throughout the structures of the composites.
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3.1.3. Fourier Transform Infrared (FTIR) Spectroscopy

In this study, to investigate the optical characteristics of the synthesized material,
the Fourier transform infrared (FTIR) spectra of the synthesized TiO2; Fe2O3; and TS-
1F, TS-3F, TS-5F, and TS-10F were recorded in the 4000–400 cm−1 range (Figure 4). For
every graph, there were peaks seen at the following regions: 3670 cm−1, 2970–3000 cm−1,
1403 cm−1, 1250 cm−1, and 800 cm−1. The recorded peak at 800 cm−1 is indicative of Ti–O
stretching. The peak at 1070 cm−1 is attributed to characteristic stretching vibration of
Si–O–Si and Ti–O–Si bands in Ti- and Si-containing catalysts. Peaks between 1250–1800 and
3000 cm−1 are typically linked to stretching of residual water molecules hydroxyl groups
(OH). Additionally, peaks at 3600 cm−1 are indicative of the presence of TiO2/Fe2O3 in
the material.
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3.1.4. Optical Properties

The gap energy of the prepared materials was determined using the Kubelka–Munk
equation:

(α hν)n = A(hν − Eg) (5)

where α (cm−1), ν (Hz), Eg (eV), h, and A are the absorption coefficient, light frequency,
band gap energy, Plank’s constant, and the Kubelka–Munk constant, respectively. In the
case of a direct transition of the electron from the valence band to the conduction band, n = 2,
whereas n = 1/2 in the case of an indirect transition [28]. On the basis of absorption spectra
(Figure 5), plotting (αhν)1/2 versus hν and extrapolating the absorption edge on the energy
axis can give the forbidden energy. The intersection of the extrapolated tangent of the curve
with the horizontal axis of this Tauc diagram gives the energies of the optical band gaps.
The energies of the optical band gaps were 3.00, 1.39, and 2.87 eV for TiO2, Fe2O3, and TS-1F,
respectively. As a result, the bandgap energy of TS-1F (Eg) was lower than the bandgap
energy of TiO2, which was attributed to the formation of a heterojunction structure between
Fe2O3, SiO2, and TiO2 that enhanced the surface electric charge and allowed for easier
transmission of photo-excited electrons. Figure 5a shows the UV–vis absorption spectra of
the synthesized materials. The flat and large maximum at around 380 nm was attributed to
the conversion of the TiO2 energy gap and around 550 nm was attributed to Fe2O3. For the
binary heterojunction, all absorption curves indicated a redshift, and the band edge shifted
to 430 nm. In addition, the prepared semiconductors had improved absorption of both UV
and visible light. Photoactivity under visible light can be explained as follows: (i) Fe2O3

acts as a semiconductor and photosensitizer for TiO2, transporting photoexcited carriers to
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TiO2, and (ii) Fe3+ cations can form new miGAPs in the TiO2 crystal lattice, allowing TiO2

to be excited by visible light [29]. As mentioned by Abbas et al. (2016) [21], as a result, Fe
has the potential to build up new energy levels in the bandgap of TiO2 and reduce the gap
between the valence and conduction band.
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3.1.5. Photoluminescence Spectra of the Prepared Samples

Photoluminescence (PL) spectroscopy was used (Figure 6) to investigate the efficiency
of charge carrier recombination and separation in the photocatalysts. A high PL intensity
signifies rapid recombination of photo-generated electrons and holes. Pure TiO2 exhibited
a strong PL signal, suggesting a high (e−/h+) recombination rate. In contrast, the hetero-
junction photocatalyst TS-xF displayed a weaker PL intensity compared to pure TiO2. This
indicates a significant reduction in electron–hole recombination due to the formation of
heterojunctions. Lower PL intensity typically translates to a lower recombination rate and,
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consequently, enhanced photocatalytic activity. Among the synthesized catalysts, TS-1F
(containing 1% Fe2O3) displayed the lowest PL intensity. This suggests that the 1% Fe2O3

addition most effectively inhibited the charge carriers and improved their lifetime.
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3.2. Photocatalysis Tests

The photocatalytic activity of the solids is dependent on a number of factors, including
surface characteristics and light absorption capabilities as well as the rates of electron–hole
reduction/oxidation. Basically, the effectiveness of photocatalysis can be decreased by
a higher electron–hole recombination rate. In this sense, the photocatalytic activity will
increase with the increasing specific surface area. The more surface area, the more defects
there are, and the faster the recombination because the presence of faulty sites on the
surface will cause increased recombination of the excited electrons and holes [19].

3.2.1. Under Visible Light (250 W) and Sunlight

The photocatalysis properties for the TiO2-SiO2-Fe2O3 heterojunction were investi-
gated under visible light (250 W) and sunlight for the degradation of RhB dye. When
the semiconductor is illuminated by photons with an energy higher than the band gap
energy (Eg), a large number of electrons are promoted from the valence band (VB) to the
conduction band (CB) of Fe2O3, and holes are generated in the valence band [30]. Thus, it
is believed that the mechanism of charge transport between the valence bands of Fe2O3,
SiO2, and TiO2 effectively enhances the photocatalytic activity of the TiO2-SiO2-Fe2O3. It
was documented that the presence of Fe cations can act as a mediator for the interfacial
charge transfer, thus improving the life time of e− and h+ due to the electron–hole trapping
at the Fe centers [31]. The heterojunction of Fe2O3, SiO2, and TiO2 not only facilitates
the movement of electrons towards the conduction band but, due to the lower position
of the conduction band, also acts as an electron–hole trap and reduces the electron–hole
recombination time [32]. Decreasing the percentage of TiO2-Fe2O3 negatively affected the
degradation rate of RhB. This can be explained, according to the author, by increasing the
recombination rate of charge carriers, which leads to competition with the redox reactions
occurring on the surface of the photocatalyst. In another study [21], TiO2-SiO2-Fe2O3

nanoparticles synthesized with 1% of Fe2O3 showed the highest photocatalytic activity for
RhB degradation.
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The effect of the initial reactant concentration is a key factor in the photocatalytic
degradation of pollutants. In general, the photocatalytic activity of TS-1F decreases with
the increase in RhB concentration, which is probably due to the limited number of active
sites available on the surface of the catalyst, as shown in Figures 7 and 8. Furthermore,
TS1-F photocatalysis in the presence of sunlight was more significant than with visible
light (250 W), which is intriguing from an economic standpoint because no energy was
needed for the degradation. For 5, 10, and 15 ppm of RhB, 90% of degradation was attained
only after 60 min in sunlight. In contrast, visible light degradation reached 60–80% after
135 min using the same concentrations. These outcomes demonstrate how successful TS1-F
is as a photocatalyst. Table 1 represents the descriptive statistics of C/C0 and inhibition
percentage of RhB degradation under visible light (250 W) and sunlight.

Table 1. Descriptive statistics of C/C0 and inhibition (%) for RhB degradation under either visible
light or sunlight.

Type Category NB Time Min Max Mean Median SD CV

C/C0

Sunlight 5 ppm 14 0.063 0.218 0.077 0.064 0.011 52.913
10 ppm 14 0.073 0.431 0.124 0.087 0.026 78.969
15 ppm 14 0.041 0.703 0.126 0.078 0.047 138.134
20 ppm 14 0.108 0.518 0.201 0.145 0.030 55.522
25 ppm 14 0.106 0.644 0.363 0.394 0.049 50.324
30 ppm 14 0.109 0.882 0.394 0.302 0.065 61.276

Visible light 5 ppm 10 0.215 0.988 0.523 0.460 0.079 47.843
10 ppm 9 0.175 0.757 0.396 0.360 0.070 52.636
15 ppm 11 0.273 0.836 0.490 0.455 0.048 32.726
20 ppm 8 0.261 0.879 0.552 0.548 0.072 36.621
25 ppm 13 0.113 0.809 0.478 0.461 0.060 45.062
30 ppm 12 0.383 0.935 0.646 0.645 0.052 27.993

% Inhibition

Sunlight 5 ppm 14 78.182 93.709 92.288 93.636 1.091 4.422
10 ppm 14 56.881 92.661 87.615 91.284 2.614 11.163
15 ppm 14 29.730 95.946 87.404 92.230 4.650 19.908
20 ppm 14 48.193 89.157 79.865 85.542 2.988 13.998
25 ppm 14 35.577 89.454 63.670 60.577 4.886 28.715
30 ppm 14 11.777 89.096 60.634 69.759 6.447 39.782

Visible light 5 ppm 10 1.181 78.543 47.658 54.035 7.919 52.547
10 ppm 9 24.318 82.463 60.414 63.991 6.946 34.490
15 ppm 11 16.361 72.732 51.004 54.536 4.835 31.438
20 ppm 8 12.152 73.928 44.780 45.203 7.150 45.159
25 ppm 13 19.139 88.715 52.249 53.927 5.968 41.183
30 ppm 12 6.533 61.708 35.441 35.527 5.217 50.992

Notes: NB: Number of times. In this study, we proposed 14 times points: 15, 30, 45, 60, 75, 90, 105, 120, 135,
150, 165, 180, 195, and 210 min. Min: minimum; Max: maximum; SD: standard deviation; CV: coefficient of
variation (%).
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To further explore this photocatalyst regarding the elimination of RhB dye under
several conditions, pH levels following 210 min of sun exposure were varied, as shown in
Table 2; Figure 9 shows the resulting degradation rate as a function of pH.
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Table 2. Effect of pH on the degradation rate constant (k) of RhB using the TS-1F photocatalyst under
sunlight.

pH Value k (10−4 min−1) R Squared COD Adj. R-Squared

2 37.7± 2.76 0.94 0.93
6 96.7± 6.11 0.96 0.96
8 100 ± 2.41 0.99 0.99

10 143.7± 5.45 0.99 0.98
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The concentration of the dye fell as the illumination period increased, as predicted,
and after each 15 min time interval, the percentage of dye degradation was observed. It was
consistent with the first-order kinetic behavior proposed by the Langmuir–Hinshelwood
model. As can be observed, the greatest efficiency of RhB degradation was obtained at
an acidic pH of 10. pH is crucial to the destruction of pollutants in the photocatalytic
process, and this may be because of variations in the photocatalyst surface charge. The
pH of the solution influences the electrostatic interactions that occur between solvent
molecules, charged radicals produced during photocatalytic oxidation, and the semi-
conductive surface. Indeed, TS-1F may aggregate at pH = 2 due to a high concentration
of H+, which reduce the contact surface area. At a pH < 3.22 (pKa = 3.22), according
to Mchedlov-Petrossyan et al., the carboxyl group of RhB remains in a RhB+ cationic
form, which produces an electrostatic repulsion between the positively charged TS-1F and
RhB [33]. On the other hand, at pH 6 (lower than pHzpc = 8), it gives the catalyst surface
a net positive charge, which favors anion adsorption and reduces the interaction of the
cationic pollutant RhB with catalyst sites. When the pH of the solution is higher than
pHzpc, and as the pH increases, the net surface charge becomes more negative, favoring the
adsorption of cations by electrostatic attraction, as occurs at pH 8 and pH 10.

3.2.2. The Synergetic Effect of H2O2-Assisted Photocatalytic Degradation

The sunlight absorption of RhB with different amounts of H2O2 (20 µL, 50 µL, 100 µL,
and 200 µL) and in the presence of TS-1F at a fixed reaction time was investigated. H2O2 is
an electron acceptor that is more potent than oxygen due to its high oxidation potential and
electrophilic nature. Several studies using deoxygenated semiconductor solutions were
carried out to assess how the dosage of H2O2 affected the photocatalytic degradation of
the dye contaminants [34–36]. The first-order degradation rate constant (k) of RhB was
sensitive to the addition of H2O2 with values of (115.3 ± 3.5) × 10−4 min−1 and (87.1 ± 5.2)
× 10−4 min−1 with and without H2O2 addition, respectively.
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Therefore, it was anticipated that adding H2O2 to the photocatalytic system would
accelerate RhB degradation. However, a high amount of H2O2 (>50 µL H2O2) might
decrease the degradation rate, which can be attributed to the competitive adsorption of the
oxidant on the catalyst surface and the production of complexes, including Ti(O2)(OH)2

and Ti(OOH)(OH)3. In addition, it reacts with the hydroxyl radical, thus acting as a
scavenger [37]. The addition of H2O2 traps electrons in the photocatalyst conduction band,
preventing them from recombining with the conduction band. This mechanism offers
a number of advantages, including reduced recombination time, enabling electrons to
participate in degradation reactions.

According to Figure 10, the higher reaction rates after the addition of peroxide were
attributed to the increase in the concentration of the hydroxyl radical. According to our
findings, when adding a low amount of H2O2 (50 µL), the degradation rate increased to
88.6%. According to a previous study, a low concentration of H2O2 inhibited the electron–
hole recombination and could act as an alternative electron acceptor to oxygen since H2O2

is a better electron acceptor than molecular oxygen [37]. However, after the addition of
100 µL of H2O2, the degradation rate decreased to 81.2% and to 78.4% for 200 µL. This
could be due to the scavenging effect as •OH became predominant [38]. The amount of
•OH radicals produced and the amount of •OH radicals captured can be used to describe
how H2O2 addition affects RhB breakdown.
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3.2.3. The Effect of TS-1F Dosage on the Degradation Rate of RhB

This study investigated the effect of catalyst dosage on the photodegradation of RhB
under sunlight in the range from 0.1 to 0.6 g/100 mL. As a result, increasing the loading
of the catalyst up to 0.4 g/100 mL slightly decreased the removal rate of RhB from 96% to
93%. This can be attributed to the turbidity of the solution, which can play an obstacle to
the penetration of solar radiation, as shown in Figure 11. This could be explained by the
turbidity resulting in the mixture, which somehow blocked the penetration of light into the
solution and thereafter blocked the generation of free radicals.



Water 2025, 17, 168 14 of 19Water 2025, 17, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 11. Effect of TS-1F ratio on the degradation efficiency under sunlight, pH 8, C0 = 10 ppm, and 
210 min. 

3.2.4. An Assessment of TiO2-SiO2-Fe2O3 Heterojunction Reusability and Recyclability 

The regeneration of TS-1F is essential in order to get an idea of its stability during 
repetitive cycles [39]. The reuse of TS-1F (0.1 g/100 mL and pH 8) was studied. According 
to Figure 12, the TS-1F photocatalyst can be reusable through three consecutive cycles of 
combined adsorption-photodegradation removal of RhB. It was found that RhB removal 
was recorded in all cycles with and without washing. In the first and the second cycles, 
the degradation rates surpassed 90% for RhB removal for more than 3 h (210 min) of pho-
tocatalysis under sunlight. However, the degradation rate was affected in the third cycle 
(63.4%) for the semi-conductor without washing. The decrease in the degradation effi-
ciency might have resulted from the accumulation of the degradation product on the sur-
face of the photocatalyst, thereby blocking the active sites, since the photocatalyst was not 
separated and washed after each cycle to minimize the number of steps and water con-
sumption. Therefore, it could be repeatedly used as desired (with washing) in practical 
applications, which could improve economic efficiency, ensuring its applicability for real-
world applications by reducing the material cost. 

 
Figure 12. Recovery performance and stability of TS-1F degradation of RhB under sunlight, pH 8, 
C0 = 10 ppm, TS-1F = 1 g/L, and 210 min. 

3.3. Scavenger Effect 

The active species that are crucial in semiconductor photocatalysis are still the subject 
of much debate due to their complexity. Free radical capture experiments were carried 
out with the addition of 5 mM radical scavengers, namely ethylenediamine tetraacetic 

Figure 11. Effect of TS-1F ratio on the degradation efficiency under sunlight, pH 8, C0 = 10 ppm, and
210 min.

3.2.4. An Assessment of TiO2-SiO2-Fe2O3 Heterojunction Reusability and Recyclability

The regeneration of TS-1F is essential in order to get an idea of its stability during
repetitive cycles [39]. The reuse of TS-1F (0.1 g/100 mL and pH 8) was studied. According
to Figure 12, the TS-1F photocatalyst can be reusable through three consecutive cycles of
combined adsorption-photodegradation removal of RhB. It was found that RhB removal
was recorded in all cycles with and without washing. In the first and the second cycles,
the degradation rates surpassed 90% for RhB removal for more than 3 h (210 min) of
photocatalysis under sunlight. However, the degradation rate was affected in the third
cycle (63.4%) for the semi-conductor without washing. The decrease in the degradation
efficiency might have resulted from the accumulation of the degradation product on the
surface of the photocatalyst, thereby blocking the active sites, since the photocatalyst
was not separated and washed after each cycle to minimize the number of steps and
water consumption. Therefore, it could be repeatedly used as desired (with washing) in
practical applications, which could improve economic efficiency, ensuring its applicability
for real-world applications by reducing the material cost.
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3.3. Scavenger Effect

The active species that are crucial in semiconductor photocatalysis are still the subject
of much debate due to their complexity. Free radical capture experiments were carried out
with the addition of 5 mM radical scavengers, namely ethylenediamine tetraacetic acid
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(EDTA), methanol (MeOH), and acrylamide (AM), which are added as trapping agents for
h+, hydroxyl radicals (•OH), and superoxide radicals (O2

•−), at pH 8, an initial catalyst
concentration of 0.1 g/100 mL, and 10 ppm of RhB. This was done to investigate the primary
active species and catalytic mechanism of TiO2-SiO2-Fe2O3 photocatalytic degradation of
RhB. Alcohols like methanol are frequently used as scavengers of hydroxyl radicals [40];
nevertheless, after 2.5 h, the percentage of RhB degradation only reached 60%, indicating
the importance of hydroxyl radicals in the breakdown of RhB. Alcohols like methanol
can compete with substrates for TiO2 reaction sites, although their main function is to
scavenge free •OH radicals. Nevertheless, a number of studies have shown the usage of
these alcohols as hole scavengers [41,42]. Furthermore, to investigate the elimination of
RhB using photocatalysis, EDTA was utilized as a hole scavenging agent. The following
could be the response between the H+ species and the organic hole scavenger.

EDTA + h+ → Intermediates → CO2 + H2O

Acrylamide was used in this study as singlet oxygen scavenger; as shown in Figure 13,
the degradation rate of RhB decreased significantly after its addition, even at 5 mM. This
proves that singlet oxygen is an important species for the catalytic process since the latter
will be generated under light exposure. The generation of singlet oxygen is usually the pro-
posed mechanism responsible for pollutant breakdown and its removal from the aqueous
medium. The synthetic TS-1F responds to the aforementioned circumstances, which makes
it a promising material for water purification.
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3.4. Degradation Mechanism

The gap energy of Fe2O3 is lower than that of TiO2; after excitation with sunlight,
electrons migrate from Fe2O3 to TiO2 and holes from TiO2 to Fe2O3 under the influence of
sunlight [43]. Due to the migration of charge carriers, electrons accumulate mainly in the
conduction band of TiO2 and reduce dissolved oxygen to generate superoxide radicals •

O2. The electrons in the TiO2 valence band (VB) transfer easily to the CB under the effect of
electrostatic force. However, the conduction band (CB) potential of TiO2 (−0.6 eV) is more
negative than the O2/O2

•− potential E0(O2/O2
•−) = −0.33 eV. The electrons are therefore

unable to reduce oxygen molecules in the atmosphere to generate O2
•−; on the other hand,

if the electrons are more negative than E0(O2/H2O2) = 0.682 eV, then the TiO2 electrons can
reduce the captured oxygen to H2O2 (Figure 14).

TiO2-SiO2-Fe2O3 + hυ → TiO2 (e− + h+) + Fe2O3 (e− + h+) + SiO2

O2 + H + e− → H2O2
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H2O2 + e− →2 •OH

Fe3+ + e− → Fe2+

O2
− + e− → O2

•−

O2
•−+ H2O → HOO• + OH−

O2
•−, H2O2, OH− + RhB → H2O + CO2 + Inorganic molecules
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3.5. Cost Analysis

The cost analysis considered the entire cost of RhB degradation as well as the cost of
each grade of chemical utilized to produce the composite as well as to degrade 30 ppm of
RhB dye. As a result, the cost of the chemicals used in this study was 0.75 € per experiment,
and the energy used by the equipment was limited to 1.95 €. The quantity, cost, and
price of each chemical are summarized in Table 3. Based on the collected data, the cost
analysis showed that the overall expense was about 2.7 € for each experiment. The current
study was carried out in the presence of sun radiation, which lowered the treatment’s
operational costs. Previous studies used external energy, such as visible or ultraviolet light,
for treatment and resulted in increased operational expenses [44,45].

Table 3. Cost analysis for the preparation of 0.1 g heterojunction TiO2-SiO2-Fe2O3 for RhB degradation.

Chemicals Used Amount per
Experiment Cost (€) Total Cost (€)

TiO2/SiO2 0.05 g 0.65

0.75
Fe2O3 0.05 g 0.10

HCl/NaOH Drops -
H2O2 25–200 µL 0.01

Equipment Energy Consumed Cost (€) Total Cost (€)

Calcination oven (1200 W) 6 h (for the whole
study) 1.16

1.95Magnetic stirrer (610 W) 3 h 0.29
Refrigerated centrifuge (720 W) 30 min in total 0.11

Water purificator 3 L 0.39
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4. Conclusions
In order to achieve industrial photocatalytic degradation of organic pollutants beyond

conventional treatment procedures, as well as finding a successful replacement for tra-
ditional treatment methods that need a lot of energy, it is noteworthy to prepare visible
light-active photocatalysts by improving the operating parameters. When it comes to the
photodegradation of RhB dye at 30 ppm under sunlight, TS-1F synthesized in this work
showed increased catalytic activity (>90%), which was more interesting than that under
visible light (>70%).

In this study, solid UV–visible spectroscopy with FTIR spectroscopy confirmed the
formation of TiO2-SiO2-Fe2O3 nanocomposites as well as the reduced gap energy (2.87 eV).
The SEM-EDS mapping revealed the morphology and the proportions of the elements
present in these composites. The photocatalytic activity of 59TiO2-40SiO2-1Fe2O3 (TS-1F)
semiconductors has excellent photostability and recyclability properties, making them ideal
for practical applications.

The photocatalytic mechanism of degradation was predicted on the basis of scavenging
experiments which revealed that O2

•− and •OH radicals are reactive species. From an
economic standpoint, the resulting material was interesting in terms of cost and reusability.
Due to their appealing qualities and benefits, these sensitized photocatalysts are highly
sought-after candidates in the field of photocatalysis.
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