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A new approach to agglomeration problems *

Adriana Navarro-Ramos ��§

Abstract

In this paper, we study a location problem with positive externalities. We define a new

transferable utility game, considering there is no restriction on the transfer of benefits between

firms. We prove that the core of this game is non-empty, provide an expression for it, and

an axiomatic characterization. We also study several core allocations, selected by means of a

certain bankruptcy problem.

Keywords: location problem; positive externalities; cooperative game; core; axiomatic char-

acterization.

1 Introduction

Consider that a firm is planning to open a new plant in a certain territory. This territory is divided

into different geographical units or regions where the plant could be installed. A finite number of

firms are located in these regions, all of which obtain some benefit from this new incorporation.

These positive externalities are well-studied in agglomeration economies theory Marshall (1890)

and cluster theory (Porter, 1998). These theories state that firms in related fields of business come

geographically together because concentration generates several advantages. For example, if the

new firm is a common supplier, its insertion in the region would imply savings in the transportation

of goods and new buyer-supplier relationships. Or the firm may be a new distribution network,

which would generate an increase in the number of potential clients.
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In a decentralized mechanism, the newcomer firm would locate its plant in the region where it

optimizes its individual benefit. Nevertheless, the aggregate utility of all firms could be maximized

in a different region. Thus, it is reasonable for firms to transfer something to the new firm in order

to incentivize it to open the plant in their region. This transfer is not utility per se, but rather

some suitable medium of exchange (commercial agreements, money, etc.).

Location theory deals with two main problems. First, finding the optimal location for plants or

facilities in a territory. Then, allocating the costs or benefits generated by this new incorporation

over the agents involved in the problem. In the literature, diverse authors addressing the second

issue by means of cooperative game theory can be found. For instance, in the facility-location

cost-allocation problem on networks Granot (1987), where the aim is to locate one public-service

facility in a tree network. Or in the NIMBY (Not In My BackYard) problem, where a locally

undesirable but globally necessary facility must be installed Ambec and Kervinio (2016); Lejano

and Davos (2001); Sakai (2012); Shapley and Shubik (1969). The problem studied in this paper

differs from the above mentioned location problems in two aspects. First, the plant to be located

generates exclusively positive externalities to the firms involved. Second, the newcomer firm is not

just a facility but an active agent.

This problem was introduced in Bergantiños and Navarro-Ramos (2022) under the name of

agglomeration problem. They associate a cooperative game with any agglomeration problem. This

game considers that only coalitions formed by the newcomer firm and all firms in a given region

can transfer their benefits. The idea behind this approach is that regional governments step in to

offer subsidies to the new company. These subsidies are paid by all firms in the region through

their taxes. However, if the benefits between firms are obtained through commercial agreements,

government intervention is not necessary and each firm is free to negotiate or not with the new firm.

So, the first aim of this paper is to define a new transferable utility game that reflects firms’ freedom

of individual negotiations. There are several advantages of associating different games with the

same problem. For instance, the same solution could provide different allocations, probably more

intuitive in certain contexts. Also, a game can give us more information about agents involved in

the problem. Some examples in the literature where the same problem is approached by several

games are the minimum cost spanning tree problems Bird (1976); Granot and Huberman (1981),

bankruptcy problems Driessen (1995); O’Neill (1982), and hub network problems Skorin-Kapov

(1998).

There is another important difference between the approach taken in this paper and the one

in Bergantiños and Navarro-Ramos (2022). They propose single-valued functions for distributing

the global benefit. In the case of this paper, we propose set solutions i.e. a set of feasible ways

to allocate the total benefit among the firms. In order to do this, we study the core of the game,
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describe it, and give an axiomatic characterization. Finally, we also analyze allocations in the core

through bankruptcy problems.

The present paper is organized as follows. Section 2 introduces positive-externalities location

problems. Section 3 formally defines the game and discusses its properties. Section 4 studies the

core of the game and presents an axiomatic characterization. Section 5 discusses several allocations

in the core. The proofs of the results are presented in Appendix A.

2 The model

Let N be set of potential firms and let N be the family of all finite (non-empty) subsets of N. A

positive-externalities location problem (or problem) is a triple A = (N0, P, b) where

� N0 = N ∪ {0}. N ∈ N is the set of firms already located in a territory and 0 is the firm

which will open a plant.

� P = (Pk)k∈R with
⋃

k∈R Pk = N is an indexed collection of pairwise disjoint subsets of N ,

where R = {1, ..., r} is the set of regions in the territory. Pk denotes the set of firms located

in region k.

� b =
{
bki : i ∈ N0 and k ∈ R

}
. bki ≥ 0 denotes the benefit obtained by firm i when 0 locates

its plant in region k. It is assumed that, for all k ∈ R and all i ∈ N\Pk, b
k
i = 0.

Let AN denote the set of all problems over N . For any S ⊆ N0 and every k ∈ R, let bk(S)

denote the aggregate benefit of firms in S if 0 is located in region k, that is, bk(S) =
∑

i∈S bki . For

each i ∈ N , k(i) ∈ R denotes the region where firm i is located, i.e., i ∈ Pk(i).

Consider a problem A ∈ AN . The global benefit of A is g(A) = maxk∈R

{
bk(N0)

}
. This value

is the maximum aggregate benefit that all firms can obtain. A region k∗ ∈ R is an optimal region

if for each k ∈ R\{k∗}, bk∗
(N0) ≥ bk(N0). The global benefit is reached when 0 locates its plant

in any optimal region. Obviously, k∗ may not be unique and g(A) = bk
∗
(N0) = bk

∗
(Pk∗ ∪ {0}), for

each optimal region k∗. We denote by R∗(A) ⊆ R the set of optimal regions in A.

Let s(A) denote the global benefit obtained by all firms in N0 when the plant is located in

the second most profitable region (this region may not be unique). Formally, given an optimal

region k∗, s(A) = maxk∈R\{k∗}
{
bk(N0)

}
. When there are several optimal regions, s(A) = g(A).

Otherwise, s(A) < g(A). If there is a single region, s(A) = 0.

Let I0(A) be the maximum benefit that can be obtained without the cooperation of firms in

an optimal region k∗. This is, I0(A) = maxk∈R

{
bk(N0\Pk∗)

}
= max

{
bk

∗

0 , s(A)
}
. If there is more

than one optimal region, we can see that I0(A) = g(A). Thus, I0(A) does not depend on the
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chosen k∗. The importance of I0(A) is that it reflects a certain “negotiation power” of firm 0 in

the problem. Consider that it has been decided to open the plant in an optimal region k∗. Firms

in k∗ agree to make a transfer x to firm 0. Seeking to determine which is the minimum value of x

that it should accept, firm 0 starts negotiations with regions in R\{k∗}. The region that can offer

the most is the second best region, say region k. The maximum that firm 0 can obtain from firms

in k is s(A). However, if s(A) is lower than bk
∗

0 , firm 0 has no incentives to accept the transfer

from region k and would locate the plant in region k∗. In this case, firm 0 would expect to receive

at least bk
∗

0 . Therefore, I0(A) can be viewed as the minimum firm 0 expects to receive for opening

the plant in region k∗.

For an optimal region k∗ in A, firm i ∈ Pk∗ is called essential if bk
∗
(N0\{i}) < s(A). If an

essential firm does not cooperate, region k∗ would not longer be an optimal region. Let Ek∗(A) ⊆
Pk∗ denote the set of essential firms of region k∗. This set may be empty.

If no confusion arises, we denote R∗ instead of R∗(A) and Ek∗ instead of Ek∗(A).

Given A ∈ AN and i ∈ N , the i-reduced problem of A is defined as A\i = (N0\{i}, P\i, b\i) ∈
AN\{i} where P\i =

(
P\Pk(i)

)
∪
(
Pk(i)\{i}

)
, and (b\i)kj = bkj , for all j ∈ N0\{i}, and every k ∈ R.

In the i-reduced problem, firm i is removed from A, keeping the rest of the problem the same.

Once it has been established which is the most convenient location for firm 0 in a problem, the

question is how the global benefit should be divided. In order to answer this question, we define

solutions for any problem.

An allocation in A is a vector x ∈ Rn+1 such that it is efficient, i.e, x(N0) :=
∑

i∈N0
xi =

g(A). A solution σ on AN assigns to each problem A ∈ AN a set of allocations σ(A) ̸= ∅. A

solution gives a set of possible ways to completely allocate the global benefit among all firms. It is

crucial that a solution is non-empty because the main goal is to answer the question of how g(A)

should be divided up.

Example 1. Let N = {1, 2, 3, 4}, P = {{1}, {2, 3}, {4}}, and b given in Table 1.

Firms

Regions 0 1 2 3 4

1 10 1 0 0 0

2 7 0 2 11 0

3 9 0 0 0 7

Table 1: Values of bki , for all i ∈ N and k ∈ R.
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In the problem A = (N0, P, b), the unique optimal region is region 2, the global benefit is

g(A) = 20, I0(A) = s(A) = 16, and firm 3 is the only essential firm.

To end this section, we introduce some properties of the positive-externalities location problems.

Lemma 1. Let A ∈ AN and k∗ ∈ R∗.

(a) If I0(A) = bk
∗

0 , then Ek∗ = ∅.

(b) If Ek∗ ̸= ∅, then I0(A) = s(A).

(c) If |R∗| > 1 and i ∈ Pk∗ is such that bk
∗

i ̸= 0, then i ∈ Ek∗ .

3 A transferable utility game

In this section, we associate with every A ∈ AN a transferable utility game. By associating a game

with any positive-externalities location problem, we seek to analyze not only the maximum that

could be generated by a certain subset of firms, but also firms’ capability to attract the newcomer

firm to their region.

A transferable utility game (thereafter TU game) is a pair (N, v) where N ⊂ N is the finite

set of players and v : 2N → R with v(∅) = 0 is the characteristic function. For any S ⊆ N , v(S) is

the worth of coalition S and represents the amount that its members can obtain if they cooperate.

The coalition N is referred to as the grand coalition. When possible, we address v as a game.

We define the worth of a coalition S ⊆ N0 according to the following reasoning: consider that

a subset of firms S decide to cooperate. First, if firm 0 is not in this coalition, the new plant will

not be located in the territory and therefore, the worth of S is zero. If firm 0 is in the coalition,

then we must look at the aggregate benefit of the firms in the coalition at each region. The firm

would locate the plant where the aggregate benefit is maximized and this value is the worth of the

coalition. This approach is different from that of Bergantiños and Navarro-Ramos (2022) in the

sense that here, we consider that if firm 0 locates the new plant in region k, then it can cooperate

with any subset of firms already installed in k. Formally, for any A ∈ AN and every S ⊆ N0, the

game (N0, w
A) is defined as

wA(S) =

 max
k∈R

{
bk(S)

}
, if 0 ∈ S,

0, otherwise.
(1)

Example 2. Consider the problem A in Example 1. Table 2 shows the worth of coalitions S ⊆ N0,

with 0 ∈ S according to wA.
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S wA(S) S wA(S) S wA(S) S wA(S)

{0} 10 {0, 4} 16 {0, 2, 3} 20 {0, 1, 2, 4} 16

{0, 1} 11 {0, 1, 2} 11 {0, 2, 4} 16 {0, 1, 3, 4} 18

{0, 2} 10 {0, 1, 3} 18 {0, 3, 4} 18 {0, 2, 3, 4} 20

{0, 3} 18 {0, 1, 4} 16 {0, 1, 2, 3} 20 {0, 1, 2, 3, 4} 20

Table 2: wA(S) for all S ⊆ N0, with 0 ∈ S.

Even though region 2 is the only optimal region, in several coalitions (e.g. {0, 2, 4}), the aggre-

gate benefit in the optimal region is not enough to attract the newcomer firm to region 2.

Next, we present some properties of a game. A TU game (N, v) is:

Monotone if v(S) ≤ v(T ) whenever S ⊆ T , for all S, T ⊆ N .

Superadditive if for S, T ⊆ N with S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).

Convex if v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ), for all S ⊆ T ⊆ N\{i}.
Monotonicity states that the worth of a coalition increases as more players join it. Superaddi-

tivity says that it is more profitable for two disjointed coalitions to merge. In a convex game, the

marginal contribution of a player is monotone with respect to the size of the coalition that they

join. The next proposition states which of these properties are fulfilled by the game defined in (1).

Proposition 1. For any problem A ∈ AN , the game wA is monotone and superadditive but may

not be convex.

4 The core solution

In this section, we introduce the core Shapley (1955), a well-known solution for TU games. We

define a solution for positive-externalities location problems as the core of wA. We discuss another

solution called the core cover Tijs and Lipperts (1982), and we prove that it also coincides with

the core solution. To end the section, an axiomatic characterization of the core solution is given.

Given a game (N, v), an allocation is a vector x ∈ Rn such that x(N) = v(N). A solution

ϕ is a correspondence that associates with each v a (possibly empty) set of allocations ϕ(v). If a

solution selects a single allocation, then it is commonly referred to as a single-valued solution.

An allocation x is individually rational if, for each i ∈ N , xi ≥ v({i}), i.e, no player gets less

than what they could get by themselves. The imputation set of a TU game consists of all the al-

locations that are individually rational, i.e., I(v) = {x ∈ Rn : x(N) = v(N), xi ≥ v({i}),∀i ∈ N} .
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The core of a game is defined by imposing a coalitional rationality principle to I(v). An im-

putation x is coalitionally rational if x(S) ≥ v(S), for every S ⊆ N . This principle ensures

that no coalition can improve by working on its own. The core of v is defined as C(v) =

{x ∈ I(v) : x(S) ≥ v(S),∀S ⊆ N} .

4.1 Expression of the core

In the next result, we give an expression for the core of wA and it has the following interpretation.

Firm 0 receives at least its negotiation power and, at most, the global benefit. Every firm receives

a non-negative payoff. Firms in optimal regions are distinguished in two cases: essential and

non-essential firms. An essential firm receives at most what is left after giving I0(A) to firm 0.

Non-essential firms receive at most their individual benefit. Firms in any other region receive zero.

Theorem 1. Given a problem A ∈ AN and k∗ ∈ R∗, the core of wA is non-empty and is given by

C(wA) =

x ∈ Rn+1 : x(N0) = g(A),

I0(A) ≤ x0 ≤ g(A),

0 ≤ xi ≤ g(A)− I0(A),∀i ∈ Ek∗ ,

0 ≤ xi ≤ bk
∗

i ,∀i ∈ Pk∗\Ek∗ ,

xi = 0,∀i ∈ N\Pk∗

 . (2)

Notice that if |R∗| > 1 or if Pk∗ = ∅ for any k∗ ∈ R∗, the core of wA consists of a single element

in which firm 0 gets the global benefit and the rest of the firms get zero. This also happens if

bk
∗

i = 0, for all i ∈ Pk∗ .

For all A ∈ AN , the core solution γ on AN is defined as γ(A) = C(wA). Since the core of

wA is non-empty for any problem A ∈ AN , γ is well-defined.

4.2 The core cover

We now study the core cover, another interesting solution for TU games. As its name suggests,

the core cover (when it is non-empty) contains the core of any game.

For any (N, v) and every i ∈ N , letMi(v) = v(N)−v(N\{i}) be player i’smarginal contribution

to the grand coalition. The vector M(v) = (Mi(v))i∈N is called the utopia vector of v and Mi(v)

is referred to as the utopia payoff of player i. The minimum right vector is m(v) = (mi(v))i∈N

where mi(v) = max
S⊆N :i∈S

{
v(S)−

∑
j∈S\{i} Mj(v)

}
. The minimum right payoff, mi(v), can be seen

as the maximum payoff that player i can guarantee for herself by offering to every other player

their marginal contribution to the grand coalition.
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The core cover of (N, v) is defined as CC(v) = {x ∈ Rn : x(N) = v(N),m(v) ≤ x ≤ M(v)}.
The elements of the core cover can be interpreted as efficient compromises between the minimum

right and the utopia payoffs.

In the following proposition, we describe the utopia vector and minimum right vector of the

game wA, for any problem A ∈ AN .

Proposition 2. For any problem A ∈ AN , every k∗ ∈ R∗, and all i ∈ N0,

Mi(w
A) =


g(A), if i = 0,

g(A)− I0(A), if i ∈ Ek∗ ,

bk
∗

i , if i ∈ Pk∗\Ek∗ ,

0, otherwise,

and

mi(w
A) =

{
I0(A), if i = 0,

0, otherwise.

Since for any problem A ∈ AN , 0 ≤ I0(A) ≤ g(A) and bki ≥ 0, for all i ∈ N0 and each k ∈ R,

we conclude that CC(wA) ̸= ∅. Moreover, looking at the expression of the core given by (2) and

Proposition 2, we have that the core cover and the core of the game wA coincide. With this result,

we also have an alternative interpretation of γ(A). The core solution insures that every firm gets

at least their minimal right and at most their utopia payoff.

4.3 Axiomatic characterization

This section ends with an axiomatic characterization of γ(A). We introduce three natural axioms

that characterize this solution.

Let σ be a solution on AN . For any problem A ∈ AN , σ satisfies:

Positive externalities effect (PE). x ≥ 0, for all x ∈ σ(A).

PE states that no firm should end up with a negative transfer. In other words, no cost should

be allocated to any firm. This axiom reflects one of the main assumptions in the problem, that is,

the entry of firm 0 in the territory generates exclusively positive externalities.

Maximal aspiration (MA). xi ≤ g(A)− g(A\i), for all x ∈ σ(A) and all i ∈ N .

The contribution that a firm makes to a problem can be seen as the increase in the global

benefit when this firm enters the problem. This axiom states that each firm should get at most its

contribution to the problem.
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Newcomer firm monotonicity (NFM). Let A = (N0, P, b) and A′ = (N0, P, b
′) such that

b′k
∗
(N) > bk

∗
(N), for k∗ ∈ R∗(A) and b′kj = bkj , for all j ∈ N0 and k ∈ R\{k∗}. Then x0 ≥

miny∈σ(A){y0}, for all x ∈ σ(A′).

If the aggregate benefit of an optimal region increases, NFM says that firm 0 should get at

least the minimum of what it could have received before. A solution satisfying this axiom ensures

that the negotiation power of firm 0 does not decrease if the positive externalities on the optimal

region increase.

The following result states that any solution satisfying PE and MA is a larger set of the core

solution.

Lemma 2. Consider a solution σ on AN satisfying PE and MA. Then, γ(A) ⊆ σ(A), for all

A ∈ AN .

Now, we state that γ(A) is the unique solution that satisfying positive externalities effect,

maximal aspiration and newcomer firm monotonicity.

Theorem 2. A solution σ on AN satisfies PE, MA and NFM if and only if σ(A) = γ(A), for

any A ∈ AN .

5 Allocations in the core

Since we have fully described and axiomatically characterized the core solution, we now study some

allocations belonging to this solution. In this section, we provide a procedure to select allocations in

γ(A) by means of a certain bankruptcy situation. We study three specific allocations and establish

the link that they have with three single-valued solutions for TU games.

Consider a problem A ∈ AN and the expression of the core solution given by (2). To select an

allocation belonging to γ(A) , there are four conditions that have to be met: (a) firm 0 certainly

receives I0(A), (b) essential firms and firm 0 receive up to g(A)− I0(A), (c) non-essential firms in

the optimal region receive up to their individual benefit, and (d) firms outside the optimal region

receive zero.

We provide the following procedure to find an allocation x ∈ γ(A). To ensure that condition

(a) is met, first we give the payoff (I0(A), 0, ..., 0). To allocate the surplus, g(A)− I0(A), fulfilling

conditions (b), (c) and (d), we consider a certain bankruptcy problem.

In bankruptcy problems, a group of agents have some claims over a resource, but it is insufficient

to satisfy all the demands. Let N be a finite set of agents. Each agent i ∈ N has a claim ci ∈ R+

over an estate E ∈ R+. A bankruptcy problem on N is a pair (E, c), where E is the estate and
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c = (ci)i∈N is a vector of claims, with 0 ≤ E ≤
∑

i∈N ci. The class of bankruptcy problems on N

is denoted by BRN .

A bankruptcy rule (or simply, a rule) is a function f : BRN → Rn that assigns to each

bankruptcy problem (E, c) ∈ BRN a vector f(E, c) ∈ Rn such that
∑

i∈N fi(E, c) = E and

0 ≤ f(E, c) ≤ c. A rule gives a distribution of the estate as a function of the agents’ claims.

Now, for any A ∈ AN , let (g(A)− I0(A), cA) ∈ BRN0 be such that, for all i ∈ N0,

cAi =


g(A)− I0(A), if i ∈ Ek∗ ∪ {0},
bk

∗

i , if i ∈ Pk∗\Ek∗ ,

0, otherwise.

(3)

In this bankruptcy problem, the estate to distribute is the surplus and every firm claims their

maximum possible payoff. Recall that a bankruptcy rule gives to each agent an non-negative

amount that is at most what they claim. Due to this definition and the claims given in (3), we

can ensure that any allocation of the form x = (I0(A), 0, ..., 0) + f(g(A) − I0(A), cA) belongs to

the core solution. Therefore, to divide the surplus, it is enough to solve the bankruptcy problem

(g(A)− I0(A), cA) ∈ BRN0 .

We propose three well-known rules for bankruptcy problems to allocate the surplus: the Talmud

rule (Aumann and Maschler, 1985), the proportional rule, and the random arrival rule (O’Neill,

1982).

Talmud rule. For every (E, c) ∈ BRN and all i ∈ N ,

TALi(E, c) =


min

{
λ, 1

2ci
}

if 2E ≤
∑

j∈N cj ,

max
{
ci − µ, 1

2ci
}
, otherwise,

where λ and µ are chosen such that
∑

i∈N TALi(E, c) = E.

This rule establishes that no agent will get more than half of their claim if the estate is below

half of the aggregate claim, and nobody will lose more than half of their claim if the estate is above

half of the aggregate claim.

Proportional rule. For every (E, c) ∈ BRN and all i ∈ N , PRi(E, c) = ci∑
j∈N cj

E.

This rule divides the estate proportionally to the agents’ claims.
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Random arrival rule. For every (E, c) ∈ BRN and all i ∈ N ,

RAi(E, c) =
1

n!

∑
π∈ΠN

min

ci,max

E −
∑

j∈Sπ(i)

cj , 0


 ,

where ΠN is the set of all orderings of N and Sπ(i) = {j ∈ N |π(j) < π(i)} denote the set of

elements of N which come before i in the order given by π.

This rule considers all possible arrivals of agents and assigns them their claim or what is left

over after those who arrived earlier have already received their claims.

Although there are many other rules for bankruptcy problems (for a survey, see (Thomson,

2015)), we propose these rules because of the link they have with three interesting single-valued

solutions for TU games: the nucleolus (Schmeidler, 1969), the τ -value (Tijs, 1981), and the Alexia

value (Tijs et al., 2011).

Given a game (N, v), the excess of S ⊆ N with respect to x ∈ I(v) is defined as e(S, x) =

v(S) − x(S). The excess is a measurement of the dissatisfaction that coalition S has when the

imputation x is realized. For each x ∈ I(v), let θ(x) ∈ R2n be the vector of all excesses arranged

in non-increasing order, i.e, θi(x) ≥ θj(x) if 1 ≤ i < j ≤ 2n. For any x, y ∈ I(v), we say that

x is more acceptable than y (and we write x ≻ y) if there is an integer 1 ≤ j ≤ 2n such that

θi(x) = θi(y) if 1 ≤ i < j and θj(x) < θj(y). As usual, x ⪰ y if either x ≻ y or x = y. The

nucleolus consists of those imputations such that there is no other more acceptable. Formally, the

nucleolus of v is the set η(v) = {x ∈ I(v)|x ⪰ y,∀y ∈ I(v)}. It is known that if I(v) ̸= ∅, the
nucleolus is non-empty and contains a unique allocation. Furthermore if C(v) ̸= ∅, the nucleolus

belongs to the core.

In the subclass of games where the core cover is non-empty, the τ -value is defined as the

unique efficient vector which is a convex combination of m(v) and M(v). Let (N, v) be such that

CC(v) ̸= ∅. The τ-value of v is defined as τ(v) = ρM(v) + (1− ρ)m(v), with ρ ∈ [0, 1] such that∑
i∈N τi(v) = v(N).

Now, let (v,N) be such that C(v) ̸= ∅. For any π ∈ ΠN , the vector λπ ∈ Rn is called the lexinal

and it is defined as λπ
π(k)(v) = max

{
xπ(k) : x ∈ C(v) and xπ(ℓ) = λπ

π(ℓ)(v),∀ℓ ∈ {1, ..., k − 1}
}
, for

all k ∈ {1, ..., n}. The lexical is recursively defined such that every player gets the maximum they

can obtain inside the core considering that players before them (in the order given by π) obtain

their restricted maxima. Once the lexinal for each possible order is calculated, the Alexia value

of v is defined as the average over all of them, i.e., α(v) = 1
n!

∑
π∈ΠN λπ(v).

Notice that while the nucleolus and the Alexia value are by definition core allocations (when

the core is non-empty), the τ - value not always provides a core element. Nevertheless, the fact
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that the core cover and the core are equivalent for wA ensures that the τ -value is a core allocation.

The next theorem shows some results in the literature establishing the links between the

bankruptcy rules and the single-valued solutions for TU games we have introduced.

Theorem 3. Let (N, v) be a game such that CC(v) = C(v) ̸= ∅. Then,

� η(v) = m(v) + TAL
(
v(N)−

∑
i∈N mi(v),M(v)−m(v)

)
(Quant et al., 2005),

� τ(v) = m(v) + PR
(
v(N)−

∑
i∈N mi(v),M(v)−m(v)

)
(González-Dı́az et al., 2005),

� α(v) = m(v) +RA
(
v(N)−

∑
i∈N mi(v),M(v)−m(v)

)
(Tijs et al., 2011).

From Proposition 2 and the definition of the claims cA given by (3), one can easily verify that

wA(N0)−
∑

i∈N mi(w
A) = g(A)− I0(A) and M(wA)−m(wA) = cA. This implies that if we apply

the Talmud rule to the bankruptcy problem in the provided procedure, the allocation selected is

the nucleolus of wA; when we use the proportional rule, we have the τ -value; and if the random

arrival rule is used, we get the Alexia rule. We formally state this in the following corollary, which

is direct result from Theorem 3 and Proposition 2.

Corollary 1. For every A ∈ AN ,

� η(wA) = (I0(A), 0, ..., 0) + TAL(g(A)− I0(A), cA),

� τ(wA) = (I0(A), 0, ..., 0) + PR(g(A)− I0(A), cA), and

� α(wA) = (I0(A), 0, ..., 0) +RA(g(A)− I0(A), cA).

Then, we have two interpretations for these allocations, one by means of bankruptcy problems

and the other from TU games. Other conclusion that we can get from this result is that, in the

subset of problems where Pk∗ = Ek∗ , the nucleolus, the τ -value, and the Alexia value of wA coincide

with the egalitarian location rule (Bergantiños and Navarro-Ramos, 2022). This rule works as the

procedure we have provided, but the surplus is divided equally among all firms in Pk∗ ∪ {0}.

Example 3. Consider the problem A in Example 1. We calculate the allocations resulting from

applying the three rules to the provided procedure. Since g(A) = 20 and I0(A) = 16, the claim of

any i ∈ N0 is

cAi =


4, if i ∈ {0, 3},
2, if i = 2,

0, otherwise.

12



Therefore, any allocation x = (16, 0, 0, 0, 0) + f (4, (4, 0, 2, 4, 0)) belongs to the core solution. Table

3 contains the allocations x resulting from applying the Talmud rule, the proportional rule and the

random arrival rule to the bankrupt problem.

Bankruptcy rule Solution for wA Allocation

Talmud rule Nucleolus (17.50, 0, 1.00, 1.50, 0)

Proportional rule τ -value (17.60, 0, 0.80, 1.60, 0)

Random arrival rule Alexia value (17.67, 0, 0.67, 1.67, 0)

Table 3: Three allocations in γ(A).

Deciding which of these allocations is more convenient depends on the criteria to consider. For

example, the non-essential firm receives the most in the allocation given by applying the Talmud

rule; then the proportional rule; and they receive the least when we apply the random arrival rule.

In this sense, we could say that the nucleolus “treats smaller companies better”.
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Appendix A. Proof of the results

Proof of Lemma 1. Let A ∈ AN and k∗ ∈ R∗.

(a) Assume that I0(A) = bk
∗

0 , then bk
∗

0 ≥ s(A). Let i ∈ Pk∗ . Since bk
∗

j ≥ 0, for all j ∈ N0,

bk
∗
(N0\{i}) = bk

∗

0 + bk
∗
(N0\{i}) ≥ s(A). Therefore, i is non-essential and Ek∗ = ∅.

(b) Assume that there exists i ∈ Ek∗ . By the definition of essential firm, bk
∗
(N0\{i}) < s(A).

Then, bk
∗

0 ≤ bk
∗
(N0\{i}) < s(A). Thus, I0(A) = max

{
bk

∗

0 , s(A)
}
= s(A).

(c) Assume that |R| > 1. We prove that if i is not essential, its individual benefit is zero. Take

ℓ ∈ R∗\{k∗}. Because bℓi = 0 and ℓ is an optimal region, bk
∗
(N0\{i}) ≤ bℓ(N0\{i}) =

g(A) = s(A). Assume that i ∈ Pk∗\Ek∗. Therefore, bk
∗
(N0\{i}) ≥ s(A) = g(A). Then,

bk
∗
(N0\{i}) = g(A) = bk

∗
(N0), that is, b

k∗

i = 0.
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Proof of Proposition 1. Let S ⊆ T ⊆ N0. Since bki ≥ 0 for all i ∈ N0 and all k ∈ R, bk(S) ≤ bk(T )

for every k ∈ R. Then, wA(S) ≤ wA(T ) and wA is monotone.

Now, let S, T ⊆ N0 be such that S ∩T = ∅. If 0 /∈ S ∪T , wA(S ∪T ) = wA(S) = wA(T ) = 0. If

0 ∈ S ∪ T , assume, without lost of generality, that 0 ∈ S. Then 0 /∈ T and since wA is monotone,

wA(S ∪ T ) ≥ wA(S) = wA(S) + wA(T ). Therefore, wA is superadditive.

Finally, we prove that wA may not be convex. Consider the problem A in Example 1. Take

i = 3, S = {0, 1} and T = {0, 1, 4}. Although S ⊂ T , wA(S ∪ {i}) − wA(S) = 18 − 11 = 7 >

wA(T ∪ {i})− wA(T ) = 18− 16 = 2. Then, wA may not be convex.

Proof of Theorem 1. First, we prove “ ⊆ ”, that is, we prove that every element of C(wA) fulfills

the inequalities in (2). Let x ∈ C(wA). By definition, x(N0) = wA(N0) = g(A). Let i ∈ N . Since

wA({i}) = 0, xi ≥ 0 holds. Further since x(N0\{i}) ≥ wA(N0\{i}), xi = wA(N0) − x(N0\{i}) ≤
wA(N0)− wA(N0\{i}).

Let k∗ ∈ R∗. If k∗ is not unique, wA(N0\{i}) = wA(N0). Therefore xi = 0, for all i ∈ N and

x0 = wA(N0) = g(A). This is, C(wA) = {x} = {(g(A), 0, ..., 0)} and then, x fulfills the inequalities

in (2).

Now, assume that k∗ is unique. We face two cases:

� i ∈ N\Pk∗ . Since bk
∗

i = 0, wA(N0\{i}) = wA(N0). Hence, xi = 0.

� i ∈ Pk∗ . There are two possibilities:

– i ∈ Ek∗ . By Lemma 1-(b), wA(N0\{i}) = maxk∈R

{
bk(N0\{i})

}
= s(A) = I0(A). Then,

xi ≤ wA(N0)− I0(A) = g(A)− I0(A).

– i /∈ Ek∗ . Since bk
∗
(N0\{i}) ≥ bk(N0\{i}), for all k ∈ R\{k∗}, then wA(N0\{i}) =

bk
∗
(N0\{i}) ⇒ xi ≤ wA(N0)− wA(N0\{i}) = bk

∗
(N0)− bk

∗
(N0\{i}) = bk

∗

i .

We now prove that x0 ≥ I0(A). Assume first that I0(A) = bk
∗

0 . By the definition of I0(A),

bk0 ≤ bk
∗

0 , for any k ∈ R\{k∗}. Then, wA({0}) = maxk∈R{bk0} = bk
∗

0 . Thus, x0 ≥ wA({0}) = bk
∗

0 =

I0(A).

Assume now that I0(A) = s(A). Then there exists ℓ ∈ R\{k∗} such that bℓ(N0) = I0(A). Since

xi = 0, for all i ∈ N\Pk∗ , x0 = x0 +
∑

i∈Pℓ
xi ≥ wA({0} ∪ Pℓ) = bℓ0 + bℓ(Pℓ) = I0(A).

Finally, x0 = wA(N0)−
∑

i∈N xi ≤ g(A)− wA(N) = g(A).

To prove the reverse inclusion, it is sufficient to show that for every x ∈ Rn+1 in the set defined

by (2), x(S) ≥ wA(S), for all S ⊆ N0.

Let S ⊆ N0. If 0 /∈ S, wA(S) = 0 and x(S) ≥ 0 = wA(S). If 0 ∈ S, there are two possibilities:
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� wA(S) ≤ I0(A). Then, since xi = 0 for all i ∈ N\Pk∗ , xi ≥ 0, for all i ∈ Pk∗ and x0 ≥ I0(A),

x(S) = x0 + x(S ∩ Pk∗) ≥ I0(A) ≥ wA(S).

� wA(S) > I0(A). We need to prove a couple of things:

– wA(S) = bk
∗
(S). Assume that there is k ∈ R\{k∗} such that wA(S) = bk(S). Then we

have wA(S) = bk0 + bk(S ∩ Pk) ≤ bk0 + bk(Pk) = bk(N0\Pk∗) ≤ I0(A), a contradiction.

Therefore, wA(S) = bk
∗
(S).

– Ek∗ ⊂ S. If Ek∗ = ∅, the inclusion is true. If Ek∗ ̸= ∅, assume that there is i ∈ Ek∗

such that i /∈ S. Since S ∩ Pk∗ ⊆ Pk∗\{i}, then wA(S) = bk
∗

0 + bk
∗
(S ∩ Pk∗) ≤

bk
∗

0 + bk
∗
(Pk∗\{i}) < s(A) ≤ I0(A). Again, this is a contradiction. Therefore, Ek∗ ⊂ S.

Then, since xi ≥ bk
∗

i for all i ∈ Pk∗\S, x(S) = x(N0) − x(N0\S) = g(A) − x(Pk∗\S) ≥
g(A)− bk

∗
(Pk∗\S) = bk

∗

0 + bk
∗

i (S ∩ Pk∗) = bk
∗
(S) = wA(S).

Proof of Proposition 2. Let k∗ ∈ R∗. Assume that k∗ is not unique. Then, wA(N0\{i}) = g(A),

for all i ∈ N and M(wA) = (g(A), 0, ..., 0). We know by Lemma 1-(c) that every firm in an optimal

region either is essential or their individual benefit is 0. Therefore, we have the desired expression

for M(wA). Now, let S ⊆ N0 such that i ∈ S, for any i ∈ N . If 0 /∈ S, wA(S)−
∑

j∈S\{i} Mj(w
A) =

0. If 0 ∈ S, wA(S) −
∑

j∈S\{i} Mj(w
A) = wA(S) − g(A). Since wA is monotone, g(A) ≥ wA(S),

for all S ⊆ N0. Therefore, the maximum value that wA(S) − g(A) can reach is zero. Hence,

mi(w
A) = 0 for all i ∈ N . Again, since wA is monotone and the fact that in this situation

g(A) = I0(A),

m0(w
A) = max

S⊆N0:0∈N0

wA(S)−
∑

j∈S\{i}

Mj(w
A)

 = max
S⊆N0:0∈N0

{
wA(S)

}
= g(A) = I0(A).

Now, assume that k∗ is unique. Let i ∈ N . If i ∈ N\Pk∗ , wA(N0\{i}) = g(A). Then,

Mi(w
A) = 0,∀i ∈ N\Pk∗ . If i ∈ Pk∗ , there are two cases:

� i ∈ Ek∗ . In the proof of Theorem 1, we showed that wA(N0\{i}) = I0(A). Then, Mi(w
A) =

g(A)− I0(A).

� i ∈ Pk∗\Ek∗ . Then, wA(N0\{i}) = bk
∗
(N0\{i}) and Mi(w

A) = g(A)− bk
∗
(N0\{i}) = bk

∗

i .
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Finally, M0(w
A) = g(A)− 0 = g(A).

We now compute m(wA). Let i ∈ N and S ⊆ N0 with i ∈ S. If 0 /∈ S, since Mj(w
A) ≥ 0, for

all j ∈ N0 and wA(S) = 0, wA(S) −
∑

j∈S\{i} Mj(w
A) ≤ 0. If 0 ∈ S, since M0(w

A) = g(A) and

wA(S) ≤ wA(N0) = g(A),

wA(S)−
∑

j∈S\{i}

Mj(w
A) ≤ g(A)− g(A)−

∑
j∈S\{0,i}

Mj(w
A) = −

∑
j∈S\{0,i}

Mj(w
A) ≤ 0.

Finally, we need to find T ⊆ N0 with i ∈ T such that wA(T ) −
∑

j∈T\{i} Mj(w
A) = 0. We can

achieve this by taking T = {i}. Therefore mi(w
A) = 0, for all i ∈ N .

Let S ⊆ N0 with 0 ∈ S. Assume that wA(S) ≤ I0(A). Since Mj(w
A) ≥ 0 ∀j ∈ N , wA(S) −∑

j∈S\{0} Mj(w
A) ≤ wA(S) ≤ I0(A).

Now, assume that wA(S) > I0(A). In this case (see proof of Theorem 1), wA(S) = bk
∗
(S) and

Ek∗ ⊂ S. Then,

wA(S)−
∑

j∈S\{0}

Mj(w
A) =bk

∗
(S)−

∑
j∈S∩(Pk∗\Ek∗ )

Mj(w
A)−

∑
j∈S∩Ek∗

Mj(w
A)

=bk
∗
((S ∩ Pk∗) ∪ {0})− bk

∗
(S ∩ (Pk∗\Ek∗))− |Ek∗ |(g(A)− I0(A))

=bk
∗
(Ek∗ ∪ {0})− |Ek∗ |(g(A)− I0(A))

≤g(A)− (g(A)− I0(A)) = I0(A).

As before, it only remains to find a coalition T ⊆ N0 with 0 ∈ T such that wA(T ) −∑
j∈T\{0} Mj(w

A) = I0(A). We need to consider the two possibilities over I0(A). If I0(A) = bk
∗

0 ,

take T = {0}. Then wA(T ) −
∑

j∈T\{0} Mj(w
A) = bk

∗

0 = I0(A). Now, if I0(A) = s(A), con-

sider T = Pk ∪ {0} such that wA(Pk ∪ {0}) = s(A) = I0(A). Since k ̸= k∗, wA(Pk ∪ {0}) −∑
j∈Pk

Mj(w
A) = wA(Pk ∪ {0}) = I0(A). Therefore, m0(w

A) = I0(A).

Proof of Lemma 2. Let A ∈ AN , x ∈ σ(A) and i ∈ N . By the definitions of global benefit, i-

reduced problem and the game wA, g(A\i) = maxk∈R

{
(b\i)k(N0\{i})

}
= maxk∈R

{
bk(N0\{i})

}
=

wA(N0\{i}).
Considering the proof of Proposition 2, we have that, for all i ∈ N and every k∗ ∈ R∗,

g(A\i) =


I0(A), if i ∈ Ek∗ ,

bk
∗
(N0\{i}), if i ∈ Pk∗\Ek∗ ,

g(A), otherwise.
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Since σ satisfies MA, for every k∗ ∈ R∗,

σ(A) =

x ∈ Rn+1 : x(N0) = g(A),

xi ≤ g(A)− I0(A),∀i ∈ Ek∗ ,

xi ≤ bk
∗

i ,∀i ∈ Pk∗\Ek∗ ,

xi ≤ 0,∀i ∈ N\Pk∗

 . (A.1)

Now, by PE, xi ≥ 0 for all i ∈ N0. Furthermore, since x is an allocation i.e. x(N0) = g(A), we

conclude that x0 ≤ g(A). Combining the above with (A.1), we have

σ(A) =

x ∈ Rn+1 : x(N0) = g(A),

0 ≤ x0 ≤ g(A),

0 ≤ xi ≤ g(A)− I0(A),∀i ∈ Ek∗ ,

0 ≤ xi ≤ bk
∗

i ,∀i ∈ Pk∗\Ek∗ ,

xi = 0,∀i ∈ N\Pk∗

 . (A.2)

Clearly γ(A) ⊆ σ(A), by the expression of the core of wA given in (2).

Proof of Theorem 2. First, we prove that γ(A) satisfies the three axioms. By Theorem 1, we know

that C(wA) satisfies PE andMC, therefore, γ(A) also satisfies PE andMC. Now, consider A,A′ ∈
AN as the statement of NFM . Then, for all x ∈ γ(A), x0 ≥ I0(A) = I0(A

′) = miny∈γ(A′){y0}.
Hence, γ(A) satisfies NFM .

For the uniqueness, let σ be a solution satisfying the three axioms. Lemma 2 tells us that

γ(A) ⊆ σ(A). Now, we prove the reverse inclusion. By the definition of a solution, we can take

x ∈ σ(A).

Assume first that |R∗| > 1. In this case, g(A) = I0(A). By (2), γ(A) = C(wA) = {(g(A), 0, ..., 0)}.
Let i ∈ N and k∗ any optimal region. Because σ satisfies PE and MA, x belongs to the set given

by (A.2). Then, xi = 0 if i ∈ N\Pk∗ . Consider now that i ∈ Pk∗ . By Lemma 1-(c), we know

that either i ∈ Ek∗ or bk
∗

i = 0. Considering the expression (A.2), we conclude that xi = 0. Now,

if i ∈ Ek∗, 0 ≤ x0 ≤ g(A) − I0(A) = 0. Therefore, xi = 0, for all i ∈ N and x0 = g(A) i.e

σ(A) = {x} = γ(A).

Now, assume that R∗ = {k∗}. By expressions (2) and (A.2), it only remains to show that

x0 ≥ I0(A). There are two possible cases on I0(A).

� I0(A) = s(A) > bk
∗

0 . Let A1 = (N0, P, b
1) ∈ AN such that b1k

∗
(Pk∗) = s(A) − bk

∗

0 and

b1kk = bkk, otherwise. In A1 there are at least two optimal regions, k∗ and any other region

which aggregate benefit is s(A). Since g(A1) = s(A) = I0(A), by the expression of σ given in

(A.2), σ(A1) = {(I0(A), 0, ..., 0)}. Since g(A) > I0(A) = g(A1) and miny∈σ(A1){y0} = I0(A),

by NFM , x0 ≥ I0(A).
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� I0(A) = bk
∗

0 ≥ s(A). Let A2 = (N0, P, b
2) ∈ AN such that b2k

∗

i = 0, for all i ∈ Pk∗ and

b2kk = bkk, otherwise. In this problem, all firms in Pk∗ are non-essential because b2k
∗
(N0\{i}) =

b2k
∗

0 = bk
∗

0 ≥ s(A2). Since for every y ∈ σ(A2) 0 ≤ yi ≤ bk
∗

i and g(A2) = bk
∗

0 then, σ(A2) =

{(I0(A), 0, ..., 0)}. Following the same line of reasoning as before, by NFM , x0 ≥ I0(A).

By the expression of the core given by (2), x ∈ C(wA) = γ(A). Hence, σ(A) ⊆ γ(A). By

Lemma 2, σ(A) = γ(A).
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