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Linear and uniform in time bound for the binary
branching model with Moran type interactions

A. M. G. Cox∗ E. Horton† D. Villemonais‡§

January 29, 2025

Abstract

In this note, we recall the definition of the binary branching model with Moran type
interactions (BBMMI) introduced in [8]. In this interacting particle system, particles
evolve, reproduce and die independently and, with a probability that may depend on the
configuration of the whole system, the death of a particle may trigger the reproduction of
another particle, while a branching event may trigger the death of another particle. We
recall its relation to the Feynman-Kac semigroup of the underlying Markov evolution and
improve on the L2 distance between their normalisations proved in [8], when additional
regularity is assumed on the process.

Keywords : interacting particle systems, branching processes, many-to-one, Markov pro-
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1 Introduction

Branching processes and Moran-type models represent two distinct but complementary ap-
proaches to studying population dynamics and related phenomena. Moran-type processes,
introduced by Moran [28], are particularly suited for modeling finite populations influenced by
mechanisms such as genetic drift, mutation, and natural selection, which can either enhance or
diminish genetic diversity. The Moran model describes a system of N genes where, at random
exponential intervals, two particles are chosen uniformly: one is removed while the other is
duplicated, breaking the independence between particles. For an in-depth exploration of this
model and its generalisations, we refer the reader to [17] and references therein. Furthermore,
this resampling approach has been employed in various models of particle systems for the
numerical solution of Feynman-Kac formulae [6, 14, 13, 32].

On the other hand, branching processes naturally model systems where events such as
branching and killing occur independently. These processes arise in contexts such as population
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size dynamics [22, 23, 26], neutron transport [7], genetic evolution [27], growth-fragmentation
phenomena [2, 1], and cell proliferation kinetics [33]. They are also studied for their theoretical
properties [22, 10, 19, 20, 21], with a particular focus on their multiplicative behavior, scaling
properties, and asymptotic dynamics over long time scales.

In [8], a new model has been proposed, which encompasses both the Moran model and bi-
nary branching processes. In this article, the authors consider a particle system with (natural)
branching and killing, as well as Moran type interactions. More precisely, when the system is
initiated from N particles, each particle evolves according to an independent copy of a given
Markov process, X, until either a (binary) branching or killing event occurs. Here, binary
refers to the fact that the particle is replaced by exactly two independent copies of itself. If
such a branching event occurs, with a probability that may depend on the configuration of
the whole system, another particle is removed from the system according to a selection mech-
anism. Similarly, if a killing event occurs, with a probability which may also depend on the
configuration of the whole system, another particle is duplicated via a resampling mechanism.
We refer to this model as the binary branching model with Moran interactions, or BBMMI for
short.

In the present paper, we will, for simplicity, only consider the so called Nmin−Nmax model,
which is the BBMMI model with a particular choice of selection and resampling mechanisms.
Indeed, the Nmin − Nmax model is a binary branching process whose population size is con-
strained to remain in {Nmin, . . . , Nmax}, where 2 ≤ Nmin ≤ Nmax < +∞ are fixed. In order to
constrain the size of the process, when the size of the population reaches Nmax (resp. Nmin)
and a natural branching (resp. killing) event occurs, we set the probability of selection (resp.
resampling) to be 1. As will be clear, our results extend to the more general situations under
the appropriate regularity assumptions.

The main contributions of [8] are two-fold. First, an explicit relation between the average
of the empirical distribution of the particle system and the average of the underlying Markov
process X. Letting mT denote the empirical distribution of the particle system at time T , and
QT denote the first moment of the underlying binary branching process without selection and
resampling, the authors show that for any T ≥ 0,

E
[
ΠA

T ΠB
TmT (f)

]
= m0QT (f), (1)

where ΠA
T and ΠB

T are stochastic weights that compensate for the resampling and selection
events that occur up to time T . Second, that after normalisation, we can give explicit bounds
on the difference between the empirical particle system and the corresponding semigroup:∥∥∥∥ m0QT (f)

m0QT (1E)
− mT (f)

mT (1E)

∥∥∥∥
2

≤ C exp(c∥b∥∞T )
∥f∥∞

m0QT (1E)/N0

1√
N0

, (2)

where m0(1E) = N0 and C, c are positive constants.
As the reader will notice, the above bound is exponential in T , which is partly due to the

generality of the setting considered in [8]. The aim of the present note is to state and prove
that, under suitable regularity condition, this bound can be chosen linear in T .

We also mention that bounds for L2 norms of the form given above have been studied in
detail for interacting particle systems with constant size. We refer the reader to [11, 12, 29, 25]
and references therein for further details.

The rest of the article is set out as follows. In section 2, we recall the Nmin −Nmax model
introduced in [8], along with some useful notation that will be used throughout the rest of the
article. In section 3, we give our main result that strengthens the bound (2) obtained in [8],
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followed by a discussion of the implications of this result. Finally, in section 4 we discuss the
case of Brownian motion with drift evolving in a bounded domain with C2 boundary. The
purpose of this section is to prove that the L2 distance between the (normalised) semigroup
associated with the branching Brownian motion with drift and the approximating Nmin−Nmax

model can be optimally bounded by C/
√
Nmin.

2 Description of the model

Let (Ω,F , (Xt)t∈[0,+∞)) be a continuous time progressively measurable Markov process with
values in a measurable state space E. We denote by Px its law when initiated at x ∈ E and by
Ex the corresponding expectation operator. We also allow for the possibility that the Markov
process X is absorbed, or killed, in the sense that we consider a cemetery state ∂ /∈ E such
that Xt ∈ {∂} for all t ≥ τ∂ := inf{t ≥ 0 : Xt ∈ {∂}}. We extend, whenever necessary, any
measurable function f : E → [0,+∞) by f ≡ 0 on ∂. We call this ‘hard killing’ to distinguish
with the notion of ‘soft killing’ introduced below.

We further introduce functions b : E → R+ and κ : E → R+, that denote the branching
and (soft) killing rate of the Markov process. With this notation, we introduce the semigroup

Qtf(x) = Ex

[
f(Xt) exp

(∫ t

0

(b(Xs)− κ(Xs)) ds

)
1t<τ∂

]
,

defined for all bounded measurable functions f : E → R, t ≥ 0 and x ∈ E, This defines
a Feynman-Kac semigroup (Qt)t≥0, which is related to the binary branching model where
particles move as copies of X that are killed at rate κ and branch at rate b resulting in the
creation of two independent copies of the original particle. The relation between Q and this
process is given by the well-known many-to-one formula, see for instance [18] and references
therein, and it has been extended to the BBMMI in [8].

Before describing the interacting particle system associated with the branching process
described above, we first introduce the following assumptions.

Assumption 1. The branching rate b is uniformly bounded.

Assumption 2. For any x ∈ E and t ∈ [0,+∞), Px(τ∂ = t) = 0 and inf
x∈E

Px(τ∂ > t) > 0.

We now recall the algorithmic description of the dynamics of the BBMMI particle system
in the particular setting of the Nmin −Nmax model with branching and killing rates b and κ.
The formal construction of the process is a non-trivial task, and is given in the supplementary
material [9] of [8]. To this end, let 2 ≤ Nmin ≤ Nmax < ∞, and fix N0 ∈ {Nmin, . . . , Nmax}.
We consider the particle system ((X i

t)i∈Nt)t∈[0,+∞), where Nt is the number of particles in the
system at time t.

Evolution of the Nmin −Nmax model.

1. The particles X i, i ∈ {1, . . . , N0}, evolve as independent copies of X, and we consider
the following times:

τ b,i1 := inf{t ≥ 0,

∫ t

0

b(X i
s) ds ≥ ei,b1 },
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and

τκ,i1 := inf{t ≥ 0,

∫ t

0

κ(X i
s) ds ≥ ei,κ1 },

and

τ∂,i1 := inf{t ≥ 0, X i
t ∈ ∂},

where ei,b1 , ei,κ1 , i = 1, . . . , N0 are exponential random variables with parameter 1, and are
independent of each other and everything else.

2. Denoting by i0 the index of the (unique) particle such that τ b,i01 ∧ τκ,i01 ∧ τ∂,i01 = τ1, where
τ1 = min

i∈S̄0

τ b,i1 ∧ τκ,i1 ∧ τ∂,i1 , we have Nt = N0 for all t < τ1 and

(a) if τ1 = τ b,i01 , then a branching event occurs;

(b) if τ1 = τκ,i01 , then a soft killing event occurs;

(c) if τ1 = τ∂,i01 , then a hard killing event occurs.

3. Then a resampling or selection event may occur, depending on the following situations.

Killing. If a (soft or hard) killing event occurred at the preceding step, then we
say that i0 is killed at time τ1 and we consider the following further two cases.

• If the total number of particles, N0, is equal to Nmin, particle i0 is removed
from the system and a resampling event occurs: choose j0 uniformly from
{1, . . . , N0} \ {i0} and set

X i0
τ1
:= Xj0

τ1
.

Observe that the number of particles in the system at time τ1 is then Nτ1 =
N0 = Nmin.

• If the total number of particles, N0, is larger or equal to Nmin + 1, then the
particle i0 is removed from the system and the particles are then enumerated
arbitrarily from 1 to Nτ1 = N0 − 1.

Branching. If a branching event occurred at the preceding step, then we say that
i0 has branched at time τ1 and we consider the following further two cases.

• If the total number of particles, N0, is equal to Nmax, a new particle is added to
the system at position X i0

τ1
and a selection event occurs: choose j0 at random

uniformly from {1, . . . , N0 + 1} and remove particle j0 from the system The
particles are then enumerated arbitrarily from 1 to Nτ1 = N0.

• If the total number of particles, N0, is less than or equal to Nmax − 1, then a
new particle is added to the system at position X i0

τ1
:

XN0+1
τ1

= X i0
τ1
.

After time τ1 the system evolves as independent copies of X until the next killing/branching
event, denoted by τ2, and at time τ2 it may undergo a resampling/selection event as above.
Iterating, we define the sequence τ0 := 0 < τ1 < τ2 < · · · < τn < · · · .

We will also make use of the following assumption, which ensures that the process described
above is well defined at any time t ≥ 0.
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Assumption 3. The sequence (τn)n∈N converges to +∞ almost surely.

Figure 1: A schematic representation of theNmin−Nmax dynamic withNmin = 3 andNmax = 4.
The process starts with N = 4 particles at time 0. The first event is a killing, so that the
number of particles goes down to N = 3 = Nmin. The next event is a killing, so that the
number of particles goes down to 2 < Nmin, which triggers a resampling event: one of the 2
remaining particles (chosen uniformly at random) is duplicated, and the number of particles
goes back to N = 2+1 = Nmin. The next event is a branching, so that the number of particles
goes up to N = 4 = Nmax. The subsequent event is a branching event, so that the number of
particles goes up to 5 > Nmax, which triggers a selection event, so that one of the 5 particles
(chosen uniformly at random) is removed from the system, and the number of particles goes
back to N = 4 = Nmax. The next event is a killing, so that the number of particles goes down
to 3 = Nmin, and so on.

As discussed in [8], the above model and the associated results given in [8] are related to a
whole suite of other models in the literature. For example, when Nmin = Nmax and κ bounded,
we recover the standard Moran particle model (see [15, 13, 29, 6] for similar results), where
the process is constrained to remain of constant size N0.

In addition, our model is reminiscent of the genetic algorithms introduced by Del Moral,
see [11, 12] and references therein, and also fits into the more general class of controlled
branching processes introduced by Sevastyanov and Zubkov in [30], where the number of
reproductive individuals in each generation depends on the size of the previous generation via
a control function. We refer the reader to [8] for further discussion and references on these
related works.

In the rest of the article we will use the notation

mt :=
Nt∑
i=1

δXi
t
, t ≥ 0,

to denote the empirical measure associated with the Nmin −Nmax interacting particle system.
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We will also use m̂t to denote the normalised empirical measure:

m̂t :=
1

Nt

Nt∑
i=1

δXi
t
, t ≥ 0.

The law of the particle system will be denoted by P, with corresponding expectation operator E.

3 Main result

In this section, we present our main result, which improves on the upper bound given in
Theorem 1 of [8]. For this, we set

h(x) = inf
t≥1

δxQt1E

∥Qt−11E∥∞
, ∀x ∈ E (3)

and, for all bounded measurable functions f : E → R,

αt(f) = sup
x∈E

∣∣∣∣ δxQtf

δxQt1E

− νt(f)

∣∣∣∣ , ∀ ≥ 0, (4)

where νt is a (well chosen) probability measure over E. We also recall that Qt, mt and m̂t,
t ≥ 0 were defined in the previous section. We will also use the notation M1(E) to denote the
collection of probability measures on E.

Theorem 1. Under Assumptions 1, 2 and 3, there exists a constant1 C > 0 such that, for
all T ≥ 1 and all bounded measurable functions f : E → R, we have∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂T (f)

∥∥∥∥
2

≤ C
T−1∑
s=0

αT−s−1(f)E
(

1√
Nsm̂s(h)

)
. (5)

Remark 2. After the proof we will consider several examples where αt is bounded by a constant,
as well as situations where it decreases exponentially fast with t, allowing us to make use of
well-known results in the theory of quasi-stationary distribution. In these situations, the right-
hand side of (5) is typically linear in T and uniformly bounded over T ≥ 0 respectively.

However, there are situations where αt may decrease more slowly, for instance in reducible
state spaces or in time inhomogeneous settings. Note that these settings are also covered by
our result since νt is allowed to depend on t.

Proof. We first prove that, for all ∥f∥∞ ≤ 1,∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂1QT−1f

m̂1QT−11E

∥∥∥∥
2

≤ C
∥QT−11E∥∞ supµ∈M1(E)

∣∣∣ µQT−1f

µQT−11E

∣∣∣
√
N0m̂0QT1E

. (6)

This is obtained via a modification of the end of the proof of Theorem 2.6 in [8]. Denoting
by At the total number of resampling events up to time t, by Bt the total number of selection
events up to time t, and setting

ΠA
t :=

At∏
n=1

(
Nmin − 1

Nmin

)
, ΠB

t :=
Bt∏
i=1

(
Nmax + 1

Nmax

)
, (7)

1Here and throughout the paper, C is a positive constant that may change from line to line
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the authors obtain therein that

E
[(
m0Q1f − ΠA

1 Π
B
1 m1f

)2] ≤ c1N0 exp (c2∥b∥∞)

(
sup
t∈[0,1]

∥Qtf∥∞

)2

,

for some constants c1 and c2. From there, applying this result to f = QT−1f , one deduces that
for T ≥ 1,∥∥∥∥m0QT1E

m1QT−1f

m1QT−11E

−m0QTf

∥∥∥∥
2

≤
∥∥∥∥(m0QT1E − ΠA

1 Π
B
1 m1QT−11E)

m1QT−1f

m1QT−11E

∥∥∥∥
2

+
∥∥ΠA

1 Π
B
1 m1QT−1f −m0QTf

∥∥
2

≤
√

c1N0 exp (c2∥b∥∞/2)

(
sup
t∈[0,1]

∥Qt+T−11E∥∞ sup
µ∈M1(E)

∣∣∣∣ µQT−1f

µQT−11E

∣∣∣∣+ sup
t∈[0,1]

∥Qt+T−1f∥∞

)
.

We conclude that∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂1QT−1f

m̂1QT−11E

∥∥∥∥
2

≤ C
supt∈[0,1] ∥Qt+T−11E∥∞ supµ∈M1(E)

∣∣∣ µQT−1f

µQT−11E

∣∣∣+ supt∈[0,1] ∥Qt+T−1f∥∞
√
N0m̂0QT1E

.

Now note that, for all µ ∈ M1(E),

µQt+T−1f ≤ µQt+T−1f

µQt+T−11E

∥Qt+T−11E∥∞

Then, since b is assumed bounded, there exists a constant C > 0 such that

sup
t∈[0,1]

∥Qt+T−11E∥∞ ≤ C∥QT−11E∥∞.

Using the last two estimates in the antepenultimate inequality, we deduce that (6) holds true.
Then, using Minkowski’s inequality, the Markov property at each time s ∈ {1, 2, . . . , T −1}

and the first step of the proof, we obtain∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂T (f)

m̂T (1E)

∥∥∥∥
2

≤
T−1∑
s=0

∥∥∥∥ m̂sQT−sf

m̂sQT−s1E

− m̂s+1QT−s−1f

m̂s+1QT−s−11E

∥∥∥∥
2

≤ C
T−1∑
s=0

E

2 ∧
∥QT−s−11E∥∞ supµ∈M1(E)

∣∣∣ µQT−s−1f

µQT−s−11E

∣∣∣
√
N0m̂0QT−s1E

 , (8)

for some constant C > 0. Replacing f by f − νt(f) and using the definitions of h and α yields
the result.

Remark 3. When the function h defined in (3) is bounded away from 0, then Theorem 1 entails
that there exists a constant C > 0 such that, for all bounded measurable function f and all
time T > 0, ∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂T (f)

∥∥∥∥
2

≤ C
T√
Nmin

∥f∥∞. (9)
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A similar estimate appeared in [12, Proposition 9.5.6], where the particle system evolves in
discrete time with a constant number of particle, under the same assumption on h (transposed
to discrete time).

If, in addition, (αt(f))t∈{1,2,...} is summable, then there exists a constant Cf > 0 such that,
for all T > 0, ∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂T (f)

∥∥∥∥
2

≤ Cf√
Nmin

. (10)

In the rest of this section, we provide examples that illustrate typical situations where this
holds true.

Example 1 (Uniform exponential convergence with bounded soft killing rate). In [5], it has
been proved that there exists a probability measure νQS on E, constants C > 0 and α > 0
such that ∥∥∥∥ µQt

µQt1E

− νQS

∥∥∥∥
TV

≤ Ce−αt, ∀t ≥ 0, ∀µ ∈ M1(D),

if, and only if, there exist constants c1, c2, t0 > 0 and ν ∈ M1(D) such the two following
conditions are satisfied:

(A1).
δxQt0

δxQt01E

≥ c1 ν, ∀x ∈ E,

(A2). inf
t≥0, x∈E

νQt1E

δxQt1E

≥ c2.

If, in addition, inf
x∈E

δxQt01E > 0, then this implies that h is uniformly bounded from below

and that, for all measurable function f , we have αt(f) ≤ Ce−αt∥f∥∞, so that the uniform
convergence (10) holds true with Cf = C∥f∥∞.

The conditions (A1) and (A2) are known to hold true in several situations (see e.g. [15,
11, 12, 5]). In addition, they are easily generalised to the time-inhomogeneous setting, in
which case the uniform convergence result follows by taking a time dependent measure in the
definition of α.

In the particular Moran model setting (that is when Nmin = Nmax), this uniform conver-
gence result was already known (see e.g. [29, 12, 6]) under additional regularity conditions
involving the infinitesimal generator and the carré du champs operator associated to (Qt)t≥0.
Our contribution is thus that the uniform convergence holds in a more general setting and
without these regularity conditions.

Example 2 (Wasserstein distance). Consider the case where E is endowed with a bounded
metric d. Assume that b− κ is Lipschitz and that the following assumption holds:

(A) There exist constants C, γ > 0 such that, for all x, y ∈ E and t ≥ 0, there exists a
Markovian coupling2

E(x,y)[Gtd(X
x
t , X

y
t )] ≤ Ceγtd(x, y),

where Gx
t = e−

∫ t
0 β(Xx

s )−κ(Xx
s )ds/Ex[e

−
∫ t
0 β(Xx

s )−κ(Xx
s )ds] and Xx

t denotes Xt under Px.

2For all x, y ∈ E, a coupling measure between Px and Py is a probability measure P(x,y) on a probability
space where (Xx

t , X
y
t )t≥0 is defined, such that (Xz

t )t≥0 has the same distribution as (Xt)t≥0 under Pz for
z = x, y. We say the coupling is Markovian if the coupled process (X,Y ) is Markovian with respect to its
natural filtration.

8



Under these assumptions, it was proved in [4] that there exists a probability measure νQS such
that for all Lipschitz function f : E → R, we have∥∥∥∥ µQtf

µQt1E

− νQS(f)

∥∥∥∥
Lip

≤ Ce−αtWd(µ, νQS)∥f∥Lip, ∀t ≥ 0, ∀µ ∈ M1(D), (11)

where, for µ, ν ∈ M1(D), Wd(µ, ν) = sup
∥f∥Lip≤1

|µ(f)− ν(f)|.

In addition, the authors show that h is lower bounded in this case. We refer the reader to
[4] for example of processes satisfying this condition.

Under these conditions, we thus obtain that, for all bounded measurable function f , (9)
holds true, and that, for all Lipschitz function f , (10) holds true with Cf = C ∥f∥Lip. As far
as we know, this result is new, even for the simpler Moran Model (i.e. Nmin = Nmax).

Example 3 (Counter-example to linear convergence when h = 0 on some subset). We consider
the case where E = {a, b}, a ̸= b, X is the constant continuous Markov chain (Xt = X0 for all
t ≥ 0, almost surely), κ = 1a+21b, and b = 0. For any N ≥ 2, define the probability measure

µN =
1

N
δa +

N − 1

N
δb, so that

µNQt1a

µNQt1E

=
1
N
e−t

1
N
e−t + N−1

N
e−2t

.

In particular, for t = 2 lnN ,

µNQt1a

µNQt1E

=
1
N3

1
N3 +

N−1
N

1
N4

≥ 1

1 + 1
N

.

Now consider the Nmin − Nmax model with N0 = Nmin = Nmax, the same parameters κ and
b, and X1

0 = a and X i
0 = b for all i ≥ 2. Then, with probability 1/3, during the first event

involving X1, the particle jumps to b and there are 0 particle at a, so that m̂t(a) = 0 after this
event. Since this event happens with rate 3, we deduce that

E(m̂t(a)) ≤ e−3t + (1− e−3t)
2

3
,

and hence, taking again t = 2 lnN ,

E(m̂t(a)) ≤
1

N6
+

(
1− 1

N6

)
2

3
.

This shows that

E

(∣∣∣∣ µNQt1a

µNQt1E

− m̂t(a)

∣∣∣∣2
)

≥ 1

1 + 1
N

− 1

N6
+ (1− 1

N6
)
2

3
−−−−→
N→+∞

1

3
,

and hence that (9) does not hold true in this setting.

Example 4 (Counter-example to uniform when no uniform convergence of semi-group). We
consider as in the previous example the case where E = {a, b}, a ̸= b, and X is the constant
continuous time Markov chain (Xt = X0 for all t ≥ 0 almost surely), but with κ = 1a + 1b,

9



and b = 0. In this case, for any even number N ≥ 2, we define the probability measure

µN =
1

2
δa +

1

2
δb, so that

µNQt1a

µNQt1E

=
1

2
.

Now consider the Nmin − Nmax model with N0 = Nmin = Nmax = N , the same parameters
κ and b, and X i

0 = a for all i ≤ N/2 and X i
0 = b for all i ≥ N/2 + 1. Since the two

sets do not communicate with each other, we deduce that there exists TN ≥ 0 such that
P(m̂TN

(a) = 0) ≥ 1/4. We thus deduce that

E

(∣∣∣∣ µNQTN
1a

µNQTN
1E

− m̂TN
(a)

∣∣∣∣2
)

≥ 1

4
.

This shows that, even though inf
E

h > 0, (10) does not hold true.

4 Brownian motion with drift on a bounded C2 domain.

In the previous section, we applied our main result to situations where h was uniformly bounded
from below. In this section, we consider the more challenging case of a Brownian motion with
drift, killed at the boundary of a C2-domain. The Fleming-Viot-type particle system with this
dynamic has been studied: it is known that, in this case, the empirical distribution converges
uniformly in time toward the associated Feynman-Kac semigroup (see e.g. [16], and [24] when
the diffusion parameter is sufficiently small) at rate C/Nη for some η ∈ (0, 1/2). The purpose
of this section is two-fold: to prove that the L2 distance can be (optimally) bounded by

C/
√

Nmin, and to extend the uniform convergence obtained in the Fleming-Viot setting to the
more general framework of the Nmin −Nmax particle system.

We consider the situation where X is a solution to the SDE

dXt = dWt + q(Xt) dt, X0 ∈ D,

where D is a bounded domain in Rd, d ≥ 2, with C2 boundary, W is a standard d-dimensional
Brownian motion, and q : D → Rd is bounded and continuous. We assume that b and κ are
bounded and that the process is killed upon hitting the boundary at time τ∂ = inf{t ≥ 0, Xt /∈
D}.

Theorem 4. Assumptions 1, 2 and 3 hold true. In addition, there exists a constant C > 0
such that, for all bounded measurable functions f : D → R,∥∥∥∥ m̂0QTf

m̂0QT1E

− m̂T (f)

∥∥∥∥
2

≤ C
√
Nmax

Nmin

∥f∥∞ + E
(

C√
N0 m̂0(ρD)

)
∥f∥∞, ∀t ≥ 0, (12)

where ρD : D → R+ denotes the distance to the boundary of D.

Proof. Thanks to equation (3.6) and (A1–A2) of [3] (see also Remark 3 therein), there exists
a constant c0 > 0 such that for all t ≥ 1 and x ∈ D,

δxQt1D

supy∈D δyQt−11D

≥ c0ρD(x),
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where ρD is the distance to the boundary of D. This implies that, for all t ≥ 0,

E
(

1√
Ntm̂t(h)

)
≤ E

(
C
√
Nt∑Nt

i=1 ρD(X
i
t)

)
≤ E

(
C
√
Nmax∑Nt

i=1 ρD(X
i
t)

)
. (13)

It is known that the distance to the boundary for the Fleming-Viot-type system can be
stochastically coupled with a system of Brownian motions with drift on [0, a] for some a > 0,
reflected at 0 and a (see e.g. [31]). From this coupling for the Fleming-Viot particle system,
we derive a new coupling for the Nmin −Nmax model.

More precisely, let a > 0 and Da = {x ∈ D, ρD(x) ≤ a} such that the distance to the
boundary is C2 in Da (such a vicinity of the boundary exists since the boundary is assumed
to be of regularity C2). Then, when a particle X i is in Da, using the fact that ∥∇ρD∥2 = 1,
Itô’s formula yields

dρD(X
i
t) = dBi

t + r(X i
t) dt, i ∈ {1, . . . , Nt}, (14)

for some independent Brownian motions Bi, i = 1, . . . , Nt, and some bounded continuous
function r, up to the next branching or selection or killing or resampling event.

We now construct a family of jumping reflected Brownian motions with drift on [0, a] in
such a way that the sum of the positions of these particles is always bounded above by the sum
of the distance between a set of Nmin particles (in the Nmin−Nmax process) and the boundary.
The construction of such a process follows similar ideas to those presented in [31] and so we
leave the details of the construction to the reader. More precisely, for i ∈ {1, . . . , Nmin},
between events, particles move according to the following dynamics,

dRi
t = dBi

t − ∥r∥∞dt+ dLi,0
t − dLi,a

t , Ri
0 = 0, i ∈ {1, . . . , Nmin},

where Lx denotes the local time of Ri at x ∈ {0, a}, where, for each index i ∈ {1, . . . , Nmin}, Bi

is the same Brownian motion as in (14), and where the processes jump to 0 at rate ∥b∥∞+∥κ∥∞
independently from each other. In addition, the Ri are required to jump according to the
following rules.

• When a particle X i
t , i = 1, . . . , Nt, branches and does not trigger a selection event, we

do nothing (so the set of reflected brownian motion does not branch).

• When a particle branches and triggers a selection event,

– if the selection event removes a particle associated to a reflected Brownian motion
Ri, i = 1, . . . , Nmin, this Brownian motion jumps to 0 and is associated to the
particle newly created (at the branching event);

– if the selection event removes a particle which is not associated to a reflected Brow-
nian motion, we do nothing.

• When a particle is killed and there is no resampling,

– if the particle is not associated to a reflected Brownian motion, we do nothing;

– if the particle is associated to a reflected Brownian motion, then the Brownian
motion jumps to 0 and is associated to a new particle, not already associated to a
Brownian motion.

11



• When a particle is killed and triggers a resampling event,

– if the particle is not associated to a reflected Brownian motion, we do nothing;

– if the particle is associated to a reflected Brownian motion, then the reflected Brow-
nian motion jumps to 0 (this is only relevant for soft killing, since in the case of
hard killing the associated reflected Brownian motion is already at 0) and is now
associated to the newly created particle.

The point of this coupling is that it has the following properties:

Nt∑
i=1

ρD(X
i
t) ≥

Nmin∑
i=1

Ri
t, ∀t ≥ 0,

while the Ri are independent (the proof is very similar to the one developed in [31] and we
leave the details to the reader).

We first remark that, on the event lim
n→+∞

τn < +∞, the distance to the boundary of

the particle system accumulates to 0 in finite time, and hence that the set of processes Ri,
i ∈ {1, . . . , Nmin} accumulates to 0. Since this is not possible (by independence of the processes
Ri), we deduce that Assumption 3 holds true. Assumption 2 also holds true since the hitting
time of an elliptic diffusion has no atom. Hence the hypotheses of Theorem 1 are satisfied.

We now make use of the following lemma, proved at the end of this section.

Lemma 5. We have

E

(
1∑Nmin

i=1 Ri
1

)
≤ C

Nmin

.

for some constant C > 0.

Using (6) and since, according to [3], we have αt(f) ≤ Ce−γt for some C, α > 0, we deduce
from Theorem 1 that (12) holds true.

Proof of Lemma 5. Assume without loss of generality that a = 1. Since the random vari-
ables Ri

1 have a bounded density fR with respect to the Lebesgue measure on [0, a] and are
independent, we have

E

(
1∑Nmin

i=1 Ri
1

)
=

∫ ∞

0

L(t)Nmin dt,

where L(t) is the Laplace transform of Ri
1, that is

L(t) =
∫ 1

0

e−txfR(x) dx.

Now note that we have

lim sup
t→+∞

tL(t) = lim sup
t→+∞

∫ 1

0

t e−txfR(x) dx ≤ sup
[0,1]

fR lim
t→+∞

∫ 1

0

t e−tx dx = sup
[0,1]

fR.
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Hence there exist constants c∞, t∞ > 0 such that, for all t ≥ t∞,

L(t) ≤ 1

1 + c∞t
.

In addition, the derivative of L(t) is given by

L′(t) = −
∫ 1

0

x e−txfR(x) dx,

which is bounded away from 0 on compact intervals and hence, for any t0 > 0, there exists a
constant c0 > 0 such that, for all t ∈ [0, t0],

L(t) ≤ 1

1 + c0t
.

We deduce that there exists c > 0 such that, for all t ≥ 0,

L(t) ≤ 1

1 + ct
.

In particular,

E

(
1∑Nmin

i=1 Ri
1

)
≤
∫ ∞

0

(
1

1 + ct

)Nmin

dt =
1

c(Nmin + 1)
.
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