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Abstract
The rapid adoption of Large Language Models (LLMs) for search
engines and fact-checking platforms necessitates enhancing their
output accuracy. Retrieval Augmented Generation (RAG) mitigates
hallucinations but requires semantically rich repositories like Wiki-
data. However, there is a lack of high-quality data to fine-tune
LLMs for querying such knowledge bases. To address this gap, we
propose a curated dataset with 2,771 unique queries for fine-tuning
LLMs to generate accurate and syntactically valid SPARQL queries
from natural language instructions. This dataset, customized for
interaction with Wikidata, also serves as a robust benchmark for
text-to-SPARQL task evaluation. Key findings show that models
generally perform better on queries with lower complexity.

CCS Concepts
• Information systems → Information retrieval; Question
answering.
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1 Introduction
Text-to-Query is a task that aims to automatically generate struc-
tured queries that communicate with various data and knowledge
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base stores. It bridges the natural language (NL) domain of unstruc-
tured data with rigorously structured data sources. The task of
parsing natural language questions into structured queries is even
more prevalent now, given the high potential that Large Language
Models (LLMs) offer in Retrieval-Augmented conversational agents
and the problems they face with using the correct information as
context.
Given the accessibility and diversity of Structured Query Language
or shortly SQL in relational databases, text-to-SQL is currently one
of the most challenging and essential tasks in semantic parsing.
Spider [11] is an example of a large-scale dataset used for cross-
domain semantic parsing and text-to-SQL tasks. There are many
other datasets for this task, such as GenQuery [13], WikiSQL [14],
and CoSQL [12], to name a few. Text-to-SQL datasets have been
categorized into two types: single-turn and multi-turn. As essen-
tial as SQL is, it is only useful for querying relational databases.
Relational data consists of rows collected into tables that have to
conform to a fixed set of constraints and data types, i.e., a "schema".

SPARQL1 for SPARQL Protocol and RDF Query Language is
designed to generate queries on data that does not follow a fixed
schema. It is a semantic query language able to retrieve and ma-
nipulate data stored in RDF format or triplets of subject, predicate,
and object. It offers more flexibility and semantic richness, with
the key advantage of having multiple sources of information and
endpoints to query from. It is also worth noting that SPARQL adds
a level of complexity compared to SQL in the task of query gen-
eration since the former needs proper ID mapping or else they
fail easily. Kosten et al. introduced a text-to-SPARQL benchmark
called SPIDER4SPARQL [7] where they converted the Spider dataset
and databases to NL/SPARQL pairs and knowledge graphs. Their
benchmark translates the variety of domains and queries from Spi-
der. However, it relies on synthetically created RDF stores that
are a direct mapping from the relational DBs. Other works like
DBNQA [8], LC-QuAD 2.0 [3] are also extensive benchmarks for
Knowledge Graphs Question Answering or text-to-SPARQL that
were generated using a set of SPARQL query templates. While
these benchmarks provide valuable resources, they are limited by
their reliance on synthetic query generation and template-based
approaches. This results in a significant gap in the field - the lack of
datasets containing real-world SPARQL queries that capture the full
complexity and variability found in practice. Real SPARQL queries,

1https://www.w3.org/TR/sparql11-query/
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drawn from actual usage, tend to exhibit more sophisticated pat-
terns and edge cases that are difficult to replicate through synthetic
generation methods.

To address this gap, we introduce Instruct-to-SPARQL2, a text-to-
SPARQL dataset aimed atWikidata that consists of queries collected
from real examples and tutorials on querying Wikidata. Moreover,
we tackle the issue of entity ID mapping, which is caused by a
major flaw of text generation models (LLMs) - the "hallucination"
phenomenon where generated queries may contain non-existent
or outdated IDs upon generation. The dataset can be used as a
benchmark to evaluate the capabilities of LLMs to query Wikidata
or to fine-tune models that can be used as retrieval components for
Wiki Chatbots.

Our main contributions in this work are as follows:
(1) An Instruct-to-SPARQL dataset for Wikidata with 13,855

generated NL instructions and 2,771 unique SPARQL queries
with various complexity levels and entity ID annotations.

(2) SPARQL-LMs: We release the weights of the fine-tuned LLMs
for the SPARQL query generation task.

The paper is organized as follows: Section 2 presents the method-
ology used to collect and curate the dataset. Section 3 describes
the Instruct-to-SPARQL dataset with the additional instructions
generation, Query labeling and complexity classification. Section
4 presents the potential applications of the dataset and a small ex-
perimental setup and evaluation. Finally, Section 5 concludes the
paper and discusses future work.

2 Methodology
2.1 Data Collection
The dataset was collected by crawling Wikidata weekly examples
pages3, tutorials4, and other web pages5 containing examples of
SPARQL queries for Wikidata. We focused on crawling the queries
and their surrounding text, including headings and descriptions
as relevant "context". During crawling, we did not distinguish be-
tween new and previously seen queries from different pages. After
crawling, we obtained 6,739 queries along with their contextual
metadata.

2.2 Data Cleaning and Validation
Given the challenging task of query generation, language mod-
els require high-quality training data. Therefore, we sanitized the
crawled data and removed duplicates. Our data cleaning process
involved:
• Deduplication: We reduced 6,739 initial entries to 2,771
unique queries through a two-step process. First, we identi-
fied and removed exact duplicates that had identical crawled
queries and attached context. Then, we manually reviewed
the remaining query duplicates, retaining those with the
most informative context.
• Context cleaning: The retrieved context often contained
HTML markup tags, CSS styling code, and long URLs, which

2https://github.com/padas-lab-de/instruct-to-sparql
3https://www.wikidata.org/wiki/Wikidata:Weekly_query_examples
4https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial
5https://www.wikidata.org/wiki/User:MartinPoulter/queries/botany

Error Type Description

Client-side Errors

Undefined prefix Missing prefix declaration in query
Parse exception Invalid SPARQL syntax
Lexical exception Presence of illegal characters
Non-aggregate error Invalid variable usage in SELECT clause
Server-side Errors

Stack overflow Excessive query recursion depth
GeoSpatial error Failed coordinate resolution
Timeout Query execution time exceeded limit
Out of memory Memory allocation exceeded
NullPointer Access to non-existent resource

Table 1: Taxonomy of errors encountered during SPARQL
query validation on Wikidata’s endpoint.

we deemed irrelevant and removed. By cleaning and remov-
ing noisy text from the context, we aimed to improve the
quality of our natural language instruction generations.
• Query validation: We executed all queries through Wiki-
data’s SPARQL endpoint to ensure syntactic correctness.

2.3 Validation and Error Analysis
While the context provides the natural language explanation of a
query, the query itself must be syntactically correct (i.e., executable).
Due to the inherent complexity of automated semantic validation,
we utilized the presence of a non-empty result set as a proxy in-
dicator for semantic validity, though this heuristic provides only
partial confidence in correctness.

We used Wikidata’s SPARQL Endpoint API6 to execute all 2,771
unique queries.We classified errors into client-side (syntax, parsing)
and server-side (timeout, memory) categories, as shown in Table 1.

From the initial dataset:
• 2,415 queries executed successfully
• 109 returned empty results
• 178 encountered server-side errors
• 77 encountered client-side errors

Among the 77 client-side errors, we observed the following distri-
bution: 33 lexical errors (42.9%), 27 undefined prefix errors (35.1%),
16 parse exceptions (20.8%), and 1 non-aggregate error (1.3%).

We addressed various client-side errors through targeted fixes.
For undefined prefix errors (27 cases), which occurred due to miss-
ing declarations for external RDF stores and non-standard prefix
abbreviations, we inserted the required prefixes and standardized
the abbreviations. Lexical errors were resolved by properly escaping
special characters in string filters, while parse exceptions stemming
from incomplete queries due to scraping errors were manually
corrected where possible by referring to the original source. Server-
side errors, such as timeouts and memory limitations, remained
unmodified as query optimization was beyond this work’s scope.

6https://query.wikidata.org/
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Algorithm 1 Labeling algorithm (for one query)
Input: 𝑞 a SPARQL query
𝑡 ← 𝑞

𝐼 ← Extract a set of all Wikidata’s Identifier from 𝑞

for each 𝑖 ∈ I do
𝐿 ← Retrieve labels of 𝑖 using Wikidata’s API
if 𝐿 has an English label then

𝑙 ← The English labels from 𝐿

else if 𝐿 is not empty then
𝑙 ← The first label from 𝐿

else
Next iteration

end if
𝑡 ← Replace all occurrences of 𝑖 with the type of item and 𝑙

end for
Output: 𝑡 is a labeled 𝑞

3 Instruct-to-SPARQL Dataset
Our dataset consists of 2,771 unique SPARQL queries paired with
13,855 natural language instructions (see Table 4). Key features
include:
• Query complexity labels (simple, moderate, complex)
• Entity and property annotations
• Natural language instructions for each query

3.1 Query Labeling Process
To enhance the semantic interpretability and robustness of our
dataset, we introduce a systematic approach for replacing Wiki-
data’s opaque identifiers with meaningful English labels. This trans-
formation addresses several key challenges in SPARQL query gen-
eration:

First, Wikidata’s identifier system (using "Q" for entities, "P"
for properties, and "L" for lexemes followed by numbers) is inher-
ently non-intuitive for both language models and humans. These
identifiers lack semantic meaning and can change over time asWiki-
data evolves. By replacing them with descriptive English labels, we
create a more stable and semantically rich representation.

Second, this labeling approach better aligns with how humans
naturally express queries, bridging the gap between natural lan-
guage and structured query languages. Rather than requiring mod-
els to learn arbitrary identifier mappings, they can work with mean-
ingful labels that directly convey semantic intent.

Our labeling process, detailed in Algorithm 1, systematically
transforms each query while preserving its semantic structure. To
handle the non-unique nature of labels (unlike identifiers), we imple-
mented a type-prefixing system. For instance, when both a property
(P31) and entity (Q21503252) share the label "Instance Of", we disam-
biguate them by prefixing with their types (e.g., "property:Instance
Of" vs. "entity:Instance Of"). This ensures unambiguous interpreta-
tion while maintaining semantic clarity.

We acknowledge certain limitations in our approach. When
processing identifiers that do not exist in Wikidata (either due
to deletion or modification), we leave them unchanged rather than
attempting potentially incorrect mappings. While this means some

Query SELECT (COUNT(DISTINCT ?article) AS ?count)
WHERE {?article wdt:P31/wdt:P279* wd:Q95074}

Query Templated

SELECT (COUNT(DISTINCT ?article) AS ?count)
WHERE {?article
wdt:[property:instance of]/wdt:[property:subclass of]*
wd:[entity:fictional character]}

Table 2: An example of a query and the same query with IDs
annotated.

Split train (1.85k) validation (124) test (495)

Simple 6.2% 4.9% 6.2%
Moderate 40.9% 47.2% 40.8%
Complex 52.9% 48% 53%

Table 3: SPARQL query complexity distribution across data
splits.

identifiers remain unlabeled, it preserves query integrity. Addition-
ally, in cases where an identifier is misinterpreted and mapped
to an incorrect Wikidata item, the query’s semantics could be al-
tered. However, we prioritize maintaining a high-quality dataset
over attempting uncertain historical reconstructions of modified or
deleted items.

This labeled representation transforms the query generation
task from exact identifier prediction to label generation, which
we hypothesize is more amenable to LLM capabilities. While this
introduces the need for a subsequent label-to-identifier linking step,
it creates a more natural intermediate representation that better
leverages the semantic understanding capabilities of large language
models.

This process of labeling is automated using the Wikidata API
and can be used on any SPARQL query for Wikidata. An example
of labeled query is given in Table 2. Labeling changes the problem
from generating the exact identifier to generating labels. Neverthe-
less, it implies a new system that would link labels back to item
identifiers is needed, as the query cannot be executed with labels.
The Wikidata API has the functionality to search items by labels to
get a list of candidates. We do not propose any linking strategies in
this work, we invite future work to address this challenge.

3.2 Natural Language Instructions
After annotating the queries, we used them to generate natural
language user instructions or questions. The enriched semantic
representation of the annotated SPARQL queries, combined with
the crawled "context", led to higher quality instruction generation.
We generated five natural language instructions or questions for
each query using Llama3-70B [1].

3.3 Query Complexity Classification
Building upon our labeled query representation, we further en-
hanced the dataset by classifying queries according to their com-
plexity. Using Llama3-70B, we assessed each query and assigned it
one of three complexity levels: simple, moderate, or complex. This
classification provides valuable metadata for both training and
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Field Content

Instructions "Find all movies directed by Christopher Nolan"
"..."

Query
SELECT ?movie WHERE {

?movie wdt:P31 wd:Q11424.

?movie wdt:P57 wd:Q25191.

}

Annotated
SELECT ?movie WHERE {

?movie wdt:[ property:instance of]

wd:[ entity:film].

?movie wdt:[ property:director]

wd:[ entity:Christopher Nolan].

}

Complexity simple
Results

[{movie: Interstellar},

{movie: The Dark Knight}, ...]

Table 4: Example entry from the Instruct-to-SPARQL dataset.

evaluation purposes. When partitioning the dataset into train, vali-
dation, and test splits, we applied two key criteria: (1) we included
only queries that were successfully executed and returned results,
ensuring practical utility, and (2) we maintained a balanced distri-
bution of complexity levels across all splits, as shown in Table 3.
This careful stratification ensures that model performance can be
meaningfully evaluated across different complexity levels.

3.4 Dataset Applications
4 Benchmark Evaluation
We evaluated our dataset on two primary tasks that assess different
aspects of SPARQL query generation capabilities:

Text-to-SPARQL Generation. This base task evaluates the model’s
ability to generate syntactically correct SPARQL queries from nat-
ural language instructions. This represents the fundamental chal-
lenge of translating user intent into executable queries. Models
must not only understand the semantic meaning of the instruc-
tion but also produce valid SPARQL syntax with correct Wikidata
identifiers.

Labeled Query Generation. This task evaluates our proposed ap-
proach of using natural language labels instead of opaque Wiki-
data identifiers. Models generate queries using human-readable
labels (e.g., "entity:United States" instead of "Q30"), which are then
mapped back to Wikidata IDs using a label-to-identifier matching
approach. This tests whether semantic representations improve
generation quality while maintaining query executability through
post-processing.

4.1 Baselines
We evaluated our dataset using two medium-sized large language
models (Mistral and Llama3) via fine-tuning, and Llama3-70B, GPT-
3.5, and GPT-4 via few-shot prompting. For fine-tuning, we trained
the models for 3 epochs with a batch size of 96 for a total of 174 steps
using the full train and validation sets of the Instruct-to-SPARQL
dataset.7 We released the source code for the dataset collection and
fine-tuning experiments on GitHub8.
• Mistral-7B-v0.3 [6]: A capable open-source language model
suitable for many text generation tasks. We used the instruct
fine-tuned version.
• Llama3-8B [1, 9]: The latest open-source release of the
Llama series from Meta. We used the instruction-tuned ver-
sion.
• Llama3-70B-Instruct [1, 9]: We selected this model for few-
shot learning as it is the most capable open-source model.
We randomly selected two examples from the training set
for few-shot prompting.
• GPT-3.5 [2]: We used the OpenAI API to generate queries
for the text-to-SPARQL task.
• GPT-4 [4]: We used the OpenAI API to generate queries for
the text-to-SPARQL task.

4.2 Evaluation Metrics
We evaluated the models using two sets of metrics: Text Genera-
tion We used CodeBLEU9 [10] to evaluate the similarity between
the generated SPARQL queries and the target queries. Query Ex-
ecution We evaluated the Jaccard similarity between the sets
of target results and generated query results10. The Syntax score
represents the ratio of syntactically valid and correct queries to all
generated queries.

4.3 Results and Analysis
For this experimental setup, we compared training directly on
queries with IDs against training with annotated queries where we
obfuscated the entity and property IDs with labels.

Table 5 reveals several key findings. First, supervised fine-tuning
(SFT) significantly outperforms few-shot learning across all met-
rics for both model types. In the non-annotated setting, SFT mod-
els achieved CodeBLEU scores of 84-85% and Jaccard similarities
of 70%, compared to few-shot scores below 56% and 30% respectively.
Second, contrary to our initial hypothesis, models fine-tuned on
non-annotated queries (with direct IDs) achieved better CodeBLEU
scores (84-85%) compared to those trained on annotated queries
(62-64%). However, the Syntax scores remained consistently high
( 96%) across both settings with SFT. Third, while GPT-4 showed
the strongest few-shot performance (particularly in Syntax score at
95.3%), it was still substantially outperformed by fine-tuned mod-
els in terms of result accuracy (Jaccard similarity). Notably, larger
models like Llama3-70B performed poorly in few-shot settings,
7All fine-tuning experiments were conducted on 6x A100 GPUs (80GB memory) with
an AMD EPYC 7742 64-Core Processor and 200GB memory.
8https://github.com/padas-lab-de/instruct-to-sparql
9We used a modified version where we compute the metric on the parsed SPARQL
query.
10For this, we applied a semantic mapping between the schema keys in the results
JSON objects [5]
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Table 5: Evaluation results on the test set of Instruct-to-
SPARQL on the two tasks.

Text-to-SPARQL

CodeBLEU Syntax score Jaccard
Few-shots
Llama3-8B 48.5% 52.1% 2.0%
Mistral-7B 39.9% 33.8% 1.1%
Llama3-70B 45.3% 14.1% 1.6%
GPT3.5 48.2% 94.4% 18.4%
GPT4 56.0% 95.3% 29.9%
SFT
Llama3-8B 84.4% 96.0% 70.4%
Mistral-7B 85.0% 96.7% 70.8%

Labeled Query Generation

CodeBLEU Syntax score Jaccard
Few-shots
Llama3-8B 36.4% 67.9% 7.2%
Mistral-7B 40.3% 61.1% 6.8%
Llama3-70B 45.3% 37.8% 10.8%
GPT3.5 24.4% 96.2% 21.5%
GPT4 42.9% 90.5% 30.4%
SFT
Llama3-8B 62.5% 96.0% 69.0%
Mistral-7B 63.9% 96.5% 72.5%

achieving only 14.1% and 37.8% Syntax scores for non-annotated
and annotated queries respectively, suggesting that model size
alone is insufficient for complex SPARQL query generation without
task-specific training.

4.4 Complexity-based Performance
We analyzed the performance of these models across different com-
plexity levels of SPARQL queries in our dataset. Figure 1 illustrates
the effect of query complexities on results-based performance using
the Jaccard score.

5 Conclusion
In this paper, we introduced Instruct-to-SPARQL, a curated dataset
of SPARQL queries paired with natural language instructions de-
signed to serve as a benchmark for text-to-SPARQL tasks on Wiki-
data. To address the issue of generating unique IDs for Wikidata
entities, we implemented an annotation method utilizing natural
language labels, thereby enhancing the reliability of LLMs in gen-
erating accurate queries. Moving forward, we plan to refine the
process of ID label replacements post-query generation to further
enhance our approach.
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Figure 1: Average Jaccard score of all models based on complexity.
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