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Abstract. The development of high-resolution mapping
models for forest attributes based on remote sensing data
combined with machine or deep learning techniques has be-
come a prominent topic in the field of forest observation and
monitoring. This has resulted in the availability of multiple,
sometimes conflicting, sources of information, but, at face
value, it also makes it possible to learn about forest attribute
uncertainty through the joint interpretation of multiple mod-
els. This article seeks to endorse the latter by utilizing the
Bayesian model averaging approach to diagnose and inter-
pret the differences between predictions from different mod-
els. The predictions in our case are forest canopy height es-
timations for metropolitan France arising from five different
models. An independent reference dataset, containing four
different definitions of forest height (dominant, mean, max-
imum, and Lorey’s) was established based on around 5500
plots of the French National Forest Inventory (NFI), dis-
tributed across the entire area of interest. In this study, we
evaluate models with respect to their probabilities of cor-
rectly predicting measurements or estimations obtained from
NFI plots, highlighting the spatial variability in respective
model probabilities across the study area. We observed sig-

nificant variability in these probabilities depending on the
forest height definition used, implying that the different mod-
els inadvertently predict different types of canopy height. We
also present the respective inter-model and intra-model vari-
ance estimations, enabling us to grasp where the employed
models have comparable contributions but contrasting pre-
dictions. We show that topography has an important impact
on the models spread. Moreover, we observed that the forest
stand vertical structure, the dominant tree species, and the
type of forest ownership systematically emerge as statisti-
cally significant factors influencing the model divergences.
Finally, we observed that the fitted higher-order mixtures,
which enabled the presented analyses, do not necessarily re-
duce bias or prevent the saturation of the predicted heights
observed in the individual models.
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1 Introduction

The interest in forest observation and monitoring has surged
in recent years, particularly due to the essential role occupied
by forests in the energy and ecological transition our soci-
eties are undergoing (e.g., Bontemps et al., 2022). Namely, as
important carbon sinks and renewable energy sources, forests
represent indispensable, but also very vulnerable, levers in
mitigating the climate crisis, along with all the biodiversity
they harbor (IPCC, 2021). As these are challengingly dis-
tributed targets, being relatively inaccessible for in situ mea-
surements in some parts of the globe, their observation and
monitoring have received quite a bit of attention from the re-
mote sensing community (Fassnacht et al., 2023).

As in other domains of remote sensing applications (Li et
al., 2022), the forest remote sensing research community has
witnessed a rapid increase in the utilization of machine learn-
ing and deep learning techniques, also referred to through-
out the article as artificial intelligence (AI), in recent years.
Notably, this has led to numerous developments of remote-
sensing- and AI-based models for high-resolution mapping
of the forest canopy height (Potapov et al., 2021; Morin et
al., 2022; Ge et al., 2022; Lang et al., 2023; Liu et al., 2023a;
Schwartz et al., 2024; Tolan et al., 2024; Fayad et al., 2024;
Fogel et al., 2024). Many of these approaches involve utiliz-
ing spatial or airborne lidar measurements, such as the Global
Ecosystem Dynamics Investigation (GEDI) (Dubayah et al.,
2020) or airborne laser scanning (ALS) data. These are often
complemented by imaging multi-spectral (Sentinel-2, Land-
sat, Planet, Spot) and sometimes radar (Sentinel-1, ALOS)
data in order to achieve a wider and/or denser coverage
(Coops et al., 2021).

Lidar measurements provide three-dimensional scattering
information, generally allowing us either to reconstruct, to
a degree, the forest stand structure or, at least, to estimate
its average shape over a certain footprint. They have an out-
standing potential for inferring numerous forest attributes
(canopy height, wood volume, aboveground biomass, etc.),
even in cases of relatively complex forest environments
(Evans et al., 2006). However, often, they either do not have
a recurrent acquisition character (e.g., the development of di-
achronic acquisitions at regional to national scales is at its
early ages) or, as is the case with the GEDI mission, do not
provide a continuous spatial coverage (Dubayah et al., 2020;
Besic et al., 2024a).

Multi-spectral and radar imagers typically offer wide, re-
current, and spatially continuous coverage of forests. Yet, ex-
cept for particular acquisition setups, such as photogramme-
try (Irulappa-Pillai-Vijayakumar et al., 2019) or polarimetric
synthetic aperture radar interferometry (PolInSAR) (Brigot
et al., 2019), they generally do not provide vertically resolved
information about the forest stand. Aside from that, they are
also prone to a series of non-negligible issues, such as opti-
cal signal saturation (Mutanga et al., 2023) or the multiplicity
of forest structure properties simultaneously influencing the

radar backscattering signal, causing its apparent saturation
(Joshi et al., 2017).

There have been numerous attempts within the forest ob-
servation community to reconcile the benefits of lidar and
imaging measurements while also mitigating their respec-
tive limitations. AI methods have played a significant role
in achieving this by constructing links between the lidar-
derived forest attributes, such as canopy height, and broad-
coverage images. Nevertheless, these remain models and are
therefore obviously far from being faultless. Firstly, electro-
magnetic interactions in remote sensing data cannot theoret-
ically explain all forest attribute variabilities. Even if they
could, the data would still be prone to imperfections from
lidar (Roy et al., 2021; Schleich et al., 2023; Tang et al.,
2023; Yu et al., 2024) or imaging sources (Teillet et al., 1982;
Joshi et al., 2017; Mutanga et al., 2023) and from modeling
choices and parameterizations. Therefore, it makes sense that
all of these factors combined cause models to struggle to spa-
tiotemporally reproduce a substantial part of the variability
of the forest attributes. Similar effects were also observed in
other kinds of spatial modeling when it comes to either re-
sources (Wadoux and Heuvelink, 2023) or ecological model-
ing (Ploton et al., 2020).

One way to attenuate these effects would be to combine
different models in a way which might optimize their joint
performances while enabling a comparative evaluation (Hu
et al., 2015; Dormann et al., 2018). This can be done in var-
ious ways, depending, first and foremost, on the availability
of validation and/or reference data. If there are no reference
data, the most intuitive way to proceed is the simple average
or median of models (e.g., simple model averaging), aiming,
respectively, to smooth predictions among models or to re-
move dissident predictions. If reference data are available,
one could think of a more sophisticated way to construct an
average, such as weighted model averaging. This could be
based on analyzing the model variable (input) dynamics, i.e.,
how well it matches with the observed one (Renaud et al.,
2022; Besic et al., 2024b), or, as is far more frequently the
case, on evaluating model predictions (output). In the latter
case, at least in the environmental sciences, we often rely on
Bayesian model averaging (BMA) (Wintle et al., 2003; Li et
al., 2008; Gibbons et al., 2008; Picard et al., 2012). The BMA
can be perceived as a weighted mean of various predictions,
with weights reflecting the performances of different models.
Alternatively, it can be viewed as a finite-mixture model, es-
timating the probability that each observation from an inde-
pendent validation dataset has been generated by one of the
models belonging to an ensemble (Raftery et al., 1997, 2005;
Hoeting et al., 1999).

In this article, we apply the BMA with the aim of analyz-
ing five selected AI-based models aimed at spatializing the
GEDI- or ALS-estimated canopy height across metropolitan
France using optical multi-spectral and contingent radar data
(Lang et al., 2023; Liu et al., 2023a; Morin et al., 2023a;
Potapov et al., 2021; Schwartz et al., 2024). In order to do
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so, we use in situ measurements and estimations from the
French National Forest Inventory (NFI) plots as an indepen-
dent validation dataset. The approximately 5500 plots enable
us to estimate both the overall and local weights of selected
models based on four different variants of height measure-
ments or estimations: dominant height, mean height, maxi-
mum height, and Lorey’s height (Duplat and Perrotte, 1982).
By involving auxiliary data related to the topography, the
dominant tree species, the forest stand vertical structure, and
the type of the forest ownership, we also investigate factors
influencing the models spread, i.e., where the models have
similar weights but contrasting predictions. Finally, we con-
trast the performance of individual models against the fitted
mixtures at the reference measurement sites, allowing us to
highlight the advantages and the limitations (some of which
have been previously noted in other fields, Bao et al., 2010;
Erickson et al., 2012) while also identifying potential per-
spectives of the proposed approach.

The article is organized as follows: in Sect. 2, we present
the five employed models, while Sect. 3 introduces the NFI
reference datasets. Section 4 contains the detailed description
of the used BMA approach. In Sect. 5, we present the results,
followed by the corresponding discussion in Sect. 6. Finally,
Sect. 7 provides the concluding remarks of the article.

2 Data: model descriptions

The selected remote-sensing- and AI-based models differ in
terms of the remote sensing data used but also in the way
these data are processed and in terms of the AI method em-
ployed. While not the sole commonality among them, a par-
ticularly relevant aspect for this study is that they all encom-
pass metropolitan France, where we have access to the refer-
ence NFI data. Therefore, in this section, we briefly present
their principal characteristics, which are partly illustrated in
Fig. 1 and will be recalled in Sects. 5 and 6 while interpreting
their mutual differences as highlighted by the BMA.

2.1 M1 (Lang)

The model proposed by Lang et al. (2023) uses Sentinel-2
multi-spectral optical data as input and aims to spatialize the
canopy height estimated from spatially sparse GEDI relative
height (RH) profiles. These profiles are derived by averaging
lidar returns across 25 m footprints, depicting the disparity
between the elevations of detected ground returns and the
n% cumulative waveform energy, as described in Dubayah
et al. (2020). This model uses the 98th percentile of the latter
(n= 98 – RH98) as a proxy for the canopy height.

The AI method employed is a deep convolutional neural
network (CNN) (Lang et al., 2019), taking as input Sentinel-
2 spectral bands and geographical coordinates and produc-
ing the canopy height estimate and the associated variance
thanks to the sparse supervision based on the GEDI data. The

produced estimates and corresponding variance are spatially
resolved at 10 m, refer to the year 2020 (acquisition of GEDI
data used as the reference), and cover the entire planet (ex-
cept for the Arctic and Antarctica).

2.2 M2 (Liu)

The model crafted by Liu et al. (2023a) stands apart in this re-
search as it does not directly utilize GEDI data like the other
models. Instead, it obtains its reference data from a range of
ALS datasets sourced from different European countries, ex-
cluding France. However, it indirectly includes the GEDI in-
formation through ingesting the previously described Lang et
al. (2023) model. The principal modality of this model is the
PlanetScope imagery, acquired in the time frame correspond-
ing to the European late summertime during the year 2019.
The 3 m resolution images, together with the auxiliary in-
puts, are related to the ALS-derived canopy height using the
U-Net architecture with an EfficientNetB4 backbone (Ron-
neberger et al., 2015; Tan and Le, 2020). The resulting output
comprises a map depicting tree cover and canopy height (for
areas identified as tree cover), with a spatial resolution set
at 3 m, spanning the entirety of the European continent. The
publicly available product used in this study was, however,
resampled to a spatial resolution of 30 m.

2.3 M3 (Morin)

Morin et al. (2023a) developed a model which uses as
predictive variables Sentinel-2 datasets, together with syn-
thetic aperture radar (SAR) Sentinel-1 C-band and ALOS-
2 PALSAR-2 L-band images. The reference dataset is the
canopy height derived from the GEDI data and correspond-
ing to the RH98 metric, adopted as the height reference fol-
lowing a comparison with ALS data. The link between the
predictive variables and the reference estimations is built us-
ing an algorithm that combines a random forest (RF) and a
multiple linear regression (MLR), which allows us to project
the GEDI RH98 measurements onto a 10 m grid covering
metropolitan France for the year 2020.

2.4 M4 (Potapov)

The Potapov’s model (Potapov et al., 2021) depends on the
multi-temporal metrics derived from Landsat multi-spectral
images and reflecting the land surface phenological prop-
erties (Potapov et al., 2020). These are used to supply the
bagged regression tree ensemble method (Breiman, 1996),
which also integrates the GEDI RH95 metric-based canopy
height estimates. The model output is a global canopy height
map for the year 2019, spatially resolved at 30 m.

2.5 M5 (Schwartz)

The model proposed by Schwartz et al. (2024) is based on
using Sentinel-2 multi-spectral and Sentinel-1 SAR C-band
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Figure 1. Schematic representation of the Bayesian averaging of the remote-sensing-based models for the high-resolution mapping of the
forest canopy height. Note that all the maps are projected in the RGF93 geodetic system with the Lambert-93 projection (EPSG:2154).
The rectangles at the bottom of each map indicate the method used, while the parallelograms list the corresponding input datasets. The
abbreviations employed are defined throughout Sect. 2.

data. They are integrated, together with the canopy height
estimate corresponding to the GEDI RH95 metric, into a U-
Net model (Ronneberger et al., 2015). The model produces
a 10 m resolution canopy height map covering metropolitan
France for the year 2020.

Figures A1 and A2 in Appendix A present, respectively,
the mutual comparison of the considered models at the ref-
erence measurement sites and representative examples of
their estimates in various forestry regions across metropoli-
tan France.

3 Data: reference dataset description

National Forest Inventory (NFI) programs are surveys of the
forest resources over a certain territory (Tomppo et al., 2010).
The French NFI is based on a spatially systematic stratified
sampling design, which takes place in two phases: photo-
interpretation of around 100000 points per year for the as-
sessment of forest area and field observations and measure-
ments at up to 7000 of these points for assessing forest re-
source variables (Robert et al., 2010; Hervé et al., 2014).

For each visited point, i.e., a plot with a radius of 25 m, nu-
merous attributes are accessible, including various measure-
ments or estimations of forest canopy height. In this study,
we focus on four particular variants among these options:

– Hdom, which the average tree height of the seven largest
trees per plot;

– Hmean, which is the mean tree height;

– Hmax, which is the maximum tree height;

– Hlor, which is Lorey’s mean tree height or the mean tree
height weighted by tree basal area.

Given that the tree height is measured at the plot only for
a sample of trees (one measurement per diameter class and
species), complementary values were imputed using a ran-
dom forest MissForest approach (Stekhoven and Bühlmann,
2012). The method was applied per species and sylvo-
ecological region using the diameter at breast height, the
height, and the plot-level variables (the stem density, the
basal area, and the wood volume). Validation was done us-
ing data acquired during 2005–2009, the period during which
all height measurements were performed. To do so, the cur-
rent protocol was simulated, and imputations were compared
with measurements, leading to a mean bias estimate (MBE)
of −0.1 m, a mean absolute error (MAE) of 1.98 m (14.8 %,
normalized relative to the target mean value), and a root mean
squared error (RMSE) of 2.66 m (16.6 %, normalized relative
to the target mean value).

This allows us to establish a sample that is big enough
to obtain a potentially better estimate of the height (notably,
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the mean and dominant height), which is, in this case, anno-
tated throughout the article with the superscript i, i.e., H i

dom,
H i

mean, H i
max, and H i

lor.
In this study, we utilize canopy height estimates from

the four variants, sourced from 5475 NFI plots dispersed
throughout metropolitan France for the year 2020. All anal-
yses presented in Sect. 5 are based on the supplemented
version (estimation – including imputations), except for the
overall weight analysis in Sect. 5.1, which encompasses both
the original version (measurements – without imputations)
and the supplemented version.

4 Method description – a “Bayesian-flavored
approach”

Now that we have introduced the five different models and
the reference dataset, the obvious question would be as fol-
lows: which one should we select? The one which compares
the best with the reference data? We know that every model,
as asserted in the Introduction, has its own intrinsic uncer-
tainty. By relying on only one selected model when many
are available, we somehow potentially misjudge the total un-
certainty, given that other models could have different pre-
dictions with different uncertainties. By applying the BMA
method, as introduced in this section, to all available mod-
els, we aim to mitigate the above-mentioned issue to some
extent (Raftery et al., 2003; Picard et al., 2012), assuming
that all models have respectable performance and possess
the potential to complement one another. The persistent lim-
itation is that all these uncertainties are assessed at (almost)
randomly selected points, namely the NFI plots, leaving the
behavior of uncertainty between these points somewhat un-
predictable. As will be further elaborated upon in the article,
this limitation also emerges as an important yet motivating
challenge. It affects our ability to apply the BMA approach
as effectively for purposes of synthesizing new spatialized
higher-order mixture models, as is the case for the analysis
presented in this study, when relying on sparsely distributed
reference datasets.

Here, the BMA assumes the combination of model outputs
without affecting their internal structure (called “the BMA of
deterministic models” by Picard et al., 2012). Alternatively,
one could also consider employing the BMA to optimize
some of the model parameters simultaneously (called “the
BMA of statistical models” by Picard et al., 2012). While
this approach could be relevant for the type of models used
in this study, it would first require significant computational
resources, as well as a revision of AI-based models to allow
certain parameters to remain tunable beyond the training and
validation phases.

Therefore, letH be the forest canopy height, predicted us-
ing the input data x obtained by one of theK = 5 considered
models, introduced in Sect. 2, denoted as M1, . . .,MK . Simi-
larly, let H denote the reference dataset, introduced in Sect. 3,

containing N = 5475 NFI estimates (referred to along with
the observations across the article). According to the law of
total probability, we can decompose the posterior distribution
of the forest canopy height as follows:

f (H |H)=
K∑
k=1

f (H |Mk,H) ·Pr(Mk|H) , (1)

with f (H |Mk,H) being the posterior distribution of the
canopy height under modelMk and Pr(Mk|H) being the pos-
terior probability of model Mk . These sum up to 1 and can
therefore somehow be interpreted as “importance” weights
(Pr(Mk|H)≡ wk), implying that the posterior distribution of
the forest canopy height f (H |H) represents a weighted av-
erage of the distributions under participating individual mod-
els.

A reasonable assumption when dealing with the canopy
height is that its conditional distribution given modelMk can
be approximated by a Gaussian distribution centered at the
model output mk:

H(x)|Mk,H∼N
(
mk(x),σ

2
k

)
, (2)

with σ 2
k being the variance of the kth model, describing

its uncertainty with respect to the H NFI observation data.
Equation (1) thus takes the following form:

f (H(x)|H)=
K∑
k=1

wk ·φ (H ;mk(x),σk) , (3)

where φ(·) denotes the Gaussian probability density func-
tion. The conditional mathematical expectation of the canopy
height can thus be expressed as follows:

E(H(x)|H)=
K∑
k=1

wk ·mk(x) , (4)

representing, essentially, the weighted sum of the canopy
height predictions of individual models. This comes at the
cost of increased complexity as the mixture involves both
the complexity of individual models and the addition of new
weights.

Perhaps even more interesting than the mathematical ex-
pectation is the variance estimation (Raftery, 1993):

Var(H(x)|H)=
∑K

k=1
wk ·

(
mk(x)−

K∑
l=1

wl ·ml(x)

)2

+

∑K

k=1
wk · σ

2
k ,

(5)

which is decomposed into the between-equation variance
(first term of Eq. 5) and the within-equation variance (second
term of Eq. 5). The former quantifies the model spread; i.e., it
indicates when models have similar weights but contrasting
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predictions. The latter denotes the weighted average of the
individual model uncertainties, reflecting the uncertainty of
the ensemble of models, or the total uncertainty outlined at
the outset of this section. This implies that the overall uncer-
tainty could be mis-estimated if only a single model is cho-
sen, even if it performs best in comparison with the reference
data.

4.1 E–M algorithm

To compute the expectation (Eq. 4) and the two variances
(Eq. 5), we need to derive the weights (wk) and the standard
deviations of the individual models (σk). These parameters
are estimated from the reference data, which, in this specific
context, can be referred to as the training dataset.

If we define the vector of unknown values as

θ = (w1, . . .wK ,σ1, . . .σK) , (6)

we can formulate the log-likelihood function, allowing us to
estimate θ by means of the maximum likelihood:

l (θ)=

N∑
i=1

ln

(
K∑
k=1

wk ·φ (Hi;mk(xi),σk)

)
, (7)

where Hi is the ith observation of dataset H, and xi denotes
the input data corresponding to the ith reference height ob-
servation.

This cannot be done in closed form but rather has to
be addressed numerically – done with the “expectation–
maximization” (EM) iterative method (Dempster et al., 1977;
McLachlan and Krishnan, 2008). This method addresses the
problem by introducing the “missing data” zki , which repre-
sent the posterior probability that the model k is the one that
best “fits” the observation i. Acknowledging the Bayesian
framework underlying this method, which also exhibits some
degree of frequentist characteristics (as suggested by Dor-
mann et al., 2018), we refer to it as the “Bayesian-flavored
approach”.

Starting from the initial guess for θ (w1 = w2 = ·· · =

wK = 1/K , σ1 = σ2 = ·· · = σK = 1), in the first step (the
expectation step), we compute the missing values for the next
step (j ) based on the current estimate of the standard devia-
tions (σ (j−1)

k ) and, evidently, by including the models’ height
estimates (mk(xi)) and the reference NFI observations (Hi):

ẑ
(j)
ki =

φ
(
Hi;mk(xi),σ

(j−1)
k

)∑K
l=1φ

(
Hi;ml(xi),σ

(j−1)
l

) . (8)

It is relevant to note that Picard et al. (2012) provide a ver-
sion of Eq. (8) containing the weight values (wk) in both the
numerator and the denominator and that the one we finally
opted for (without weights) comes from Raftery et al. (2003).
The reasoning behind this, which is not without significance
for the context of the presented work, will be elaborated upon
in Sect. 6.

Once we are done with the expectation step, in the sec-
ond step (the maximization step), we can “update” the over-
all weights,

w
(j)
k =

1
N

N∑
i=1

ẑ
(j)
ki , (9)

as well as the standard deviations,

σ
(j)
k =

√√√√∑N
i=1ẑ

(j)
ki (Hi −mk(xi))

2∑N
i=1ẑ

(j)
ki

. (10)

The iteration continues until the following condition is sat-
isfied:

‖ θ (j)− θ (j−1)
‖1 < 10−6 , (11)

in which case we have reached the convergence.

5 Results and analysis

Once applied to the models and the NFI data from Sects. 2
and 3, the method introduced in the previous section gives
the overall weights of each model across the entire territory
of interest (wk), as well as the local weights at every obser-
vation site i, corresponding to the converged “final” value of
the missing data (zki). The former are analyzed in Sect. 5.1,
while the latter are addressed in Sect. 5.2. The variance esti-
mations (Var(H(x)|H)) can also be expressed in the overall
or local fashion, with the latter being the subject of Sect. 5.3
and 5.4. The local estimation of Var(H(x)|H) at the point i
is obtained by substituting the weights wk and wl in Eq. (5)
with the respective missing data (zki and zli).

Since not all models share the same spatial resolution (M1,
M3, and M5 at 10 m and M2 and M4 at 30 m), instead of
upscaling M1, M3, and M5 to 30 m, we opted to downscale
M2 andM4 to 10 m. This was achieved by subdividing a 30 m
pixel into nine identical pixels.

5.1 Overall weights

As illustrated in Fig. 2, the overall weights allow us to deduce
the following:

– All models contributed to the finite mixtures at the scale
of metropolitan France, with the individual weights
(wk) differing relatively significantly from 1

5 , which
would be the weight of every model in the case of the
simple model averaging (SMA). The SMA used here is
based on the mean estimate.

– The distribution of contributions changed importantly
as a function of the employed height reference (Hdom,
Hmean, Hmax, or Hlor). For instance, we can see that
the model developed by Schwartz et al. (2024) (M5) is
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the most likely to have generated the dominant height
measurements or estimations, as well as Lorey’s mean
height estimations at the NFI plots. We can also notice
that the model of Lang et al. (2023) (M1) slightly out-
performs the one of Morin et al. (2023a) (M3) and the
model proposed by Schwartz et al. (2024) (M5) when
it comes to the probability of generating the maximum
height measurements or estimations at the NFI plots.
This appears to be related to the fact that Lang et al.
(2023) and Morin et al. (2023a) chose the GEDI RH98
metric as an input modality as opposed to the GEDI
RH95 metric retained by M4 and M5.

– The inclusion or exclusion of external MissForest im-
putations in the reference observations significantly in-
fluenced the distribution of weights. This effect is par-
ticularly obvious when analyzing dominant and mean
height, where the introduction of imputations alters the
dominant model, i.e., the one with the highest proba-
bility of generating the mean height observations, com-
pared to the model proposed by Liu et al. (2023a) (M2)
to M5.

5.2 Local (regional) weights

The local weights, originally derived from the 5475 NFI
plots, were further averaged by sylvo-ecological region
(SER). Specifically, metropolitan France is split into 91 of
these regions, out of which 86 are non-alluvial, represent-
ing a certain homogeneity in terms of sylvo-ecological in-
dicators. This territorial organization is suitable for illustrat-
ing local weights as it would be rather impractical to display
them individually.

As illustrated in Fig. 3, the local weights allow the follow-
ing observations:

– The weights of each model exhibited significant vari-
ations across the studied territory regardless of the
variant of the reference observations (dominant, mean,
maximum, or Lorey’s height).

– Though the dominance of different models as a function
of the observation height type stated in the previous sec-
tion remains obvious even after the scale decomposition
(M5 for H i

dom, H i
mean, and H i

lor and M1 for H i
max), this

was not prevalent in all SERs. That is to say, the model
proposed by Potapov et al. (2021), which does not pre-
vail at the overall scale for any of the reference datasets
employed, appeared nevertheless to perform very well
in what were perhaps the most challenging SERs in
terms of topography (the Alps and the Pyrenees moun-
tain chains, as well as Corsica) for H i

mean and, to a de-
gree, for H i

dom. This can potentially be explained by the
spatial resolution of this model based on the Landsat
data (30 m), which somehow smooth the adverse effects

that mountainous terrain has on most imaging remote
sensing sensors (Riano et al., 2003). We can also no-
tice that, despite the dominance of M1, models M3 and
M5 prevail in a pretty important part of the studied ter-
ritory when it comes to predicting the maximum height.
While it is not unexpected for M3 to exhibit this behav-
ior as it utilizes the GEDI RH98 metric, it is intriguing
to note the same trend in M5, which employs the GEDI
RH95 metric. This observation possibly underscores the
influence of C-band SAR data, which should be more
sensitive to maximum height rather than to other height
references.

– Given that height can serve as a proxy for volume and/or
biomass and recognizing that forests that are denser in
terms of biomass can be more challenging to monitor
via remote sensing, we also present in Fig. 3 the aver-
age height values by SER. However, this analysis did
not reveal any significant impact of average height val-
ues by SER on the weight distribution between models,
suggesting either that density is not critical enough in
temperate forests or that none of the models stand out
in addressing it.

5.3 Influence of topography on the spread

Perhaps the most interesting output of the BMA algorithm in
terms of analysis is the variance Var(H(x)|H), which, in this
subsection, is decomposed locally into the within-equation
variance (within variance) and the between-equation vari-
ance (between variance) and is averaged by sylvo-ecological
region in an equivalent manner and for the same reasons as
the local weights in the previous subsection. As a reminder,
the within variance indicates the estimated uncertainty of the
fitted mixture model, while the between variance reflects the
spread among the models that comprise the mixture.

Figure 4, particularly its left part, illustrating locally vary-
ing within and between variances for different types of refer-
ence observations, enabled us to infer the following:

– The within variance exhibited reasonably consistent val-
ues across space without dramatic spatial variations.
The mixtures derived based on H i

dom and H i
lor, where

M5 predominates, displayed the lowest within variance.
Notably, this variance was also the least spatially vari-
able among all the considered variants.

– The between variance showed unmistakable patterns,
specifically high values in the high-mountain regions:
the Alps and the Pyrenees. This is the case for all vari-
ants. This inference is further supported by the analy-
sis presented in the right part of Fig. 4, which includes
the comparison of between variance and averaged ele-
vation and slope across sylvo-ecological regions. These
values were derived by sampling the 5 m digital terrain
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Figure 2. BMA overall weights ofM1 (Lang),M2 (Liu),M3 (Morin),M4 (Potapov), andM5 (Schwartz) with respect to (a) the NFI dominant
height, (b) the NFI mean height, (c) the NFI maximum height, (d) the NFI mean Lorey’s height. As suggested in the legend, different patterns
correspond to the presence or the absence of the imputations complementing the NFI measurements, except for the mean Lorey’s height, the
calculation of which was only possible with the imputations.

model (DTM) (Institut national de l’information géo-
graphique et forestière, 2024a) at the locations of the
reference observations. The Pearson coefficient of cor-
relation reaches up to 0.69 for the average elevation
(H i

max) and up to 0.68 for the average slope (H i
max).

– The within variance consistently exceeded the between
variance, indicating that the obtained prediction could
be deemed to be reliable, particularly when consider-
ing ensemble learning principles (Mo et al., 2023). An
exceeding between variance would have indicated that
the models are structurally too different from each other,
making their combination ineffective. In such a case, the
assumption that the considered models have the poten-
tial to complement each other, as stated at the beginning
of Sect. 4, would have been disproved.

5.4 Influence of categorical variables on the
between-model spread

In this subsection, we utilized the following categorical vari-
ables available at the NFI observation locations (obtained
from the NFI database):

– the tree type (broad-leaved vs. coniferous)

– the dominant tree species (selected from some 70
species)

– the forest stand vertical structure (a qualitative observa-
tion distinguishing between temporarily cleared, regu-
lar low forest, other regular low stands, irregular verti-
cal structure, regular high with understory, regular high
without understory, and open woodland structure)

– the type of forest ownership (having four classes,
namely managed private forest, unmanaged private for-
est, national (public) forest, or any other public forest).

We investigated whether these categorical variables influ-
ence the between variance, i.e., the model spread, by apply-

ing the analysis of variance (ANOVA) (Kaufmann and Scher-
ing, 2014). Table 1 contains the outputs of the ANOVA ex-
periment and allows us to deduce the following:

– The dominant tree type did not consistently emerge as
a significant factor influencing the model spread despite
reports from both Morin et al. (2023a) and Schwartz et
al. (2024) indicating better performance over coniferous
forests than over broad-leaved ones. While it appeared
to be a significant factor at the α = 0.05 significance
level for H i

max, this significance is not observed for the
other variants.

– The dominant tree species consistently emerged as a
significant factor influencing the spread of the mod-
els at the α = 0.05 significance level. Upon examining
Fig. B1, we observe that classes such as other native
broad-leaved, European hop-hornbeam (Ostrya carpini-
folia), or European larch (Larix decidua) tend to dom-
inate in causing variations between the models across
different reference variants.

– The vertical structure of the forest stand also signif-
icantly influenced the spread (at the α = 0.05 signifi-
cance level) for all reference observation variants. Fig-
ure B1 indicates that classes such as regular low forest,
other regular low stands, and irregular vertical structures
tend to display higher between-variance values com-
pared to classes like regular high with understory and
regular high without understory.

– Lastly, the type of forest ownership also had a statisti-
cally significant impact on whether the considered mod-
els diverged or not. According to the statistics shown in
Fig. B1, unmanaged private forests are characterized by
the highest between-variance values.

5.5 Fitted mixtures

In this subsection, we contrast the performances of individ-
ual models against the fitted mixtures, obtained by substitut-
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Figure 3. BMA local (regional) weights ofM1 (Lang),M2 (Liu),M3 (Morin),M4 (Potapov), andM5 (Schwartz) with respect to (a) the NFI
H idom, (b) the NFI H imean, (c) the NFI H imax, and (d) the NFI H ilor. Different shades of colors represent variations in the regional weights
averaged by sylvo-ecological region, ranging from 0 to the maximum value of the regional weight indicated in the panel title (wmax

SER). The
rightmost column represents the average height per sylvo-ecological region derived from the field measurements or estimations.

ing the weights wk in Eq. (4) with the local weights zki , at
the reference measurement sites. We do so by focusing on
standard statistical metrics such as the coefficient of determi-
nation (R2), mean bias estimate (MBE), and normalized root
mean square error (NRMSE), with the latter being normal-
ized with respect to the mean reference value.

Figure 5 confirms that, for each of the four definitions of
forest canopy height, the BMA was able to fit a higher-order
mixture model that outperforms any individual model and the
SMA in terms of R2 and NRMSE. This validates the mod-
els’ effective complementarity and reinforces the relevance

of the analysis in the previous subsections, which primarily
explored the spatial variability of the local weights in relation
to the employed reference height type.

In order to reinforce the legitimacy of the local weights,
we reorganized the exercise from Fig. 5 into a 5-fold cross-
validation. Specifically, rather than using all points, only
80 % of points following random selection (Wadoux et al.,
2021; Meyer and Pebesma, 2022) were used to derive the
local weights. This process was repeated five times, with a
different quarter of points being renewed each time. Each
reference dataset is therefore characterized by four different
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Figure 4. The within variance, the between variance, and the comparison between the latter and the DTM mean elevation and slope (e), with
the reference being (a) the NFIH idom, (b) the NFIH imean, (c) the NFIH imax, and (d) the NFIH ilor. Blue lines represent the fitted regressions.
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Table 1. ANOVA: investigating if the dominant tree type (broad-leaved or coniferous), the dominant tree species, the vertical structure, and
the type of forest ownership represent statistically significant factors influencing the BMA between variance across different variants of NFI
reference.

Variable Dom. tree type Dom. tree species Vertical structure Type of forest own. Residual

Degrees of freedom 1 50 4 3 5302

H idom Sum of sq. 0.74 3029.0 2329.1 188.94 122 212.5
F value 0.03 2.63 25.26 2.73 /
PR(> F) 0.86 <0.001 <0.001 <0.05 /

H imean Sum of sq. 0 8844.6 4466.3 873.7 255 092.9
F value 0 3.68 23.2 6.1 /
PR(> F) 0.99 <0.001 <0.001 <0.001 /

H imax Sum of sq. 146.4 6079.5 6336.6 520.7 147 335.4
F value 5.27 4.38 57.01 6.25 /
PR(> F) <0.05 <0.001 <0.001 <0.001 /

H ilor Sum of sq. 50.3 2754.2 1280.7 242.0 79 967.6
F value 3.33 3.65 21.23 5.35 /
PR(> F) 0.07 <0.001 <0.001 <0.05 /

estimates of local weights. In Fig. 6, we illustrate the coeffi-
cient of variation (CV) between these estimates, averaged by
SER for clarity. The observed low values of the CV demon-
strate the robustness and representativeness of the estimated
local weights, which form the foundation of the analyses pre-
sented in this paper. The findings from the test data (20 % of
points following random selection) allow us to discuss the
interpolation–extrapolation properties of the BMA approach
and to address the uncertainty between the reference data
sites, which will be covered in the following section.

Finally, we also compared the variance results of the ap-
plied BMA to those obtained by the SMA. The latter are ob-
tained if we substitute into Eq. (5) the weights wk and wl
with the w = 1

K
=

1
5 and keep the numerical estimations for

the standard deviations σk .
Figure 7 depicts the comparison between the BMA and

the SMA in terms of the differences in within and between
variances (within− between) for the various variants of ref-
erence observations. The results indicate that, unlike the
BMA, where the within and between variances, as observed
in Sect. 5.3, consistently remain positive, in the case of the
SMA, the spread exceeds the variance of the mixture in
mountainous regions. This confirms once more that, unlike
the SMA, the BMA effectively mixes the considered models
(Mo et al., 2023).

6 Discussion

The findings outlined in Sect. 5.1 indicate that the various
models inadvertently tend to predominantly predict different
types of forest canopy height. This could, indeed, be a sig-
nificant finding for the community as describing forests with

high spatial precision in terms of four canopy height defi-
nitions instead of just one could have positive implications
for allometric estimations of wood volume or aboveground
biomass. Namely, instead of relying on only one allometric
relation, one could simultaneously rely on four of them, dif-
fering not only in terms of parameterizations (Picard et al.,
2012) but also in terms of input variables (a type of height)
(Tran-Ha et al., 2011).

This very first portion of the results demonstrated the rel-
atively strong impact of complementing the NFI height mea-
surements or estimations with the MissForest imputations,
which may prompt consideration of the potential benefits
of incorporating this approach into the NFI sampling design
prior to stratified inference.

The findings outlined in Sect. 5.2 imply that the fusion of
remote-sensing-based observational models may need to be
scale dependent, indicating that the contributions of differ-
ent models vary depending on the focal spatial scale. This
aligns closely with a similar message conveyed by Besic et
al. (2024b) regarding predictive forest species distribution
models.

The results in Sect. 5.3 pointed out that the models con-
sidered in this study diverge, i.e., have similar weights but
contrasting predictions in mountainous terrain. Even though
the between variance remained below the level of the within
variance, with the mixture therefore being reliable, even in
the mountains, this implies worse performances of the mod-
els in mountain environments, which are more challenging
(Stage and Salas, 2007). The hypothesis we formulate is that
this comes mostly from the quality of remote sensing data,
which is lower in mountainous regions, be it from lidar sen-
sors, multi-spectral imagers, or radar sensors. The list of rea-
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Figure 5. Kernel density estimate (KDE) plots comparing individual models and their BMAs with the four employed NFI references:
(a) H idom, (b) H imean, (c) H imax, (d) H ilor.

sons for the latter is long, with the most prominent effects
being the following:

– Mountainous terrain introduces distortions into remote
sensing images, particularly due to shadows and slope
effects, a phenomenon accentuated in radar data by
shadows, layovers, and foreshortenings (Teillet et al.,
1982; Moreira et al., 2013). The GEDI data, in particu-
lar, are significantly impacted by steep areas as the dis-
tortions of backscattered waveforms within a 25 m foot-
print introduce additional uncertainty into derived RH
profiles (Fayad et al., 2021; Quirós et al., 2021).

– Atmospheric disturbances, specifically atmospheric
conditions such as cloud cover, hydrometeors, and

aerosols, can affect the quality of remote sensing data
(particularly optical sensors), especially in mountainous
regions characterized by variable weather patterns and a
higher probability of convection events (Vanonckelen et
al., 2013).

– Mountainous areas often exhibit diverse vegetation
types and land cover classes, i.e., higher heterogeneity,
which can complicate the job for both remote-sensing-
based classification and estimation methods (Vanonck-
elen et al., 2013).

Thus, we pinpoint (high) mountainous regions as an im-
portant challenge for ongoing model advancements, particu-
larly since studies like that of Waser et al. (2021) demonstrate
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Figure 6. Coefficient of variation of local weights (averaged by SER for the purpose of clearer illustration), as well as their respective
densities, derived from 5-fold cross-validation, with the reference being (a) the NFI H idom, (b) the NFI H imean, (c) the NFI H imax, and (d) the
NFI H ilor.

Figure 7. Within−between variance for the BMA and the SMA, with the reference being: (a) the NFIH idom, (b) the NFIH imean, (c) the NFI
H imax, (d) the NFI H ilor. Top panel is the BMA computation, bottom panel is the SMA computation.

that a combination of Sentinel-1 and Sentinel-2, along with
digital terrain models (DTMs), can enhance performance in
mountainous areas, at least concerning tree type classifica-
tion (broad-leaved vs. coniferous). Many well-preserved for-
est areas worldwide are located in mountainous terrain due to
accessibility issues, which makes this particularly important.

The findings exposed in Sect. 5.4 suggest that any infor-
mation about the three out of four considered categorical
variables (dominant tree species, vertical structure of forest
stand, type of forest ownership) could potentially be a useful

modality for the remote-sensing-based models for the high-
resolution mapping of the forest canopy height.

The tree species and the topography impacts (Sect. 5.3) are
undoubtedly mixed due to the altitudinal zonation, suggest-
ing that tree species can potentially be perceived as a pre-
dictor of the variation caused by topographic effects or vice
versa.

An interesting influence of the forest stand vertical struc-
ture on the estimation of the canopy height can be explained
by the remote sensing signal sensitivity over the entirety of
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the forest stand scanned. This is obviously the case for the
lidar but also appears to be the case for the radar (Imhoff,
1995), as well as for the optical sensors which can be used to
detect and are therefore sensitive to the understory presence
and/or composition (Yang et al., 2023). Discrepancies among
models appear to be greater for regular low forests, other low
stands, or irregular structures compared to for regular high
stands (Fig. B1). This is not surprising as low structures tend
to be more heterogeneous. As a result, they are poorly cap-
tured by models that target a specific height proxy. This ef-
fect could potentially be reinforced by the fact that all models
exhibit some degree of saturation (Fig. 5). Therefore, in con-
trast to lower heights, the models tend to converge in the case
of higher stands, which cannot exactly be corrected by fitting
a higher-order mixture model.

While there are no pristine forests in metropolitan France,
not all forests are managed to the same extent, and this of-
ten depends on ownership type, making it a strong proxy
for forest stand complexity (Ehbrecht et al., 2017). The im-
pact of ownership type is likely to be linked to the previously
discussed influence of forest stand vertical structure. For in-
stance, lightly managed private forests, where we observed
the highest between variance, show greater structural vari-
ability (26 % of low or irregular stands compared to 17 %
of public forests or only 30 % of regular high stands with-
out understory). This is a result of public policies and the
tendency of large private properties (which are managed) to
prioritize large-dimension timber production. This contrasts
with currently lightly managed or unmanaged private prop-
erties which have been managed in the past under some form
of the coppice system (Hawes, 1908). Moreover, the between
variance increases as unmanaged private forests account for
between 55 % and 60 % of the forested area in metropolitan
France, naturally covering the widest observation gradients.

Beyond demonstrating that, for each of the four forest
canopy height definitions, the BMA successfully fits a mix-
ture that surpasses any individual model and the SMA in
terms of R2 and NRMSE, the results shown in Sect. 5.5 in-
dicate that the mean bias estimates (MBEs) for the mixtures
are not lower than those of any of the individual models in-
cluded. This aligns with the conclusions reported by Bao et
al. (2010) and Erickson et al. (2012), suggesting that, while
the BMA effectively addresses variance, it may need to be
supplemented with bias correction methods to ensure that the
finite mixture exhibits not only significantly reduced variance
compared to the participating models but also lower bias.
One alternative approach that might yield less biased mix-
tures and that is worth exploring would be to adapt the well-
established E–M algorithm employed by incorporating re-
stricted maximum likelihood estimation (REML) instead of
maximum likelihood estimation (MLE) (Pinheiro and Bates,
2000).

The 5-fold cross-validation confirmed the stability of the
estimated local weights, demonstrating a certain competence
in predicting the appropriate weights despite changes in the

composition of the reference data. An intriguing auxiliary
observation worth mentioning in the discussion is that H i

dom
and H i

lor seem to exhibit the most sensitivity in terms of
weight variability (Fig. 6). This could be because these for-
est height types heavily depend on diameter distribution, or-
der statistics, or weighted mean and therefore represent local
population properties, unlike H i

max and H i
mean.

Equally important is that this exercise highlighted the chal-
lenge of predicting weights between sparse reference data
points, i.e., evaluating model uncertainty in a spatially con-
tinuous manner (Lu et al., 2024). While not demonstrated
in this article, we believe that the BMA offers a promising
approach to tackle this issue, potentially facilitating a ma-
jor shift from the “analysis” presented here to “synthesis”
– combining different models spatially continuously as their
estimated uncertainties evolve. One of the avenues we have
explored, which certainly merits further attention, is how to
stratify the local weights obtained from the “training plots”
(80 % of the data in the 5-fold cross-validation) for applica-
tion to the “test plots” (remaining 20 % of the data). Namely,
as elaborated by Zhou (2012), under the stated Gaussian as-
sumption, the weighted sum presented in Eq. (4), i.e., without
any stratification, does not necessarily provide a better fit to
the reference data than any individual model.

We have explored several possible avenues for addressing
this issue, such as stratifying based on the proximity of esti-
mated height distributions among models or considering the
forest ownership criterion. Additionally, we have examined
potential modifications to the employed method that could
enhance predictive skills. However, the marginal improve-
ments obtained were insufficient for inclusion in this work,
which is currently focused on analysis rather than prediction
(i.e., interpolation–extrapolation). Instead, the avenues dis-
cussed serve as a foundation for future research, which could
tackle the broader issue of spatial uncertainty evaluation.
Another perspective for future work, and a more straight-
forward solution to this issue, would be to utilize a spa-
tially continuous reference, such as the canopy height map
derived from high-density (HD) lidar data (Institut national
de l’information géographique et forestière, 2024b) once it
becomes available for the entire area of interest. This ap-
proach would enable the automatic synthesis of spatialized
mixtures. However, it is crucial to acknowledge that such ref-
erence height maps will not be entirely flawless due to var-
ious sources of heterogeneity, such as differences in sensors
and acquisition seasons. As a result, they will need to be thor-
oughly processed before being considered to be as reliable as
the NFI field measurements used in this study.

As for the methodological decision mentioned in Sect. 4.1,
i.e., the decision not to include the updated weights in the
convergence, as suggested by Raftery et al. (2003), we also
tested the opposite approach, which is more common in the
literature. However, this did not improve the goodness of fit
shown in Fig. 5 but only increased the contrast between the
local weights of individual models, favoring the overall dom-
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inant model. Therefore, we chose to present an analysis that
yields at least equally effective higher-order mixtures while
emphasizing the potential contributions of models that are
not overall dominant.

It is important to note that limiting this study to France
may lead to an overly optimistic evaluation of the mod-
els and their combinations. This is likely due to the avail-
ability of higher-quality training data in Europe compared
to, e.g., most tropical regions (e.g., fewer clouds, superior
ALS data, and clearer topographic visibility in less dense
forests) and boreal regions where no GEDI data are avail-
able. Additionally, the range of forest types, while exten-
sive by European standards, is narrower compared to that
of tropical forests, which are also characterized by denser
stands and greater biomass. Consequently, remote-sensing-
based forest attribute mapping faces significant challenges in
tropical forests, which are not adequately addressed in this
study focused on temperate European forests.

7 Conclusions

In this study, we jointly interpreted the performances of five
different remote-sensing- and AI-based models for the high-
resolution mapping of the forest canopy height by combining
them using the Bayesian model averaging framework and
NFI in situ measurements. We observed that the participa-
tion of the different models varies depending on the height
reference employed – maximum, mean, dominant or Lorey’s
– which can be directly linked to the different remote sens-
ing input data. We also observed significant spatial variations
in terms of the local weights, indicating that any attempt at
model fusion should be tailored to the scale. A much more
pronounced spread (comparable weights but contrasting pre-
dictions) of the analyzed models was observed in the regions
with a pronounced topography, clearly indicating that the real
challenge, at least in the temperate regions, is to do better
in the mountains by means of a better remote sensing data
correction, as well as better modeling. The observed spread
is also significantly impacted by the dominant tree species
observed, the forest stand vertical structure, and the forest
ownership type, with the last-mentioned factor being a very
good proxy for the forest stand complexity. The latter sug-
gests that including these as modalities when possible could
potentially improve the performances of the analyzed mod-
els. Nevertheless, the spread observed when using the BMA
remained inferior to the within variance, which was not the
case when relying on the simple model average. All this sug-
gests that the response to the paraphrased George Box apho-
rism posed in the title – “some models are useful, but might
they provide us with even more insights when combined?” –
could indeed be affirmative in our context, particularly when
employing the BMA. However, it is important to note that
these models should be complemented by a bias correction
method, which is not addressed by the BMA methodology

employed. Accordingly, it also failed to correct for the satu-
ration of predicted height observed in individual models. It
is also important to note that the BMA method we applied
must be complemented by an appropriate stratification strat-
egy before enabling the prediction, i.e., the fitting of spatially
continuous higher-order mixture models, when using sparse
reference data. In other words, such a strategy is necessary
for estimating uncertainty between the in situ measurement
points.

From an analytical standpoint, the most apparent direc-
tion for the presented work would be to move towards es-
tablishing a well-defined framework for evaluating models,
possibly incorporating a denser network of references using
GEDI measurements. The advantage of using the GEDI mea-
surements would be the possibility of more easily relating
the evaluated differences to the employed AI method or the
choice of the complementary non-lidar measurements. An-
other perspective, particularly applicable when relying on
GEDI measurements, would involve adapting the method
for evaluating tree cover maps. This adaptation would ne-
cessitate a change in the probability distribution assumption
(Eq. 2) from Gaussian to Bernoulli.

From a synthesis standpoint, the most compelling perspec-
tive of the presented work would be the ability to use the
obtained local weights to effectively produce four finite spa-
tialized mixtures, corresponding to dominant height, mean
height, maximum height, and Lorey’s mean height. This ap-
proach should facilitate the creation of an ensemble model
for allometric wood volume or aboveground biomass (AGB)
estimation. However, it necessitates either the availability of
spatially continuous reference data (lidar HD data) or fur-
ther methodological research at least partially focused on the
stratification of sparsely distributed local weights.
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Appendix A: Forest canopy height maps

This Appendix contains figures which supplement Sects. 2,
5, and 6.

Figure A1. Kernel density estimate (KDE) plots mutually comparing individual models.
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Figure A2. Forest canopy height maps produced by (a)M1 (Lang), (b)M2 (Liu), (c)M3 (Morin), (d)M4 (Potapov), and (e)M5 (Schwartz),
illustrated for (1) metropolitan France, (2) a zone in the Vosges Mountains, (3) a zone in Sologne Forest, and (4) a zone in the Landes de
Gascogne. The leftmost column indicates the location of the highlighted zones within metropolitan France.
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Appendix B: Descriptive statistics

This Appendix contains a figure which supplements
Sect. 5.4.

Figure B1. Boxplots illustrating the descriptive statistics of between variance for different levels of categorical variables, which have been
shown to be statistically significant in terms of their influence on model spread; this includes the vertical structure (V), the type of forest
ownership (O), and the dominant tree species (S). These are presented with references: (a) H idom, (b) H imean, (c) H imax, and (d) H ilor.
V2 denotes regular low forest, V3 denotes other regular low stands, V4 denotes irregular vertical structure, V5 denotes regular high with
understory, V6 denotes regular high without understory. O1 denotes managed private forest, O2 denotes unmanaged private forest, O3 denotes
national (public) forest, O4 denotes any other public forest. S2 denotes Quercus pedunculata, S3 denotes Quercus sessiliflora, S4 denotes
Quercus rubra, S5 denotes Quercus lanuginosa, S6 denotes Quercus ilex, S7 denotes Quercus toza, S8 denotes Quercus suber, S9 denotes
Fagus sylvatica, S10 denotes Castanea sativa, S11 denotes Carpinus betulus, S12 denotes Betula pubescens, S13 denotes Alnus glutinosa,
S14 denotes Robinia pseudoacacia, S15 denotes Acer pseudoplatanus, S17 denotes Fraxinus excelsior, S18 denotes Ulmus campestris, S19
denotes Populus deltoides, S20 denotes Tilia cordata, S21 denotes Acer campestre, S22 denotes Prunus avium, S23 denotes diverse fruit
trees, S24 denotes Populus tremula, S25 denotes Salix, S27 denotes Juglans regia, S28 denotes Olea europaea, S29 denotes other exotic
broad-leaved, S31 denotes Corylus avellana, S32 denotes Ostrya carpinifolia, S33 denotes Populus alba, S34 denotes Quercus cerris, S40
denotes Arbutus unedo, S49 denotes other native broad-leaved, S51 denotes Pinus pinaster, S52 denotes Pinus sylvestris, S53 denotes Pinus
salzmannii, S54 denotes Pinus nigra, S55 denotes Pinus pinea, S57 denotes Pinus halepensis, S58 denotes Pinus uncinata, S59 denotes
Pinus cembra, S61 denotes Abies alba, S62 denotes Picea abies, S63 denotes Larix decidua, S64 denotes Pseudotsuga menziesii, S65
denotes Cedrus atlantica, S68 denotes other exotic coniferous, S69 denotes Juniperus thurifera, S72 denotes Abies grandis, S73 denotes
Picea sitchensis, S74 denotes Larix leptolepis, S77 denotes Pinus taeda.
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Code and data availability. The datasets corresponding to the five
employed models are publicly available:

– M1 at https://doi.org/10.3929/ethz-b-000609802 (Lang et al.,
2022)

– M2 at https://doi.org/10.5281/zenodo.8154445 (Liu et al.,
2023b)

– M3 at https://doi.org/10.5281/zenodo.8071004 (Morin et al.,
2023b)

– M4 at https://glad.umd.edu/dataset/gedi/ (Global Land Analy-
sis & Discovery, 2019)

– M5 at https://doi.org/10.5281/zenodo.7840108 (Schwartz et
al., 2023).

The Python code used in the study, organized into
three .py scripts and allowing the reproduction of the
presented results, is available without restrictions at
https://doi.org/10.5281/zenodo.13909201 (Besic, 2024).

Due to legal restrictions (statistical confidentiality), the exact lo-
cations of the reference NFI plots used in the study cannot be dis-
closed. Therefore, the file (denoted as Input_data_table.csv in the
provided code) containing extracts from the five employed models
at the reference NFI plots, along with the NFI plot variables such as
the four variants of reference height and other variables used in the
study, is not directly available. However, confidential access could
be provided to the editor and reviewers if necessary to enable peer
review.

Links for downloading all the other auxiliary datasets used in the
study, such as the contours of French sylvo-ecological regions, are
provided in the code.
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