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Abstract. Multi-label classification (MLC) is a supervised learning prob-
lem where each instance can be associated with none, one, or multiple
labels. MLC has received increasing attention due to its wide range of
applications, such as text categorization and medical diagnosis. Despite
a rich literature on MLC, handling imbalanced data, often encountered
in real-world MLC datasets, has not been tackled satisfactorily. Based
on a thorough literature review, it appears that the existing methods for
imbalanced MLC are either hard to be coupled with sound theoretical
guarantees or of limited scalability. This paper discusses the potential
(dis)advantages of existing methods for imbalanced MLC, when being
coupled with Binary relevance classifier (BRC), and introduces Discrete
Minimax BRC (DMBRC), which would be a promising attempt to robus-
tify the BRC by leveraging theoretically sound properties of the Discrete
Minimax Classifier. We also provide empirical evidence to illustrate how
DMBRC may be advantageous in balancing the label-wise error rates.
Finally, we envision future works on further strengthening DMBRC in
both label-wise error rates and conventional MLC evaluation metrics.

Keywords: Multi-label classification · Binary relevance · Imbalance data
· Discrete Minimax Classifier.

1 Introduction

This paper seeds in the context of supervised multi-label classification (MLC)
for safety-critical detection, such as diagnosing pathologies in precision medicine,
detecting anomalies, frauds, or failures of components in condition monitoring.

1.1 Problem Statements

Given observations of features which can be numeric, categorical, images, or any
other kind of signals describing an instance, the purpose of MLC is to determine
the actual class labels of the sample in order to support the experts of the
application domain in their diagnosis.

Differ from usual single-label classification tasks, which classify instances into
one of several mutually exclusive classes, MLC allows one to assign multiple class
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labels to each instance [2,8,26,38]. An example of MLC problems is multi-cancer
early detection [24], in which each patient may develop either non or multiple
cancer types. Another MLC problem is fault detection, such as in aeroengines
[42] and battery systems [43], where multiple faults can coexist.

While MLC is becoming increasingly promising in safety-critical detection,
an important issue often occurs in such contexts: the presence of imbalanced
labels. In MLC datasets that contain rare class labels, conventional classifiers,
such as Multi-label k Nearest Neighbours (MLKNN) [46], tend to underestimate
these class labels, predicting them less frequently, which results in a high num-
ber of false negatives class-wise (see Fig. 1(a) and (c)). Therefore, the goal is
to reduce the number of false positives by balancing the error rates (see fig-
ure 1(b) and (d)). The issue of imbalanced labels generally harms classification
performances associated with the most imbalanced labels, favouring the most
represented situation. This may typically happen when some labels are impor-
tant to detect but are scarcely observed and difficult to predict. For example,
diagnosing rare pathologies in precision medicine, and predicting failures of a
component in condition monitoring, are crucial but difficult to carry out.

(a) MLKNN (b) DMBRC (c) MLKNN (d) DMBRC
Water qua. Water qua. Human Pse Human Pse

Fig. 1: Mean False Positive (FP) and False Negative (FN) rates for the fourth
label with a prior probability of 0.21 in the Water Quality dataset, and for the
second label (0.26) in the Human PseAAC dataset, obtained after a 5-fold cross-
validation procedure using MLKNN and our new method named DMBRC.

1.2 Related works and state of the art

The issue of imbalanced classes has become more and more studied in MLC from
the past decades [4,7,20,38], while remaining a challenging problem. In [38], the
authors proposed a complete and interesting survey of methods designed to han-
dle imbalanced data in MLC. They notably highlight that the methods aiming
to address the imbalance problem in MLC can be divided into four categories:
resampling methods [4,6,7,8,20], classifier adaptation [9,35,45], ensemble meth-
ods [23,29,37] and cost-sensitive approaches [3,11,40]. Let us note that commonly
used single-label classifiers robust to imbalance data (such as Weighted Logis-
tic Regression, Weighted Decision Trees [31]) can be straigthforwardly adapted
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to MLC when considering the binary relevance strategy, and with more efforts
when considering more complex techniques such as classifier chains [34].

Classifier adaptation techniques handling imbalanced labels often either (1)
re-define each binary classification problem as a multi-class classification prob-
lem, in which the instances in the majority class are partitioned into multiple
(sub)-classes, to reduce the potential impact of the majority classes during the
training time [45] or (2) partition the input space into multiple regions and solve
the binary classification problems on the regions independently [9] or (3) only
allow the neighbor training instances to have impact on the prediction of the
query instance [35]. Clearly, such techniques require one to choose at least one
sensitive hyper-parameter, such as the number of (sub)-classes, the number of
smaller regions, and the threshold that determines the nearest neighbors. More-
over, it is unclear why/how splitting the majority class into multiple (sub)-classes
and partitioning the input space into multiple regions without further processing
may help to mitigate class imbalance.

Cost-sensitive approaches [3,11,40] explicitly increase the impact of the in-
stances from the minority class by adjusting class weights in the training loss.
This would be analogous to learning a classifier on a modified training data
set. Therefore, it might be inconvenient if one wishes to use the classifier for
other purposes, such as doing descriptive statistics, i.e., summarizing the char-
acteristics of the data set, or accommodating emerging evaluation metrics at the
prediction time.

Resampling methods often oversample to increase the impact of instances
with minority classes or undersample to decrease the impact of instances within
the majority classes. Yet, it may provide promising predictive results in practice
[4,6,7,8,20]. Similar to cost-sensitive approaches [3,11,40], they also learn a clas-
sifier on a modified training data set, yet in a much less controlled way, as they
typically rely on random processes.

Ensemble methods consist of ensemble generation and aggregation. During
ensemble generation, one can optionally couple the data-generating/sampling
process (to train the ensemble members) with other methods for class imbalance.
The chosen data-generating/sampling process may also amplify the imbalance.
For example, bagging seems to lower the chance of selecting instances from
the minority class when creating training data sets, from which the ensemble
members are trained, and thus may lower the impact of instances from the
minority class in general. It is also known that different aggregators may be in
favor of different evaluation metrics [27].

1.3 Towards the minimax classifier

The issue of imbalance classes is well known in single-label classification since
the past century [1,16,32], and the Minimax Classifier have been analytically
demonstrated to be an optimal approach to deal with imbalanced data in the
context of single-label classification [1,32]. The minimax classifier is indeed the
Bayesian classifier for which the risks per class are all minimized and balanced.
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In statistical decision theory [1,32], minimax classifiers are usually fitted by
maximizing the Bayes risk with respect to the prior probabilities over the sim-
plex, which requires to know the conditional distributions of the features in each
class in order to analytically calculate the Bayes risk. However, this task remains
a challenge in Machine Learning since we do not know the class-conditional dis-
tributions of the features, especially when dealing with several classes, mixed
features, and arbitrary loss function. Indeed, computing an accurate estimate of
the feature joint distribution in each class to achieve a good estimate of the em-
pirical Bayes risk over the simplex remains highly complicated. Furthermore, in
most real-world applications, the estimation of the empirical Bayes risk over the
simplex is generally intractable because of the curse of dimensionality. Nowa-
days, only a few minimax algorithms have been proposed to deal with these
general cases in single-label classification [16,19,21].

In the past few years, the authors in [16,19] developed a new approach for
computing a minimax classifier for single-label classification tasks, suitable to
process both numeric and categorical attributes, that can process a large number
of classes, that can be coupled with any pretrained deep neural network [18], and
which has been applied to precision medicine [15] or condition monitoring [17].
The procedure partitions the feature space beforehand and learns the minimax
classifier by using a closed-form expression of the empirical Bayes risk over the
simplex. While the authors show that discrete empirical Bayes risk is a concave
non-differentiable multivariate piecewise affine function concerning the priors,
they provide an efficient algorithmic procedure to obtain the Discrete Minimax
Classifier (DMC). This approach can outperform several other state-of-the-art
methods to obtain guaranteed robustness against imbalanced class risks, even
when dealing with a large number of classes (for example K > 100). However,
the use of minimax classifiers has not been studied yet in the context of MLC.
The objective of this paper is to propose an opening approach to introduce the
minimax classifier in MLC based on the DMC proposed in [16,19].

The paper is organized as follows. Section 2 recalls the main concepts of im-
balanced MLC. In Section 3, we propose a binary relevance strategy to consider
the DMC in MLC. Our proposed classifier aims to minimize and balance all the
risks per class and with respect to any kind of loss/cost function that penalizes
the classification errors. Section 4 empirically assesses our proposed classifier, in
comparison with 11 other MLC methods/algorithms, on six real data sets.

2 Multi-label classification

This section recalls the main concepts of MLC. Let X = Rd be a d-dimensional
feature space, and let Λ = {λ1, . . . , λK} be a set containing K labels. A multi-
label sample is a pair (x,y), where x ∈ X is a d-dimensional feature vector
and y ∈ Y := {0, 1}K , where, for any 1 ≤ k ≤ K, yk = 1 (yk = 0) indicates
that the label λk is relevant/present (irrelevant). A multi-label dataset (MLD),
D = {(xn,yn)|1 ≤ n ≤ N}, is formed by N pairs of multi-label samples. A
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multi-label classifier, δ : X → Y, is a classifier for which given an unseen sample
x, the classifier returns a prediction ŷ ∈ Y.

There are two main approaches for dealing with MLC: problem transforma-
tion and algorithm adaptation [2]. The first one, problem transformation, aims
to transform the MLC problem into one or more binary or multiclass classifi-
cations, some popular methods include: Binary relevance [44], classifier chains
[33,34] and power label set [2]. On the other hand, algorithm adaptation, aims to
adapt existing algorithms so that they can work with the MLC setting, like the
MLKNN [46]. In this paper, we primarily explore the binary relevance (BR). The
BR method consists in transforming the multi-label problem (MLP) into a collec-
tion of independent binary classification problems [44], one per label. Formally,
given a multi-label data set D = {(xn,yn)|1 ≤ n ≤ N}, the BR methods consist
in creating K different data sets Dk = {(xn,y

k
n)|1 ≤ n ≤ N}, for k = 1, . . . ,K,

and learning for each dataset Dk a binary classifier δk : X → {1, 0}.
While BR methods, focusing in this paper, are among the most algorithmi-

cally simplest MLC methods, they are arguably sound methods for optimizing
the commonly used decomposable losses [12]. Moreover, it seems to be a con-
venient choice regarding the trade-off between the theoretical soundness and
computational expenses in various applications of MLC, where the training data
can come with incomplete or missing data. A notable example of such scenarios
would be predicting antimicrobial resistance phenotypes (susceptible, or resis-
tant) of multiple drugs given genomic sequences of strains [13,25], where a sig-
nificant proportion of training instances are partially annotated. Finally, BR can
sometimes provide competitive empirical results, compared to power label sets
and classifier chains, with respect to both decomposable and non-decomposable
losses [27,41].

2.1 Imbalance in multi-label data

Many real-life applications suffer from label imbalance [38], highlighting the im-
portance of determining whether an MLD is imbalanced. One straightforward
method to determine label imbalance in an MLP is to observe the label distri-
bution, as shown in the sequel by Fig. 3. This visualization provides an idea of
how the labels are distributed, but is only useful when there are a few labels.
For datasets with a large number of labels, it is beneficial to employ metrics to
measure the imbalance. Different measures have been proposed [4] to quantify
the imbalance present in a MLD.

Imbalance Ratio per Label (IRLbl) [4]. For any λk ∈ Λ, the IRLbl, defined as

IRLbl(λk|D) =

max
k∗∈{1,...,K}

(∑N
n=1Jy

k∗

n = 1K
)

∑N
n=1Jykn = 1K

, (1)

where J·K is the indicator function, i.e., JAK = 1 if the predicate A is true and
JAK = 0 otherwise. The IRLbl(λk|D) is the ratio between the most frequent label
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and λk. It is 1 for the most frequent label and a higher value means a higher
level of imbalance for λk. Note however that the measure is not upper-bounded
and is relative.

Mean Imbalance Ratio (MeanIR) [4]. This score measures the average level of
imbalance in an MLD and is defined as

MeanIR(D) =
1

K

K∑
k=1

IRLbl(λk|D) . (2)

Of course, the same critic applies to MeanIR than to IRLbl.

Coefficient of Variation of IRLbl (CVIR) [4]. This score measures the variation
of IRLbl and indicates if all labels have the same level of imbalance:

CVIR(D) =
1

MeanIR(D)
√
K − 1

√√√√ k∑
k=1

(IRLbl(λk|D)− MeanIR(D))
2
. (3)

The higher the value the greater the level of imbalance between labels.

2.2 Performance metrics for multi-label problems

For binary and multi-class classification, the performance of a classifier depends
on whether the unseen samples are correctly classified. In the case of MLC,
predictions can considered as correct, partially correct, or partially incorrect
[22]. We shall detail 3 commonly used metrics used in this paper.

For any query instance x, let y and ŷ be the true labels and the predicted
labels, respectively. The subset 0/1 loss and the Hamming loss (respectively
denoted by L0/1, LHam and reminded in equation (4)), which are the lower the
better scores, assess the classifier δ according to its ability to exactly predict all
the labels and accurately predict the labels on average, respectively.

L0/1(δ|D) =
1

N

N∑
n=1

Jŷn ̸= ynK , LHam(δ|D) =
1

N

N∑
n=1

1

K

K∑
k

Jŷkn ̸= yknK . (4)

The F1 score given by Equation (5) is a metric that combines precision and
recall. It is calculated as the harmonic mean of precision and recall. Higher values
indicate better performance of the model.

F1(δ|D) = 2

N∑
n=1

∑K
k=1 ŷ

k
n · ykn∑K

k=1 ŷ
k
n +

∑K
k=1 y

k
n

. (5)
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3 Discrete Minimax Binary Relevance Classifier

The DMC [16] is a single-label classifier that aims to address the imbalance issue
with statistical guarantees and when considering any kind of loss function L
(which allows one to penalize the classification errors). More precisely, the DMC
aims to minimize and balance the risks per class during the training procedure.
In particular, in the context of binary classification and when considering the
0/1 loss function, the DMC allows one to minimize and balance the false positive
and false negative rates, especially when dealing with imbalance data.

The primary goal of this paper is to extend the statistical guarantees provided
by the DMC [16] to the MLC using the Binary Relevance strategy. In other
words, given a MLD, D = {(xn,yn)|1 ≤ n ≤ N}, we create K different datasets
Dk = {(xn, y

k
n)|1 ≤ n ≤ N}, for k = 1, . . . ,K, and we aim to learn for each set

Dk a binary DMC denoted by δMk : X → {1, 0}.
To this aim, given a training set Dk, we first partition the feature space X into

T different regions Ω = {ϕ1, . . . , ϕT } , as proposed in [16] , using for example the
Kmeans partitioning or the decision tree partitioning. This defines a mapping
Φ : X → Ω, which maps any instance x ∈ X to a discrete profile Φ(x) ∈ Ω. For
all t ∈ {1, . . . , T} and for each binary class ℓ ∈ {0, 1}, the estimated probability
that an instance x ∈ X has the discrete profile ϕt given its real class yk is
ℓ ∈ {0, 1} is given by

p̂ℓt :=
1

|Iℓ|
∑
i∈Iℓ

JΦ(xi) = ϕtK. (6)

Here, Iℓ is the set containing all the training instances such that yki = ℓ.
For the following, let us define L = {Lℓj : ℓ, j ∈ {0, 1}} the costs of

classification errors such that Lℓ,j is the cost of predicting the class j given
that the real class is ℓ. For example, when considering the 0/1 loss function,
we have L0,0 = L1,1 = 0 and L0,1 = L1,0 = 1. Furthermore, let us define
S =

{
π = [π0, π1] ∈ [0, 1]2 : π0 + π1 = 1

}
the 2-dimensional simplex.

Based on the partitioned feature space Ω = Φ(X ) and similarly to [16], we
can demonstrate that the empirical Bayes risk Vk : S → R+ (as a function of the
priors), associated with the binary-classification set Dk, is analytically given by

Vk(π) =

1∑
ℓ=0

T∑
t=1

1∑
z=0

Lℓz πℓ p̂ℓt
q ∑
j∈{0,1}

Ljzπj p̂jt = min
q∈{0,1}

∑
j∈{0,1}

Ljqπj p̂jt
y
. (7)

We can furthermore demonstrate that Vk is a concave multivariate piecewise
affine function over S with a finite number of pieces.

Finally, similarly to [16], the DMC δMk : X → {1, 0} associated with the
binary classification dataset Dk is given by

δMk : x 7→ arg min
j∈{0,1}

T∑
t=1

1∑
ℓ=0

Lℓj π̄ℓ p̂ℓt JΦ(xi) = ϕtK. (8)

In equation (8), π̄ = [π̄0, π̄1] corresponds to the least favorable priors that max-
imize the Bayes risk Vk over the simplex S and can be easily computed with a
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projected subgradient algorithm [16]. Note that the classifier obtained by equa-
tion (8) will balance class-wise risks, as illustrated by Fig. 1 (b) and (d). Without
entering into too much details (due to page limits), the DMC will seek the class
prior distribution π̄ that will balance the risks.

For the MLC, the idea of the Discrete Minimax Binary Relevance Clas-
sifier (DMBRC) is to extend the statistical guarantees from the multi-class
problem to the multi-label problem. To achieve, first, the feature space of the
MLP, X , is discretized, and then following the idea of the BR method, a DMC,
δBπ̄ : X → {0, 1} for the binary is trained per each label individually.

Fig. 2: Illustrative example of how to compute δMk .

4 Experiments

In this section, we conduct an empirical study to assess the performance of
our new Discrete Minimax Binary Relevance Classifier (DMBRC), compared to
other methods suitable to imbalanced MLC.

4.1 Experimental setting

The datasets used are the following: yeast, scene, CHD_49 and Tmc2007 from
the Mulan repository [39]; Water-quality (water qua) from the repository from
the University of Cordoba (see, https://www.uco.es/kdis/mllresources/)
and HumanPseAAC (Human Pse) from the cometa repository [5]. Information
about the different datasets can be viewed in Table 1 and their distributions
per label are given in Figure 3, with the exception of TMC2007 due to its large
number of labels. Note that they display various levels of imbalance and dispar-
ity across labels: some data sets have labels that are highly imbalanced, such as
yeast (label 9), CHD_49 (label 4) or Human Pse. (label 4), while others have
labels whose percentage of appearance remain relatively high across labels (scene
and water quality), with different degrees of disparity (scene percentage are all
similar, while water quality has a higher disparity).

For each data set, a 5−fold-cross-validation is employed, and for each method,
the mean and standard deviation (std) of the performance scores on the test
sets are reported. The subset zero-one metric (4), F1 score (5), and Hamming

https://www.uco.es/kdis/mllresources/


Discrete Minimax Binary Relevance Classifier 9

Table 1: Overview of datasets
Dataset Instances Features Labels MeanIR CVIR

Yeast 2417 103 14 7.20 1.88
Scene 2407 294 6 1.25 0.12
CHD_49 555 49 6 5.77 1.75
Water qua 1060 16 14 15.29 1.08
Human Pse. 3106 440 14 1.77 0.30
Tmc2007 28596 49060 22 17.13 0.81

(a) Yeast (b) Scene (c) CHD_49 (d) Water qua. (e) Human Pse.

Fig. 3: Datasets distribution per label.

metric (4) are employed as conventional MLC performance scores, which are
not specially designed for assessing the ability to balance the class conditional
risk. To assess this aspect, for each given classifier δ, we quantify the ability to
balance the false positive rate and false negative rate associated with each label
λ ∈ Λ using the following criterion

ψ(δ) = max
λ∈Λ

|Rλ
0 (δ)−Rλ

1 (δ)| , (9)

where Rλ
0 (δ) denotes the false negative rate associated with the label λ for the

classifier δ and Rλ
1 (δ) the false positive rate. A smaller ψ(δ) indicates that the

multi-label classifier δ provides a better balance of the false positive and false
negative rates. A perfectly balanced classifier would have ψ(δ) = 0, a value
ψ(δ) = 1 indicating that at least for one label, a classifier always predict either
false or positive.

To seek an extensive empirical study, we implemented the DMBRC and 11
other competitors in Python. The competitors can be divided into three groups
of different natures. The first group consists of three classifiers that do not take
into account class imbalance: the MLKNN classifier and two binary relevance
methods with logistic regression (LR) and decision tree (DT) as the base learn-
ers. The second group consists of two cost-sensitive binary relevance classifiers,
weighted logistic regression (WLR) and weighted decision tree (WDT), which
explicitly take into account class imbalance as part of the training loss. The
third group consists of six resampling methods, which employ multi-label ran-
dom oversampling [7] (ROS), multi-label random undersampling [7] (RUS), and
multi-label SMOTE [8] (SM) to resample the datasets and then train binary rele-
vance LR and DT. We refer to these methods as ROS+LR, ROS+DT, RUS+LR,
RUS+DT, SM+LR, and SM+DT.
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With the exception of MLKNN [46], whose implementation is provided in the
Scikit-multilearn package [36], all the other methods are of binary relevance na-
ture and only differ in their base learners. We use the implementation for binary
relevance from the Scikit-multilearn package [36], which allows customization of
the base learner using base learners from other packages such as the Scikit-learn
library [31], from which we call functions for training LR and DT.

For the multi-label resampling methods, we use an unofficial implementation
on GitHub (see https://github.com/Seal-Li/Multi-label-imbalance). For
DMBRC, we employ the DMC using the source code provided by [16], with some
modifications. The source code used in our experiments has been made public
at https://github.com/SalvadorMadrigal/DMBRC-for-Imbalanced-MLC.

4.2 Results

The predictive performance, in terms of the subset zero-one metric (4), F1 score
(5), and Hamming metric (4), and the ψ scores are given in Table ?? and Table??.
Overall, the predictive performance provided by DMBRC is on par with the
ones provided by other cost-sensitive classifiers, i.e., WLR and WDT. This is a
satisfying result since DMBRC, WLR, and WDT all take into account the class
imbalance, but in different manners and are useful for different purposes (besides
opting for the subset zero-one metric (4), F1 score (5), and Hamming metric (4)).
Therefore, DMBRC complements the existing collection of classifiers/methods
to balance accuracies meaningfully.

Considering the full set of methods/classifiers covered, DMBRC is never the
worst, but also never the best. If one ranks the methods/classifiers covered by
their performance, DMBRC consistently occupies middle positions in the ranks.
This is perfectly expected: the additional constraint of being balanced will typ-
ically lower the average accuracy, compared to an unconstrained classifier opti-
mizing average accuracy. It is therefore normal that the DMBRC cannot outper-
form, in average, methods such as MLKNN, LR or DT that are not also taking
care of balancing the true positive and negative rates for each label. This should
therefore not be considered as bad news as DMBRC and other cost-sensitive
classifiers essentially scarify average scores to gain a better balance of the class-
conditional risk, i.e., their primary focus.

However, when looking at the ψ scores (9), we clearly see that DMBRC and
other cost-sensitive classifiers do their balancing jobs well, as they consistently
outperform other competitors on this criterion. Interestingly, DMBRC provides
the best scores on all the tested data sets, showing that its theoretical properties
are paired with very good empirical results. This would be a strong motivation
to further boost DMBRC in both its primary focus of balancing the false positive
and false negative rates associated with each label.

5 Conclusion

This paper complements the literature on handling imbalanced MLC data with
a new approach based on the theoretical minimax strategy [1,14,16,32]. Our new

https://github.com/Seal-Li/Multi-label-imbalance
https://github.com/SalvadorMadrigal/DMBRC-for-Imbalanced-MLC
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Table 2: Evaluation of the subset zero-one metric (L0/1), F-1 score (F1), Ham-
ming metric (LHam), and ψ metric. The arrow next to the metric represents ↑
the higher the better and ↓ the lower the better. The results are presented as
[mean ± std]. The best and the worst performances are given in bold and red,
respectively.

Metric Classifier Yeast Scene CHD_49

L0/1 ↓

MLKNN 0.81± 0.02 0.37± 0.02 0.88± 0.05
LR 0.85± 0.01 0.46± 0.02 0.83± 0.05
DT 0.93± 0.01 0.60± 0.03 0.88± 0.04
DMBRC 0.91± 0.02 0.68± 0.03 0.95± 0.02
WLR 0.93± 0.02 0.57± 0.02 0.91± 0.04
WDT 0.97± 0.01 0.76± 0.02 0.96± 0.02
ROS+LR 0.86± 0.01 0.47± 0.02 0.86± 0.04
ROS+DT 0.94± 0.02 0.60± 0.01 0.87± 0.04
RUS+LR 0.85± 0.01 0.47± 0.02 0.84± 0.04
RUS+DT 0.93± 0.01 0.64± 0.03 0.87± 0.03
SM+LR 0.91± 0.01 0.54± 0.02 0.93± 0.02
SM+DT 0.96± 0.01 0.63± 0.01 0.88± 0.02

F1 ↑

MLKNN 0.61± 0.02 0.70± 0.02 0.59± 0.04
LR 0.61± 0.01 0.62± 0.01 0.64± 0.02
DT 0.56± 0.02 0.47± 0.04 0.59± 0.04
DMBRC 0.52± 0.01 0.64± 0.01 0.48± 0.04
WLR 0.52± 0.02 0.70± 0.02 0.54± 0.01
WDT 0.46± 0.01 0.59± 0.01 0.47± 0.04
ROS+LR 0.60± 0.01 0.62± 0.01 0.61± 0.03
ROS+DT 0.54± 0.03 0.48± 0.02 0.59± 0.04
RUS+LR 0.60± 0.01 0.61± 0.02 0.64± 0.01
RUS+DT 0.56± 0.01 0.44± 0.03 0.60± 0.03
SM+LR 0.64± 0.01 0.67± 0.02 0.67± 0.02
SM+DT 0.57± 0.01 0.56± 0.02 0.65± 0.03

LHam ↓

MLKNN 0.20± 0.01 0.09± 0.01 0.32± 0.02
LR 0.20± 0.01 0.10± 0.00 0.29± 0.02
DT 0.23± 0.01 0.13± 0.00 0.32± 0.02
DMBRC 0.33± 0.01 0.18± 0.01 0.44± 0.02
WLR 0.33± 0.01 0.13± 0.00 0.37± 0.01
WDT 0.38± 0.01 0.20± 0.01 0.46± 0.02
ROS+LR 0.20± 0.00 0.10± 0.00 0.31± 0.02
ROS+DT 0.24± 0.01 0.13± 0.00 0.30± 0.02
RUS+LR 0.20± 0.01 0.10± 0.00 0.29± 0.01
RUS+DT 0.23± 0.00 0.14± 0.01 0.31± 0.02
SM+LR 0.25± 0.01 0.12± 0.01 0.35± 0.01
SM+DT 0.30± 0.01 0.16± 0.00 0.31± 0.02

ψ ↓

MLKNN 1.00± 0.00 0.49± 0.03 1.00± 0.00
LR 1.00± 0.00 0.50± 0.05 1.00± 0.00
DT 1.00± 0.00 0.62± 0.07 1.00± 0.00
DMBRC 0.66± 0.20 0.09± 0.02 0.45± 0.23
WLR 0.68± 0.19 0.11± 0.03 0.65± 0.17
WDT 0.67± 0.11 0.13± 0.04 0.48± 0.15
ROS+LR 1.00± 0.00 0.49± 0.04 0.92± 0.02
ROS+DT 1.00± 0.00 0.62± 0.05 1.00± 0.00
RUS+LR 1.00± 0.00 0.59± 0.06 0.97± 0.04
RUS+DT 1.00± 0.00 0.68± 0.05 1.00± 0.00
SM+LR 1.00± 0.00 0.25± 0.04 1.00± 0.00
SM+DT 1.00± 0.00 0.35± 0.02 1.00± 0.00
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Table 3: Evaluation of the subset zero-one metric (L0/1), F-1 score (F1), Ham-
ming metric (LHam), and ψ metric. The arrow next to the metric represents ↑
the higher the better and ↓ the lower the better. The results are presented as
[mean ± std]. The best and the worst performances are given in bold and red,
respectively.

Metric Classifier Water qua Human Pse Tmc2007

L0/1 ↓

MLKNN 0.84± 0.01 0.98± 0.00 0.74± 0.01
LR 0.84± 0.01 0.98± 0.01 0.69± 0.00
DT 0.89± 0.02 0.99± 0.01 0.83± 0.01
DMBRC 0.97± 0.01 0.99± 0.01 0.96± 0.01
WLR 0.92± 0.00 0.99± 0.01 0.83± 0.01
WDT 0.99± 0.00 0.99± 0.00 0.98± 0.00
ROS+LR 0.85± 0.01 0.99± 0.01 0.70± 0.01
ROS+DT 0.91± 0.01 0.99± 0.01 0.83± 0.01
RUS+LR 0.84± 0.02 0.99± 0.01 0.69± 0.00
RUS+DT 0.92± 0.01 0.99± 0.01 0.83± 0.00
SM+LR 0.90± 0.01 1.00± 0.00 0.76± 0.01
SM+DT 0.90± 0.01 1.00± 0.00 0.84± 0.00

F1 ↑

MLKNN 0.20± 0.01 0.54± 0.01 0.62± 0.00
LR 0.22± 0.01 0.47± 0.01 0.68± 0.00
DT 0.19± 0.01 0.49± 0.01 0.52± 0.01
DMBRC 0.30± 0.01 0.53± 0.02 0.45± 0.00
WLR 0.35± 0.01 0.53± 0.01 0.63± 0.00
WDT 0.24± 0.01 0.52± 0.01 0.41± 0.01
ROS+LR 0.21± 0.01 0.48± 0.01 0.68± 0.00
ROS+DT 0.11± 0.01 0.49± 0.01 0.53± 0.01
RUS+LR 0.22± 0.02 0.49± 0.01 0.68± 0.00
RUS+DT 0.11± 0.02 0.49± 0.01 0.53± 0.01
SM+LR 0.13± 0.01 0.57± 0.01 0.69± 0.00
SM+DT 0.13± 0.01 0.56± 0.01 0.60± 0.01

LHam ↓

MLKNN 0.09± 0.00 0.29± 0.01 0.07± 0.00
LR 0.09± 0.00 0.29± 0.01 0.06± 0.00
DT 0.09± 0.00 0.30± 0.00 0.08± 0.00
DMBRC 0.23± 0.01 0.36± 0.01 0.20± 0.00
WLR 0.17± 0.00 0.35± 0.01 0.10± 0.00
WDT 0.27± 0.01 0.36± 0.01 0.22± 0.00
ROS+LR 0.09± 0.00 0.29± 0.01 0.06± 0.00
ROS+DT 0.09± 0.00 0.31± 0.01 0.08± 0.00
RUS+LR 0.09± 0.00 0.29± 0.01 0.06± 0.00
RUS+DT 0.09± 0.00 0.31± 0.00 0.08± 0.00
SM+LR 0.08± 0.00 0.41± 0.01 0.07± 0.00
SM+DT 0.09± 0.00 0.39± 0.01 0.08± 0.00

ψ ↓

MLKNN 1.00± 0.00 0.84± 0.03 0.90± 0.03
LR 1.00± 0.00 0.97± 0.03 0.88± 0.04
DT 1.00± 0.00 0.94± 0.08 1.00± 0.00
DMBRC 0.87± 0.04 0.19± 0.04 0.09± 0.03
WLR 0.97± 0.01 0.25± 0.05 0.22± 0.06
WDT 0.90± 0.03 0.29± 0.03 0.16± 0.02
ROS+LR 1.00± 0.00 0.96± 0.03 0.81± 0.06
ROS+DT 1.00± 0.00 0.85± 0.02 1.00± 0.00
RUS+LR 1.00± 0.00 0.96± 0.03 0.87± 0.04
RUS+DT 1.00± 0.00 0.88± 0.07 1.00± 0.00
SM+LR 1.00± 0.00 0.92± 0.03 0.92± 0.02
SM+DT 1.00± 0.00 0.70± 0.09 1.00± 0.00
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classifier DMBRC attempts to robustify the binary relevance classification by
leveraging theoretically sound properties provided by the DMC [16].

We moreover provide empirical evidence to illustrate how classifiers, which
take into account class imbalance, may be advantageous when being assessed
by the ability to balance the class conditional risk. The empirical evidence also
suggests that DMBRC is the most promising classifier in this aspect.

Motivated by these promising pieces of evidence, we envision future works on
further strengthening DMBRC in both label-wise error rates and conventional
MLC evaluation metrics. We also plan to leverage the fact that DMC can be
coupled with deep neural networks to handle images to broaden the application
domain of DMBRC to high-stakes applications such as predicting multiple dis-
eases given medical images [30]. In addition, since DMC theoretical guarantees
are not limited to binary classification, we also think of extending the current
approaches to the graded multi-label [10] setting or to multi-dimensional classi-
fication [28], for which approaches such as WLR or WDT.
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