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Abstract
Adversarial Team Games (ATG), as introduced by von Stengel and Koller,

model strategic situations where a team of agents, sharing a common objective
but unable to coordinate their actions, faces a single adversary. Recent advances
have shown that computing an approximate Nash Equilibrium (NE) in ATGs is
computationally tractable, establishing ATGs as one of the rare multi-agent game
families where this holds. However, this tractability result is limited to single-
adversary scenarios, leaving the common case of multiple independent adversaries
— prevalent in applications such as anti-poaching, robotic planning, and hider-
seeker games — largely unexplored. This paper addresses this gap by introduc-
ing the Multi-Adversarial Team Game (MATG) framework, a natural extension of
ATGs to settings with multiple independent adversaries. Our main contribution is
to prove that approximate NE computation remains tractable in this generalised set-
ting. We achieve this by designing and analyzing a pseudo fully-polynomial time
approximation scheme (pseudo-FPTAS) for computing NE in MATGs. Beyond
our theoretical contributions, we provide the first implementation of this family
of algorithms for NE computation in both ATGs and MATGs, demonstrating their
empirical performance on a set of benchmark problems.

Index terms— Algorithmic Game Theory, Adversarial Team Games, Polytime Nash
Equilibrium computation.

1 Introduction
Adversarial Team Games (ATGs) are a successful application of non-cooperative game
theory to the real-world. In their mainstream formulation, as introduced by von Stengel
and Koller [VK97], ATGs model situations where a team of agents, sharing a common
objective but unable to coordinate their actions, faces a single adversary. This team in-
ability to coordinate their actions responds to real-world considerations in which team
communication is prohibited (e.g. by game rules in Bridge), impractical (e.g. by se-
curity) or too expensive (e.g. in large organisations). For ATGs, literature studied two
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main solution concepts: (1) Nash Equilibrium (NE), where no agent can obtain higher
utility by unilaterally deviating from the equilibrium; and (2) Team-Minmax Equilib-
rium (TME), which is the best NE for the team (i.e. the one that maximizes the team’s
utility among all NE).
Despite its appealing properties, the fact that it has been proved that approximating
TME in ATGs is computationally intractable [Bor+08; Han+08] has hindered its prac-
tical adoption. In contrast, recent advances [Ana+23] have shown the computational
tractability of approximating NE in ATGs - being since one of the few multi-agent
games families in which NE approximation is tractable.
However, research has focused on the single-adversary case whereas the case in which
the team faces multiple adversaries remains unexplored. This multi-adversary setting
turns out to be very common in real-world scenarios. For instance, in anti-poaching
scenarios — a problem modeled by green security games [Wan+19] — rangers need to
detect several potential poachers within the same protected area [Lam+23]. Similarly,
in robotic planning [MGB03], different adversaries may control different aspects of the
environment. Lastly, in hider-seeker games [HCP09], a team may need to locate not
one but multiple independent hiders. In this context1, this paper addresses this unex-
plored multi-adversary setting, focusing on the following research questions: (1) How
does transitioning from one to multiple adversaries increase the computational com-
plexity of computing approximate NE in ATGs? and (2) Can we design approximate
NE algorithms that scale efficiently with the number of independent adversaries?

Original contributions. Our contributions are three-fold. First, we formalise
Multi-Adversarial Team Games (MATGs), a generalisation of (single) Adversarial Team
Games, enabling the modeling of interactions between a team and multiple indepen-
dent adversaries. Second, building upon the work of [Ana+23], we develop a computa-
tionally tractable algorithm for approximating NE in MATGs. Our algorithm extends
the one proposed in [Ana+23] for the single-adversary case, preserving its polynomial
time complexity in the inverse of the approximation error and the natural parameters
of the game, even in the presence of multiple adversaries. Finally, we corroborate our
theoretical findings through extensive numerical experiments, demonstrating the algo-
rithm’s capability to effectively approximate NE in large-scale scenarios with many
adversaries.

2 Multi-Adversarial Team Games
A Multi-Adversarial Team Game (MATG), represented in normal form, is defined by a
tuple Γ

(
N ,M, (Ai)i∈N , (Bj)j∈M , (Uj)j∈M

)
. Γ consists of a finite set of n = |N |

team agents and a finite set of m = |M| adversarial agents. Each team member i ∈ N
has a finite and non empty set of available actions (i.e. pure strategies) Ai, so that
A :=

∏
i∈N Ai denotes the ensemble of all possible action profiles of the team. Simi-

larly, each adversary j ∈ M has a finite and nonempty set of actions (i.e. pure strate-
gies) Bj . We denote by a = (a1, . . . , an) ∈ A the action profile of the team, and

1Additional related work is included in Appendix.
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by b = (b1, . . . , bm) ∈ B :=
∏

j∈M Bj the action profile of the adversaries. Each
adversary j ∈ M has a payoff function denoted by Uj : A × Bj → ℜ. The team
payoff function is denoted by Uteam : A × B → ℜ, so that the individual payoff of
each team member is identical to its teammates: Ui(a,b) = Uteam(a,b), for all joint
action profiles (a,b) ∈ A × B and for all team members i ∈ N . Further, the team
game is zero-sum in the sense that Uteam(a,b) = − 1

n

∑
j∈M Uj(a, bj).

A team strategy profile is defined as x = (xi)i∈N , where xi ∈ Xi = ∆(Ai) is the
team member i’s mixed strategy and ∆(Ai) is the set of all probability distributions
over Ai. Similarly, an adversary strategy profile is defined as y = (yj)j∈M, where
yj ∈ Yj = ∆(Bj) is the adversary member j’s mixed strategy.
For convenience, we will write X :=

∏
i∈N Xi and Y :=

∏
j∈M Yj for the space

of mixed strategy profiles of the team and the adversaries, respectively. Finally, we
overload notation so that Uj is not only the payoff function of adversary j but also the
mixed extension of such payoff: Uj : (x,yj) ∈ X × Yj ←[ E(a,bj)∼(x,yj) [Uj(a, bj)].
We will also write poly(Γ) for factors that are polynomial in the natural parameters of
the game.
In terms of solution concepts, we focus on computing a set of approximate best re-
sponses that form an approximate Nash Equilibrium, both defined as follows. As is
customary, −i denotes the set containing all the agents except agent i.
Approximate best response (ε-BR). Consider a MATG Γ. A strategy xi of team agent
i is an ε-best response (ε-BR) to a strategy profile (x−i,y) iff:∑

j∈M
Uj(x,yj) ≤

∑
j∈M

Uj(x
′
i,x−i,yj) + ε ∀x′

i ∈ Xi (1)

We denote by BRi((x−i,y); ε) the set of ε-BR strategies of team agent i to (x−i,y).
Similarly, a strategy yj of adversary j is an ε-BR to a team strategy profile x iff:

Uj(x,yj) ≥ Uj(x,y
′
j)− ε ∀y′

j ∈ Yj (2)

We denote by BRj(x; ε) the set of ε-BR strategies of adversary j to x.
Approximate Nash Equilibrium (ε-NE). The strategy profile (x,y) ∈ X × Y is
an ε-Nash Equilibrium of a MATG Γ for an approximation guarantee (ε ≥ 0) if for
every agent, their strategy is an ε−BR to the strategies of other agents. Formally,
∀i ∈ N ,xi ∈ BRi((x−i,y); ε) and ∀j ∈M,yj ∈ BRj(x; ε).

b1

a1, a2 0,0 0,1 1,0 1,1

0 0 2/5 2/5 4/5
1 1/5 1/10 1/10 0

b2

a1, a2 0,0 0,1 1,0 1,1

0 0 1/5 1/5 2/5
1 3/5 3/10 3/10 0

Figure 1: Payoff tables for the first adversary (top) and second adversary (bottom) for
a MATG with 2 teammates, 2 adversaries, 2 actions each.

Consider the MATG illustrated in Figure 1. In this setting, a team of n = 2 agents
protects 2 locations against m = 2 adversaries. Each adversary has distinct rewards
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for each location, and capturing an adversary requires both team agents to be present in
the same cell. If only one team agent is present, the adversary escapes with a reduced
reward. The strategies x1 = [ 15 ,

4
5 ], x2 = [ 15 ,

4
5 ], y1 = [ 25 ,

3
5 ], y2 = [1, 0] form a NE.

3 A polynomial time algorithm for computing ε−NE in
MATGs

In this section, we present the Multi-Adversarial Team Games Gradient Descend Max
(MATG-GDM) algorithm, which extends the approach in [Ana+23] for ATGs to han-
dle multiple independent adversaries. We also establish our main theoretical result:
MATG-GDM computes an ε−NE with computational complexity that is polynomial
in all natural parameters of the game and in 1/ε. This result is formalised in Theorem
3.1 and formally proved in Section 4.

The proposed Algorithm 1 takes as input a MATG Γ, an approximation error pa-
rameter ε > 0, a learning rate η and a maximum number of iterations T . The first step
is to initialize all agents’ strategies at an arbitrary point (x(0),y(0)) ∈ X ×Y . Then, at
each iteration, the algorithm verifies if agents’ strategies for that iteration are an ε-NE
(Lines 3-5), terminating and returning them if it is the case. In each step 1 ≤ t ≤ T ,
the algorithm computes a best response of each adversary based on the current strategy
of the team (Lines 6-8). Next, based on the best response of adversaries, each team
member performs a projected gradient descent step (Lines 9-11) in which ProjXi

(·) re-
turns the Euclidean projection to the set Xi. Now, based on the updated strategy of the
team x(t), the response of the adversaries is determined by ExtendNE(x(t)) that returns
the solution of the following LP:

max
y,z

∑
i∈N

zi (3)

s.t. zi −
∑
j∈M

∑
bj∈Bj

yj(bj) · Uj(ai,x
(t)
−i, bj) ≤ 0,

∀i ∈ N , ai ∈ Ai,∑
bj∈Bj

yj(bj) = 1, ∀j ∈M,

yj(bj) ≥ 0, ∀j ∈M, bj ∈ Bj .

This iterative process is repeated until (x(t),y(t)) is an ε-NE (Lines 3-5) or until the
maximum number of iterations T is reached. In order to prove that the algorithm runs
in polynomial time, it is required to assume that utilities of mixed strategies can be
computed in polynomial time:

Assumption 3.1 (Polynomial Expectation Property). For any (mixed) joint strategy
profile (x,yj) ∈ X × Yj , we can compute (exactly) the expectation Uj(x,yj) =
E(a,bj)∼(x,y)Uj(a, bj) in time poly(n,

∑
i∈N |Ai|, |Bj |, |x|, |yj |).

Then, we can show the following corollary:
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Algorithm 1: MATG Gradient Descend Max
Input: MATG Γ, approximation error ε > 0, learning rate η, maximum

number of iterations T
1 Initialize strategies (x(0),y(0)) ∈ X × Y ;
2 for t← 1, 2, . . . , T do
3 if (x(t−1), (y

(t−1)
j )j∈M) is an ε-NE then

4 break
5 end
6 for j ∈M do
7 b

(t)
j ← argmaxbj∈Bj

Uj(x
(t−1), bj)

8 end
9 for i ∈ N do

10 x
(t)
i ← ProjXi

(
x
(t−1)
i − η∇xi

∑
j∈M

Uj(x
(t−1), b

(t)
j )

)
11 end
12 (y

(t)
j )j∈M ← ExtendNE(x(t))

13 end
14 return (x(t), (y

(t)
j )j∈M)

Corollary 3.1. Under Assumption 3.1, every iteration of Algorithm 1 can be computed
in polynomial time.

Proof. Lines 3-5 require to check whether (x(t−1),y(t−1)) is an ε−NE, which in turn
requires to verify that the strategy profile of every agent is an ε-BR. This can be checked
in polynomial time by virtue of Assumption 3.1.
Lines 6-8 require to compute a best response for each adversary j, a computation that
can be trivially performed by computing maxb∈B U(x(t−1),b), which under Assump-
tion 3.1 takes polynomial time. By repeating this step for every adversaries j ∈M the
time remains polynomial.
Lines 9-11 perform a projected gradient descent step for each team member i ∈ N . By
definition, Uj(x

(t−1), b
(t)
j ) =

∑
ai∈Ai

x
(t−1)
i (ai)Uj(ai,x

(t−1)
−i , b

(t)
j ). Thus, by multi-

linearity, ∂
∂xi(ai)

Uj(x
(t−1), b

(t)
j ) = Uj(ai,x

(t−1)
−i , b

(t)
j ) which by virtue of Assumption

3.1 can be computed in polynomial time. In addition, the ProjXi
operator only re-

quires to normalize a probability distribution over Ai and can be computed exactly in
nearly-linear time on |Ai|. Repeating this step for every i ∈ N still takes polynomial
time in the size of the MATG.

Finally in Line 12, ExtendNE solves a LP with
∑

j∈M |B|+n variables and
∑

i∈N |Ai|+∑
j∈M |B|+m constraints. Moreover, the computation of each coefficient Uj(ai,x

(t)
−i, bj)

is polynomial in the number of natural parameters of the game under Assumption 3.1.
Therefore, the LP can be constructed and solved in time polynomial in the size of
Γ.
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We are now ready to formulate our main theoretical result:

Theorem 3.1 (Pseudo-FPTAS). Consider any precision ε > 0. For any MATG Γ,
Algorithm 1 with a sufficiently small learning rate η = O

(
ε2
)

yields an ε-NE after a
maximum number of iterations T = poly(Γ)/ε4. Further, under Assumption 3.1, every
iteration of the algorithm can be implemented in polynomial time.

4 Proof of the main Theorem
In this section, we demonstrate that Algorithm 1, as stated in Theorem 3.1, computes
an ε-NE in pseudo-polynomial time. The proof is structured as follows:

First, in Section 4.1 we prove that, for any ε ≥ 0, an ε-NE of a MATG can be com-
puted by marginalising an ε-NE of a correlated-adversaries transformed game. This
correlated-adversaries game is an ATG where all adversaries in the MATG corre-
late actions and share payoffs i.e. this is equivalent to playing with a single macro-
adversary.

Since a correlated-adversaries MATG is a (single-adversary) ATG, we can use any
existing algorithm designed for ATGs to compute NE in MATGs. In particular, Gra-
dientDescentMax (GDM) as proposed in [Ana+23] computes ε-approximate NEs in
ATGs with polynomial complexity in all natural game parameters and 1/ε. However,
the action space of the adversary in a correlated-adversaries MATG grows exponen-
tially with the number of adversaries in the original MATG. Hence, a naive application
of the algorithm in [Ana+23] takes exponential time. Instead our proof builds on the
following steps.

• In Section 4.2, we exploit the underlying structure of a correlated-adversaries
MATG to show that the different steps of GDM, when applied to a correlated-
adversaries MATG, are equivalent to the steps proposed in Algorithm 1, Section
3. In particular, all steps are polynomial in the size of the original MATG.

• Then, in Section 4.3, we show that the maximum number of iterations of Algo-
rithm 1 in Section 3 needed to find an ε-NE remains polynomial in the problem
size.

4.1 Correlated-adversaries transformation
In this section, we show that any ε-NE of a MATG Γ is also an ε-NE of the equivalent
ATG obtained by assuming that the adversaries in the MATG correlate their strategies.
We call this ATG correlated adversaries (ca)-transformation. In the other direction, we
show (in Theorem 4.1) that from any ε-NE of the ca-transformation we can compute an
ε-NE of the original MATG by computing marginalizations of the correlated strategy
over the strategies sets of the adversaries of the MATG.

Let us first define the correlated-adversaries transformation of a MATG:

Definition 4.1 (Correlated-adversaries MATG transformation).
Given a MATG Γ

(
N ,M, (Ai)i∈N , (Bj)j∈M , (Uj)j∈M

)
we define its correlated-

adversaries (ca-)transformation Γca
(
N , (Ai)i∈N ,Bca =

∏
j∈M Bj , U ca : A× Bca → ℜ

)
6



where U ca(a,b) =
∑

j∈M Uj(a, bj) and U ca
team(a,b) = −U ca(a,b), in which all

adversaries play correlated strategies and share payoffs additively.

bca
a1, a2 0,0 0,1 1,0 1,1

0,0 0 3/5 3/5 6/5
0,1 3/5 7/10 7/10 4/5
1,0 1/5 3/10 3/10 2/5
1,1 4/5 2/5 2/5 0

Figure 2: Payoff table for the correlated adversary in the ca-transformation of the
MATG in Fig. 1.

For example, Figure 2 presents the payoff table of the correlated adversary for the
ca-transformation of the MATG in Figure 1.
It will also be useful to translate back and forth between correlated strategies of the
ca-MATG and the independent mixed strategies of adversaries in the original MATG.
To do so, we define correlated and marginalised adversary strategies :

Definition 4.2 (Correlated adversary strategies). Given a mixed strategy profile (yj)j∈M ∈
Y for adversaries in an MATG, we define the corresponding correlated strategy as
y = ⊗j∈Myj defined as: y(b) =

∏
j∈M yj(bj), ∀b ∈ B.

Definition 4.3 (Marginalised adversary strategies). Given a (mixed) correlated strat-
egy y ∈ Yca for adversaries in a ca-transformation, we define the set of marginalised
strategies of adversaries as ỹ = (ỹj)j∈M defined as: ỹj(bj) =

∑
b−j∈B−j

y(bj ,b−j),∀j ∈
M,∀bj ∈ Bj .

We first show that for the adversaries, the value of any mixed strategy in a ca-MATG
equals the sum of the values of the marginalised strategies in the original MATG:

Proposition 4.1. Let a MATG Γ and its (ca)-transformation Γca be given. Further,
let any mixed strategy (x,y) ∈ X × Yca of Γca be given. Then, U ca(x,y) =∑

j∈M Uj(x, ỹj).

Proof.
U ca(x,y)

=
∑
j∈M

Uj(x,y)

=
∑
j∈M

∑
a∈A

x(a)
∑

b∈Bca

y(b) · Uj(a, bj)

=
∑
a∈A

x(a)
∑
j∈M

∑
bj∈Bj

∑
b−j∈B−j

y(bj ,b−j) · Uj(a, bj)

=
∑
a∈A

x(a)
∑
j∈M

∑
bj∈Bj

ỹj(bj) · Uj(a, bj)

=
∑
j∈M

Uj(x, ỹj)

7



We also have the following corollary:

Corollary 4.1. Given an MATG Γ, its (ca)-transformation Γca and the mixed strategies(
x, (yj)j∈M

)
∈ X × Y , we have that

U ca(x,y = ⊗j∈Myj) =
∑
j∈M

Uj(x,yj).

Proof. Since ỹj is the marginal strategy of y for adversary j, by applying Prop. 4.1 we
have ỹj = yj.

The next step is to show that for each adversary in an MATG, we can build an ε-BR
from a correlated ε-BR in the corresponding ca-transformation.

Proposition 4.2. Consider any ε ≥ 0. Let a MATG Γ and its (ca)-transformation Γca.
Let x ∈ X be a team strategy profile and let y ∈ Yca be a (correlated) ε-BR to x in
Γca. Then, ∀j ∈M ỹj, where ỹj is the marginalised strategy of y over Yj , is an ε-BR
of adversary j to x in Γ.

Proof. Given that y is an ε-BR to x in Γca it satisfies:

U ca(x,y) ≥ U ca(x,y′)− ε ∀y′ ∈ Yca (4)

which by Proposition 4.1 is equivalent to:∑
j∈M

Uj(x, ỹj) ≥
∑
j∈M

Uj(x, ỹ
′
j)− ε ∀y′ ∈ Yca, (5)

where the (ỹj)j∈M and
(
ỹ′
j

)
j∈M are the marginalised strategies of y and y′ respec-

tively.
Now, fix k ∈ M and define y′ = y′

k ⊗ (⊗j ̸=kỹj) for any arbitrary y′
k ∈ Yk. Note

that, y′(b) = y′
k(bk)×

∏
j∈M−k

ỹj(bj). Then, we have∑
j∈M

Uj(x, ỹ
′
j) =

∑
j ̸=k

Uj(x, ỹj) + Uk(x,y
′
k).

Then, by subtracting
∑

j ̸=k Uj(x, ỹj) in both sides of (5), we get:

Uk(x, ỹk) ≥ Uk(x,y
′
k)− ε, ∀y′

k ∈ Yk. (6)

That is, ỹk is an ε-BR of adversary k to x in Γ, ∀k ∈M.

Finally, we state and prove the main result of this Section.

Theorem 4.1. For any ε ≥ 0, consider an MATG Γ and its (ca)-transformation, Γca.
For any ε-NE (x∗,y∗) of Γca, x∗ and the marginalised adversary strategies ỹ∗, derived
from y∗, form an ε-NE of Γ.
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Proof. First, since (x∗,y∗) is an ε-NE of Γca, this implies that ∀i ∈ N : x∗
i ∈

BRi((x−i
∗,y∗); ε) in Γca. Since (e.g. from Prop. 4.1), the values of the team are

identical in Γ and Γca, ∀i ∈ N : x∗
i ∈ BRi((x

∗
−i, ỹ

∗); ε) in Γ. Lastly, from Prop. 4.2,
we get that ∀j ∈M : ỹ∗

j ∈ BRj(x; ε) in Γ.

Thus, the NE of the ca-transformation in the example of Figure 2 is (x1, x2, y
ca),

where yca = [ 25 , 0,
3
5 , 0]. It is straightforward to verify that the marginalized adversary

strategies from yca are the NE adversary strategies of the original MATG in Figure 1.

4.2 Equivalence of MATG-GDM and GDM
Theorem 4.2. Consider a MATG Γ and its (ca)-transformation Γca. Let ε > 0, η > 0
and T > 0. MATG-GDM applied to (Γ, ε, η, T ) is equivalent to GDM applied to
(Γca, ε, η, T ).

Proof. For any iteration, 0 ≤ t ≤ T , let (x(t), (y
(t)
j )j∈M) be the strategies computed

by Algorithm 1 applied to (Γ, ε, η, T ). We prove that (x(t),⊗j∈My
(t)
j ) correspond to

the strategies computed by GDM applied to (Γca, ε, η, T ) at the same iteration t.
Nash Equilibrium Check (Lines 3–5). Algorithm 1 verifies whether (x(t), (y

(t)
j )j∈M)

is an ε-NE. By Theorem 4.1, (x(t), (y
(t)
j )j∈M) is an ε-NE of Γ iff (x(t),⊗j∈My

(t)
j ) is

an ε-NE of Γca, establishing equivalence.
BR computation (Lines 6–8). Algorithm 1 computes a BR strategy for each adversary
w.r.t. x(t) in Γ. By Prop. 4.2, the correlated strategy of a set of adversaries’ BR strate-
gies to x(t) in Γ is a BR strategy of the correlated adversary in Γca to x(t), establishing
equivalence.
Projected gradients (Lines 9–11). The gradient projection step equivalence follows
directly from the fact that by Prop. 4.1, for any (x,y) ∈ X × Yca: U ca(x,y) =∑

j∈M Uj(x, ỹj), where ỹj is the marginal of y over Yj .
ExtendNE procedure (Line 12). Algorithm 1 solves the LP (3), whereas GDM in-
stead solves the following LP, in variables y = (y(b))b∈B and z = (zi)i∈N :

max
y,z

∑
i∈N

zi (7)

s.t. zi −
∑
b∈B

y(b) · U ca(ai,x
(t)
−i,b) ≤ 0 ∀i ∈ N , ai ∈ Ai,∑

b∈B

y(b) = 1 and y(b) ≥ 0 ∀b ∈ B.

Let (y′, z′) be a feasible solution of this LP. Then, ỹ′ = (ỹ′
j)j∈M where ỹ′

j is the
marginalised strategy of y′ over Yj . Then, by Prop 4.1, we have that ∀i ∈ N , ai ∈ Ai:

U ca(ai,x
(t)
−i,y

′) =
∑
j∈M

Uj(ai,x
(t)
−i , ỹ

′
j), (8)

Hence, ∑
b∈B

y′(b)U ca(ai,x
(t)
−i,b) =

∑
j∈M

∑
bj∈Bj

ỹ′
j(bj)Uj(ai,x

(t)
−i, bj).
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Thus, ỹ′ satisfies the constraints of LP (3), and is a feasible solution. Using Eq 8,
we can show the reverse argument as well: given ỹ′, we can construct the correlated
strategy y′ = ⊗jỹ

′
j to produce a feasible solution for LP (7).

Consequently, LP (3) should also have an optimal solution, and noting that z′ is the
same for both feasible solutions, the values of the optimal solutions should also be the
same.

We have proved that the steps of Algorithm 1 are equivalent to those of Anagnos-
tides’ algorithm. Furthermore, by Corollary 3.1, each iteration of Algorithm 1 can be
computed in polynomial time (under Assumption 3.1).

To complete the argument that an ε-NE of a MATG can be computed in pseudo-
polynomial time, it remains to establish that the number of iterations T of MATG-GDM
remain polynomial in the size of Γ and 1/ε. This will be the focus of the next section.

4.3 Convergence to an ε-NE in pseudo-polynomial number of iter-
ations

This section extends the proof of [Ana+23]- specifically Theorem 3.3 and Corollary
3.2 therein — to the case of MATGs, showing that a polynomial number of iterations
(in the size of Γ and in 1/ε) of Algorithm 1 is sufficient to compute an ε-NE.

In doing so, we also partially address the following remark from [Ana+23]:

Remark 4.1 (Correlated Adversaries, [Ana+23]). Another notable application of hav-
ing a single adversary is the case where the adversary team has multiple players, but
with the twist that the adversaries are allowed to correlate their strategies—i.e., the
team is facing a “virtual” player. However, in that case the action space of that vir-
tual player grows exponentially with the number of adversaries m, and so establishing
polynomial-time algorithms with m requires further work.

Let us first define the functions ϕ(·) : X → R and Vx(·) : X → R as follows.

ϕ(x) = max
y∈Y

∑
j∈M

Uj(x,yj) (9)

Vx(x
′) = ϕ(x′) + ℓ||x− x′||22 (10)

where ℓ is the smoothness parameter of
∑

j∈M Uj(x
′,yj). Lastly, let proxϕ/(2ℓ)(x; ε)

be any ε-approximate solution in value to the program minx′∈X Vx(x
′).

Theorem 4.3. Consider any precision ε > 0 and any MATG Γ, and let function g :
X → R be defined as

g(x, ε) = Vx(proxϕ/(2ℓ)(x; ε)) (11)

Then MATG-GDM applied to (Γ, ε), with a sufficiently small learning rate η =
O
(
ε2
)

satisfies

g
(
x(t), ε

)
< g

(
x(t−1), ε

)
− Ω

(
ε4
)
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for any iteration t until termination.

Proof. Let Γca be the ca-transformation of Γ. Since Γca is an ATG, Theorem 3.3
from [Ana+23] applies to it directly. Furthermore, the proof relies solely on the ℓ-
smoothness and L-Lipschitz continuity of U ca , as well as on the learning rate η, to
establish a lower bound on the decrease in value of g

(
x(t)

)
− g

(
x(t−1)

)
(and thus the

number of steps of the algorithm). Crucially, the proof does not depend on the size of
Bca (the joint action space of adversaries). This implies that decrease in value is inde-
pendent of the number of adversaries. Thus, the proof applies to the ca-transformation,
and adversarial strategies that result in the same value of g

(
x(t)

)
can be obtained by

marginalizing the corresponding adversaries strategies in the ca-transformation.

Analogously to the ATG case, Theorem 4.3 leads to a pseudo-FPTAS for approxi-
mate NE computation, as formalised in Theorem 3.1. This follows from the fact that g
is bounded by a factor polynomial in maxj,a,bj

Uj(a,bj) (rather than in the ”size” of
Uj , which is polynomial in the number of bits required to represent this value). Conse-
quently, the maximum number of iterations is bounded by a factor poly (Γ,maxj,a,b Uj(a,b))/ ε

4.

5 Experimental Evaluation
In this section, we evaluate empirically the MATG-GDM algorithm. We conducted
experiments on different configurations of random games as well as on network secu-
rity games [Jai+11]. In both cases, we address two key questions: a) Is Algorithm 1
scalable? b) with respect to which parameters? The answers to these questions de-
termine the algorithm’s practical usability. Experiments were implemented in Python
3.11 using the JAX and Optax libraries [Bra+18; Dee+20].

Each configuration {n}v{m}/{a} is read as an MATG with n team agents, m ad-
versaries and a actions per agent.

To evaluate the quality of the solutions found, we calculate the NE-GAP, which
measures the maximum unilateral deviation in value from equilibrium (i.e. a strat-
egy x,y is an ε-NE if GAP(x,y) ≤ ε). In a MATG, the NE-GAP is defined as the
maximum of the Team-GAP (T-GAP) and the Adversaries-GAP (A-GAP), specified as
follows:

T-GAP(x,y) = max
i∈N ,ai∈Ai

∑
j∈M

(Uj(ai,x−i,yj)− Uj(x,yj))

A-GAP(x,y) = max
j∈M,bj∈Bj

Uj(x, bj)− Uj(x,yj)

GAP(x,y) = max(T-GAP(x,y),A-GAP(x,y))

5.1 Random Games
Experimental Setup We first test various configurations using randomly generated
instances of MATGs with rewards drawn uniformly from the interval [0, 1]. All strate-
gies were initialised randomly.
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(a) Iteration (t) vs. GAP (xt, yt) (b) Iteration (t) vs. ĝ(xt)

Figure 3: Results of MATG-GDM on a 2v2 MATG instance with 3 actions executed
over T = 2× 105 timesteps with different learning rates.

Configuration
{n}v{m}/{a}

η = 0.001 η = 0.0001

Best Timestep (t∗) GAP (xt∗ , yt
∗
) Best Timestep (t∗) GAP (xt∗ , yt

∗
)

3v1/6 1200± 461 0.009± 0.002 1052± 674 0.014± 0.006

3v3/6 3615± 4216 0.007± 0.003 1225± 621 0.015± 0.002

3v6/6 6248± 6443 0.004± 0.001 1645± 1037 0.015± 0.004

4v1/6 944± 572 0.005± 0.001 1043± 562 0.007± 0.002

4v3/6 606± 576 0.005± 0.001 1122± 605 0.006± 0.001

4v6/6 960± 527 0.005± 0.002 1104± 581 0.007± 0.002

Table 1: Average performance (over 10 trials) of the MATG-GDM algorithm on differ-
ent configurations of Random games for two different learning rates.

Results Figure 3 first illustrates the effect of the learning rate on MATG-GDM for
a 2v2/3. Figure 3(a) plots the NE-GAP of the solution found at each iteration of
the algorithm. Figure 3(b) plots ĝ(xt; ε), an approximation of g(xt; ε), obtained by
taking xt+1 ≈ proxϕ/2ℓ(x

t; ε)2. We observe that GAP (xt, yt) does not decrease
monotonically, whereas ĝ(xt) does, as prescribed by the theory.

Table 1 reports the average performance of the MATG-GDM algorithm for random
graphs with team sizes n ∈ {3, 4} competing against m ∈ {1, 3, 6} adversaries, with
the number of actions a fixed to 6. Results per configuration are averaged over 10
independent trials run up to T = 2 · 104 iterations. Performance is compared across
two different learning rates, η ∈ {10−3, 10−4}. MATG-GDM was terminated early if
ĝ(xt) stayed within a 10−3-length neighbourhood for over 500 timesteps.

The results show that MATG-GDM is effective in practice, consistently finding
high-quality approximate solutions close to equilibrium, with an average gap of in the
range 0.004 − 0.01. Moreover, these solutions are typically identified at an iteration

2Refer Section 3.3, [PB+14]
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Configuration
{n}v{m}/{a}

η = 0.001 η = 0.0001

Best Timestep (t∗) GAP (xt∗ , yt
∗
) Best Timestep (t∗) GAP (xt∗ , yt

∗
)

3v1/16 5331± 537 0.00004± 0.00002 4106± 5515 0.057± 0.023

3v3/16 2580± 655 0.0008± 0.001 12768± 3371 0.0069± 0.013

3v6/16 2470± 639 0.0003± 0.0003 7399± 489 0.004± 0.004

4v1/16 6690± 1536 0.0002± 0.0005 3313± 3191 0.053± 0.034

4v3/16 2852± 475 0.0003± 0.0003 15334± 4337 0.006± 0.006

4v6/16 2372± 879 0.0008± 0.0007 6294± 2367 0.006± 0.002

Table 2: Average performance (over 10 trials) of the MATG-GDM algorithm on differ-
ent configurations of Network Security games for two different learning rates.

(t∗) significantly lower than the maximum number of allowed iterations (T = 2 · 104).
We also observe that the gap of the best solution found as well as the iteration at which
such solution was found does not vary significantly neither across different problem
configurations nor across the two tested learning rates (η ∈ {0.001, 0.0001}). This
shows that the algorithm is scalable even in configurations with multiple adversaries.
Additional experiments are provided in the Supplementary material.

5.2 Network Security Games
Description of Game and Experimental Setup For the second evaluation, we solve
Network Security games (NetSec) on a graph. In this game, a team of n agents has to
protect k nodes against m adversaries. Each adversary has distinct rewards for each
node i.e. they have different objectives. They receive a positive reward by visiting a
node unprotected by a team agent, and 0 otherwise. As in Section 5.1, each configura-
tion is launched with 10 randomly generated instances, and the GAP and ĝ statistics
are measured.

Results Table 2 reports the average performance of MATG-GDM over NetSec games
with n ∈ {3, 4} team agents against m ∈ {1, 3, 6} adversaries with a = 16 actions
each. MATG-GDM converges to good solutions on these larger instances, with GAP
typically in the range {10−3, 10−4}. While convergence time scales with the number
of actions, the algorithm usually converges well within T = 2 · 104 iterations. In
conclusion, MATG-GDM remains practical for these instances as well.

6 Conclusions and future work
In this paper, we introduced the Multi-Adversarial Team Games (MATG) framework,
which generalizes the Adversarial Team Games (ATG) framework to scenarios involv-
ing multiple independent adversaries. This framework is particularly well-suited to
model interactions between a coordinated team of agents in competition with several
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independent adversaries. Such interactions arise naturally in various domains, includ-
ing law enforcement problems (e.g. anti-poaching) and strategic board games (e.g.
bridge).

Our main theoretical contribution has been to show, by extending the results of
[Ana+23], that a ε-Nash equilibrium of a MATG can be computed in time polyno-
mial in the game’s natural parameters and in 1/ε. In addition, we provided the first
implementation of a polynomial-time algorithm allowing to compute ε-NE in MATGs
(and by extension in ATGs). The efficiency of this algorithm has been illustrated on
benchmark problems, corroborating our theoretical findings.

A natural extension of this work concerns the study of multi-adversarial extensions
of Adversarial Team Markov Games [Kal+23]. In particular, we hypothesize that the
independence of adversaries in such Multi-Adversarial Team Markov Games may also
enable the efficient computation of approximate equilibrium strategies, possibly with
the mobilisation of learning algorithms [KYP24].

References
[VK97] Bernhard Von Stengel and Daphne Koller. “Team-maxmin equilibria”. In:

Games and Economic Behavior 21.1-2 (1997), pp. 309–321.

[MGB03] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. “Planning in
the presence of cost functions controlled by an adversary”. In: Proceedings
of the 20th International Conference on Machine Learning (ICML-03).
2003, pp. 536–543.

[Bor+08] Christian Borgs et al. “The myth of the folk theorem”. In: Proceedings
of the fortieth annual ACM symposium on Theory of computing. 2008,
pp. 365–372.

[Han+08] Kristoffer Arnsfelt Hansen et al. “Approximability and parameterized com-
plexity of minmax values”. In: Internet and Network Economics: 4th In-
ternational Workshop, WINE 2008, Shanghai, China, December 17-20,
2008. Proceedings 4. Springer. 2008, pp. 684–695.

[HCP09] Erik Halvorson, Vincent Conitzer, and Ronald Parr. “Multi-Step Multi-
Sensor Hider-Seeker Games”. In: IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, Cali-
fornia, USA, July 11-17, 2009. Ed. by Craig Boutilier. 2009, pp. 159–166.
URL: http://ijcai.org/Proceedings/09/Papers/037.
pdf.

[Jai+11] Manish Jain et al. “A double oracle algorithm for zero-sum security games
on graphs”. In: 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6, 2011, Vol-
ume 1-3. Ed. by Liz Sonenberg et al. IFAAMAS, 2011, pp. 327–334. URL:
http://portal.acm.org/citation.cfm?id=2030518%5C&
CFID=69153967%5C&CFTOKEN=38069692.

14



[PB+14] Neal Parikh, Stephen Boyd, et al. “Proximal algorithms”. In: Foundations
and trends® in Optimization 1.3 (2014), pp. 127–239.

[Bra+18] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. Version 0.3.13. 2018. URL: http://github.com/jax-
ml/jax.

[Wan+19] Yufei Wang et al. “Deep reinforcement learning for green security games
with real-time information”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33. 2019, pp. 1401–1408.

[Dee+20] DeepMind et al. The DeepMind JAX Ecosystem. 2020. URL: http://
github.com/google-deepmind.

[Ana+23] Ioannis Anagnostides et al. Algorithms and Complexity for Computing
Nash Equilibria in Adversarial Team Games. 2023. arXiv: 2301.02129
[cs.GT]. URL: https://arxiv.org/abs/2301.02129.

[Kal+23] Fivos Kalogiannis et al. “Efficiently Computing Nash Equilibria in Adver-
sarial Team Markov Games”. In: The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL: https://openreview.net/pdf?
id=mjzm6btqgV.

[Lam+23] Wai Yee Lam et al. “Using a crime prevention framework to evaluate tiger
counter-poaching in a Southeast Asian rainforest”. In: Frontiers in Con-
servation Science 4 (2023). ISSN: 2673-611X. DOI: 10.3389/fcosc.
2023 . 1213552. URL: https : / / www . frontiersin . org /
articles/10.3389/fcosc.2023.1213552.

[KYP24] Fivos Kalogiannis, Jingming Yan, and Ioannis Panageas. “Learning Equi-
libria in Adversarial Team Markov Games: A Nonconvex-Hidden-Concave
Min-Max Optimization Problem”. In: arXiv preprint arXiv:2410.05673
(2024).

15



Efficiently computing Nash Equilibria in

Multi-Adversarial Team Games

Appendix

In this appendix, we first go over additional related work to Multi-Adversarial
Team Games. For completeness, we also cite supplementary theorems referred
to in the main paper. Finally, we provide additional experiments for random
instances of MATGs to better illustrate the performance of MATG-GDM over
a variety of configurations.

A Additional related works

Related Work Single-adversary team games. The Team-Maxmin Equilibrium
(TME), a celebrated solution concept for ATGs which dates back to the pio-
neering work of von Stengel and Koller [VK97], serves as a prominent solution
for ATGs. A TME is a Nash Equilibrium (NE) with three key properties: (1)
it always exists; (2) it is unique1; and (3) it maximizes the team’s utility. Fur-
thermore, [Bas+17] demonstrated that the team’s payoff in a NE (other than
TME) can be arbitrarily smaller than its payoff in a TME, motivating efforts
to approximate TMEs efficiently.
Unfortunately, TMEs are computationally intractable (FNP-hard), as proven
in [Bor+08; Han+08], even in the case of a ATG with two teammates. More-
over, [Han+08] (with corrections by [Bas+17]) showed that expressing MEs
may require irrational probabilities, complicating their computation and prac-
tical adoption.
Despite these challenges, practical algorithms for approximating TMEs have
been proposed [Bas+17; ZA20b]. In particular, some works [ZS22; Bas+17]
focus on deriving the team’s strategy from a correlated TME (CTME) that
considers that team members can synchronize their actions (i.e. can jointly
decide and execute their strategy). While CTMEs can be computed via linear
programming (LP) by reducing the problem to a two-player zero-sum game, the
size of the team’s player action space in such reduction is exponential in the
size of the team and therefore approximation algorithms [McA+23] for games
with many team members have been proposed in practice. Nevertheless, it is
known that the inefficiency gap between TME and CTME team’s payoffs can

1Except in degenerate cases, thereby avoiding equilibrium selection issues.
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be, in the worst-case, exponential in the size of the team [Jia+13; Bas+17].
[Bas+17] provided the first experimental evaluation of TME algorithms, bench-
marking2: (1) global optimization using an off-the-shelf MINLP solver; (2) an
algorithm that reconstructs the team’s mixed strategy profile from a CTME
(computed via the corresponding LP); (3) the ϵ-additive approximation from
[Han+08] based on simple strategies; and (4) the IteratedLP algorithm, which
iteratively updates the team’s strategy profile by replacing the strategy of the
team member that obtained the best improvement on the 2-player zero-sum
game between her and the adversary3. Their results highlight the superior per-
formance of global optimization up to the limits in which it does not run out
of memory4, while IteratedLP emerged as a scalable alternative with compet-
itive results. [ZA20b] extended the double oracle (DO) framework [MGB03]
to TME computation in ATGs. As common in DO methods, the worst-case
runtime can exceed direct TME computation but it empirically performs well
in practice. Seeking tractable alternatives, [Ana+23] analyzed the complexity
of approximating NEs (not necessarily the TME) in ATGs, showing it is CLS-
complete. Their constructive proof yielded an algorithm for ϵ-approximate NEs
with polynomial complexity in all natural game parameters and 1/ε. Our work
extends this algorithm to multi-adversarial ATGs (MATGs), showing its com-
plexity remains polynomial and depends on

∑
j∈M |Aj | instead of

∏
j∈M |Aj |,

overcoming the curse of multi-agents also for the adversarial side. Moreover, we
provide the first empirical evaluation of such algorithms, since [Ana+23] lacked
any empirical evaluation for the single-adversary setting.
Two-team adversarial games. Extensions of ATGs to multi-adversarial settings
have been explored in adversarial two-team games [KPV21; SV19], where ad-
versaries also form a team. However, our focus is on independent adversaries.
[HMN24] analyzed NE computation in two-team zero-sum polymatrix games,
including a special case with independent adversaries that they prove CLS-
complete. However, their setting is different since it assumes pairwise utility
functions, while here we study the extension to multiple adversaries in the orig-
inal version of the game with utilities defined between each adversary and the
entire team.
Adversarial Team Markov games. Finally, other works [CG18; ZA20a; Cel+19;
Car+22; Kal+23; KYP24] have studied ATGs in their sequential version, i.e.
as a Markov game or an extensive-form game. In contrast, this paper focuses
on normal-form MATGs with independent adversaries—a setting not previously
studied in either normal-form or sequential extensions, leaving the latter as fu-
ture work.

2In their experiments they vary the team’s size and the number of player’s action in the
ranges [2, 4] and [5, 150] respectively.

3Fixing the strategy of the other teammates to the ones in the current team’s strategy.
4Global optimization runs for team size equal 2 (any number of actions), equal 3 (up to 45

actions) and equal 4 (up to 20 actions).
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B Theorems referred to in the paper

[Ana+23] have shown that the computation of an ϵ-Nash equilibrium in a single-
adversary team game can be computed in a number of iterations of Algorithm
1 (restricted to the case of a single adversary), which grows polynomially in the
size of Γ and in 1/ε.

As a first step, let us recall Theorems 3.2 and 3.3 and Corollary 3.2 of
[Ana+23], in the case of ATG:

Theorem B.1 (Anagostides, 2023, Theorem 3.2).
Let function Vx : X → R be defined as Vx(x

′) = maxy U(x′,y) + ℓ||x− x′||2.
Then, there exists a poly(n,

∑n
i=1 |Ai|, |B|, log(1/ε))-time algorithm Alg : X →

X such that
min
x′

Vx(x
′) ≤ Vx(Alg(x)) ≤ min

x′
Vx(x

′) + ε.

Theorem B.2 (Anagostides, 2023, Theorem 3.3). Consider any precision ε >
0, and let

g : X ∋ x → max
y′∈Y

U
(
proxϕ/2ℓ

(
x;O

(
ε4
))

,y′)+ ∥x− proxϕ/2ℓ

(
x;O

(
ε4
))
∥22.

For any adversarial team game Γ(n,U), GradientDescentMax(Γ, ε) with a
sufficiently small learning rate η = O

(
ε2
)
satisfies

g
(
x(t)

)
< g

(
x(t−1)

)
− Ω

(
ε4
)

for any iteration t until termination.

Corollary B.1 (Anagostides, 2023, Corollary 3.2, Pseudo-FPTAS for Approx-
imate Nash). Consider any precision ε > 0. For any adversarial team game
Γ(n,U), GradientDescentMax(Γ, ε) with a sufficiently small learning rate
η = O

(
ε2
)
yields an ε-approximate Nash equilibrium after a sufficiently large

T = poly
(
Γ/ε4)

)
. Further, under Assumption 3.1, every iteration of Gradi-

entDescentMax can be implemented in polynomial time.

C Additional experiments

Instance of 3v3/6 In Figure 1, we illustrate a random instance of a 3v3/6
configuration with learning rates η ∈ {10−2, 10−3, 10−4, 10−5}. We observe
again that in both graphs, the gradient steps follow the same trajectory, but
smaller learning rates dilate the curve. Furthermore, GAP (xt, yt) does not
monotonically decrease. It is more interesting to note that for the largest learn-
ing rate η = 10−2, both GAP and ĝ oscillate in the neighbourhood once con-
verged. These patterns held true for all further testing.
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(a) Iteration (t) vs. GAP (xt, yt) (b) Iteration (t) vs. ĝ(xt)

Figure 1: Example of a 3v3 MATG Instance with 6 actions for all agents,
executed with different learning rates over T = 2× 105 timesteps.

Random Games In this section, we describe further experiments on Random
Games. The tested configurations were n ∈ {3, 4} players against m ∈ {1, 3, 6}
adversaries, with k ∈ {4, 6, 8} actions each. Each configuration was tested with
two different learning rates η ∈ {10−3, 10−4}. The results in Table 1 are the
averages over 10 random instances for each configuration.
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