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Abstract

The method of moments in kinetic theory is a popular discretization technique with respect to the
kinetic velocity variable. It can be seen as a non-linear Galerkin semi-discretization in velocity. Among
these methods, the quadrature-based methods exploiting the theory of orthogonal polynomials are well
suited for numerical purposes. However, two important properties of the original kinetic equation are
lost during such approximations: the strong hyperbolicity, corresponding to transport phenomena, and
the dissipation of entropy, corresponding to the trend of the solution towards an equilibrium. These two
properties are closely related through symmetrization techniques.

In this work, we aim to clarify the treatment of these two properties in the derivation of quadrature-
based moment systems, and to prove H-theorems, namely dissipation of entropy and equilibrium rep-
resentation, after such derivations. From this study, we develop of quadrature-based closures adapted
to specific entropies. These closures are of two types, either with fixed quadrature points (or veloci-
ties), namely the discrete velocity methods (DVM), and with varying ones namely the quadrature-based
method of moments (QMOM). To adapt the closures to specific entropies, the number of quadrature
points is increased compared to the number of moments, resulting in augmented systems (ADVM or
AQMOM) with more unknowns than equations, and the additional parameters are constrained to match
the entropy requirements. Similarly, the quadrature-based entropies are of two types, either those based
on a symmetrization criterion on the flux vector, which are only intended to have an entropy, or those
corresponding to a quadrature formula of the kinetic entropy, which are intended to reproduce the kinetic
trend towards the equilibrium. At each step of these developments, based on the considered entropy, we
provide definitions for the flux vectors, adapted relaxation operators (with common conservation prop-
erties), we compute the associated entropic variables, and highlight the corresponding symmetrization
property of the flux and equilibria. Finally, we provide an entropy-dissipative discretization for such
moment systems.

1 Introduction

Kinetic equations arise from the mesoscopic modelling of particles moving in a medium and interacting with
each others. We focus on a generic 1D-1V equation consisting of the transport of a distribution function f
in space x ∈ Ω ⊂ R at velocity v ∈ R evolving over the full real line with a collision operator. Such a model
is generally expected to satisfy certain physical and mathematical properties that must to be preserved from
the derivation of the model to the numerical simulation. In particular, in this work, we focus on three
properties of the kinetic equation of its solution: the conservation of mass, momentum, and energy, i.e. the
first three moments of f in velocity, the transport phenomena (characterized afterward by the hyperbolicity
property) and the H-theorem, which describes the trend of a system towards an equilibrium. Regarding
the H-theorem, we study in particular which entropy is dissipated by the system and its associated local
equilibrium, represented by the entropy minimizer (see e.g. [11, 27, 28] for general descriptions of these
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models, properties and extensions). When constructing numerical solvers for the kinetic equation, a first
semi-discretization with respect to the kinetic velocity variable v is often performed in order to account
for these two properties. We focus in particular on the quadrature techniques (see e.g. [45, 34] for general
techniques and [67, 63, 65, 64] for their applications to kinetic equations) with respect to v, and we propose
modifications of such methods adapted to better match the properties of the original kinetic equation.

The semi-discretization of such an equation with respect to v can be complicated due to the non-
compactness of the velocity domain. Naive methods often lead to some form of violation of one or more of
the above kinetic properties. The brute-force techniques are based either on probabilistic techniques, such
as direct simulation Monte Carlo (DSMC ; see e.g. [11, 44, 20, 79] and references therein) solvers, or on
deterministic ones, such as discrete velocity methods (DVM ; see e.g. [22, 21, 85, 69] and references therein).
They commonly lead to non-physical equilibria, and the physical ones are only found at (inaccessible) con-
vergence. This is illustrated in the next section, which describes the DVM as the starting point of the present
approach. These naive approaches rely on the reduction of the velocity domain to a bounded or discrete
one, while among the most efficient alternatives, many are based on velocity integrals. On the one hand,
spectral methods using the Fourier transform provide both good error estimates and a framework adapted
to the kinetic properties. These have emerged from the mathematical community, and it has been the
source of a large literature (see e.g. [77, 43, 38, 78, 26] among others) during the last decades. On the other
hand, the method of moments emerged from the physical community as a tool to obtain out-of-equilibrium
thermodynamics in fluid models (see e.g. [94, 75, 35, 64, 49]). The work presented here falls into the latter
framework.

The method of moment is interpreted below as a non-linear, weak form (in a measure sense instead
of L2) of Galerkin discretizations. Rewriting the kinetic equation in a weak form (in velocity only), this
method consists in reducing the test function space to a finite dimensional polynomial space, while reducing
the solution set to a manifold of the same dimension. Such a solution manifold must be carefully chosen,
first for the resulting finite dimensional system to be well-posed and well-conditioned, and second for this
approximation to preserve the considered kinetic properties (see e.g. the reviews [24, 83]). This choice
corresponds to the so-called closure problem, the solution of which is generally obtained by solving a moment
problem (see e.g. [3, 4, 90, 86, 61]). One of the first moment approximations was proposed by Harold Grad
in [48]. The resulting system of moments is hyperbolic and dissipates an entropy only close to the equilibrium.
It is therefore ill-adapted for transport phenomena away from this regime. A large recent literature aims at
modifying this closure to obtain alternative stability property by various techniques (see e.g. [92, 25, 37]). The
entropy-based closure ([62, 75]) was developed based on entropic studies using symmetrization techniques
([42, 47, 70, 58, 89, 59]). By design, it provides entropy dissipation. However, it presents two difficulties:
First, this approximation is ill-defined in the vicinity of the Maxwellian regimes ([57]). This issue was
also circumvented by various modifications, either of the definition of the closure itself ([88, 52]) or of the
entropy it is defined from ([2, 1, 5]). Second, in order to compute this approximation, one needs to solve
numerical optimization problems, which become ill-conditioned near the boundary of its domain of definition
([51, 7, 6]). Several other attempts, typically based on the study of the so-called realizability, i.e. the convex
cone of moment vectors, have also been made in the literature (see e.g. [66, 81, 82]), but no general theory
encompasses all of them and none preserve all the kinetic properties.

In the present work, we focus on the quadrature-based closures, that were originally proposed for aerosols
([67, 63, 65]). This technique can be seen as an approximation of the distribution function by a sum of Dirac
measures, with moment-dependent quadrature points and weights. This construction is based on a well-
established mathematical theory of numerical integration and associated algorithms ([93, 45, 50]). Several
extensions aimed at improving the algorithms ([63]), extending it to multi-D ([102, 41]) or replacing the Dirac
measures by Gaussians ([96, 103, 29]) to extend the range of physical phenomena captured. The original
QMOM closure ([67]) leads to a weakly hyperbolic system of moments (see e.g. the computations in [30,
54, 82]). Such systems still exhibit transport phenomena and entropy dissipation (see e.g. [17]), but their
solutions have a weak (measure) regularity and the considered entropy is not strictly convex in the moments.
This problem has become particularly popular in recent years, and various works aimed at imposing the strong
hyperbolicity property to the resulting system of moments by modifying this construction. This objective
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was achieved in [41, 39] by using algorithms from the theory of orthogonal polynomials. A generalization of
this technique was proposed in [40] and an extension to multi-D problems using techniques closely related to
Grad’s method is in progress. Strong hyperbolicity was also obtained in [73, 74] using similar techniques based
on the theory of orthogonal polynomials. Other formal attempts in this direction were tested numerically
in [12] using techniques closely related to the entropy-based closure (covered in the present construction),
exploiting the framework of [60]. And it was enforced in [99] by combining constructions from [71, 72, 87]
and numerics from [45, 93, 81]. Finally, mathematical studies were given in [54, 105] for the closure [103]and
in [104] for the closure [39] with proofs of the strict hyperbolicity and entropy decay.

The present work aims at clarifying which notion of entropy should be sought in the construction of the
quadrature-based closure. Detailed computations of the entropy of the quadrature-based moment closures
are given, relating the notions of strong hyperbolicity, symmetrization and entropy dissipation to explicit
formulae for the entropy, entropic variables, symmetrizer and appropriate entropy-dissipating relaxation
operators for each closure. Eventually, alternative closures are proposed, which aim to better approximate
the underlying kinetic entropy decay. They consist in using more quadrature points than moments, and
these additional constraints on these parameters are proposed to obtain a chosen symmetrization property,
which corresponds to choosing an approximated (strictly convex) entropy to dissipate.

The next section summarizes the state of the art on the considered kinetic equation, its properties, the
moment approximations and the quadrature-based closures studied, namely DVM and QMOM. Section 3
recalls how symmetrization relates to entropy dissipation in the present framework. Section 4 presents
the construction of the augmented DVM (ADVM), i.e. the augmentation of the number of quadrature
points in the DVM to better approximate the kinetic entropy. Similarly, Section 5 presents the construction
of augmented QMOM (AQMOM) technique to further improve the entropy approximation. An entropy-
dissipating numerical scheme adapted to these entropic and quadrature-based moment closure is provided
in Section 6. The last section gathers conclusive remarks and comments.

2 State of the art

In this section, we recall the standard construction of kinetic, moment and quadrature-based moment equa-
tions.

2.1 Kinetic equation

Consider the 1D kinetic equation
∂tf + v∂xf = c(f). (2.1)

The left-hand side is a linear transport opertor applied to the distribution function f at the variable velocity
v ∈ R in the time-space domain (t, x) ∈ [0, T ) × R. In particular, transport phenomena are observed at all
velocities.

The operator c(f) on the right-hand side operator models collisions of the particles with each others or
interactions with the background. It is typically a Boltzmann or a BGK operator.

In the following, we are interested in the behaviour of the solution with respect to the variable v. The
solution f is assumed to be integrable in with respect to v ∈ R, i.e. we seek f(t, x) ∈ L1(R) satisfying (2.1)
in either a strong or a weak sense. Further classical assumptions about f(t, x) are made below.

2.1.1 H-theorem at the kinetic level

This model is assumed to follow an H-theorem:

Property 2.1 (H-theorem at the kinetic level).
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• Entropy dissipation: There exists a strictly convex function η : R+ → R such that

∂th(f) + ∂xg(f) = s(f) ≤ 0, h(f) =

∫
R
η(f(v))dv, (2.2a)

g(f) =

∫
R
vη(f(v))dv, s(f) =

∫
R
η′(f(v))c(f)(v)dv. (2.2b)

• Equilibrium: The entropy production s(f) = 0 cancels if and only if η′(f) ∈ I belongs to the space of
collision invariants defined by

ϕ ∈ I ⇔ ∀g ≥ 0,

∫
R
ϕc(g)dv = 0.

In particular, η′(f) ∈ I implies that f = feq(f) is of the form

f(v) = feq(f)(v) = (η∗)′(ϕ), (2.3)

for some ϕ ∈ I. Here, η∗ is the Legendre-Fenchel transform of η. It satisfies (η′)−1 = (η∗)′.

Therefore, two additional hypotheses about f ≡ f(t, x) are made at all (t, x):

η(f) ∈ L1(R) and fϕ ∈ L1(R) for all ϕ ∈ I.

In the following, we use:

• The collision invariants are I = Span(1, v, v2) = P2(R), corresponding to the conservation of mass,
momentum and energy.

• The model dissipates the Boltzmann entropy η(f) = f log f − f , which gives η′(f) = log f and (η∗)′ =
exp. When I = P2(R), the equilibrium is represented by a Maxwellian f = feq(f) given by

feq(f) =
ρ(f)√
2πT (f)

exp

(
− (v − u(f))

2

2T (f)

)
, ρ(f) =

∫
R
f(v)dv, (2.4a)

u(f) =
1

ρ(f)

∫
R
vf(v)dv, T (f) =

1

ρ(f)

∫
R
(v − u(f))

2
f(v)dv. (2.4b)

The aim of the present work is to preserve these properties through the semi-discretization with respect to
the variable v.

2.1.2 Collision operator at the kinetic level

For simplicity, the collision operator c in (2.1) is chosen to be a BGK ([76, 53]) relaxation operator at the
kinetic level, and we extend its construction at the moment level in the next sections.

First, denote

I ′ :=

{∣∣∣∣ L1(R) → R
g 7→

∫
R g(v)ϕ(v)dv,

∀ϕ ∈ I
}
,

I⊥ :=

{
g ∈ L1(R) such that

∫
R
g(v)ϕ(v)dv = 0 ∀ϕ ∈ I

}
=
⋂
ψ∈I′

Ker ψ,

where the orthogonality notation is only formal.
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The relaxation operator is constructed proportional (with a positive rate τ > 0) to the difference between
the distribution function f and the minimizer of the entropy h under the collision invariant constraints
c(f) ∈ I⊥, i.e.

c(f) =
fmin(f)− f

τ
, such that fmin(f) = argmin

g−f∈I⊥
h(g). (2.5)

This optimization problem has been the source of a large literature ([13, 14, 68, 57, 88, 52]). In the present
case, this minimum takes the form fmin = feq defined in (2.3) where ϕ ∈ I is the only polynomial of degree
2 in v such that the moments of fmin(f) up to order 2 are the same as those of f . For this reason, in the
following, the notations are unified to

feq = fmin =M.

One verifies that this operator satisfies the conservation and the dissipation properties. The proof is
recalled to clarify the framework and notations used in the next sections.

Proposition 2.1. Consider I′ ⊂ L(E;R) a finite dimensional space of linear forms, and I⊥ =
⋂
ψ∈I′ Kerψ.

Consider a convex function H : E → R and a function C : E → E defined by

C(U) =
1

τ
(M(U)−U) , M(U) = argmin

V−U∈I⊥
H(V). (2.6a)

Then:

• Entropy dissipation: For all U such that this minimum exists:

dH(U)(C(U)) ≤ 0. (2.6b)

• Equilibrium:

– Conservativity: For all ψ ∈ I′, for all U such that this minimum exists:

ψ(M(U)) = ψ(U). (2.6c)

– If H is strictly convex, then for all ψ ∈ L(E;R)\I′, there exists U ∈ E such that

ψ(M(U)) ̸= ψ(U). (2.6d)

Proof. • Since M(U) minimizes the convex entropy H under the constraints M(U)−U ∈ I⊥ and that
U−U = 0 ∈ I⊥, i.e. U satisfies these constraints, then

H(M(U)) ≤ H(U).

By definition,

dH(U)(C(U)) = lim
θ→0

H (U+ θ(M(U)−U))−H (U)

θ

and by convexity

H (U+ θ(M(U)−U))−H (U)

θ
≤ H(M(U))−H(U) ≤ 0,

which provides (2.6b).

• The conservation property (2.6c) holds by construction C(U) ∈ I⊥. Finally, by contradiction, assum-
ing that there exists another ψ ∈ L(E;R)\I′ satisfying (2.6c), then this implies that

M(U) = argmin
V−U∈I⊥

H(V) = argmin
V−U∈I⊥⊕Ker(ψ)

H(V).

By construction, the space I⊥ ⊕Ker(ψ) ⊋ I⊥ is strictly larger than I⊥. Then this equality violates
the strict convexity assumption on H.
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This proposition is presented in a generic space in order to be applicable to both the present kinetic
framework and the moment framework in the next sections. For the kinetic case, one has

U = f, H(U) = h(f), dH(U)(C(U)) = s(f),

as in Property 2.1 and for all ψ ∈ I′ (finite dimensional), there exists p ∈ P2(R) such that

ψ(U) =

∫
R
p(v)f(v)dv.

Remark 2.1. The last two properties (2.6c) and (2.6d) imply the equilibrium condition. Indeed, they provide
dH(U)(M(U) − U) = 0 if and only if dH(U) ∈ I′ or, in the kinetic framework, s(f) = 0 if and only if
η′(f) ∈ I by a representation theorem.

We refer e.g. to [23], and references therein, for further study of the BGK operator.

2.2 Moment approximations

Here, we construct the moment framework, in which our approximations lie. For this purpose, the solution
f(t, x) ∈ L1(R) is rewritten df(t, x) = f(t, x, ·)dv ∈ M(R) as a Borel measure over R with a density, and we
study approximations of df(t, x).

2.2.1 System of moments

The approximations considered are based on a weak formulation of (2.1) with respect to the variable v.
Formally, f satisfies the following equation for all test functions ϕ ∈ L∞

loc(R) in v ∈ R in either a weak or
strong sense in (t, x)

∂t

(∫
R
ϕ(v)df(t, x)(v)

)
+ ∂x

(∫
R
vϕ(v)df(t, x)(v)

)
=

1

τ

(∫
R
ϕ(v)dc(f)(t, x)

)
. (2.7)

Here, this formal construction requires the boundedness of all the integrals and the well-defined collision
operator c (in this weak measure sense) as a function of the measure f . In view of the kinetic L1 framework
in the last section, these are appropriate assumptions.

In a Galerkin framework, we restrict the space of test functions to a finite dimensional polynomial space

PN (R) ⊂ L∞
loc(R). Denoting b(v) =

(
1, v, . . . , vN

)T
, a basis of test functions, then the weak formulation (2.7)

can be rewriten

∂tU+ ∂xF = C, (2.8a)

U =

∫
R
b(v)df(v), F =

∫
R
vb(v)df(v), C =

1

τ

(∫
R
b(v)dc(f)(v)

)
. (2.8b)

At this level, the vector of moments U of the exact solution f satisfies (2.8a) and locally belongs to the set
of moments

U(t, x) ∈ R :=

{∫
R
b(v)df(v), f ∈ M(R)+

}
⊂ RN+1. (2.9)

We refer e.g. to [4, 61, 86, 32, 81] for studies of such sets.
Now, in order to have a unique solution, we need to reduce the solution space into one of the same

dimension as PN (R). This is the so-called moment closure, which is generally interpreted as rewriting F and
C as functions of U in order to obtain a closed system of balance laws

∂tU+ ∂xF(U) = C(U). (2.10)

Eventually, we seek a solution U to (2.10) either in a weak or strong sense, but this approximation can be
defined over a smaller set

Rapp ⊊ R
than the entire set of moments. This is the case for DVM closure below.
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2.2.2 Hyperbolicity and H-theorem at the moment level

Consider a closure, i.e. that F : Rapp → RN+1 and C : Rapp → RN+1 are given functions of U ∈ Rapp.
We recall here how the transport phenomena and the entropy dissipation presented at the kinetic level in
Section 2.1 are characterized at the moment level, i.e. for the closed system (2.10).

Remark that U ∈ Rapp ⊂ RN+1 now belongs to a finite dimensional space. Therefore, the differential
dH(U) can be assimilated to the Jacobian HU(U) and this formalism is preferred in the rest of the paper.

For the transport phenomena, they are described by the hyperbolicity property:

Definition 2.2 (Hyperbolicity properties).

• The system (2.10) is strongly, resp. weakly, hyperbolic if the Jacobian FU is diagonalizable, resp.
trigonalizable, with real eigenvalues.

• The system (2.10) is symmetrizable if there exists a diffeomorphism V over Rapp such that VU is
symmetric positive definite and FUV−1

U is symmetric. Symmetrizability implies strong hyperbolicity.

The eigenvalues of FU are the local wave speeds. In particular, these speeds of propagation were all
velocities v ∈ R at the kinetic level, while they are now restricted to a finite number (at most N + 1).

For the entropy dissipation, it is described by:

Property 2.2 (H-theorem at the moment level).

• Entropy dissipation: A (potentially strictly) convex function H : Rapp → R is an entropy for the
system (2.10) if there exists a function G : Rapp → R satisfying GU = HUFU such that

∂tH(U) + ∂xG(U) = S(U) := HU(U)C(U) ≤ 0. (2.11)

• Equilibrium: The entropy production S(U) = 0 cancels if and only if HU(U) ∈ I′, where

I′ :=
{
V ∈ RN+1, such that ∀U ∈ Rapp, VTC(U) = 0

}
. (2.12)

In the following, we use again

I′ =
{
V ∈ RN+1, such that VTb ∈ P2(R)

}
,

I⊥ =
{
U ∈ RN+1, such that VTU = 0 ∀V ∈ I′} .

Here, we identify I′ to I in this finite-dimensional setting and the orthogonality notation I⊥ can be
understood with respect to the common scalar product.

In the next sections, the existence of an entropy is studied using a symmetrization technique, so we recall
the following result.

Proposition 2.2. There exists a strictly convex entropy for (2.10) if and only if it is symmetrized by a
diffeomorphism V such that V(U)TC(U) ≤ 0. In such a case, the equilibrium is characterized by the
equivalence V(U)TC(U) = 0 if and only if V(U) ∈ I′.

We refer e.g. to [46] for such an equivalence result, remarking that the entropic variables are V = HT
U.

Remark 2.3. • As illustrated below for the QMOM system, there may exist non-strictly convex entropy
for a weakly hyperbolic system. Such entropies do not provide a diffeomorphism relating the conserved
variables U and the entropic variables V.

• The entropy dissipation is often defined in a perturbative framework, which presents small discrepancies
compared to the condition (2.11). We refer e.g. to [58, 89, 59, 101, 100] for well-posedness studies about
systems of the form (2.10). This was also recently applied to systems of quadratures in [105, 104]. The
present definition was found to be sufficient for our purposes, but the computations can be adapted.
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The main objective of this paper is motivated by the lack of connection between the equilibria represented
at the kinetic level and the ones at the moment levels with quadrature-based closures. In particular, vectors
satisfying HU(U) ∈ I′ at the moment level generally have no reason to be related to vectors of the form∫
b(v)M(v)dv, i.e. to equilibria η′(M) ∈ I at the kinetic level. The entropy-based closures (see e.g. [62, 75])

were constructed by enforcing the equality of these two sets, but this relation fails for other closures. We focus
on the DVM, which are interpreted as a quadrature-based closures, and which allow simplifying computations
of the Jacobians of the fluxes.

2.2.3 Collision operator at the moment level

A naive approach to close the collision operator in (2.10) consists in injecting the considered approximation
fapp of the exact solution f of (2.1) inside the definition (2.4). This yields

Cnaive(U) =
1

τ

(∫
R
b(v)M(v)dv −U

)
, (2.13a)

where M is defined in (2.4) with (ρ, u, T ) defined from the moments of order 0 to 2 in U. Such a choice is
generally unsatisfactory, since it often leads to a violation of the entropy dissipation property of the model
(see next sections).

When the moment system has a strictly convex entropy H, a better alternative is to construct the
relaxation operator after the moment approximation from this resulting entropy property, as in (2.5):

Crelax(U) =
M(U)−U

τ
, such that M(U) = argmin

V−U∈I⊥
H(V). (2.13b)

In such a case, Proposition 2.1 applies and provides all the desired properties. This construction is only valid
if the minimization problem (2.13b) has a unique solution. However, it can be extended when considering a
non-strictly convex entropy (therefore not symmetrizing the system), e.g. in a weakly hyperbolic framework,
or when such a minimum is non-unique by simply selecting one of them.

2.3 Systems of quadratures

We recall the construction of the quadrature-based closures and reformulate some of their properties.

2.3.1 The quadrature-based approximations

The quadrature-based closures consist, at all (t, x), in using the same approximation of f in the defini-
tions (2.8b). Such approximations f ≈ fapp take the form of a sum of Dirac measures

f ≈ fapp =

J∑
i=1

miδvi , (2.14a)

where the masses m = (mi)i=1,...,J and the positions v = (vi)i=1,...,J satisfy the moment constraints

U =

J∑
i=1

mib(vi). (2.14b)

The flux vector is given from these parameters by

F =

J∑
i=1

mivib(vi). (2.14c)
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Concerning the operatorC, the relaxation operatorCrelax is defined in (2.13b) based on the entropy property
and therefore depends on the choice of the quadrature approximation. It is given below for every quadrature
approximation separately. The naive collision operator (2.13a) is general to all such approximations

Cnaive =
1

τ

(∫
R
b(v)M̃(m,v)(v)dv −U

)
, (2.14d)

where the Maxwellian is rewritten M̃(m,v)(v) as a function of the masses mi and positions vi instead of f .
It is of the form (2.4), where (ρ, u, T ) are replaced by

ρ =

J∑
i=1

mi, u =
1

ρ

J∑
i=1

mivi, T =
1

ρ

J∑
i=1

mi(vi − u)2. (2.14e)

In order to compute the closure (F,C) as a function of U, one needs to invert the relation (2.14b) to
compute the masses m and positions v as functions of U. In particular, (m,v) needs to be uniquely defined
from U. These are 2J parameters for N +1 equations (2.14b). Depending on the considered approximation,
some of these parameters are left free and some are fixed.

We denote generically p a vector of independent parameters, composed of masses mi and positions vi.
The choices made for the construction of the DVM and QMOM approximations are described in the next
two subsections, and some modifications are given in the next two sections to modify the entropy dissipation
property.

2.3.2 Discrete velocity methods (DVM)

The discrete velocity methods are interpreted here as a quadrature-based moment closure with fixed quadra-
ture points. It is constructed by fixing:

Hypothesis: The number of Dirac measures J = N + 1 in (2.14) is the number of moments, and the
positions v0 < v1 < · · · < vN are all fixed a priori and different. Only the masses are left free.

With this hypothesis, the parameters are the masses p = m = (mi)i=0,...,N , and (2.14) rewrites as follows

U = Lm, Li,j = vji . (2.15)

Remark 2.4. The matrix L is a Vandermonde matrix with different quadrature points vi, then it is invertible.
The matrix L−1 sends the monomials b on l = L−1b the vector of Lagrange interpolating polynomials in vi.

The parameters p = m = L−1U are in bijection with the conserved moments U, such that the flux F
and the collisions C are uniquely defined. Multiplying (2.10) by L−1 corresponds to replacing U, F and C
by

Ũ = L−1U, F̃(Ũ) = L−1F(LŨ) and C̃(Ũ) = L−1C(LŨ), (2.16a)

= Diag(v0, . . . , vN )Ũ

and the balance laws are
∂tŨ+ ∂xF̃(Ũ) = C̃(Ũ). (2.16b)

Let us define the set of admissible DVM solutions

Ũ ∈ R̃app = (R+)N+1, U ∈ Rapp = LR̃app = L(R+)N+1,

as the set of vectors (2.15) with non-negative masses mi ≥ 0.

Remark 2.5. This set Rapp of admissible DVM solutions is smaller than the set of moments

L(R+)N+1 = Rapp ⊊ R.
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Since these solutions are represented by sums of Dirac measures with non-negative masses, they belong to
R. Conversely, a vector of moments of a measure f belongs to L(R+)N+1 only if∫

R
l(v)df(v) ∈ (R+)N+1.

This criterion is not satisfied by all positive Borel measures f ∈ M(R)+, and could be relaxed to work also
with with negative masses.

We study the properties of the modified system (2.16):

Proposition 2.3 (Symmetric hyperbolicity of DVM). For all sets of strictly convex functions ηi, define

H(Ũ) =

N∑
i=0

ηi(Ũi), G(Ũ) =

N∑
i=0

viηi(Ũi).

Then H is strictly convex and satisfies GŨ = HŨF̃Ũ. Therefore, (2.16) is symmetrizable, and strongly

hyperbolic. Its waves speeds are (v0, . . . , vN ) = Sp(F̃Ũ), i.e. the fixed velocities.

Proof. Compute the Hessians

HŨ,Ũ(Ũ) = Diag(η′′0 (Ũ0), . . . , η
′′
N (ŨN )),

GŨ,Ũ(Ũ) = Diag(v0η
′′
0 (Ũ0), . . . , vNη

′′
N (ŨN )).

They are symmetric and HŨ,Ũ is positive definite. Compute the Jacobians

HŨ(Ũ) = (η′0(Ũ0), . . . , η
′
N (ŨN )), GŨ(Ũ) = (v0η

′
0(Ũ0), . . . , vNη

′
N (ŨN )),

F̃Ũ(Ũ) = Diag(v0, . . . , vN ).

One verifies that GŨ = HŨF̃Ũ. Differentiating this equality leads to

HŨ,ŨF̃Ũ = GŨ,Ũ −HŨF̃Ũ,Ũ,

which is a symmetric matrix. One identifies the entropic variables, its Jacobian, and the symmetrization
matrix

V(Ũ) = HŨ(Ũ), VŨ(Ũ) = HŨ,Ũ(Ũ),

F̃Ũ(Ũ)VŨ(Ũ)−1 = VŨ(Ũ)−1
(
GŨ,Ũ −HŨF̃Ũ,Ũ

)
VŨ(Ũ)−1.

After the identification of the candidate entropy for the DVM system, we can construct the opera-
tor (2.13b):

C̃relax(Ũ) =
M̃(Ũ)− Ũ

τ
, M̃(Ũ) = argmin

V−Ũ∈L−1I⊥
H(V).

The unique solution of this optimization problem is of the form

M̃(Ũ)i = (η∗i )
′(α0 + α1vi + α2v

2
i ), (2.17)

where the Lagrange multipliers (αi)i=1,...,3 ∈ R3 are the only coefficients such that

N∑
i=0

(η∗i )
′(α0 + α1vi + α2v

2
i )

 1
vi
v2i

 =

N∑
i=0

Ũi

 1
vi
v2i

 .
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Property 2.3 (H-theorem for DVM).

• Entropy dissipation:

– For Cnaive, compute

Snaive(Ũ) = V(Ũ)T
(∫

R
l(v)M̃(p(Ũ))(v)dv − Ũ

)

=

N∑
i=0

∫
R
li(v)η

′
i(Ũi)

M(Ũ)(v)dv −
N∑
j=0

Ũjδvj

 .

The criterion Snaive(Ũ) ≤ 0 is not satisfied for all admissible Ũ.

– For Crelax, Proposition 2.1 applies.

• Equilibrium:

– For Cnaive, only V(Ũ) ∈ L−1I′ implies Snaive(Ũ) = 0. But having Snaive(Ũ) = 0 does not
necessarily imply V(Ũ) ∈ L−1I′.

– For Crelax, Proposition 2.1 with a strictly convex entropy provides the equivalence Srelax(Ũ) = 0
if and only if V(U) ∈ L−1I′.

Having a vector V(Ũ) ∈ L−1I′ implies that the mass distribution is of the form Ũi = mi = (η∗)′(α0 +
α1vi + α2v

2
i ).

Such a method provides the desired properties as it mimics the trend towards equilibrium. However, it
is only partially satisfactory as it fails to relate to the underlying kinetic entropy dissipation. The resulting
moment equilibrium remains represented by a sum of fixed Dirac measures of the form (2.14a), which
distance to a Maxwellian is not controlled. Eventually, keeping the velocities vi constant can also affect the
symmetries in the problems or in the accuracy of the approximation. In the next subsection, we focus on an
approximation with free velocities, and in the next two sections, we suggest improvements of the DVM to
better capture the trend towards equilibrium.

2.3.3 Quadrature-based method of moment (QMOM)

The quadrature-based moment closure is constructed by fixing:
Hypothesis: The number of Dirac measures J = N+1

2 in (2.14) is half (integer) the number of moments
and the free parameters p are the masses m and the positions v ordered such that

p = (m1, v1, . . . , mJ , vJ)
T .

With this hypothesis, (2.14) is rewriten

U = L(v)m, Li,j(v) = vij . (2.18)

The matrix L(v) is again a Vandermonde matrix, invertible for all p ∈ Rp.

Proposition 2.4. Define the set of parameters and the reduced set of moments

Rp =
{
p ∈ RN+1, mi > 0 ∀i, −∞ < v1 < · · · < vJ < +∞

}
, Rapp = int(R).

Then, (2.18) defines a bijection from Rp to Rapp.
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Proof. For a vector p ∈ Rp, one construct a moment vector U ∈ R using (2.18). The set R was studied
in [81] (based on the atomic representations in [32]), and it was shown that the part of the boundary
∂R ∩ R =: Rm is represented only by sums of at most N Dirac measures. Therefore, (2.18) defines an
injection from Rp into the interior int(R).

Reciprocally, for any vector in the interior U ∈ int(R), there exists a measure absolutely continuous with
respect to the Lebesgue measure having U for moments (see again [81]). The existence of the parameters
p then follows from the existence of an exact quadrature formula with J = N+1

2 points up to degree N + 1
(see e.g. [45]).

The QMOM closure is generally computed using the Chebychev [31, 45] or Wheeler algorithm [98, 45] to
compute these unique masses and positions p(U), and by reinjecting them in the flux definition (2.14c)

F =

J∑
i=1

mi(U)vi(U)b(vi(U)). (2.19)

We study the properties of the system (2.10) with the QMOM closure (2.19):

Proposition 2.5 (Weak hyperbolicity of QMOM).

• The Jacobian FU is only trigonalizable with real eigenvalues. Therefore, System (2.10) with the
closure (2.19) is not symmetrizable, but only weakly hyperbolic. Its wave speeds are the velocities
(v0, . . . , vJ) = Sp(FU).

• For all sets of strictly convex functions ηi, define

H(U) =

J∑
i=1

ηi(mi(U)), G(U) =

J∑
i=1

vi(U)ηi(mi(U)).

Then, H is not strictly convex, it satisfies GU = HUFU, but it does not symmetrize (2.10) with the
closure (2.19).

Proof. • Compute the Jacobians

Up = (b(v1), m1b
′(v1), . . . , mJb

′(vJ)) ,

Fp = FUUp

= (v1b(v1), m1(v1b
′(v1) + b(v1)), . . . , mJ(vJb

′(vJ) + b(vJ))) .

One verifies that U−1
p is also a Vandermonde matrix, which sends the monomials b on the Hermite

interpolation polynomials

h =

(
h1,1,

h2,1
m1

, . . . ,
h2,J
mJ

)
,

those of the first kind being Lagrange ones squared h1,i = l2i and those of the second kind being
weighted with mi (see e.g. the computations in Theorem 5.1 in [82]). Remark that the basis h(U)
now depends on U since the positions vi(U) do. This provides

(Up)
−1Fp = Diag(M1, . . . ,MJ), M i =

(
vi mi

0 vi

)
. (2.20)

Especially, FU is similar to the matrix (2.20), and it is therefore only trigonalizable and not diagonal-
izable, which prevents from symmetrizability. Then, the system (2.10) with the QMOM closure (2.14)
is only weakly hyperbolic and its wave speeds are the J = N+1

2 positions vi.
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• For the convexity of H, consider two vectors U,V ∈ Rapp and a parameter θ ∈ [0, 1]. Since Rapp and

Rp are in bijection, there exists Ṽ ∈ Rapp such that

m(Ṽ) = m(V) and v(Ṽ) = v(U).

Using (2.18),

m(U+ θ(Ṽ −U)) = L(v(U))−1
(
U+ θ(Ṽ −U)

)
= m(U) + θ(m(Ṽ)−m(U)).

Then, using the convexity of ηi

H(U+ θ(V −U)) =

J∑
i=1

ηi

(
mi(U) + θ(mi(Ṽ)−mi(U))

)
≤

J∑
i=1

ηi (mi(U)) (1− θ) + ηi(mi(Ṽ))θ

= (1− θ)H(U) + θH(V).

The lack of strict convexity arises from the lack of variation of the entropy when U and V have the
same masses.

Finally, for the entropy-entropy flux pair relation, compute the Jacobians

Hp = (η′1(m1), 0, η
′
2(m2), 0, . . . , η

′
J(mJ), 0) ,

Gp = (v1η
′
1(m1), η1(m1), v2η

′
2(m2), η2(m2), . . . , vJη

′
J(mJ), ηJ(mJ)) .

Then, write
HUFU = Hp(Up)

−1Fp(Up)
−1.

and one verifies that Gp = Hp

(
(Up)

−1Fp

)
using (2.20).

Again, after the identification of the candidate entropy for the QMOM system, we can construct the
operator

Crelax(U) =
M(U)−U

τ
, M(U) = argmin

V−U∈I⊥
H(V). (2.21a)

The solutions of this non-strictly convex optimization problem take the form

M(U) =

J∑
i=0

b(ui)(η
∗
i )

′ (α0 + α1ui + α2u
2
i

)
, (2.21b)

for any set of velocities −∞ < u0 < · · · < uJ < +∞, and their associated Lagrange multipliers (αi)i=0,...,2 ∈
R3 are such that

N∑
i=0

(η∗i )
′(α0 + α1ui + α2u

2
i )

 1
ui
u2i

 = (Ui)i=0,...,2.

These minima are not unique since H is not strictly convex (and especially independent of v). A natural
choice consists in fixing

ui = vi (2.21c)

given by the QMOM discretization, but any other choice would dissipate the same entropy.
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Proposition 2.6 (H-theorem for QMOM).

• Entropy dissipation:

– For Cnaive, compute

Snaive(U) =

J∑
i=1

∫
R
li(U)(v)2η′i(mi(U))

M̃(p(U))(v)dv −
J∑
j=0

mj(U)δvj(U)(v)

 . (2.22)

The criterion Snaive(U) ≤ 0 is not satisfied for all realizable U ∈ Rapp.

– For Crelax, Proposition 2.1 applies.

• Equilibrium:

– For Cnaive, again only HU(U) ∈ I′ implies Snaive(U) = 0. But having Snaive(U) = 0 does not
necessarily imply HU(U) ∈ I′.

– For Crelax, due to the lack of strict convexity of H, only HU(U) ∈ I′ implies Srelax(U) = 0 and
having Srelax(U) = 0 does not necessarily imply HU(U) ∈ I′.

Having HU(U) ∈ I′ implies that the mass distribution is of the form mi(U) = (η∗)′(α0+α1vi+α2v
2
i )

for some velocities −∞ < vi < vi+1 < +∞.

Proof. • Compute
S(U) = HU(U)C(U) = Hp(p(U))pU(U)C(U).

Remark that Hp = (η′1(m1), 0, η′2(m2), . . . , 0) and that pU is the Vandermonde matrix that sends
the monomials b on the Hermite interpolation polynomials h. This yields

Snaive(U) =

J∑
i=1

η′i(mi(U))

(∫
R
li(U)(v)2M̃(U)(v)dv −mi(U)

)
,

which provides (2.22).

• Construct the polynomials space p ∈ Span(h1,, . . . , h1,J). It can be represented by p = VTb for
some V ∈ Span(V1, . . . ,VJ) ⊂ R2J . Since dim(Span(V1, . . . ,VJ)) = J > 3 = dim(I′), then
Span(V1, . . . ,VJ) ⊊ I′ and one verifies that HU(U) ∈ Span(V1, . . . ,VJ) also implies Snaive(U) =
0 = Srelax(U).

This model is certainly richer than the DVM, as the velocities vi are no longer fixed. However, as in the
last paragraph, the entropy dissipation and the equilibrium are still not related to the underlying kinetic
ones. Furthermore, the equilibria may not be attainable due to the lack of strict convexity of the entropy.

2.3.4 Other quadrature methods, alternatives, and position of the problem

The quadrature-based framework has been an inspiration for the construction of a wide variety of moment
closures. The reason lies in the simplicity of their construction, which also provides flexibility (e.g. in the
choice of the position of the quadrature points, their weights, their number, their coupling, the shape of
the distributions), and in the availability of (relatively efficient) algorithms to compute the parameters out
of the moments and vice versa (see e.g. [98, 31, 93, 45]). However, remark that the condition number of
the problem of computing the parameters in the construction of QMOM (masses and positions) from the
moments increases rapidly with the number of moments (see [45]), and in the recent development, it is
often preferred to compute directly the closure F from the moments U, which is better-conditioned, without
computing the parameters (see e.g. [40, 41, 39]).

Among the recent quadrature-based alternatives that have good mathematical properties, we list:
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• The multi-Gaussian closure ([96, 29]) a.k.a. extended quadrature-based method of moments (EQ-
MOM ; [103]): This closure consists in replacing the Dirac deltas in (2.14a) by Gaussians with a
common variance. For a single peak, the variance is closely related to the physical notion of tempera-
ture, and this modification allows to accurate model more physically relevant regimes. The EQMOM
system was recently analyzed in [105], and it was proved to retrieve strong hyperbolicity and entropy
decay.

• The hyperbolic quadrature-based method of moments (HyQMOM ; [41, 39]) is at the origin
of the present work. The idea originated from algorithmic considerations, by observing that the
closure is entirely determined by a single parameter in an orthogonal polynomial sequence (see the
precise construction in [39]). For the present purposes, we reinterpret this construction as follows: The
HyQMOM closure consists in having one more parameter than necessary in (2.14), i.e. choosing 2J−1
moments for 2J parameters (mi and vi), then the resulting set of parameters is constrained (satisfy
one additional equation) such that the strong hyperbolicity is enforced. We use a similar idea below
to impose symmetrizability of the resulting system. The HyQMOM system was proposed in [41, 39]
and the strong hyperbolicity was shown for lower order moments. The analysis was recently completed
in [104] in a perturbative framework, the strong hyperbolicity was shown in the general case, and some
form of dissipativity was exhibited.

• Among the promising quadrature-inspired closures, we can also mention the projective closure [81,
82], which are also based on a positive combination of a Gaussian and a sum of Diracs. Such a
construction allows the modeling of physical regimes involving both thermodynamic equilibria and
the purely anisotropic regimes. A first attempt of analysis was initiated in [82] exhibiting interesting
coupling phenomena in the entropy productions due to the Gaussian and due to the Diracs.

Eventually, the recent work on these constructions exhibited a good mathematical structure regarding
the hyperbolicity and the entropy decay. The remaining mathematical difficulties that we aim to study and
tackle is the lack of relations between the entropy dissipated at the hyperbolic level in (2.11) and the original
kinetic entropy dissipated by (2.2a), even though the existing HyQMOM closure is surely sufficient for many
physical simulations. Now, we address the question of constructing a closure of the form (2.14) dissipating
a chosen entropy, or at least an approximation of it. Such a relation was also studied from another angle:
The entropy-based closures (see e.g. [62] or also [75]) consist in choosing, among all the reconstructions
satisfying the moment constraints, the one that minimizes the considered entropy. This leads directly to a
symmetrizable moment system. At the hyperbolic level, this system dissipates an entropy corresponding to
the one minimized, i.e. the kinetic one or an approximation of it (see e.g. [1, 2]). In order to compute such a
closure numerically, one must solve this optimization problem, which requires the computation of integrals.
These integrals are generally approximated by quadratures (see e.g. [51, 7, 6]), and bridges with the QMOM
closures can be done here. These techniques also inspired part of the construction below.

3 Symmetrization by constrained over-parametrization

In order to construct entropy-dissipating moment closures based on a quadrature approximation, we have
illustrated above the important role of intermediate parameters p, i.e. the masses and positions of the
quadratures. It is convenient to define the closure using these intermediate parameters. The general idea
of the present construction is to have a larger number of intermediate parameters than of moments, and to
impose constraints on those additional parameters in order to obtain the desired properties. This idea is
more general than the case of the systems of quadrature, and it could be applied to symmetrize other types
of moments systems or hyperbolic balance laws.

3.1 General constraints

In a generic framework, suppose that the parameters p ∈ Rp ⊂ RJ live in a space of dimension J > N + 1.
And suppose that the unknown U, the flux F and the source C are functions of p ∈ Rp into RN+1 such
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that
∂tU(p) + ∂xF(p) = C(p). (3.1)

Since the number J > N + 1 of parameters p is larger than that of unknowns U, then the function U(p)
can be a bijection only if we restrict Rp ⊂ RJ to a manifold of dimension N + 1, i.e. if we add constraints
on the free parameters p. Forcing p to belong to a manifold also implies the existence of a bijection relating
p ∈ Rp ⊂ RJ , and quantities V ∈ RN+1, that are meant to become the entropic variables. Then the
symmetrization property is rewriten as

Up (p(V))pV(V) symmetric positive definite, (3.2a)

Fp (p(V))pV(V) symmetric, (3.2b)

where the Jacobians Up,Fp ∈ R(N+1)×J and pV ∈ RJ×(N+1) are no longer square matrices. The Jacobians
Up and Fp are a priori fixed, but we aim at closing the system by imposing the coupling through the
Jacobian pV.

The existence of such a function p(V) can be complicated to prove, and we do not necessarily need to
compute it. As an alternative, we characterize it by a (slightly) simpler algebraic criterion.

Proposition 3.1. There exists a surjective function p(V) satisfying (3.2) if and only if there exists a matrix
function A(p) ∈ RJ×(N+1) such that for all p ∈ Rp ⊂ RJ , then rankA(p) = (N + 1) and

J∑
k=1

(Ui)pkAk,j − (Uj)pkAk,i for all i > j = 0, . . . , N, (3.3a)

J∑
k=1

(Fi)pkAk,j − (Fj)pkAk,i for all i > j = 0, . . . , N, (3.3b)

J∑
k=1

(Ai,j)pkAk,l − (Ai,l)pkAk,j for all i = 1, . . . , J and j > l = 0, . . . , N. (3.3c)

Proof. Suppose there exists a surjective function p(V) satisfying (3.2). Then its Jacobian is of maximum
rank, i.e. N + 1 and V ∈ Range(p) is in bijection with U ∈ Rapp. Then, defining

A(p) = pV (V (U(p))) ,

one verifies that the symmetry properties (3.2) rewrite (3.3a-3.3b) and the symmetry of the Hessian (pi)V,V
rewrites (3.3c).

In the other sense, the Poincaré lemma provides the existence of a function pi(V) which Jacobian is
(pi)V(V) = Ãi,:(V) if and only if (Ãi,:)V(V) is symmetric. Assuming additionally that Ã is of rank (N +1)
provides the surjectivity of p from a non-empty set RV ⊂ RN+1 on the manifold Range(p) ⊂ RJ of
dimension (N+1). Especially, the function U(p(V)) defines a bijection from RV ⊂ RN+1 into Rapp ⊂ RN+1

(potentially not the entire realizability set, but a non-empty part of it). Therefore, defining the matrix
function

A(p) = Ã(V(U(p))),

the symmetry property on (Ãi,:)V(V) rewrites the constraint (3.3c) on A(p). Therefore, (3.3c) provides the
existence of a function p(V) which Jacobian is pV = A(p).

The resulting function p satisfies the symmetry properties onUppV and FppV in (3.2) if and only if (3.3a)
and (3.3b) hold.

Finally, since the rank(A(p)) is constant over the considered domain Rp, one can always find a clever
change of unknown that imposes the positive definiteness of UppV on top of the other constraints.
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This provides a technique to symmetrize the moment system (2.10) through the considered intermediate
parameters. However, the constraints on dissipativity and the equilibrium

V(U)TC(U) ≤ 0, V(U)TC(U) = 0 ⇔ V(U) ∈ I′

still need to be addressed case by case.

3.2 An example in a linearized setting

It may seem difficult to construct such a matrix function satisfying (3.3). We only provide an intuition of
how to construct such matrices in simpler settings.

Proposition 3.2 (Symmetric hyperbolicity in a linearized case).
Suppose that U and F are linear functions of p:

U = Lp and F =Mp.

Then, there exist (constant) matrices A that symmetrize (3.1). They provide a change of unknowns:

U = Lp, p = AV, V = (LA)−1U. (3.4a)

Then, the flux take the form
F = (MA)V = (MA)(LA)−1U. (3.4b)

The entropy-entropy flux pair take the form

H(U) =
UT (LA)−1U

2
, G(U) =

UT (LA)−1(MA)(LA)−1U

2
. (3.4c)

Proof. Since A is constant, the constraint (3.3c) holds.
The constraints (3.3a-3.3b) are N(N + 1) linear constraints over A ∈ RJ×(N+1). Rewriting Ai,j =

ai+(N+1)(j−1) into a vector a ∈ RJ(N+1), this rewrites a ∈ Ker(P ) with a matrix P ∈ RN(N+1)×J(N+1).
Since J > N + 1, then dimKer(P ) ≥ (N + 1) and the remaining free parameters can be chosen to enforce
the positivity definiteness of UppV = LA.

After the identification of the quadratic entropy, we can construct the operator (2.13b). The unique
solution of this optimization problem is of the form

Crelax(U) =
M(U)−U

τ
, M(U) = argmin

V−U∈I⊥
VT (LA)−1V.

This unique minimizer is the form linear combination of three vectors Wi with weights given by the first
values Ui

M(U) = U0W
0 + U1W

1 + U2W
2. (3.5)

Indeed, one verifies that M(U) = (LA)λ, where the only non-zero Lagrange multipliers are associated with
the three-dimensional constraints (M(U) − U)Tϕ = 0 for ϕ ∈ I′, i.e. λ = (λ0, λ1, λ2, 0, . . . , 0)

T when

b(v) = (1, v, . . . , vN )T is the canonical basis. In that case, they are given by λ = ˜(LA)−1U where ˜(LA)−1

is the top-left 3× 3 corner of (LA)−1.

Property 3.1 (H-theorem in a linearized framework).

• Entropy dissipation: The entropy dissipation takes the form:

UT (LA)−1C(U) ≤ 0. (3.6a)
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– For Cnaive, using a Cholesky decomposition (LA)−1 = BBT , then

Snaive =
1

τ

(∫
R
(BU)T (Bb)(v)M(U)dv − (BU)2

)
. (3.6b)

The criterion Snaive(U) ≤ 0 is not satisfied for all U.

– For Crelax, compute

Srelax =
1

τ
UT

(
˜(LA)−1 − (LA)−1

)
U ≤ 0, (3.6c)

where the matrix ˜(LA)−1 − (LA)−1 is symmetric non-positive. Also Proposition 2.1 applies.

• Equilibrium: The equilibrium is represented by the equivalence:

UT (LA)−1C(U) = 0 ⇔ V(U) ∈ I′ ⇔ U ∈ (LA)I′. (3.6d)

– For Cnaive, only V(U) ∈ I′ implies Snaive(U) = 0. But having Snaive(U) = 0 does not neces-
sarily imply V(U) ∈ I′.

– For Crelax, Proposition 2.1 with a strictly convex entropy provides the equivalence Srelax(U) = 0
if and only if V(U) ∈ I′, or equivalently if U ∈ Span(W0, W1, W2).

This simplified linearized setting is sufficient for many applications. However, the quadratic entropy found
in (3.4c) and the associated equilibrium in (3.5) are not yet related to the underlying kinetic entropy (2.2a).
In the next two sections, we exploit this idea to construct entropy-dissipating closures for augmented DVM
and augmented QMOM systems.

4 Augmented discrete velocity methods (ADVM)

First, we focus on the DVM case. The entropy property is modified by augmenting the number of quadrature
nodes in the construction (2.16), i.e. J > N + 1.

We first focus on a direct application of the linearized case of Section 3.2. This allows for simplifications.
Then, we extend the construction to mimic an underlying kinetic entropy dissipation.

4.1 Symmetrization criterion and a quadratic entropy

As in the well-parametrized case of Section 2.3.2, write the moment vectors U in the Lagrange interpolation
polynomials associated to the first positions v0, . . . , vN :

l(v) :=

(
N∏
k=1

(v − vk)

(v0 − vk)
,

(v − v0)

(v1 − v0)

N∏
k=2

(v − vk)

(v1 − vk)
, . . . ,

N−1∏
k=1

(v − vk)

(vN − vk)

)T
,

li(v) := vli(v).

Then, decomposing p = m = (m̄T , m̃T )T into the two parts m̄ = (mi)i=0,...,N and m̃ = (mi)i=N+1,...,J−1,
the Jacobians are

Up = L =
(
IdN+1 Up̃

)
, (Up̃)i,j = li(vj+N ), (4.1a)

Fp =M =
(
D Fp̃

)
, D = Diag(v0, . . . , vN ), (Fp̃)i,j = li(vj+N ), (4.1b)
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that are constants, depending only on the fixed positions vi. In that case, the constraints (3.3a-3.3b) rewrite,
for all i > j = 0, . . . , N

0 = Ai,j −Aj,i +

J−1∑
k=N+1

li(vk)Ak,j − lj(vk)Ak,i, (4.2a)

0 = viAi,j − vjAj,i +

J−1∑
k=N+1

li(vk)Ak,j − lj(vk)Ak,i. (4.2b)

Then, Proposition 3.2 applies, and the system (2.10) with the flux (3.4b) is symmetric hyperbolic, associated
with the entropy-entropy flux pair (3.4c) which rewrites

H =
1

2

J∑
i=1

N∑
j=0

(miqj(vi))
2
, G =

1

2

J∑
i=1

N∑
j=0

vi (miqj(vi))
2
, V = (LA)−1U,

where q = Bl and BT is the Cholesky decomposition of (LA)−1. The entropic variables are still moments
of the considered approximation (2.14), but written in a different polynomial basis.

After the identification of the candidate entropy, we can construct the relaxation operator (2.13b): The
equilibrium M(U) in (2.13b) is the solution of the problem

M(U) = argmin
V−U∈I⊥

H(V).

Denoting vj = (vj1, . . . , v
j
J)
T , then this minimum is

M(U) = A(λ0v
0 + λ1v

1 + λ2v
2), (4.3)

where the Lagrange multipliers (λi)i=0,...,2 ∈ R3 associated with the constraints V −U ∈ I⊥ are the only
coefficients such that the moments up to order 2 of M(U) are those of U.

Proposition 4.1 (H-theorem for the linear ADVM).

• Entropy dissipation:

– For Cnaive, compute

Snaive(U) =
1

τ

(∫
R
(BU)T (Bl(v))M(U)(v)dv − (BU)2

)
. (4.4)

Again this term is not signed for all U ∈ Rapp.

– For Crelax, Proposition 2.1 applies. The term Srelax takes the same form as in (3.6c).

• Equilibrium:

– For the naive operator Cnaive, only V(U) ∈ I′ implies Snaive(U) = 0. But having Snaive(U) = 0
does not necessarily imply V(U) ∈ I′.

– For the relaxation operator Crelax, Proposition 2.1 with a strictly convex entropy applies.

Having V(U) ∈ I′ implies that U is of the form (4.3)

Eventually, one can play with the size of the matrix A and the values of the vi in order to alter the form
of the entropy, but it remains a quadratic function of U unrelated to the kinetic entropy. As an alternative,
the matrix A can be tuned to fit the kinetic entropy. It can be chosen non-constant depending on p, but it
is not obvious how to make such choices to relate to the kinetic entropy. This first linear version can still
be useful when approximating linearized kinetic equations. In the next paragraph, we suggest an alternative
construction to reach our goal in a non-linear setting.
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4.2 Extension to a quadrature-based entropy

The aim here is to construct a closure from the considered kinetic entropy à la Levermore [62]. Choose a set
of:

• Positive weights wi > 0.

• Strictly convex entropies ηi : R → R such that η′i > 0.

Define the entropy based on the intermediate parameters p = m

H̃(m) =

J∑
i=1

wiηi(mi), (4.5a)

and define the entropy based on the conserved variables as

H(U) = min
Lm=U

H̃(m). (4.5b)

For all realizable U ∈ Rapp, this minimum exists since this is a strictly convex problem over m ∈ (R+)J

under linear constraints.

Property 4.1. The function H is strictly convex.

Proof. For all pairs m1 and m2 in (R+)J and δ ∈ [0, 1], one has

H̃
(
m1 + δ(m2 −m1)

)
< H̃(m1) + δ

(
H̃(m2)− H̃(m1)

)
.

Taking the minimum over (m1,m2) on both sides under the constraints Lm1 = U1 and Lm2 = U2 leads to
the result.

Let us construct its Legendre-Fenchel transform.

Property 4.2. The Legendre-Fenchel transform H∗ of H is

H∗(V) =

J∑
j=1

wjη
∗
j

(
VTb(vj)

wj

)
. (4.6)

Proof. Compute the Legendre-Fenchel transform of H̃ : (R+)J → R

H̃∗(µ) =

J∑
j=1

wjη
∗
j

(
µj
wj

)
.

Then, this result is a direct application of Fenchel strong duality with linear constraints Lm = U (see e.g.
Corollary 3.3.11 and Exercise 3.22 in [15], see also [55, 84]).

With this transform, one obtains the bijection relating the conserved variables U and the entropic vari-
ables V:

Property 4.3. The definition of the entropy H provides the change of unknowns:

U(V) = H∗
V(V)T

=

J∑
i=1

b(vi)(η
∗
i )

′
(
VTb(vi)

wi

)
,

V(U) = HU(U)T = (LTL)−1LW(U)

=

J∑
i=1

wiη
′
i(mi(U))g(vi),

where g is a vector of polynomials, W(U) ∈ RJ is a vector and L ∈ RJ×(N+1) is a Vandermonde matrix.
They are all associated with (vi)i=1,...,J as

g = (LLT )−1b, W (U)i = wiη
′
i(mi(U)), Li,j = vji .

20



Proof. Differentiating H∗ gives the formula of U(V), where one identifies

mj = (η∗j )
′
(
VTb(vj)

wj

)
> 0.

The function H is defined implicitly as the solution of the optimization problem (4.5), and its computation is
not straightforward. Instead, one identifies the masses solving the optimization problem (4.5) in the formula
of U(V):

mi(U) = (η∗i )
′
(
V(U)Tb(vi)

wi

)
.

This formula leads to an over-parametrized linear system, with a solution by invertibility of U(V). Solv-
ing this problem using the normal equation provides the given formula. This choice is also preferable for
numerical purposes to avoid creating a preferred direction.

Remark 4.1. The masses solving the optimization problem (4.5) are strictly positive. Therefore, the op-
timization problem (4.5) turns ill-posed along the boundary ∂Rapp of the augmented DVM realizability
domain and ill-conditioned in its vicinity. This domain is the polyhedral cone

Rapp = Cone (b(vi), i = 1, . . . , J) .

This is observed identically in the construction of the classical entropy-based closures [51, 7, 6]. This is also
expected for all realizable closures. However, this can be relaxed by different modifications of the entropy
(see e.g. [2, 5]).

One obtains the fluxes as functions of the masses m(U), solution of the optimization problem (4.5):

Property 4.4. The flux F(U) and the entropy flux G(U) are

F(U) =

J∑
i=1

mi(U)vib(vi) =Mm(U), with Mi,j = vi+1
j , (4.7a)

G(U) =

J∑
i=1

wi

 J∑
j=1

ηi(mi(U))mj(U)vj
(
k(vi)

Tk(vj)
)

(4.7b)

−ηi

 J∑
j=1

wj
wi
ηj(mj(U))

(
k(vj)

Tk(vi)
) ,

where k = Bb and B is the Cholesky decomposition of (LLT )−1 = (BBT ).

Proof. For the fluxes, one defines similarly

G∗(V) =

J∑
i=1

viwiη
∗
i

(
VTb(vi)

wi

)
,

F(U(V)) = G∗
V(V) =

J∑
i=1

vib(vi)(η
∗
i )

′
(
VTb(vi)

wi

)
,

and deduce

F(U) = G∗
V(V(U)) =

J∑
i=1

vib(vi)(η
∗
i )

′
(
V(U)Tb(vi)

wi

)
=

J∑
i=1

mi(U)vib(vi),

G(U) = V(U)TF(U)−G∗(V(U)).

Reinjecting V(U) in the latter reduces to (4.7).
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Eventually, these results are summarized:

Proposition 4.2 (Symmetric hyperbolicity of ADVM with the quadrature-based entropy). The functions
H, G and F, defined in (4.5b), (4.7b) and (4.7a), satisfy

GU = HUFU.

Then, the system (2.10) with the closure (4.7a) is symmetrizable.
Its wave speeds are bounded by the extremum velocities

Sp(FU) ⊂ [v1, vJ ].

Proof. For the bounds on the wave speeds, one has FU = FV(UV)−1 with

UV =

J∑
i=1

b(vi)b(vi)
T

wi
η′′i

(
VTb(vi)

wi

)
, FV =

J∑
i=1

vi
b(vi)b(vi)

T

wi
η′′i

(
VTb(vi)

wi

)
.

Since UV is symmetric positive definite, then it is diagonalizable with positive eigenvalues. And one observes
that the matrix

(FU − v1Id) = (FV − v1UV)(UV)−1 =

J∑
i=1

(vi − v1)
b(vi)b(vi)

T

wi
η′′i

(
VTb(vi)

wi

)
is similar to a non-negative matrix. It is therefore non-negative. Similar computations holds for (vJId −
FU).

After the identification of the candidate entropy, we construct the relaxation operator (2.13b). The
equilibrium M(U) is the solution of the minimization problem (2.13b) that can be simplified:

min
V−U∈I⊥

H(V) = min
V−U∈I⊥

min
Lm=V

H̃(m) = min
L̃m=Ũ

H̃(m),

where L̃ ∈ R3×J and Ũ correspond to the parts of L and of U associated with I′. If b(v) = (1, v, . . . , vN )T ,
these are simply

L̃i,j(v) = vij , Ũi = Ui.

This simply corresponds to the minimization of entropy under the constraint that the moments M(U) are
those of U up to order two. Therefore, this minimizer takes the form

M(U) =

J∑
i=1

b(vi)(η
∗
i )

′(λ0 + λ1vi + λ2v
2
i ), (4.8)

where the Lagrange multipliers (λi)i=0,...,2 ∈ R3 are the only coefficients such that the moments up to order
2 of M(U) are the same as those of U.

We summarize the entropy dissipation study:

Proposition 4.3 (H-theorem for the ADVM with the quadrature-based entropy).

• Entropy dissipation:

– For Cnaive, compute

Snaive(U) =
1

τ

J∑
i=1

wiη
′
i(mi(U))

(∫
R
k(vi)

Tk(v)M(U)(v)dv (4.9)

−
J∑
j=1

mj(U)k(vi)
Tk(vj)

 ,

where k = Bb and B is the Cholesky decomposition BBT = (LLT )−1. This term is not signed
for all U ∈ Rapp.
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– For Crelax, Proposition 2.1 applies.

• Equilibrium:

– For Cnaive, only V(U) ∈ I′ implies Snaive(U) = 0. But having Snaive(U) = 0 does not neces-
sarily imply V(U) ∈ I′.

– For Crelax, Proposition 2.1 with a strictly convex entropy applies.

Having V(U) ∈ I′ implies that U is of the form (4.8)

Remark that this is equilibrium is still not a Maxwellian. It is only an approximation of a Maxwellian
by a sum of Dirac deltas. However, the number of deltas is now chosen to be J > N + 1.

In the next section, we extend this approach in the QMOM framework, i.e. having the velocities vi free
as well.

5 Augmented quadrature-based methods (AQMOM)

First, we write the criterion for the existence of a strictly convex entropy in the augmented QMOM frame-
work. Then, we provide one specific choice based on the underlying kinetic entropy.

For technical reasons, in this section, the number of parameters is supposed to satisfy the following
additional hypothesis:

Hypothesis: The number of moments Card(b) = N + 1 = 2M is even and the number of parameters
Card(p) = 2J satisfies M ≤ J , i.e. there are more Dirac deltas in (2.14) than moments, or more than twice
as many parameters as moments.

5.1 Symmetrization criterion

In the spirit of [82] and as in Section 2.3.3, we use the Hermite interpolation polynomial at the points
(vi)i=1,...,M as basis functions b. They give h = (h1,h2) with

h1,i = l2i , h2,i(v) = (v − vi)l
2
i (v), where li(v) =

M∏
j=1

j ̸=i

v − vj
vi − vj

are the Lagrange interpolation polynomials at the first velocities vi for i = 0, . . . , N . Denote h(v) = vh(v).
This choice provides the Jacobians

Up =
(
Diag(B1, . . . , BM ) h(vM+1), mM+1h

′(vM+1), . . . , mJh
′(vJ)

)
, (5.1a)

Fp =
(
Diag(C1, . . . , CM ) h(vM+1), mM+1h

′(vM+1), . . . , mJh
′(vJ)

)
, (5.1b)

Bi =

(
1 2mil

′
i(vi)

0 mi

)
, Ci =

(
vi mi (1 + 2vil

′
i(vi))

0 mivi

)
, (5.1c)

where the first part of the matrices correspond to Up̄ and Fp̄ and the second to Up̃ and Up̃, using the
decomposition p = (p̄T , p̃T )T with

p̄ = (m1, v1, . . . , mM , vM )T , p̃ = (mM+1, vM+1, . . . , mJ , vJ)
T .

For the sake of conciseness, the conditions (4.2) are rewritten with this choice of polynomial basis only in
Appendix A.

The reformulation of these constraints in the QMOM framework leads to a system of equations that are
linear over A, but polynomial over p. Furthermore, the constraints (3.3c) are now a system of quadratic
quasi-linear first-order differential conservation laws. The DVM case (4.2), i.e. by forcing the positions vi to
be constant, provides an example of parameters satisfying these constraints. However, we have not found a
non-trivial modification of this closure that does not comply with the DVM framework.

Therefore, we only provide an alternative based on an entropy minimizing technique.
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5.2 A tentative quadrature-based entropy based on a max-min problem

We modify the construction of Section 4.2 using the kinetic entropy to adapt it to the QMOM framework.

5.2.1 Constraints and position of the problem

First, we need to adapt the framework of Section 4.2 with varying positions vi. Choose a set of:

• Positive weights wi(v) > 0, where the positions v are varying parameters, i.e. p = (mT ,vT )T . Further
constraints on these weights are added in the construction below.

• Strictly convex entropies ηi : R → R such that η′i > 0.

Based on the intermediate parameters, define

H̃(p) =

J∑
i=1

wi(v)ηi(mi). (5.2)

Remark 5.1. Assume that the i-th weight wi(v) = wi(vi) depends only on the associated position vi.
Computing the Hessian of this function leads to a block diagonal matrix H̃p,p(p) = Diag(H̃1, . . . , H̃J) with
diagonal blocks of the form

H̃i =

(
wi(vi)η

′′
i (mi) w′

i(vi)η
′
i(mi)

w′
i(vi)η

′
i(mi) w′′

i (vi)ηi(mi)

)
.

Therefore, H̃ is strictly convex only under the additional condition

wi(vi)w
′′
i (vi)ηi(mi)η

′′
i (mi)− w′

i(vi)
2η′i(mi)

2 > 0

or equivalently

w′′
i wi

(w′
i)

2
(vi) >

(
η′′i ηi
(η′i)

2
(mi)

)−1

.

This relation between the mi and vi was not found meaningful in our framework, so another construction of
the strictly convex entropy H is proposed.

5.2.2 Existence of a solution to a max-min problem

Define the entropy based on the conserved variables as the solution of the max-min problem (see e.g. [97,
84, 91, 36, 16]):

H̄(U;v) =

{
min

m∈Rm(U;v)
H̃(m,v) if Rm(U;v) ̸= ∅,

−∞ otherwise.
(5.3a)

H(U) = max
v∈Rv

H̄(U;v), (5.3b)

where the sets are

Rm(U;v) =

{
m ∈ (R+)J such that

J∑
i=1

mib(vi) = U

}
, (5.3c)

Rv =
{
v ∈ RJ such that vi < vi+1

}
. (5.3d)

This can also be written as a bilevel optimization problem (see e.g. [95, 9, 8] and references therein).

Remark 5.2. This choice of couples (m,v) is motivated by two reasons:

24



• It provides all the mathematical properties desired for the resulting system of moments (see Sec-
tion 5.2.4 below).

• The minimization part can still be interpreted as an entropy minimization, i.e. the most probable
such choice ([56]) satisfying the moment constraints (5.3c). The maximization can be interpreted as a
dilation from the equilibrium to observe the most accurate out-of-equilibrium representation.

We need to prove that the function H is well-defined for all realizable U ∈ Rapp, and that it is strictly
convex in U.

Proposition 5.1. Suppose that ηi ∈ C2(R+) and wi ∈ C2(Rv)
+ satisfy

lim
m→0

ηi(m) = −∞, ∀i, (5.4a)

lim
v→∂Rv

w(v) = wlim /∈ (R∗+)J , (5.4b)

and at least one of its components is finite in this limit

wlim
i ∈ R∗+. (5.4c)

Then, for all U ∈ Rapp, there exists a maximizer v∗ to (5.3b).

Remark 5.3. The assumptions on w can be rewritten as:

• Every weight wi must to be a non-negative function of the velocities v ∈ Rv, with a C2-regularity.

• The limit v → ∂Rv corresponds either to the case where two velocities cross each others vi+1−vi → 0,
or when the extreme ones v0 → −∞ or vJ → +∞ go to infinity.

• In such a limit, at least one of the weights wi is assumed to go either to 0 or to +∞, and at least one
of them is assumed to remain strictly positive and bounded.

Proof. First, the case of uniformly distributed velocities vDVM was studied in the last section. It was shown
to have a finite entropy H̄(U;vDVM ) = HDVM ∈ R. Define

Sv =
{
v ∈ Rv such that H(U;v) ≥ HDVM

}
.

Let us show now that this set is a compact subset of Rv.
Consider a limit v → ∂Rv, such that the two components i, j satisfy

lim
v→∂Rv

wi(v) = 0, lim
v→∂Rv

wj(v) = w∗
j ∈ R.

Rewrite

H̃(U;m,v) = wj(v)

 J∑
k=1
k ̸=j

wk(v)

wj(v)
ηk(mk) + ηj(mj)

 .
Then, one observes that H̃(U;m,v) → −∞ in the limit mj → 0. Therefore, the minimum H̄(U;v) over m
in this limit is −∞. Therefore, this limit is out of Sv.

Similarly, consider a limit v → ∂Rv, such that the two components i, j satisfy

lim
v→∂Rv

wi(v) = +∞, lim
v→∂Rv

wj(v) = w∗
j ∈ R.

Rewrite

H̃(U;m,v) = wi(v)

 J∑
k=1
k ̸=i

wk(v)

wi(v)
ηk(mk) + ηi(mi)

 .
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Then, one observes that H̃(U;m,v) → −∞ in the limit mi → 0. Therefore, the minimum H̄(U;v) over m
is −∞ in this limit. Therefore, this limit is out of Sv.

This implies that Sv is a compact subset of Rv and the function H̄(U; ·) is smooth on this set. Therefore,
it has a maximum.

5.2.3 Discussions on the uniqueness of the max-min and the choice of the weights

We have not been able to prove the uniqueness of the solution to (5.3). As an alternative, we show that the
present framework is still favorable in this direction and highlight the difficulties for the proof. And we show
the uniqueness under stronger (unsatisfied) assumptions.

First, only a few constraints on the quadrature weights as functions of v were imposed to obtain the
existence of a max-min. But further constraints can be imposed to ease this problem. A first step in this
direction is the following strict concave-convex property:

Proposition 5.2. Denote

R̃ϵ
m(U;v) = R̃m(U;v)

⋂ ∏
i

(η′i)
−1 ([ϵ,+∞)) .

Suppose that the weights wi are concave functions of v ∈ Rv such that, for all u ∈ (R∗)N , at least one of
them satisfies

uT (wi)vv(v)u < 0.

Then, for all realizable U ∈ Rapp, the function (m,v) 7→ H̃(U;m,v) is strictly concave-convex over

R̃ϵ
m ×Rv.

Proof. For all m ∈ R̃ϵ
m, one has ηi(mi) > 0 and H̃(U;m,v) becomes a positive combination of the weights

wi and the strict concave-convex property follows.

Remark 5.4. • In the case of the Boltzmann entropy ηi(m) = m logm − m, the constraint m ∈ Rϵ
m

implies that logmi > ϵ, and therefore mi > 1.

• We provide below examples of sets of weights wi satisfying the constraints of positivity, concavity
and (5.4): For all 1 < i < J

wi(v) = (vi+1 − vi)(vi − vi−1) or wi(v) =
(vi+1 − vi)(vi − vi−1)

vi+1 − vi−1

and the extreme points

w1(v) =
√
v2 − v1, wJ(v) =

√
vJ − vJ−1,

or w1(v) =
v2 − v1

2
, wJ(v) =

vJ − vJ−1

2
.

One verifies that all these weight functions wi are non-strictly concave functions of v, but any strictly
positive combination of them is strictly concave. Furthermore, they are all strictly positive and at least
one of them has a zero or infinity limit when vi = vi+1, when v1 → −∞ or when vJ → +∞.

This strict concave-convex property provides a good framework for the problem (5.3), but the main
difficulties arise from the non-linear moment constraints over (m,v).

Proposition 5.3. Assume (falsely) that the set R̃ϵ
m(U;v) = R̃ϵ

m is independent of v, i.e. consider (5.3)
without the moment constraints (5.3d). Consider that H̃ is strictly concave-convex over R̃v × R̃ϵ

m.
Then (5.3) has a unique solution.
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Proof. Consider two solutions (m,v) and (n,u) of (5.3). On one side,

H̃(m,v) = H̃(n,u) ≤ H̃(m,u), H̃(m,v) = H̃(n,u) ≤ H̃(n,v),

since m, resp. n, minimizes H̃ at given v, resp. u. On the other side, concave-convexity was shown to
provide strong duality e.g. in [84, 36, 91, 16] (under various formulations of this constraints over H̃), i.e.

max
Rv

min
Rm

H̃ = min
Rm

max
Rv

H̃.

And one obtains

H̃(m,v) = H̃(n,u) ≥ H̃(m,u), H̃(m,v) = H̃(n,u) ≥ H̃(n,v),

since v, resp. u, maximizes H̃ at givenm, resp. n. This provides especially the equalities H̃(m,v) = H̃(n,v)
and H̃(m,v) = H̃(m,u), which can hold together only if m = n and v = u due to strict concave-convexity
of H̃.

In reality, Rm(U;v) depends non-linearly on v, and this manifold is a non-convex.

5.2.4 Properties of the resulting system of quadrature

Eventually, we exhibit the properties of the system of moments resulting from the closure (2.14) constructed
with the solution of the max-min problem (5.3).

Property 5.1. The function H defined by the max-min problem (5.3) is convex. If this solution is unique
for all U ∈ E ⊂ Rapp, then H is strictly convex over E.

Proof. The function H̄(U;v) was shown to be strictly convex in U in Property 4.1 for all v ∈ Rv. Then,
we apply Danskin’s theorem ([33, 10]): Compute for all v

H̄
(
U1 + δ(U2 −U1);v

)
< H̄

(
U1;v

)
+ δ

(
H̄(U2;v)− H̄(U1;v)

)
.

Maximizing over v on both sides gives

H
(
U1 + δ(U2 −U1)

)
≤ max

v∈Rv

H̄
(
U1;v

)
+ δ

(
H̄(U2;v)− H̄(U1;v)

)
≤ H(U1) + δ

(
H(U2)−H(U1)

)
.

When the maximum is unique, the inequality becomes strict.

The Legendre-Fenchel transform of the entropy can be expressed using the solution v∗ of the maximization
problem (5.3b):

Property 5.2. Suppose that the maximization problem (5.3b) has a unique solution v∗ ∈ Rv for all U ∈
Rapp.

Then, the Legendre-Fenchel transform H∗ of H is

H∗(V) =

J∑
i=1

wi(v
∗)η∗i

(
VTb(v∗i )

wi(v∗)

)
. (5.5)

Proof. Following Danskin’s theorem ([33, 10]), the derivative of the maximum H of H̄ satisfies

HU(U) = H̄U(U;v∗).

Inverting this formula with respect to U provides

H∗
V(V) = (HU)−1(V) = (H̄U)−1(V;v∗) =

J∑
i=1

b(v∗i )(η
∗
i )

′
(
VTb(v∗i )

wi(v∗)

)
,

as in (4.6). This is indeed the derivative of (5.5).
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Remark 5.5. If the maximum v∗ is not unique, the directional derivative HU(U)d in the direction d takes
the maximum value over all maxima v∗, and one can still find a formula for H∗.

Property 5.3. Suppose that the maximization problem (5.3b) has a unique solution v∗ ∈ Rv for all U ∈
Rapp.

Then, the definition of the entropy H provides the change of unknowns

U(V) = H∗
V(V)

=

J∑
i=1

b(v∗i )(η
∗
i )

′
(
VTb(v∗i )

wi(v∗)

)
,

V(U) = HU(U)

=

J∑
i=1

wi(v
∗)η′i (m

∗
i (U))g(v∗i ),

where (m∗(U),v∗) is the solution of the max-min problem (5.3). This provides the flux and the entropy flux

F(U) =

J∑
i=1

m∗
i (U)v∗i b(v

∗
i ), (5.6a)

G(U) =

J∑
i=1

wi(v
∗)

 J∑
j=1

ηi(m
∗
i (U))m∗

j (U)v∗j
(
k(v∗i )

Tk(v∗j )
)

(5.6b)

−ηi

 J∑
j=1

wj(v
∗)

wi(v∗)
ηj(m

∗
j (U))

(
k(v∗j )

Tk(v∗i )
) .

Proof. This follows from the evaluation of the functions and their derivatives at the value (m∗,v∗), and
using the computations of Section 4.2.

We summarize the hyperbolicity results into the following proposition:

Proposition 5.4 (Symmetric hyperbolicity of AQMOM with the quadrature-based entropy). The functions
H, G and F, defined in (5.3b), (5.6a) and (5.6b) satisfy

GU = HUFU.

Suppose additionally that the maximum (5.3b) is unique for all U ∈ Rapp. Then, the system (2.10) with
the closure (5.6a) is symmetrizable.

Its wave speeds are bounded by the extremum velocities

Sp(FU) ⊂ [v1, vJ ].

Proof. This is a straightforward adaptation of the proof of Proposition 4.2.

After the identification of the candidate entropy, we construct the relaxation operator (2.13b) in the
AQMOM case. The equilibrium M(U) in (2.13b) is the solution of the problem

min
V−U∈I⊥

H(V) = min
V−U∈I⊥

max
v∈Rv

min
m∈Rm(V;v)

H̃(V;m,v).

Since H̃ is convex in m and concave in v, and the constraints on V and on v are independent, then the
min-max theorem applies ([36, 91]) and provides strong duality. Therefore, the optimization problem (2.13b)
reduces to

min
V−U∈I⊥

max
v∈Rv

min
m∈Rm(V;v)

H̃(V;m,v) = max
v∈Rv

min
V−U∈I⊥

min
m∈Rm(V;v)

H̃(V;m,v)

= max
v∈Rv

min
L̃(v)m=Ũ

H̃(V;m,v), (5.7)
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where L̃(v) ∈ R3×J and Ũ correspond to the parts of L(v) and of U associated with I′. If b(v) =
(1, v, . . . , vN )T , these are

L̃i,j(v) = vij , Ũi = Ui.

This simply corresponds to the max-min problem (5.3) under the (reduced) constraint that the moments
M(U) are those of U up to order two. The solution to (5.7) takes the form

M(U) =

J∑
i=1

b(u∗i )(η
∗
i )

′ (λ0 + λ1u
∗
i + λ2(u

∗
i )

2
)
, (5.8)

where the Lagrange multipliers (λi)i=0,...,2 ∈ R3 are the only coefficients such that the moments up to order
2 of M(U) are the same as those of U. And the velocities u∗ solve of the upper maximization problem (5.7).
Since the constraints are different, then u∗ is a priori different from v∗ computed for the closure problem (5.3),
they are therefore denoted differently.

We summarize the entropy dissipation in the following proposition:

Proposition 5.5 (H-theorem for the AQMOM with the quadrature-based entropy).

• Entropy dissipation:

– For Cnaive, compute

Snaive(U) =
1

τ

J∑
i=1

wi(v
∗)η′i(mi(U))

(∫
R

(
k(v∗i )

Tk(v)
)
M(U)(v)dv

−
J∑
j=1

mi(U)
(
k(v∗i )

Tk(v∗j )
) ,

where k = Bb and B is the Cholesky decomposition BBT = (LLT )−1. This term is not signed
for all U ∈ Rapp.

– For Crelax, Proposition 2.1 applies.

• Equilibrium:

– For Cnaive, only V(U) ∈ I′ implies Snaive(U) = 0. But having Snaive(U) = 0 does not neces-
sarily imply V(U) ∈ I′.

– For Crelax, Proposition 2.1 with a strictly convex entropy applies.

Having V(U) ∈ I′ implies that U is of the form (5.8)

6 An entropy-dissipating numerical scheme

Eventually, we provide an entropy-dissipative and realizability-preserving discretization of the moment sys-
tem (2.10) adapted to the different quadrature-based closures defined in the last sections.

Write the generic system to solve

∂tU+ ∂xF(U) =
M(U)−U

τ
, (6.1a)

where the unknown U and the flux F(U) satisfy

U =

J∑
i=1

mi(U)b(vi(U)), F(U) =

J∑
i=1

mi(U)vi(U)b(vi(U)), (6.1b)
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where the number J of quadrature points, the size N = Card(b) and the dependencies of vi and mi with
respect to U depend on the considered closure. The equilibrium M(U) is assumed to dissipate the entropy
H, which provides a symmetrization of (6.1), i.e. assume there exists H strictly convex and G such that

GU = HUFU, M(U) = argmin
V−U∈I⊥

H(V).

Consider a finite volume scheme for (6.1) of the form

Un+1
j −Un

j

∆t
−

Fnj+1/2 − Fnj−1/2

∆x
=

M(Un+1
j )−Un+1

j

τ
, (6.2a)

with explicit fluxes and a fully implicit collision term.
Define kinetic fluxes (see e.g. [17, 18, 19, 80]) for the explicit numerical fluxes:

Fnj+1/2 = F+(Un
j ) +F−(Un

j+1), F±(U) =

J∑
i=1

mi(U)v±i (U)b(vi(U))

=

∫
R±

vb(v)

(
J∑
i=1

mi(U)δvi(U)(v)

)
. (6.2b)

Since the Maxwellian M(U) depends only on the components of U corresponding to the collision in-
variants I′, i.e. (Uk)k=0,...,2 if b(v) = (1, v, . . . , vN )T , then (6.2a) can be rewritten as an explicit predictor-
corrector scheme:

Un+1,−
j = Un

j +∆t
Fnj+1/2 − Fnj−1/2

∆x
, (6.2c)

Un+1
j = Un+1,−

j +
∆t

τ

(
M(Un+1

j )−Un+1
j

)
(6.2d)

=
τUn+1,−

j +∆tM(Un+1,−
j )

τ +∆t
,

by observing that M(Un+1
j ) = M(Un+1,−

j ). One verifies that reinjecting (6.2c) in (6.2d) provides in-
deed (6.2a).

Consider a CFL condition of the form

∆t ≤ ∆x

maxi,j |vi(Un
j )|

. (6.3)

Proposition 6.1. Suppose that the CFL condition (6.3) holds.
Then, the numerical scheme (6.2) preserves the realizability from one time step to another, i.e. if Un

i ∈
Rapp for all i, then Un+1

i ∈ Rapp for all i.
Suppose furthermore that for all U ∈ Rapp,

S(U) = HU(U)
(M(U)−U)

τ
≤ 0.

Then

H(Un+1
i ) ≤ H(Un

i ) +
∆t

∆x
(Gi+1/2 −Gi−1/2),

where
Gi+1/2 = G+(Un

i ) + G−(Un
i+1), G±

U = HUF±
U .

30



Proof. For the realizability, rewrite the updated value Un+1
i

Un+1,−
i =

J∑
j=1

(
1− vj(U

n
i )∆t

∆x

)
mj(U

n
i )b(vj(U

n
i ))

+
∑
±

J∑
j=1

±
vj(U

n
i±1)

∓∆t

∆x
mj(U

n
i±1)b(vj(U

n
i±1)).

This is a positive (under the CFL condition) combination of realizable vectors. Therefore, Un+1,−
i ∈ Rapp

is realizable. Similarly,

Un+1
i =

τ

∆t+ τ
Un+1,−
i +

∆t

∆t+ τ
M(Un+1,−

i )

is a positive combination of two realizable vectors. Then, Un+1
i ∈ Rapp is realizable.

For the entropy dissipation, the predictor step

H(Un+1,−
i ) ≤ H(Un

i ) +
∆t

∆x
(Gni+1/2 −Gni−1/2)

is a direct application of Theorem 3.1 in [18]. For the corrector step, the equilibrium M(U) minimizes the
entropy H under constraints which are also satisfied by U. Therefore, H(M(U)) ≤ H(U). Then, using the
convexity of the entropy H,

H(Un+1
i ) = H

(
τ

∆t+ τ
Un+1,−
i +

∆t

∆t+ τ
M(Un+1,−

i )

)
≤ H(Un+1,−

i )
τ

∆t+ τ
+H

(
M(Un+1,−

i )
) ∆t

∆t+ τ
≤ H(Un+1,−

i ).

7 Conclusion

We have proposed several constructions of augmented systems of quadratures adapted to specific entropies.
The most advanced one, developed in the last section, is based on a quadrature formula for the kinetic
entropy, and it suffers from two drawbacks that need to be addressed before the numerical implementation
of a solver and that are left for future work:

7.1 Discussion on the uniqueness of the entropy-based AQMOM fluxes

The lack of uniqueness of the solution to the max-min problem (5.3) implies the possibility of having multiple
sets of quadrature points and weights representing the same realizable U. If such a configuration exists, the
uniqueness can be obtained locally in U by adding a simple selection criterion. Note that H̃ is C∞ in all
its variables in its domain of definition. Then, if such configurations giving non-uniqueness of (m,v) exist
for U over a manifold in Rapp, a selection criterion would naturally follow the same regularity. A similar
idea was followed in [82]. A more serious problem would be the existence of a realizable U ∈ R where the
parameters (m,v) solving (5.3) are not unique, and jump from one side to to the other. By construction,
such a jump in the parameters (m,v) would still imply the continuity of the entropy H(U) = H̃(U;m,v).
We have not been able yet to show whether or not such configurations exist.

7.2 Discussion on the algorithms used to compute the closures

The construction of these closures ultimately boils down to solving optimization problems:
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• For ADVM: A strictly convex minimization problem (4.5) under the linear moment constraints Lm = U
on the masses m.

• For AQMOM: A strictly concave-convex (in part of the domain) max-min problem (5.3) under the
(non-linear) polynomial moment constraints m ∈ Rm(U;v) on the masses and positions (m,v).

The first case is closely related to the common entropy-minimizing closure [62]. Several algorithms
adapted to this problem have been studied in the literature (see e.g. [51, 7, 6, 5, 12]). Preliminary tests on
this problem (and the related dynamical problem (6.1)) with standard numerical optimization tools show
comparable results with these references. However, this problem is known to be ill-conditioned in certain
regimes, and the development of numerical tools adapted to both (potentially ill-conditioned) optimization
problems is left for future work. This convex minimization problem also corresponds to the inner (or lower-
level) problem (5.3a) of the max-min problem (5.3). Therefore, it must be solved for AQMOM as well.

The second case is much more difficult to solve. Preliminary tests were made with a naive approach
consisting of maximizing the outer problem (5.3b) agnostic to the inner problem (5.3a), again using standard
numerical optimization tools. However, such a naive approach requires a rather high computational cost,
and is not well adapted to all regimes U ∈ R. The development of a numerical tool that is more stable and
needs less computational cost is deferred as it requires further consideration.

A Numerical constraints for the symmetrization of AQMOM

Similar to the computations for the symmetrization of ADVM, compute

(UpA)2i+1,j = A2i+1,j + 2mil
′
i(vi)A2i+2,j

+

J∑
k=M+1

[
h2i+1(vk)A2k+1,j +mkh

′
2i+1(vk)A2k+2,j

]
,

(UpA)2i+2,j = miA2i+2,j +

J∑
k=M+1

[
h2i+2(vk)A2k+1,j +mkh

′
2i+2(vk)A2k+2,j

]
,

(FpA)2i+1,j = viA2i+1,j +mi (1 + 2vil
′
i(vi))A2i+2,j

+

J∑
k=M+1

[
h2i+1(vk)A2k+1,j +mkh

′
2i+1(vk)A2k+2,j

]
,

(FpA)2i+2,j = miviA2i+2,j +

J∑
k=M+1

[
h2i+2(vk)A2k+1,j +mkh

′
2i+2(vk)A2k+2,j

]
.

Then, the conditions (3.3a-3.3b) are rewritten in the basis h = (h1,h2) of Hermite interpolation polyno-
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mials as: For all 1 ≤ i < j ≤M :

0 = (A2i+1,2j+1 −A2j+1,2i+1)

+ 2
(
mil

′
i(vi)A2i+2,2j+1 −mj l

′
j(vj)A2j+2,2i+1

)
+

J∑
k=M+1

[(h2i+1(vk)A2k+1,2j+1 − h2j+1(vk)A2k+1,2i+1) (A.1a)

+mk

(
h′
2i+1(vk)A2k+2,2j+1 − h′

2j+1(vk)A2k+2,2i+1

)]
,

0 = (miA2i+2,2j+2 −mjA2j+2,2i+2)

+

J∑
k=M+1

[(h2i+2(vk)A2k+1,2j+2 − h2j+2(vk)A2k+1,2i+2) (A.1b)

+mk

(
h′
2i+2(vk)A2k+2,2j+2 − h′

2j+2(vk)A2k+2,2i+2

)]
,

0 = (viA2i+1,2j+1 − vjA2j+1,2i+1)

+
(
mi (1 + 2vil

′
i(vi))A2i+2,2j+1 −mj

(
1 + 2vj l

′
j(vj)

)
A2j+2,2i+1

)
+

J∑
k=M+1

[(h2i+1(vk)A2k+1,2j+1 − h2j+1(vk)A2k+1,2i+1) (A.1c)

+mk

(
h′2i+1(vk)A2k+2,2j+1 − h′2j+1(vk)A2k+2,2i+1

)]
,

0 = (miviA2i+2,2j+2 −mjvjA2j+2,2i+2)

+

J∑
k=M+1

[(h2i+2(vk)A2k+1,2j+2 − h2j+2(vk)A2k+1,2i+2) (A.1d)

+mk

(
h′2i+2(vk)A2k+2,2j+2 − h′2j+2(vk)A2k+2,2i+2

)]
,

and for all 1 ≤ i ≤ j ≤M :

0 = (A2i+1,2j+2 −mjA2j+2,2i+1) + (2mil
′
i(vi)A2i+2,2j+2)

+

J∑
k=M+1

[(h2i+1(vk)A2k+1,2j+2 − h2j+2(vk)A2k+1,2i+1) (A.1e)

+mk

(
h′
2i+1(vk)A2k+2,2j+2 − h′

2j+2(vk)A2k+2,2i+1

)]
,

0 = (viA2i+1,2j+2 −mjvjA2j+2,2i+1) + (mi(1 + 2vil
′
i(vi))A2i+2,2j+2)

+

J∑
k=M+1

[(
h2i+1(vk)A2k+1,2j+2 − h2j+2(vk)A2k+1,2i+1

)
(A.1f)

+mk

(
h′
2i+1(vk)A2k+2,2j+2 − h′

2j+2(vk)A2k+2,2i+1

)]
.

References

[1] M. Abdelmalik, Adaptive algorithms for optimal multiscale model hierarchies of the boltzmann equation:
Galerkin methods for kinetic theory, Ph.D. thesis, Mechanical Engineering, 2017.

[2] M. Abdelmalik and H. van Brummelen, Moment closure approximations of the Boltzmann equation
based on φ-divergences, J. Stat. Phys. 164 (2016), no. 1, 77–104.

[3] N. I. Akhiezer, The classical moment problem, Hafner Publ. Co., 1965.

33



[4] N. I. Akhiezer and M. Krein, Theory of moments, vol. 2, AMS Trans. Math. Monographs, 1962.

[5] G. W. Alldredge, M. Frank, and C. D. Hauck, A regularized entropy-based moment method for kinetic
equations, SIAM J. Appl. Math. 79 (2019), no. 5, 1627–1653.

[6] G. W. Alldredge, C. D. Hauck, D. P. O’Leary, and A. L. Tits, Adaptive change of basis in entropy-based
moment closures for linear kinetic equations, J. Comp. Phys. 74 (2014), no. 4, 489–508.

[7] G. W. Alldredge, C. D. Hauck, and A. L. Tits, High-order entropy-based closures for linear transport in
slab geometry II: A comutational study of the optimization problem, SIAM J. Sci. Comput. 34 (2012),
no. 4, 361–391.

[8] J. F. Bard, Practical bilevel optimization: Algorithms and applications, Springer, 1998.

[9] Y. Beck and M. Schmidt, A gentle and incomplete introduction to bilevel optimization, Tech. report,
Trier Uni., 2021.

[10] D. P. Bertsekas, Nonlinear programming, Athena Scientific, 1999.

[11] G. A. Bird, Molecular gas dynamics and the direct numerical simulation of gas flows, Oxford, 1976.
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method of moments for turbulent disperse multiphase flow, SIAM Multiscale Mod. Sim. 15 (2017),
1553–1583.

[30] C. Chalons, D. Kah, and M. Massot, Beyond pressureless gas dynamics: quadrature-based velocity
moment models, Commun. Math. Sci. 10 (2012), no. 4, 1241–1272.
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