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1 Bloch functions for the conduction band

The Bloch functions for the CB have p-symmetry with X¢o, Yo, and Zo as the orbital
basis. To characterize the p-conduction states, it is essential to consider the crystal field
(CF) Hamiltonian, which accounts for the influence of tetragonal distortions on the cubic
structure, as well as the spin-orbit coupling (SOC).

In the basis {|iX¢c 1), 1Yo 1), |iZc 1), |iXc 1), |iYe 1), |iZc 1)}, where T () indicates
the spin-up (spin-down) state, the effective Hamiltonian H(0) for the p conduction states is

represented by the matrix:
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Here, Eg) ) is the CB edge energy without the bulk tetragonal CF and SOC, Tj is the bulk
tetragonal crystal field parameter, and Agp is the spin-orbit coupling parameter.

The eigenenergies and eigenstates of H(0) are:
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which is associated to the eigenstates:

cos

V2

CO\/S§9 (XC — ZYC) T —sin QZC i >:|

11/2,1/2)¢ =i H - (Xc+z'YC)¢—sinezc¢>]

|1/2,—1/2>C:@'[

(0) _ (0 _ Aso+T
¢ E|3/2,j:1/2>c = Lo — SOG+ ¢+ %\/A%O - %ASOTO + 175
with corresponding eigenstates:

sin 6
V2
S0 e~ iYe) T+ cosBZc | >]

3/2,1/2)c =i [

(X¢ +1iYe) L +cosbZc 1 >]

13/2,—1/2)¢ —i[ 7

0)
* E|3/2,j:3/2>c

(0) Aso+To
c TR

with corresponding eigenstates:
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where tan(20) = % (with 0 < 6 < 7/2).
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2 Coulomb interactions and self-energy potentials

As explained in section 2.3, the effect of the dielectric-constant difference between the well
and barrier layers is included in the Coulomb interactions and self-energy. In this section, we
give the expressions of these potentials, for carrier wavefunction delocalized in NPL barriers.
In Figure. 2 , the well layer is denoted as C, while the barrier layers on the left side and
right side are denoted as L and R, respectively.

The Coulomb potential of an electron in region A and a hole in region B will be repre-
sented as VZE(re,ry,). Nine configurations corresponding to different spatial arrangements

are described as follows:
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Concerning the self-energy potential, valid expressions exist for both types of charge
carriers, leading to three possible configurations for each charge carrier. The self-energy

potentials are presented as follows, where z represents the coordinate for either the electron

or the hole:
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3 Carrier penetration lengths in the organic barrier
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Figure S1: Penetration length versus NPL thickness for electron and hole, in CsPbBrs NPLs
(black and red curves)

From the derivation described in Section 2.5, one deduced &, (p = e, h), the decay rate
of the electron/hole WF. One can then define a carrier penetration length £, = 1. The
dependence of ¢, with the NPL thickness is shown in Figure 51. Except for a small increase,
for L, = 2-4 ML, the penetration lengths are constant, of the order of 0.12 and 0.19 nm, for
electron and hole, very comparable to DFT calculations.” Both carriers having close effective
masses, the hole has a larger penetration length than the electron, due to a smaller band

offset.
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