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Abstract

In this paper, we present a formal framework to (1) aggregate probabilistic ensem-
ble members into either a representative classifier or a credal classifier, and (2)
perform various decision tasks based on this uncertainty quantification. We first
elaborate on the aggregation problem under a class of distances between distribu-
tions. We then propose generic methods to robustify uncertainty quantification
and decisions, based on the obtained ensemble and representative probability.
To facilitate the scalability of the proposed framework, for all the problems and
applications covered, we elaborate on their computational complexities from the
theoretical aspects and leverage theoretical results to derive efficient algorithmic
solutions. Finally, relevant sets of experiments are conducted to assess the use-
fulness of the proposed framework in uncertainty sampling, classification with a
reject option, and set-valued prediction-making.

Keywords: Credal ensembling, Quantile-based approach, Uncertainty sampling,
Classification with a reject option, Set-valued prediction

1 Introduction

Model ensembling has a long history during which it has shown advantages in differ-
ent applications, including but not limited to robust/accurate decision-making under
the presence of noisy and insufficient data (Breiman, 1996; Dietterich, 2000; Khosh-
goftaar et al, 2010; Nguyen et al, 2020), enhancing Bayes optimal prediction-making
under generalized losses for cautious (set-valued) predictions (Nguyen and Hüllermeier,
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2021), prediction-making under imprecise probability (IP) decision rules (Nguyen et al,
2023b; Zhang et al, 2023) and uncertainty quantification (Hüllermeier and Waegeman,
2021; Shaker and Hüllermeier, 2020).

In this paper, we present a model ensembling framework to (1) aggregate the
probabilistic ensemble members into either a representative classifier, which provides
reliable estimates of class probabilities, or a credal classifier, which provides reliable
estimates of a predictive credal sets (Levi, 1983), and (2) do decision-related uncer-
tainty quantification, where we aim to robustify traditional probabilistic uncertainty
measures, such as confidence level, smallest margin and entropy (Nguyen et al, 2022).
We also present its applications in uncertainty sampling (Nguyen et al, 2022) and
classification with a reject option (Chow, 1970; Condessa et al, 2017), where we use
the robustified uncertainty measures, and set-valued prediction-making (Jansen et al,
2022; Troffaes, 2007), where we use robustified decision rules and the obtained credal
set estimate. To facilitate the scalability of the proposed framework, for all the prob-
lems and applications covered, we first elaborate on their computational complexities
from the theoretical aspects and then leverage theoretical results to derive efficient
algorithmic solutions.

Note that there are nowadays many credal classifiers extending classical classifiers
such as pairwise classifiers (Quost and Destercke, 2018), discriminant analysis (Alarcon
and Destercke, 2021), naive Bayes (Corani and Zaffalon, 2008) and its tree exten-
sions (Corani and De Campos, 2010), and decision trees (Abellan and Masegosa, 2012).
Some of them also extend ensembling techniques, but concern very specific ensemble
techniques such as random forests (Zhang et al, 2023; Abellán et al, 2017) or Bayesian
model averaging (Corani and Antonucci, 2014), and adopts what we will later call
a distort-then-aggregate approach, meaning that they make imprecise parts of the
aggregation procedures, be it the predicted probabilities (e.g., in the case of the credal
random forest) or the weights associated to the different members (e.g., in the case of
credal model averaging). In contrast, the approach we propose here can be termed as
an aggregate-then-distort approach, where we first find a representative, aggregated
probability distribution and build a credal set around it. This has the advantage of
being computationally quite efficient (as we will discuss), as well as being a plug-
in approach to any ensembling technique where each ensemble member produces a
probability distribution. To our knowledge, we are the first who study the problem
of estimating credal sets from the output of ensembles, from which the various IP
decision rules can be directly used to make set-valued predictions.

After providing in Section 2 a minimal description of probabilistic classification and
classification with sets of probabilities, Section 3 tackles the problem of aggregating
the probabilistic ensemble members into a representative classifier. The representative
classifier is defined as a probabilistic classifier that minimizes the expected average
distance to the ensemble members. We show that this aggregation problem can be
solved in an instance-wise manner, whose solutions can be derived either analytically
or via solving (convex) optimization problems, depending on the chosen distance. The
problem of aggregating the probabilistic ensemble members into a reliable and robust
estimate in the form of a credal set (Levi, 1983), that is a (convex) set of probabilities,
is formulated as finding a neighborhood of the representative classifier that is expected
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to be informative and at the same time not very large. This credal set can in turn be
used with theoretically justified decision rules (Jansen et al, 2022; Troffaes, 2007) to
produce set-valued predictions. In Section 4, we implement this idea under different
viewpoints, including ϵ-contamination (Bock et al, 2014) and quantile-based distortion
(Nguyen et al, 2023b), and elaborate on how and where each implementation may be
(dis)advantageous.

Section 5 is devoted to decision-related uncertainty quantification. We propose a
generic method in which probabilistic uncertainty measures are robustified by using
their (empirical) expectation over the robustified admissible region of the most prob-
able class. In practice, this is done by an averaging procedure over the consensual
ensemble members that agree on the most probable class. However, the key step of
finding the robustified admissible region requires one to track the growth of admissible
sets (Jansen et al, 2022; Troffaes, 2007), whose naive computation requires solving (a
possibly huge number of) linear programs (Jansen et al, 2022; Nguyen et al, 2023b).
We shall therefore show that computing the empirical expectation over this region
using ensemble members can be done in O(M(K + log(M)), where M and K are
respectively the ensemble size and the output size, without having to solve any linear
program.

Section 6 presents relevant sets of experiments to assess the usefulness of the
proposed framework in uncertainty sampling, classification with a reject option, and
set-valued prediction making, followed by a summary and an outlook on future work in
Section 7. For uncertainty sampling, empirical evidence confirms that the robustified
uncertainty measures proposed in Section 5 provide informative stopping rules, allow-
ing for a nice trade-off between the gained accuracy and the used budget. They also
informatively reflect the uncertainty level when varying the budget. For classification
with a reject option, the robustified measures are shown to be effective in reflecting
the uncertainty level when sliding the acceptance rate, and when being used as the
threshold. For set-valued prediction-making, the proposed aggregate-then-distort pre-
dictors, i.e., credal classifiers constructed in Section 4, and cautious random forest
(CRF) (Zhang et al, 2023), which is a competitive distort-then-aggregate predictor,
are compared using the u65 score (Zaffalon et al, 2012). The experimental results indi-
cate that the aggregate-then-distort predictors may perform differently and (slightly)
better than the distort-then-aggregate predictor.

This paper is a significant extension of an earlier conference version (Nguyen et al,
2023b), in which the aggregation problems have originally been introduced and studied
for selected distances, and are then applied only to set-valued prediction-making. The
current version is more comprehensive in multiple ways, especially regarding the class
of distances covered, the algorithmic procedure, the experimental evaluation, and the
range of applications. The part concerning uncertainty measures and their use in
rejection or active learning procedures is also completely new. All the proofs of formal
results stated in this paper (propositions and remarks) can be found in the appendices.

We can summarise our main contributions as follows:

• we provide a full study of how to compute representative probability distributions
and estimate credal sets from the output of ensembles with many classical distances;

• we detail an efficient way to derive from it a quantile-based credal set;
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• we show that making inferences or uncertainty quantification from these sets can
be done efficiently;

• we show that our approach displays performant results for various machine-learning
tasks where uncertainty plays a key role, such as active learning by uncertainty
sampling, classification with a reject option, and set-valued classification.

2 Preliminary

This section recalls the basics of probabilistic classification, classification with sets
of probabilities, and introduces notations. Notations and acronyms are also listed in
Appendix A.

2.1 Probabilistic classification

Let X denote an instance space, and let Y = {y1, . . . , yK} be a finite set of classes. We
assume that an instance x ∈ X is (probabilistically) associated with members of Y.
We denote by p(Y |x) the conditional distribution of Y given X = x. Given training
data D = {(xn, yn)|n = 1, . . . , N} drawn independently from p(X, Y ), the goal in
(multi-class) classification is to learn a classifier h, which is a mapping X −→ Y that
assigns to each instance x ∈ X a (most relevant) class ŷ ..= h(x) ∈ Y.

To evaluate the performance of a classifier h, a loss function ℓ : Y × Y −→ R+

is needed, which compares a prediction ŷ with a ground-truth y. Each classifier h is
evaluated using its expected loss

R(h) ..= E
[
ℓ(Y,h(X))

]
=

∫
ℓ(y,h(x)) dP(x, y) , (1)

where P is the joint probability measure on X × Y characterizing the underlying
data-generating process. Therefore, the Bayes-optimal classifier is given by

h∗ ∈ argmin
h∈H

R(h) , (2)

where His some hypothesis space (Vapnik, 1999) from which we pick h. When H
is probabilistic, we can follow maximum likelihood estimation and define the Bayes-
optimal classifier as the classifier that optimizes the conditional log likelihood (CLL)
function:

ĥ ..= p̂ ∈ argmax
p∈H

CLL(p | D) ..= argmax
p∈H

1

N

N∑
n=1

log p(yn |xn) . (3)

The CLL is often augmented by a regularization term to avoid overfitting (Murphy,
2012; Nguyen et al, 2023a).

Once the classifier (3) is learned from D, we can in principle find an optimal
prediction of any loss function ℓ at the prediction time (Elkan, 2001; Mortier et al,
2021). More precisely, assume the classifier (3) is made available, and predicts for
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each query instance x a probability distribution p(· |x) on the set of labelings Y. The
Bayes-optimal prediction (BOP) of any ℓ is then given by the expected loss minimizer

ŷ = ŷ(x) ∈ argmin
ȳ∈Y

E
(
ℓ(y, ȳ)

)
= argmin

ȳ∈Y

∑
y∈Y

ℓ(y, ȳ)p(y |x) . (4)

Yet, different losses may call for different BOPs. Knowledge about the conditional
distribution p(Y |x) is enough to find a BOP of any loss ℓ. Commonly used losses are
the 0/1 loss

ℓS(y, ȳ) = Jy ̸= ȳK , (5)

where J·K is the indicator function, i.e., JAK = 1 if the predicate A is true and = 0
otherwise, and its cost-sensitive variants (Elkan, 2001). A BOP (4) of the ℓS (5) is
simply a most probable class. Likewise, BOPs of cost-sensitive losses (Elkan, 2001) are
often the top-ranked class where the rankings are constructed in the decreasing order
of plausible scores, which are constructed based on the class probabilities.

In general, ensuring that the BOP (4) is an accurate prediction often requires
reliable estimates of the class probabilities, which are hard to ensure when information
is lacking. Threshold-based classifiers (Del Coz et al, 2009; Mortier et al, 2021) have
been developed to mitigate the consequence of facing inaccurate estimates of class
probabilities. These classifiers essentially return set-valued prediction consisting of
the top (locally/globally) ranked classes. The Bayes-optimal set-valued prediction is
the one which optimizes some loss function L : Y × 2Y −→ R+ generalizing some
conventional loss such as ℓS (5):

ŷ = ŷ(x) ∈ argmin
ȳ∈2Y

E
(
L(y, ȳ)

)
= argmin

ȳ∈2Y

∑
y∈Y

L(y, ȳ)p(y |x) . (6)

Commonly used generalized losses, including but not limited to (the loss version of)
u65 and u80 (Zaffalon et al, 2012), and F-measure (Del Coz et al, 2009), are elaborated
in (Mortier et al, 2021). Their primary goal is to seek set-valued prediction with a
correctness-precision trade-off. Compared to probabilistic classifiers which produce
BOP of the ℓS (5), such threshold-based classifiers always gain in terms of correctness
because the top-ranked class, hence the BOP for the ℓS , is always included in their
set-valued prediction.

2.2 Classification with a set of probabilities

As just said, precise estimates of probabilities cannot always be expected to be reliable,
and using threshold-based classifiers mitigates the possible bias but does not make
this estimate more reliable. In contrast, using a set of probabilities increases this
reliability. Under this setting, we assume that our uncertainty is described by a (not
necessarily convex) set of probabilities P(Y |x), i.e., a credal set (Levi, 1983). Clearly,
the decision rule (4) and (6) are no longer well-defined. Therefore, it is necessary to
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use some generalized decision rules, some of them benefiting from strong theoretical
justifications (Jansen et al, 2022; Troffaes, 2007).

Credal sets can arise in different ways, either as a native result of the learning
method (Augustin et al, 2014), as the result of an agnostic (with respect to the miss-
ingness process) estimation in the presence of imprecise data, or as a neighborhood
taken over an initial estimated distribution p(Y |x) (Montes et al, 2020; Rahimian
and Mehrotra, 2019). These approaches are however not without issues: native credal
classifiers can be computationally hard to learn and are unavailable for complex inputs
such as mixed data and images. Approximating P(Y |x) as a neighborhood taken over
an initial estimated distribution p(Y |x) does not face this inconvenience but requires
that the initial estimated distribution is well-estimated, hence circling back to the
previously mentioned precise estimate reliability issue.

The quantile-based approach (Nguyen et al, 2023b) is an attempt to address the
aforementioned challenges. It assumes that an ensemble (Dietterich, 2000; Sagi and
Rokach, 2018) is made available. For each instance, it identifies a representative distri-
bution from the output of the ensemble members and then distorts it using evidence
from the closest distributions. In that approach, a representative distribution is defined
as the “median” of the set of distributions provided by the ensemble members under
a specified statistical distance between distributions. When the statistical distance is
the squared Euclidean distance, the representative distribution is identical to the prob-
abilistic prediction of the graded majority voting ensemble which averages the class
probabilities in the class-wise manner. Sections 3 and 4 study in detail this approach,
that we use as our backbone.

2.3 Set-valued prediction-making using credal sets

As previously said, when our uncertainty is described by a credal set P(Y |x), instead
of a single probability p(Y |x), it is necessary to make predictions using some the-
oretically founded decision rule extending classical expectation (Jansen et al, 2022;
Troffaes, 2007). For any p ∈ P(Y |x) and any loss function ℓ, we shall denote the
BOP by

ŷpℓ ∈ argmin
ȳ∈Y

∑
y∈Y

ℓ(y, ȳ)p(y |x) . (7)

Definition 1 (maximality). An optimal set-valued prediction under the Maximality
rule is the set of the maximal, non-dominated elements of the partial order ≻ℓ,P :

ȳ ≻ℓ,P ȳ′ if inf
p∈P

Ep (ℓ(y, ȳ
′)− ℓ(y, ȳ)) > 0 . (8)

In other words, we have

ŶM
ℓ,P = {ȳ ∈ Y | ̸ ∃ ȳ′ s.t. ȳ′ ≻ℓ,P ȳ} . (9)

Definition 2 (E-admissibility). An optimal set-valued prediction under the E-
admissibility rule is

ŶE
ℓ,P = {ȳ ∈ Y | ∃p ∈ P s.t. ȳ = ŷpℓ } . (10)
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It is known that the set-valued prediction given by the E-admissibility rule is a
subset of the one given by the Maximality rule (Troffaes, 2007).

3 Learn a representative classifier

We assume an ensemble H ..= {hm |m ∈ [M ] ..= {1, . . . ,M}} of M probabilistic
classifiers hm ∈ H, m ∈ [M ] is made available and provides, for each instance x, a set
of M probabilistic predictions, denoted by

H(x) ..= {hm(x) |m ∈ [M ]} = {pm ..= (pm1 , pm2 , . . . , pmK) |m ∈ [M ]} . (11)

We formulate the problem of learning a representative classifier h∗ given the ensem-
ble H ⊂ H ⊂ YX under a specified statistical distance d between distributions as a
minimization problem

h∗ ∈ argmin
h∈YX

M∑
m=1

E (d(h,hm)) = argmin
h∈YX

E

(
M∑

m=1

d(h,hm)

)
(12)

= argmin
h∈YX

∫
x∈X

(
M∑

m=1

d(h(x),hm(x))

)
dx , (13)

which can be interpreted as finding a classifier h∗ ∈ YX which minimizes the average
expected distance to the members of H.

The assumption h∗ ∈ YX means that h∗ is not restricted to any specific hypothesis
space H ⊊ YX . Therefore, one minimizer h∗ of (12) can be defined in a pointwise
manner, i.e., for each x ∈ X , h∗ can be any classifier which produces

p∗ = argmin
p:

∑K
k=1 pk=1

M∑
m=1

d(p,pm) . (14)

As pointed out (Nguyen et al, 2023b) (and elsewhere), when d is the squared Euclidean
distance, the representative distribution p∗ (14) is the average of pm, m ∈ [M ], i.e., h∗

is the graded majority voting ensemble. This also suggests that changing the distance
d in (14) may lead to other graded majority voting ensembles.

Once the representative distribution p∗ (14) is found, it can be used to produce
either a singleton prediction (4) or a set-valued prediction (6) (Mortier et al, 2021).

The computational complexity of the problem of determining the representative
distribution (14) can greatly depend on the nature of the distance d. In the next
section, we discuss this computation for commonly used convex distances (Cha, 2007;
Gibbs and Su, 2002; Lee, 1999; Sriperumbudur et al, 2010).
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3.1 The case of convex distances

For completeness, we shall start with a few definitions and remarks, which are quite
basic and can be found in textbooks/papers (see, e.g., (Boyd et al, 2004; Datta, 2010;
Pugh, 2015)).
Definition 3. A function f : RK 7−→ R is convex if for every p,p′ ∈ RK and every
λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1, we have the inequality

f(λ1p+ λ2p
′) ≤ λ1f(p) + λ2f(p

′) . (15)

Remark 1. Let z ∈ RK . Let ∥·∥ be a norm on RK . f(p) ..= ∥p− z∥ is convex.
Remark 2. Conical combinations of convex functions are also convex.

In the following, we show that if fm(p) ..= d(p,pm) is convex, m ∈ [M ], then
the problem of finding a representative distribution (14) of H(x) can be straightfor-
wardly formulated as a convex optimization problem. This is indeed computationally
advantageous because, since with recent advances convex programming is nearly as
straightforward as linear programming (Boyd et al, 2004; Rockafellar, 1993). More-
over, the set of optimal representative distributions inherits nice properties of the set
of optimal solutions of convex optimization problems (Boyd et al, 2004; Rockafellar,
1993): every local minimum is a global minimum; the optimal set is convex; if the
objective function is strictly convex, then the problem has at most one optimal point.
Definition 4. A standard convex optimization problem is of the form

minimize
p

f(p) subject to gi(p) ≤ 0 , i ∈ [I] , hj(p) = 0 , j ∈ [J ] (16)

where: p ∈ RK is the optimization variable; the objective function f : RK 7−→ R is
convex; the inequality constraint functions gi : RK 7−→ R, i ∈ [I] are convex; the
equality constraint functions hj : RK 7−→ R, j ∈ [J ], are of the form: hi(p) = ajp−bj,
where aj is a vector and bj is a scalar.

We can encode the condition that the representative distribution must be a valid
probability distribution by using K inequality constraint functions gi and 1 equality
constraint function h1:

gk(p) ..= −pk ≤ 0 , k ∈ [K] , h1(p) ..= 1Kp− 1 = 0 , (17)

where 1K = (1, . . . , 1). The constraints pk ≤ 1, k ∈ [K], are implicitly enforced by the

K constraints gk (i.e., pk ≥ 0, k ∈ [K]) and h1 (i.e.,
∑K

k=1 pk = 1, k ∈ [K]). Therefore,
we can use any existing package to find p∗ (14).

Moreover, using Remark 2, we can easily check that the weighted version of the
problem of finding the representative distribution p∗ (14):

p∗ = argmin
p:

∑K
k=1 pk=1

M∑
m=1

wmd(p,pm) , wm ≥ 0 ,m ∈ [M ] , (18)
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where the weight wm typically reflects how reliable pm is, can also be formulated as a
convex optimization problem. We, however, will not discuss the weighted version (18)
in this paper because it would complicate the presentation significantly while most
of the results that have been and shall be presented for the unweighted version (14)
can be generalized for the weighted version (18) either straightforwardly or with little
extra attention.

Using Remarks 1–2, we can verify that different distances (See (Cha, 2007; Gibbs
and Su, 2002; Lee, 1999; Sriperumbudur et al, 2010) and elsewhere) are convex.
Examples are members of the Lp Minkowski family (19) and Chebyshev distance (20):

fp(p) ..= Lp(p, z) ..=
p

√√√√ K∑
k=1

|pk − zk|p , p ≥ 1 , (19)

fcheb(p) ..= L∞(p, z) ..= max
k∈[K]

|pk − zk| . (20)

Moreover, a closer look at Definition 3 is enough to verify the convexity of some
other distances (Cha, 2007; Gibbs and Su, 2002; Lee, 1999; Sriperumbudur et al, 2010).
Examples are the Squared Euclidean distance (whose square function allows triangle
inequality) and KL divergence, whose inequality (15) is verified using the log sum
inequality (See, e.g., https://statproofbook.github.io/P/kl-conv with z = q1 = q2):

fsqe(p) ..= dsqe(p, z) ..=

K∑
k=1

(pk − zk)
2 , (21)

fKL(p) ..= dKL(p, z) ..=

K∑
k=1

pk log (pk/zk) . (22)

Carefully looking at the nature of distance may allow one to solve the problem
(16) even more efficiently. For example, for any given K, closed-form solution for the
fSqe (21) and Inner Product (B5) can be derived (See Proposition 1 and 6 later on).

These are also special cases where the additional constraints (i.e.,
∑K

k=1 pk = 1 and
pk ≥ 0, k ∈ [K]) do not change the minimizer. However, it is not always the case.
For example, these additional constraints can change the minimizer of f1 (19) (See
Proposition 2). Also, different distances may share the same minimizer. Examples of
such distances are Topsør (23) and Jensen-Shannon (24):

fTop(p) ..= dTop(p, z) ..= dKdiv(p, z) +

K∑
k=1

zk log (2pmk /(pk + zk)) , (23)

fJS(p) ..= dJS(p, z) ..= dTop(p,z)/2 . (24)

3.2 Algorithmic solutions

We will only mention the distances that are used in the experiments (Euclidean, L1,
KL) and defer the cases of other distances to Appendix B.

9
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Finding the p∗ (14) under the Squared Euclidean distance can be done analytically.
Proposition 1. The representative distribution p∗ (14) under the Squared Euclidean
distance fsqe (21) is uniquely defined as

p∗k =
1

M

M∑
m=1

pmk , k ∈ [K] . (25)

Regarding the following distances, we do not know whether analytical solutions to
the problem (14) exist or not. Until further results are made available, we will need
some convex optimisation solver to find the distribution p∗ (14) under these distances.
Moreover, it is important to encode the probability axioms that the representative
distribution p∗ needs to obey as constraints when solving (14). Otherwise, the solver
can give us incorrect solutions as indicated in the next two propositions, and illustrated
in their proofs through examples (see Appendix B).
Proposition 2. Except for K = 2, the representative distribution p∗ (14) under f1
(19) may not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑
m=1

L1(p,p
m) = argmin

p

K∑
k=1

(
M∑

m=1

|pk − pmk |

)
. (26)

Proposition 3. The representative distribution p∗ (14) under Kullback–Leibler fKL

(22) may not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑
m=1

dKL(p,p
m) = argmin

p

M∑
m=1

(
K∑

k=1

pk log (pk/p
m
k )

)
. (27)

Without encoding the aforesaid axiomatic constraints, we could have solutions p̄
that are not probabilities, i.e.,

∑K
k=1 p̄k ̸= 1.

4 Learning credal classifier

As discussed in Section 3, threshold-based classifiers (Del Coz et al, 2009; Mortier
et al, 2021), which are defined using the representative distribution p∗ (14) and
Bayes-optimal prediction (6), can result in set-valued prediction, and could be called
”credal” classifiers. This section presents other credal classifiers whose intermediate
outputs are credal sets (Levi, 1983), in which imprecision is encoded in the uncertainty
representation rather than the decision.

4.1 Credal sets approximation

One might wonder whether simply defining the credal set as the convex hull

CH(x) ..=

{
p ..=

M∑
m=1

γm pm |
M∑

m=1

γm = 1

}
(28)
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is enough to have a reliable yet informative credal classifier. While it seems natural,
we think it is not a very promising strategy. As mentioned in (Nguyen et al, 2023b),
as ensembles typically include noisy and extreme probabilistic estimations, the credal
set estimated by (28) would lead to set-valued predictions under Maximality and
E-admissibility rules including unreliable classes supported by those few extreme dis-
tributions. Moreover, as illustrated in Example 1 later on, the admissible set may be
large even if the number of ensemble members is small/moderate.

Another possibility is to adopt the ϵ-contamination (Bock et al, 2014) to restrict
the credal set as

Pϵ(Y |x) ..= {(1− ϵ)p∗ + ϵp |p ∈ CH(x)} , (29)

and choose the hyperparameter ϵ using either a nested cross-validation procedure or
a validation set. In particular, the next proposition shows that one can only rely on
members of the ensemble to compute it.
Proposition 4. Pϵ(Y |x) is the convex hull of {(1− ϵ)p∗ + ϵpm |m ∈ [M ]}.

Yet, as detailed in Appendix D and E, its training and inference phases can be
costly due to complex constraints. This set is also based on all ensemble members,
therefore not getting rid of extreme distributions. Finally, how to robustify probabilis-
tic uncertainty measures using Pϵ in a way similar to the one we propose in Section 5
remains unclear.

To eliminate the effect of outliers among elements of H(x) when forming the
credal set, we adopt the quantile-based approach originally introduced in (Nguyen
et al, 2023b). Once the distribution p∗ (14) is made available, it allows us to define a
preference order, reflecting how common/weird each distribution in H(x) is:

p ≻ p′ if d(p∗,p) < d(p∗,p′) . (30)

Such a preference order in turn allows us to “discard” a given percentage of outliers
among elements of H(x).

Let α ∈ [0, 1] be some threshold. We define Hα(x) as the set of (1− α) ∗ 100 % of
closest distributions inH(x) with respect to the preference order (30). We approximate
the credal set p(Y |x) of x by the convex hull of Hα(x). Let Hα(x) ..= {pm |m ∈
[Mα]}. The convex hull is defined as

CHα(x) ..=

{
p ..=

Mα∑
m=1

γm pm | γm ≥ 0,m ∈ [Mα],

Mα∑
m=1

γm = 1

}
. (31)

The hyperparameter α controls the percentage of outliers that should be discarded
and can be chosen using either a nested cross-validation procedure or a validation
set. Figure 1 illustrates the notion of thresholded credal set CHα(x) for the case of a
3-dimensional output space Y = {a, b, c}.
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Fig. 1 Illustration of CHα(x) for Y = {a, b, c}.

In the next section, we elaborate on the problem of set-valued prediction-making
using the credal set (31). Discussions on the computational complexity of choosing α
by adopting a nested cross-validation procedure are deferred to Appendix E.

4.2 Set-valued prediction-making using credal sets

In the following, we discuss the computational complexity of the inference problem
when ℓ is the 0/1 loss (5).

Let us start with the Maximality rule. For any distribution p ∈ CHα(x), we have

Ep (ℓ(y, ȳ
′)− ℓ(y, ȳ)) = p(ȳ |x)− p(ȳ′ |x) . (32)

Thus, the relation ȳ ≻ℓ,P ȳ′ holds if the maximum of the linear program

maximize
p

f(p) ..= p(ȳ′ |x)− p(ȳ |x) (33)

subject to p−
Mα∑
m=1

γm pm = 0, γm ≥ 0,

Mα∑
m=1

γm = 1 , (34)

is negative. Note that if f(p) has a maximum value on the feasible region, then it
has this value on (at least) one of the extreme points, i.e., elements of Hα(x) (Murty,
1983)[Theorem 3.3]. Thus, a naive algorithmic solution is to compute f(p) for the
extreme p and compare it with 0. This requires time O(K2Mα) because in the worst
case, one needs to check all the K(K − 1) relation ȳ ≻ℓ,P ȳ′, ȳ ̸= ȳ′ ∈ Y.

We now tackle the E-admissibility rule. Reminding that, ∀ y ∈ ŶE
ℓ,P , there must

exist at least one p ∈ CHα(x) such that y = ŷpℓ . This is equivalent to having at least
one p ∈ CHα(x) such that p(y |x) ≥ p(y′ |x) for all y′ ̸= y. Thus, given any outer
approximation YO

ℓ,P ⊇ ŶE
ℓ,P (e.g., the one given by maximality) we can follow the

suggestion of (Jansen et al, 2022) and formulate the problem of checking whether a
given y ∈ YO

ℓ,P satisfies the relation y ∈ ŶE
ℓ,P as checking whether a valid solution of
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a linear program in standard form exists.

maximize
p

f(p) ..= p(y |x) (35)

subject to p−
Mα∑
m=1

γm pm = 0, γm ≥ 0,

Mα∑
m=1

γm = 1 , (36)

p(y |x)− p(y′ |x) ≥ 0 , y′ ∈ Y \ {y} . (37)

Hence, finding ŶE
ℓ,P requires solving |YO

ℓ,P | linear programs, one per y ∈ |YO
ℓ,P |. The

naive algorithmic solution, i.e., iterating over all the extreme points, can not be applied
here because a class y may be optimal only for probabilities in the interior of CHα(x).
This is illustrated in the next example.
Example 1. Let Y ..= {y1, y2, y3} and Hα(x) ..= {(0.6, 0.4, 0.0), (0.0, 0.4, 0.6)}. Then,
the first extreme distribution and the second extreme distribution respectively support
y1 and y3, while there is at least one interior distribution, which supports y2, such as

(0.3, 0.4, 0.3) = 1/2 ∗ (0.6, 0.4, 0.0) + 1/2 ∗ (0.0, 0.4, 0.6) . (38)

This fact has been known and discussed for a long time in the IP literature (Sei-
denfeld et al, 1995). In our case, this also raises the question of whether we should
simply consider the elements of the ensemble as a probability set, or their convex hull.
In the earlier case, one can simply compute the BOP for each element of the ensemble
to get the corresponding E-admissible set. We will not explore this option here, and
will consider the convex hull of the selected probabilities. Further details and consid-
eration about computational aspects can be found in (Nakharutai et al, 2019; Decadt
et al, 2022). Note that our approach allows for efficient classification using these two
rules, which may not be the case for other “credalised” classifiers (Antonucci and
De Campos, 2011).

Finding set-valued predictions under these IP rules when they are coupled with
cost sensitivity losses (Elkan, 2001; Lachiche and Flach, 2003; O’brien et al, 2008) is
elaborated in Appendix D.1.

5 Decision-related uncertainty quantification

A commonly tackled problem in decision-related uncertainty quantification is to find a
meaningful way to associate each instance with a real-valued uncertainty score, which
can be used to compare and select the instances whose prediction is the most (or
least) uncertain. A notable example is uncertainty sampling (see (Nguyen et al, 2022)
and references therein) where the unlabeled instances are ranked according the their
uncertainty scores, such as confidence level, smallest margin, and entropy, and the most
uncertain instances are labeled to enrich the current training data. Another example
is classification with a reject option where the decision whether to reject a particular
instance is typically made based on its uncertainty score (Chow, 1970; Condessa et al,
2017).
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When a single (probabilistic) classifier is employed to make predictions, the prob-
abilistic uncertainty measures are typically constructed based on its probabilistic
predictions and essentially reflect how the classifier is uncertain about its predictions.
In the ensemble learning setting, a common practice is to learn an ensemble from the
training data and use its representative classifier (12) to make predictions as well as
to define uncertainty measures. This may grossly oversimplify the available informa-
tion provided by the ensemble members. We wish to construct uncertainty measures
that take into account the consensus between trusted elements of H(x) and are well-
normalized to [0, 1]. Commonly used probabilistic measures, such as smallest margin
(SM), confidence level (CL), and entropy, do not fit this purpose.

To illustrate their inadequateness, let us take the case of SM

SM(H(x)) ..= SM(p∗) = p∗st − p∗nd , (39)

where p∗st and p∗nd are respectively the most and the second most probable classes.
While SM can take any value within [0, 1], its ability to reward the consensus of the
ensemble members seems to be weak. The next example illustrates this behaviour.
Example 2. Let us extend the example 1 to the case of 100 members, where 50
members predict (0.6, 0.4, 0.0) and 50 other members predict (0.0, 0.4, 0.6) for the first
instance, and all the 100 members predict (0.3, 0.4, 0.3) for the second instance. Yet,
SM treats the two instances equally. It would be more reasonable to consider the first
instance to be more uncertain as its uncertainty is due to both the uncertainty seen by
the ensemble members and their consensus.

Clearly, CL and entropy, described in Appendix C, and any uncertainty mea-
sure, which is constructed merely based on the output of the representative classifier
(12), can suffer from similar problems. Moreover, the range of CL and entropy are
respectively [1/K, 1] and [0, log2(K)], and may be harder to normalize.

Let S be any probabilistic measure, whose range is a subset of [0, 1], and H(x)
the ensemble predictions. To solve the mentioned issue, we propose to robustify and
normalize S by using its robustified expectation

RS(H(x)) ..= E(S(p,H(x))|p ∈ ∆st
x ) (40)

where ∆ is the probability simplex, ∆st
x is the admissible region of the most probable

class on p∗, that is the subset of probabilities for which the most probable class on
p∗ is the optimal prediction for x, and S(p,H(x)) is some uncertainty measure which
simultaneously takes into account the uncertainty score S(p) and the consensus among
H(x). One intuitive notion of S(p,H(x)) might be

S(p,H(x)) ..= Jp ∈ CH(x)KS(p) , (41)

whose expectation (40) somehow reflects the consensus among H(x), as it would come
down to condition (40) by p ∈ CH(x) ∩ ∆st

x . While it would be relatively simple to
compute, this notion might be sensitive to noisy/extreme distributions, which would
be hard to avoid when the ensemble H is constructed, e.g., from a random forest.
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Fig. 2 Illustration of ∆st
x for 0/1 loss (5) and of CHα∗ (x).

Therefore, we propose to further eliminate the effect of any p ∈ ∆st
x which is “far”

from p∗, i.e., the potentially noisy/extreme distributions, by resorting to the quantile-
based distortion approach (Nguyen et al, 2023b) and enlarging the convex hull (31)
until CHα(x) no-longer supports a single class, that is until CHα(x) ̸⊆ ∆st

x . Let α
∗

be the smallest value so that CHα∗(x) supports a single class. Figure 2 illustrates the
notions of ∆st

x for 0/1 loss (5) and CHα∗ , using the same ensemble as in Figure 1.We
then define

S(p,H(x)) ..= Jp ∈ CHα∗(x)KS(p) . (42)

The inclusion CHα∗(x) ⊂ ∆st
x simply implies

RS(H(x)) =

∫
p∈∆st

x

S(p,H(x))dp =

∫
p∈CHα∗ (x)

S(p)dp . (43)

In practice, we propose to use the empirical version of (43), i.e.,

RS(H(x)) ..=
1

M + 1

(
M∑

m=1

Jpm ∈ CHα∗(x)KS(pm) + S(p∗)

)
. (44)

Note that naively determining α∗ by enlarging the convex hull (31) until CHα(x)
no-longer supports a single class can be painfully expensive as it can require solving a
possibly huge number of linear programs (35), especially in the context of uncertainty
sampling. The following proposition ensures that the empirical expectation (44) can
be computed in O(M(K + log(M)) without having to explicitly determine CHα∗(x)
by solving linear programs.
Proposition 5. Assume the distance d(p,p′), for any p,p′ ∈ ∆, and the most prob-
able class ŷ on p ∈ ∆ can be computed in O(K). Assume the admissible region ∆st

x

is convex. Assume the representative distribution p∗ (14) is already computed. The
empirical expectation (44) can be computed in O(M(K + log(M)) given H(x).

The proof of Proposition 5 as well as a practical algorithm to compute the empirical
expectation (44) are given in the appendix E. We would like to emphasize that the
assumptions on the complexity of computing the distance and the convexity of the
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admissible region ∆st
x are indeed weak and can be satisfied by all the distances and

losses mentioned in this paper. Proposition 5 also indicates that this approach scales
well both with respect to the number of classes (its complexity is linear with respect to
this parameter) and with respect to the number of ensemble members (as it is mostly
linear in this number).

6 Experiment

6.1 Experimental setting

We perform experiments on 12 tabular datasets from the UCI repository (see the
first 4 columns of Table 1). Similar to what has been done in (Nguyen et al, 2023b),
we employ random forests (RFs) (Ho, 1995) (with the default setting of scikit-learn,
except the minimum number of samples required to be at a leaf node is set to be 5)
as the base learner in all the experiments. The source code has been made public at
https://github.com/Haifei-ZHANG/Probability-Sets-Model.

Yet, the experiments on uncertainty sampling and classification with a reject option
described in this section and the next section can be conducted with any distance and
loss, which satisfy the conditions mentioned in Proposition 5. To keep the experimental
part not too long, we will focus on the commonly used fsqe (21) in the experiments.

6.1.1 Uncertainty sampling

To assess the robustified uncertainty scores (44), we use them to robustify the SM
(39) and CL (C14) in the uncertainty sampling setting. As discussed in (Nguyen
et al, 2022) (and references therein), the querying process typically ends if either the
training data set reaches a desired size, a targeted performance level is achieved, or no
informative samples are available anymore. While pre-defining a targeted performance
level is difficult (even if a validation data set is given), the 2 other stopping criteria are
more practical. The last criterion can be done by setting some predefined uncertainty
threshold and stopping the querying process if the certainty score exceeds the threshold
(Nguyen et al, 2022; Zhu et al, 2010). We can also use the robustified scores (44) to
select unlabeled instances when increasing the budget. The SM (39) and CL (C14)
are used as baselines in the experiments.

We follow a 10 × 5 fold-cross validation and start the querying process with 3%
of initial training data. To facilitate the running time, we use a batch size of 3 and 5
whenever the initial pool contains respectively < 500 instances and ≥ 500 instances.
In the experiments where the uncertainty scores are used as the stopping rule, we
test with t ∈ {0.05 + x ∗ 0.05 |x = 0, 1, . . . , 19}. Whenever the threshold is used as
the stopping rule, we shall start considering whether to end the querying process
after querying 1% of the pool. In the second set of experiments, we further challenge
the classifier and the uncertainty scores by randomly flipping 25% of the labels of
the instances in the initial training data set and the initial pool. This is specially
designed to assess the usefulness of the uncertainty scores under settings where data
are annotated by inexperienced experts or inaccurate automatic annotation tools.
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6.1.2 Classification with a reject option

We follow a 20× 5 fold-cross validation procedure where 20% of the data are used as
training data and the rest is considered as a test data set. This setting is chosen to
ensure that the training data set is not uninformative and at the same time provides
room for the improvement given by the reject option.

We conduct two sets of experiments on clean data sets and noisy data sets, where
25% of the labels of the instances in the initial training data are randomly flipped.
For each set of experiments, we make two tests. In the former, the robustified scores
(44), and the SM (39) and CL (C14) are employed to rank the test instances. Their
performance is compared using the test accuracy when increasing the acceptance rate.
The uncertainty scores are also reported. In the latter, we report the test accuracy
and acceptance rate when the threshold is fixed and only instances, whose confidence
scores (44), (39) and (C14) are higher than the threshold, are predicted.

6.1.3 Set-valued prediction-making

We follow a 10-fold cross-validation procedure and conduct experiments under two
scenarios: original data sets and noisy data sets, which are constructed by randomly
flipping 25% of the labels of the training instances. We compare 4 cautious predictors
constructed based on the discussions in Section 4 with cautious random forest (CRF)
(Zhang et al, 2023) which is a competitive approach among those that seek set-valued
predictions from a given ensemble of trees.

• NDC (Del Coz et al, 2009; Mortier et al, 2021): The distribution (14) under the
squared Euclidean distance (21) is used to make set-value predictions (6) optimizing
the 1− u65 loss.

• SQE-Ead (Nguyen et al, 2023b): The representative distribution (14) under the
squared Euclidean distance (21) is found and then distorted to construct the credal
set (31). The optimal set-value prediction is then defined as the E-admissible classes
under 0/1 loss (as detailed in Section 4.2). For each train test split, we follow a 10-
fold nested cross-validation procedure to choose α optimizing u65. The RF is then
retrained using the entire training dataset and the chosen α is used to construct
CHα(x) during the inference phase.

• L1-Ead (KL-Ead): L1-Ead (KL-Ead) is similar to SQE-Ead, except the distribution
(14) is defined under the f1 (19) (fKL (22)) distance.

• CRF (Zhang et al, 2023): This cautious classifier applies the interval dominance on
probability intervals provided by each imprecise tree to contract a belief function
about classes and selects the subset of classes that maximizes the lower expected
utility associated with u65 score as the set-valued prediction.

• CH0: For each x, the credal set is estimated by the convex hull CH(x) given by
Equation (28).

We compare the predictors using the u65 score (Zaffalon et al, 2012) and the
correctness (i.e., the percentage of times the true class is in ŶM

ℓ,P), given the prediction
was imprecise, versus the accuracy of RF on those instances. This set of experiments
is conducted to study a few questions: can predictors that take a credal set as input
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and produce set-valued predictions following IP rules, such as SQE-Ead, L1-Ead, and
KL-Ead bring any advantage, compared to NDC which directly optimizes u65 score
given an estimate of class probabilities? Can the aggregate-then-distort strategies,
such as SQE-Ead, L1-Ead, and KL-Ead bring any advantage, compared to the distort-
then-aggregate strategies, such as CRF? Can cautious predictors which include the
prediction of the ensemble itself, such as SQE-Ead, bring any advantage, compared to
those that do not obey this requirement, such as L1-Ead and KL-Ead?

6.2 Results

Since the experimental results occupy several pages and follow consistent trends over
data sets, we provide the full results to Appendix F, and only present the results
for two data sets under the presence of noise (i.e., the more challenging setting) for
uncertainty sampling and classification with a reject option.

6.2.1 Uncertainty sampling

The results given in Figure 3 indicate that the robustified uncertainty scores (44),
marked as QB approach, and the SM (39) provide competitive test accuracy when
increasing the budget, i.e., moving along the x-axis. An even more interesting remark
is that the evolution of the uncertainty scores, in the case of robustified uncertainty
scores (44), allows one to identify change points where accuracy will stabilize. More
precisely, QB approach scores increase rate augment when asymptotic accuracy has
been reached, which is not systematically the case for SM scores (this is particularly
true for the forest data set in Figure 3, where SM scores start to increase significantly
after 20 batches, a state where the accuracy is not yet stabilized). This means that the
robustified score, when used as a stopping sample criterion, tends to be more reliable,
which was precisely the goal of this score.

Figure 4 provides another view, with the x-axis being a threshold cut rather than
the number of queried points. One key interesting thing in this graph is that using the
robustified scores (44) as a way to identify critical points to query, and the amount
of such points is very effective. We can see that querying points with very low robust
scores allow to already reach a quite high accuracy, close to the asymptotic one.
Looking at Appendix F, one can see that this ”initial” budget can vary between data
sets, from less than 10 to more than 80%, and can be used as an assessment of the
data set difficulty.

Similar results on other data sets as well as the cases of CL measure (C14) are
given in Figure ??–?? of Appendix F.

6.2.2 Classification with a reject option

The results given in Figure 5 indicate that the robustified score (44) and the SM (39)
provide competitive test accuracy when increasing the acceptance rate. More or less
the same remarks can be done for the rejection case than for the active learning case.
Again, the evolution of the uncertainty scores provided by robustified uncertainty
score (44) tends to better reflect the uncertainty level of the predicted set when the
rejection process goes along, compared to the probabilistic score. When the uncertainty

18



(a) derma. + SM (b) derma. + SM (c) forest + SM (d) forest + SM

Fig. 3 Test accuracy and chosen score as the functions of the number of queries: 10 × 5 cross-
validation with (train, pool, test) = (3%, 77%, 20%) on noisy data sets

(a) derma. + SM (b) derma. + SM (e) forest + SM (f) forest + SM

Fig. 4 Test accuracy and used budget as the functions of the threshold: 10× 5 cross-validation with
(train, pool, test) = (3%, 77%, 20%) on noisy data sets

scores are used as the stopping rules, i.e., the rejection process ends as soon as the
score exceeds the threshold, the robustified score (44) consistently provides better test
accuracy, compared to the SM (39). Moreover, it tends to smartly trade-off between
the test accuracy and the acceptance rate. Again, similar results on other data sets
and the cases of CL (C14) are given in Figure ??–?? of Appendix F.

(a) derma. + SM (b) derma. + SM (c) forest + SM (d) forest + SM

Fig. 5 Test accuracy and chosen score as the functions of the number of rejections: 20 × 5 cross-
validation with (train, test) = (20%, 80%) on noisy data sets

(a) derma. + SM (b) derma. + SM (c) forest + SM (d) forest + SM

Fig. 6 Test accuracy and acceptance rate as the functions of the threshold: 20× 5 cross-validation
with (train, test) = (20%, 80%) on noisy data sets
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6.2.3 Set-valued prediction-making

The u65 scores given in Table 1 suggest that aggregate-then-distort strategies, such
as SQE-Ead, L1-Ead, and KL-Ead may be advantageous, compared to the distort-
then-aggregate strategies, such as CRF. They also suggest that predictors that take
a credal set as input and produce set-valued predictions following IP rules, such as
SQE-Ead, L1-Ead, and KL-Ead may provide slightly better scores, compared to NDC
which directly optimizes u65 score given an estimate of class probabilities, and the
process by thresholding a precise estimate. In particular, KL-Ead consistently pro-
vides competitive and better results, compared to NDC, especially on the data sets
with higher numbers of classes, i.e., ecoli, vowel, and libras with more than 7, and the
data sets with noisy class labels. Besides providing promising empirical evidence sup-
porting the potential advantages of our proposal, it also suggests that extending our
proposal to cover other distances, which are specially designed to compare probability
distributions, may further improve the predictive performance of the ensembles.

Table 1 U65 scores (in %) of different imprecise classifiers

The cases of training sets without label noise
Data set N P K NDC SQE-Ead L1-Ead KL-Ead CRF CH0

wine (a) 178 13 3 96.35 97.57 97.38 97.57 95.10 58.12
seeds (b) 210 7 3 91.07 91.45 91.26 91.02 90.33 75.28
glass (c) 214 9 6 76.44 76.56 75.92 73.34 75.45 35.57
ecoli (d) 336 7 8 85.51 86.07 85.81 87.07 84.46 43.60
dermato. (e) 358 34 6 97.18 97.05 97.22 98.59 96.19 51.74
libras (f) 360 90 15 76.58 73.35 75.24 79.41 73.45 14.60
forest (g) 523 27 4 88.62 89.05 89.09 88.83 89.00 56.35
balance (h) 625 4 3 85.94 86.71 86.70 85.56 85.46 61.45
vehicle (i) 846 18 4 78.93 77.13 78.06 77.82 79.05 46.18
vowel (j) 990 10 11 86.63 86.35 87.65 92.35 82.68 17.75
wine qua. (k) 1599 11 6 68.66 68.32 68.39 68.63 67.35 36.53
segment (l) 2300 19 7 97.17 97.12 96.99 97.64 96.73 71.00

The cases of training sets with 25% label noise
Data set N P K NDC SQE-Ead L1-Ead KL-Ead CRF CH0

wine (a) 178 13 3 92.73 93.63 93.53 96.02 89.24 46.97
seeds (b) 210 7 3 87.63 87.80 87.21 90.4 83.84 48.84
glass (c) 214 9 6 71.15 71.32 71.94 71.49 70.75 25.94
ecoli (d) 336 7 8 83.22 82.91 83.46 84.58 82.72 24.95
dermato. (e) 358 34 6 96.29 97.11 97.56 96.69 96.63 30.85
libras (f) 360 90 15 69.05 64.53 68.72 72.15 68.06 11.09
forest (g) 523 27 4 87.35 88.25 87.85 88.29 84.63 36.85
balance (h) 625 4 3 81.09 82.97 82.40 83.68 78.46 49.58
vehicle (i) 846 18 4 75.74 74.06 74.84 75.04 73.76 36.67
vowel (j) 990 10 11 81.82 80.97 84.19 89.02 79.24 14.41
wine qua. (k) 1599 11 6 66.22 66.00 65.19 65.98 65.46 25.31
segment (l) 2300 19 7 96.62 96.91 97.09 96.86 96.06 26.46

Another observation is that set-valued predictors which include the prediction of
the ensemble itself, such as NDC and SQE-Ead, may provide worse scores, compared
to those that do not obey this requirement, such as KL-Ead, especially on the data
sets with larger numbers of classes and noisy class labels. The consistently low scores
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provided byCH0 suggest that under such difficult data sets, the ensemble may provide
more wrong predictions, and as a consequence, set-valued predictions that are forced
to include them may need to be overly enlarged to cover the true class.

Ideally, a set-valued predictor should be more imprecise on difficult instances, on
which the conventional precise prediction is likely to fail (Nguyen et al, 2018; Yang
et al, 2014). To assess this ability of the set-valued predictors, we display in Figure 7
(and Figure F1 of Appendix F), after fixing the set-valued predictor, for each data set,
the correctness of the set-valued predictor, i.e., the percentage of times the true class
is in the prediction of the set-valued predictor, given the prediction was imprecise,
versus the accuracy of the RF on those instances.

In those graphs, an ideal point would be on the top left: this would mean that
all set-valued predicted instances were wrongly predicted by RF (0 accuracy on the
x-axis), but always covered the truth for the robust classifier (100% accuracy on the
y-axis). They should also be put in perspective with Table 1, in particular their value
for the x-axis. Let us consider for instance the segment data set (l) with clean labels.
For SQE-Ead, we can see that for those instances having set-valued predictions, we
have an accuracy around 0.9, while the random forest (RF) predictions for the same
instances have an accuracy of around 0.55, which is far below the average accuracies
displayed in Table 1. For KL-Ead, this is even more pronounced: on those instances
having set-valued predictions, KL-Ead accuracy is around 0.93, while RF predictions
accuracy drops around 0.28. This indicates that for this data set, KL-Ead set-valued
predictions tend to be more reliable, and focus on instances that are much harder to
classify for the classical RF.

The results given in Figure 7 and Figure F1 of Appendix F suggest a few general
interesting points. First, we can see that the correctness of the set-valued predictors
is higher than the accuracy of the RF on both the clean data sets and noisy data
sets. Moreover, the correctness tends to increase while the accuracy of RF tends to
decrease when noisy classes are injected into training data. This suggests that all the
set-valued predictors seem to do their job. On the clean data sets, there seem to be no
clear trends in the difference in the correctness provided by the set-valued predictors.
However, on the noisy data sets, the results would suggest that NDC, SQE-Ead, and
L1-Ead do a better job, compared to KL-Ead and CRF. Moreover, L1-Ead seems to
provide the most promising correctness which is usually higher than 90%, while the
accuracy of the RF on the corresponding instances is at most 70%.

7 Conclusion

We have elaborated on a model ensembling framework designed for multiple purposes,
including set-valued prediction-making and decision-related uncertainty quantifica-
tion, with applications in uncertainty sampling and classification with a reject option.
To facilitate the scalability of the proposed framework, for all the problems and appli-
cations covered, we elaborate on their computational complexities from the theoretical
aspects and leverage theoretical results to derive efficient algorithmic solutions. We

21



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ND
C

ab

c d

e

f

g

h

i
j

k l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CR
F

ab

c d
e

f
g

h

i j
k

l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SQ
E-

Ea
d

ab

c

d e

f
g

h

i j
k l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

KL
-E

ad

ab

cd

e

f
g

h

ij
kl

(a) NDC vs. RF (b) CRF vs. RF (c) SQE-Ead vs. RF (d) KL-Ead vs. RF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ND
C

ab

c
d

e

f

g

h
i j

k
l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CR
F

ab
c d

e

f

g
h

i
jk
l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SQ
E-

Ea
d

ab

c
d
e

f

g

h

i j
k l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

KL
-E

ad

a

b
c
d

e

f

g

h

ij k
l

(a) NDC vs. RF (b) CRF vs. RF (c) SQE-Ead vs. RF (d) KL-Ead vs. RF

Fig. 7 Correctness of different imprecise classifiers in the case of abstention versus accuracy of the
random forest on training sets without noise (first row) and with 25% noise (second row).

think our effort is worthy, especially in the case of decision-related uncertainty quantifi-
cation, where we are able to derive effective IP-based approaches whose computational
complexities do not significantly exceed the ones of probabilistic approaches.

For set-valued prediction-making, empirical evidence suggests that our proposal
may help to balance the trade-off between precision and recall, which is reflected via
the u65 score. Moreover, the high correctness suggests that our proposal is capable of
accurately detecting and covering the true classes in difficult instances, in which the
ensemble is less accurate. Our proposal on decision-related uncertainty quantification
might be interesting given the trade-off between its ability to reflect the uncertainty
level introduced to the active learner during the querying process and to the decision
maker during the rejection process, and its computational complexity.

We hope our theoretical results and algorithmic solutions (given in both the main
text and appendices) facilitate follow-up works on the problems of distance, loss,
and distortion mechanism selections for set-valued prediction-making. Moreover, we
believe that our proposal on decision-related uncertainty quantification benefits and
encourages follow-up works on robustifying other probabilistic measures and aggre-
gating other types of ensembles, such as Bayesian neural networks (Jospin et al, 2022)
and Monte Carlo dropout predictions (Lemay et al, 2022). Another worthy direction
can be to explore the potential use of the robustified scores in online batch selection
for faster training of neural networks (Mindermann et al, 2022).
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Appendix A Notation and acronyms

Table A1 lists some frequently used notations and acronyms.

Table A1 Notation and acronyms

symbol/acronym meaning
X , x instance space, instance
Y = {y1, . . . , yK}, y output space, outcome
Xp, Y k feature, class variable
D training data
K, P number of class variables, number of features
[n] set {1, . . . , n} of natural numbers
J·K indicator function
∥·∥ a norm on RK

≻ preference order (30)
≻ℓ,P partial order (8)
H ..= {hm |m ∈ [M ]} ensemble of M probabilistic classifiers
H(x) ..= {hm(x) |m ∈ [M ]} set of probabilistic predictions on x
CHα(x) convex hull (31) of Hα(x) ..= {pm |m ∈ [Mα]}
Pϵ(Y |x) convex hull (29) of {(1− ϵ)p∗ + ϵpm |m ∈ [M ]}
ŶM

ℓ,P set-valued prediction under the Maximality rule (9)

ŶE
ℓ,P set-valued prediction under the E-admissibility rule (10)

p ..= p(Y |x) conditional probability distribution
pk ..= p(yk |x) probability of outcome yk given x
p∗ ..= p∗(y |x) the representative distribution (14)
pm ..= hm(x) probabilistic prediction given by hm

∆ the probability simplex
∆st

x the admissible region of the most probable class on p∗

ℓS(·, ·) 0/1 loss (5)
d·(·, ·) (or L·(·, ·)) distance between two distributions
f·(p, ·) distance d·(p, ·) (or L·(p, ·)) as the function of p
Lp(·, ·) Minkowski distance (19)
L1(·, ·) Minkowski distance with p = 1
L∞(·, ·) Chebyshev distance (20)
dSqe(·, ·) Squared Euclidean (21)
dKL(·, ·) KL divergence (22)
dKdiv(·, ·) K divergence (B8)
dIP(·, ·) Inner Product (B5)
dTop(·, ·) Topsør (23)
dJS(·, ·) Jensen-Shannon (24)
dP(·, ·) Pearson (B11)
SM(·) smallest margin (39)
CL(·) confidence level (C14)
EN(·) entropy (C15)
RS(·) robustified version (40) of the uncertainty measure S
BOP Bayes-optimal prediction
RF random forest (Ho, 1995)
NDC nondeterministic classifier (Del Coz et al, 2009; Mortier et al, 2021)
CRF cautious random forest (Zhang et al, 2023)
SQE-Ead, L1-Ead, KL-Ead credal classifiers constructed in Section 4

and named in Section 6.1.3
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Appendix B Proofs of lemmas, propositions and
remarks

We will first provide proofs for the remarks and propositions stated in Section 3.1
and then elaborate on the problem of finding the reference distribution (14) under
other convex distances found in literature (Cha, 2007; Gibbs and Su, 2002; Lee, 1999;
Sriperumbudur et al, 2010).

B.1 Section 3.1 (The cases of convex distances)

B.1.1 Proof of remark 1

The convexity of f(p) follows consequently from the triangle inequality of norms:

f(λ1p+ λ2p
′) = ∥λ1p+ λ2p

′ − z∥ = ∥λ1(p− z) + λ2(p
′ − z)∥

≤ ∥λ1(p− z)∥+ ∥λ2(p
′ − z)∥ = λ1∥p− z∥+ λ2∥p′ − z∥

= λ1f(p) + λ2f(p
′) .

B.1.2 Proof of remark 2

The proof is trivial. It is enough to multiply the inequalities, one per convex function,
by non-negative scalars and sum them up.

B.1.3 Proof of Proposition 1 (Squared Euclidean (21))

The proof is trivial and is given for completeness. For any k ∈ [K], the partial
derivative of

f(p) =

M∑
m=1

fm
Sqe(p) =

K∑
k=1

(
M∑

m=1

(pk − pmk )

)2

(B1)

with respect to the variable pk is

∂f

∂pk
(p) = 2

M∑
m=1

(pk − pmk ) = 2

(
Mpk −

M∑
m=1

pmk

)
. (B2)

Since fsqe(p) (21) is strictly convex, its unique minimizer is attained when the partial
derivatives are zeros, i.e., p∗ is defined in (25) (See (Steinley, 2006) and references
therein). p∗ is a valid distribution because the set of possible distributions is a convex
set.

B.1.4 Proof of Proposition 2 (L1 (19))

Without enforcing the probability axioms (i.e.,
∑K

k=1 pk = 1 and pk ≥ 0, k ∈ [K]), a
minimizer p̄ of the relaxed optimization problem (26) is defined as

p̄k ..= median(p1k, . . . , p
M
k ) , k ∈ [K] . (B3)
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This closed-form solution has been mentioned in (Steinley, 2006) and references
therein. This can be verified by showing that, for any p ̸= p̄, we have

f1(pk) ..=

M∑
m=1

|pk − pmk | ≥
M∑

m=1

|p̄k − pmk | := f1(p
′
k) , k ∈ [K] , (B4)

which implies the relation f1(p) ≥ f1(p̄).
Let Lk be the number of pmk which is larger than p̄k. Let Sk be the number of pmk

which is smaller than p̄k. By definition of “median”, we have Lk = Sk.

• pk > p̄k: We have the following relations

|pk − pmk | = |p̄k − pmk |+ |pk − p̄k| if pmk ≤ p̄k ,

|pk − pmk | ≥ |p̄k − pmk | − |p̄k − pk| if pmk ≥ p̄k .

Therefore, we have

f1(pk) =

M∑
m=1

|pk − pmk |

≥
M∑

m=1

|p̄k − pmk |+ |pk − p̄k|Sk − |pk − p̄k|Lk

=

M∑
m=1

|p̄k − pmk |+ |pk − p̄k|(Sk − Lk)

=

M∑
m=1

|p̄k − pmk | = f1(p
′
k) .

• pk < p̄k: We have the following relations

|pk − pmk | = |p̄k − pmk |+ |pk − p̄k| if pmk ≥ p̄k ,

|pk − pmk | ≥ |p̄k − pmk | − |p̄k − pk| if pmk ≤ p̄k .

Therefore, we have

f1(pk) =

M∑
m=1

|pk − pmk |

≥
M∑

m=1

|p̄k − pmk |+ |pk − p̄k|LK − |pk − p̄k|Sk

=

M∑
m=1

|p̄k − pmk |+ |pk − p̄k|(Lk − Sk)
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=

M∑
m=1

|p̄k − pmk | = f1(p
′
k) .

For K > 2, p̄ may not satisfy the probability axioms (see next Table).

K = 3 K > 3
p1 0.8 0.1 0.1 p1 0.4 0.2 0.4/(K-3) . . . 0.4/(K-3)
p2 0.2 0.5 0.3 p2 0.2 0.7 0.1/(K-3) . . . 0.1/(K-3)
p3 0.1 0.4 0.5 p3 0.1 0.6 0.3/(K-3) . . . 0.3/(K-3)
p̄ 0.2 0.4 0.3 p̄ 0.2 0.6 0.3/(K-3) . . . 0.3/(K-3)

When K = 2, the probability axioms of p̄ are ensured by the fact that the total
rank of each distribution pm, m ∈ [M ], on the first and the second classes is always
M + 1 (as the masses should sum up to 1). Thus, p̄ is either one element of H(x) or
the average of two elements of H(x). Let us illustrate this property using an example
where M = 9:

p1 p2 p3 p4 p5 p6 p7 p8 p9

p1
Value 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Rank 1 2 3 4 5 6 7 8 9

p2
Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rank 9 8 7 6 5 4 3 2 1

In this example, the total rank is 10 and p̄ is p5.

B.1.5 Proof of Proposition 3 (Kullback-Leibler divergence (22))

For any k ∈ [K], the partial derivative of

f(p) =

M∑
m=1

dKL(p,p
m) =

M∑
m=1

K∑
k=1

pk loga (pk/p
m
k )

=

K∑
k=1

M∑
m=1

(pk loga (pk)− pk loga (p
m
k ))

=

K∑
k=1

M∑
m=1

(
pk

ln (pk)

ln a
− pk

ln (pmk )

ln a

)

=
1

ln a

K∑
k=1

M∑
m=1

(pk ln (pk)− pk ln (p
m
k ))

with respect to the variable pk is

∂f

∂pk
(p) =

1

ln a

M∑
m=1

(1 + ln (pk)− ln (pmk ))
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=
1

ln a

(
M +M ln (pk)−

M∑
m=1

ln (pmk )

)

=
1

ln a

(
M ln (pk) +M − ln

(
M∏

m=1

pmk

))
.

Since f(p) is convex, one of its minimizer is attained when the partial derivatives are
zeros, i.e.,

ln (p∗k) =
1

M
ln

(
M∏

m=1

pmk

)
− 1 = ln

( M∏
m=1

pmk

) 1
M

− 1

= ln

1

e

(
M∏

m=1

pmk

) 1
M

 ,∀k ∈ [K] ,

which implies that

p∗k =
1

e

(
M∏

m=1

pmk

) 1
M

,∀k ∈ [K] .

The possible minimizer(s) may not satisfy the probabilities axioms. This is because if

one wishes to have
∑K

k=1 p
∗
k = 1, one must ensure

K∑
k=1

1

e

(
M∏

m=1

pmk

) 1
M

= 1⇔
K∑

k=1

(
M∏

m=1

pmk

) 1
M

= e .

One may find different examples of H(x) which result in
∑K

k=1 p
∗
k ̸= 1. An example is

H(x) = {(0.1, 0.9), (0.9, 0.1)}, which gives us p∗ ..= 1
e (0.3, 0.3).

B.2 Other convex distances

In complement to the algorithmic solutions for finding the representative distribution
(14) under the convex distances studied in Section 3.2, we discuss this problem for
other convex distances found in literature (Cha, 2007; Gibbs and Su, 2002; Lee, 1999;
Sriperumbudur et al, 2010).

B.2.1 Convex distances with analytical solutions

Using Remark 2, we can verify the convexity of the Inner Product fIP

fIP(p) ..= dIP(p, z) ..=

K∑
k=1

pkzk . (B5)
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Proposition 6. The representative distribution p∗ (14) under fIP (B5) is (uniquely)
defined as and p∗k = 0, for any k ̸= k∗, and p∗k∗ = 1 for

k∗ = argmin
k

M∑
m=1

pmk . (B6)

Proof. Finding a representative distribution p∗ (14) is translated into finding a
probabilistic minimizer of

fIP(p) =

M∑
m=1

dIP(p,p
m) =

M∑
m=1

K∑
k=1

pkp
m
k

=

K∑
k=1

M∑
m=1

pkp
m
k =

K∑
k=1

pk

(
M∑

m=1

pmk

)
.

Therefore, to minimize f(p), it is enough to maximize pk∗ with

k∗ = argmin
k

M∑
m=1

pmk , (B7)

by setting p∗k∗ = 1 and p∗k = 0 for any k ̸= k∗.

As a side comment, we would say that dIP might not be an interesting dis-
tance within our framework because its representative distribution p∗ (14) seems too
extreme.

B.2.2 Convex distances without known analytical solutions

Regarding the following distances, we do not know whether analytical solutions to the
problem (14) exist or not. Until further results are made available, we will need some
solver to find the distribution p∗ (14) under these distances.
Lemma 1. The K divergence fKdiv (B8) is convex.

fKdiv(p) ..= dKdiv(p, z) ..=

K∑
k=1

pk log (2pk/(pk + zk)) (B8)

Proof. It is sufficient to prove that for any α ∈ [0, 1], and pair of distribution (p,p′)
we have

fKdiv(αp+ (1− α)p′) = dKdiv(αp+ (1− α)p′, z)

≤ αdKdiv(p, z) + (1− α) dKdiv(p
′, z)

= α fKdiv(p) + (1− α) fKdiv(p
′) .
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Reminding that the log sum inequality states that(
I∑

i=1

ai

)
log

∑I
i=1 ai∑I
i=1 bi

≤
I∑

i=1

ai log
ai
bi

, (B9)

where ai, i ∈ [I], and bi, i ∈ [I], are non-negative real numbers.
For any k ∈ [K], let I = 2, (a1, a2) = (αpk1 , (1 − α) pk2) and (b1, b2) = (α (pk1 +

zk), (1− α) (pk2 + zk)). We have

(
αpk1 + (1− α) pk2

)
log

αpk1 + (1− α) pk2
αpk1 + (1− α) pk2 + zk

=
(
αpk1 + (1− α) pk2

)
log

αpk1 + (1− α) pk2
α (pk1 + zk) + (1− α) (pk2 + zk)

≤ αpk1 log
αpk1

α (pk1 + zk)
+ (1− α) pk2 log

(1− α)pk2
(1− α)(pk2 + zk)

≤ αpk1 log
pk1

pk1 + zk
+ (1− α) pk2 log

pk2
pk2 + zk

.

Hence, we have

dKdiv(αp+ (1− α)p′, z) =

K∑
k=1

(
αpk1 + (1− α) pk2

)
log

αpk1 + (1− α) pk2
αpk1 + (1− α) pk2 + zk

≤
K∑

k=1

(
αpk1 log

pk1
pk1 + zk

+ (1− α) pk2 log
pk2

pk2 + zk

)

= α

K∑
k=1

pk1 log
pk1

pk1 + zk
+ (1− α)

K∑
k=1

pk2 log
pk2

pk2 + zk

= αdKdiv(p, z) + (1− α) dKdiv(p
′, z) .

This completes the proof.

Proposition 7. The representative distribution p∗ (14) under K divergence dKdiv

(B8) may not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑
m=1

dKdiv(p,p
m) = argmin

p

M∑
m=1

K∑
k=1

pk log (2pk/(pk + pmk )) . (B10)

Proof. For any k ∈ [K], the partial derivative of

fKdiv(p) =

M∑
m=1

dKdiv(p,p
m) =

M∑
m=1

K∑
k=1

pk log (2pk/(pk + pmk ))
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=

K∑
k=1

M∑
m=1

(pk loga (pk)− pk loga (pk + pmk )) +K ∗M loga 2

=

K∑
k=1

M∑
m=1

(
pk

ln (pk)

ln a
− pk

ln (pk + pmk )

ln a

)
+K ∗M loga 2

=
1

ln a

K∑
k=1

M∑
m=1

(pk ln (pk)− pk ln (pk + pmk )) +K ∗M loga 2

with respect to the variable pk is

∂fKdiv

∂pk
(p) =

1

ln a

M∑
m=1

(
1 + ln (pk)−

pk
pk + pmk

− ln (pk + pmk )

)

=
1

ln a

M∑
m=1

(
ln

(
pk

pk + pmk

)
+

pmk
pk + pmk

)

=
1

ln a

M∑
m=1

(
ln

(
1− pmk

pk + pmk

)
+

pmk
pk + pmk

)
.

Since fKdiv(p) is convex, its minimizer is attained when the partial derivatives are
zeros, i.e.,

pmk
p∗k + pmk

= 0 ,∀k ∈ [K] ,∀m ∈ [M ] ,

which can be attained at either p∗k = +∞ or pmk = 0, k ∈ [K], where its (non-positive
and decreasing) partial derivatives are maximized. These properties of the partial
derivatives can be verified by the fact that ln(1−x)+x is a decreasing function (with
a non-positive derivative, which is zero if x = 0).

Remark 2 ensures the convexity of the Topsøe fTop (23) and Pearson fP

fP(p) ..= dP(p, z) ..=

K∑
k=1

(pk − zk)
2

zk
. (B11)

Proposition 8. The representative distribution p∗ (14) under Pearson fP (B11) may
not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑
m=1

dP(p,p
m) = argmin

p

M∑
m=1

(
K∑

k=1

(pk − pmk )2

pmk

)
. (B12)

which is well-defined when pmk > 0, ∀m ∈ [M ], ∀k ∈ [K].
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Proof. For any k ∈ [K], the partial derivative of

fP(p) =

M∑
m=1

dP(p,p
m) =

M∑
m=1

K∑
k=1

(pk − pmk )2

pmk
=

K∑
k=1

(
M∑

m=1

(pk − pmk )2

pmk

)

with respect to the variable pk is

∂fP
∂pk

(p) = 2

M∑
m=1

pk − pmk
pmk

= 2

M∑
m=1

(
pk
pmk
− 1

)
= 2

(
pk

M∑
m=1

1

pmk
−M

)
.

Since fP(p) is convex, one of its minimizers is attained when the partial derivatives
are zeros, i.e.,

p∗k =
M∑M

m=1
1
pm
k

,∀k ∈ [K] .

One may find different examples of H(x) which result in
∑K

k=1 p
∗
k ̸= 1. An example is

H(x) = {(2/7, 5/7), (5/7, 2/7)}, which gives us p∗ ..= (20/49, 20/49).

Proposition 9. The representative distribution p∗ (14) under Topsøe fTop (23) may
not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑
m=1

dTop(p,p
m) . (B13)

Proof. For any k ∈ [K], the partial derivative of

fTop(p) =

M∑
m=1

(
dKdiv(p,p

m) +

K∑
k=1

pmk log (2pmk /(pk + pmk ))

)

=

M∑
m=1

dKdiv(p,p
m) +

M∑
m=1

(
K∑

k=1

pmk log (2pmk /(pk + pmk ))

)

=

M∑
m=1

dKdiv(p,p
m) +

K∑
k=1

(
M∑

m=1

pmk log (2pmk /(pk + pmk ))

)

=

M∑
m=1

dKdiv(p,p
m) +

K∑
k=1

(
M∑

m=1

(
pmk

ln (pmk )

ln a
− pmk

ln (pk + pmk )

ln a

))
+K ∗M loga 2
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with respect to the variable pk is

∂fTop
∂pk

(p) =
1

ln a

M∑
m=1

(
1 + ln (pk)−

pk
pk + pmk

− ln (pk + pmk )− pmk
pk + pmk

)

=
1

ln a

M∑
m=1

(
1 + ln (pk)−

pk + pmk
pk + pmk

− ln (pk + pmk )

)

=
1

ln a

M∑
m=1

(1 + ln (pk)− 1− ln (pk + pmk ))

=
1

ln a

M∑
m=1

(ln (pk)− ln (pk + pmk )) =
1

ln a

M∑
m=1

(
ln

(
pk

pk + pmk

))
.

Since fTop(p) is convex, its minimizer is attained when the partial derivatives are
zeros, i.e.,

ln

(
pk

pk + pmk

)
= 0⇔ pk

pk + pmk
= 1 ,∀k ∈ [K] ,∀m ∈ [M ] ,

which can be attained at either p∗k = +∞ or pmk = 0, k ∈ [K].

Appendix C Decision-related uncertainty
quantification

In complement to our discussion on robustifying and normalizing probabilistic uncer-
tainty measures given in Section 5, we shall provide additional discussions on the case
of CL (C14) and entropy, which are respectively defined as

CL(H(x)) ..= CL(p∗) = p∗st , (C14)

EN(H(x)) ..= EN(p∗) = −
K∑

k=1

p∗k log2(p
∗
k) . (C15)

Clearly, CL cannot take any value that is smaller than 1/K, where K is the number
of classes and is typically changed when the querying process goes along. This fact may
lead to difficulties in tracking and leveraging the trusted level of uncertainty when the
querying process goes along, especially when CL is used as a stopping criterion. Our
proposal on normalizing and robustifying probabilistic measures in Section 5 appears
to be very effective in this case. As can be observed in a range of experiments with
uncertainty sampling and classification with a reject option presented in Appendix F,
its robustified score (44) tends to be better normalized to the range [0, 1].

Yet, one can use our proposal to robustify the entropy (C15) and other probabilistic
measures whose range are not subsets of [0, 1]. We think it is reasonable to defer an
intensive study on such probabilistic measures to further work. So far, we only use

33



the most visible information, i.e., the probabilistic measure itself and the outputs of
ensemble members when defining the robustified scores (44). However, it is not clear to
us how to normalize the entropy (C15) to the range [0, 1] without taking into account
the number of classes seen at the end of the querying process. Yet, existing works on
uncertainty sampling typically assume that this number is known from the beginning
of the querying process. It is not always the case. In practice, emerging classes may
appear during the querying process as well as at the test time.

Appendix D Set-valued prediction-making using
credal sets: Complexities and
algorithmic solutions

D.1 Quantile-based approach under cost sensitivity losses

In the following, we show that the algorithmic solutions for finding optimal set-valued
predictions under the Maximality rule (9) and E-admissibility rule (10) coupled with
the 0/1 loss can be (easily) adapted for finding optimal set-valued predictions under
these IP rules when they are coupled with cost sensitivity losses (Elkan, 2001; Lachiche
and Flach, 2003; O’brien et al, 2008).

Different cost sensitivity losses (Elkan, 2001; Lachiche and Flach, 2003; O’brien
et al, 2008) have been proposed to relax the assumption that ℓ(y, ȳ) = ℓ(y′, ȳ′) for any
(y, ȳ) ̸= (y′, ȳ′). Such a cost sensitivity loss is typically constructed based on a cost
matrix C whose element c(y, ȳ) informs the cost of predicting ȳ when the true class
is y. The cost sensitivity loss is then

ℓ(y, ȳ) = c(y, ȳ)Jy ̸= ȳK , (D16)

Again, its BOP is given by the expected loss minimizer

ŷ = ŷ(x) ∈ argmin
ȳ∈Y

E
(
c(y, ȳ)Jy ̸= ȳK

)
(D17)

= argmin
ȳ∈Y

∑
y∈Y

c(y, ȳ)Jy ̸= ȳKp(y |x) (D18)

= argmin
ȳ∈Y

∑
y∈Y

Jy ̸= ȳK (c(y, ȳ)p(y |x)) (D19)

= argmin
ȳ∈Y

∑
y∈Y\{ȳ}

c(y, ȳ)p(y |x) . (D20)

The relation ȳ ≻ℓ,P ȳ′ can be translated into

inf
p∈P

Ep (ℓ(y, ȳ′)− ℓ(y, ȳ)) > 0 (D21)

⇔ inf
p∈P

∑
y∈Y

(c(y, ȳ′)− c(y, ȳ)) p(y |x) > 0 . (D22)
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Therefore, this relation holds if the minimum of the linear program

minimize
p

f(p) ..=
∑
y∈Y

(c(y, ȳ′)− c(y, ȳ)) p(y |x) (D23)

subject to p−
Mα∑
m=1

γm pm = 0, γm ≥ 0,

Mα∑
m=1

γm = 1 , (D24)

is positive. Again, a naive algorithmic solution for (D23) is to compute f(p) for the
extreme distribution pm, m ∈ [Mα] and compare it with 0. This simply implies that
finding ŶM

ℓ,P under any cost sensitivity loss of the form (D16) can also be done by
solving a set of linear programs.

Analogously, the problem of checking whether a given y ∈ YO
ℓ,P satisfies the relation

y ∈ ŶE
ℓ,P as checking whether a valid solution of a linear program in standard form

exists.

maximize
p

f(p) ..= p(y |x) (D25)

subject to p−
Mα∑
m=1

γm pm = 0, γm ≥ 0,

Mα∑
m=1

γm = 1 , (D26)∑
y∈Y

(c(y, ȳ′)− c(y, ȳ)) p(y |x) ≥ 0 , y′ ∈ Y \ {y} . (D27)

Again, the naive algorithmic solution, i.e., iterating over all the extreme points, can
not be applied. Moreover, one may expect that solving the linear program (D25) can
be harder than solving (35) due to more complicated constraints (D27).

D.2 ϵ-contamination approach under 0/1 loss

We will first provide a proof for the proposition 4, which is needed to determine the
extreme distribution for finding the set-valued predictions under the E-admissibility
and Maximality rules presented in this and the next section. Finding the set-valued
predictions under the E-admissibility and Maximality rules then can be done by mod-
ifying the linear constraints of (33)–(35) and (D23)–(D25) to accommodate the new
sets of extreme distributions.

for the proposition 4. The proof is quite intuitive. For any fixed ϵ, we have

Pϵ(Y |x) ..= {(1− ϵ)p∗ + ϵp |p ∈ CH(x)} (D28)

=

{
(1− ϵ)p∗ + ϵ

(
M∑

m=1

γm pm

)
|

M∑
m=1

γm = 1

}
(D29)

=

{
(1− ϵ)

(
M∑

m=1

γmp∗

)
+ ϵ

(
M∑

m=1

γm pm

)
|

M∑
m=1

γm = 1

}
(D30)

35



=

{
M∑

m=1

γm(1− ϵ)p∗ +

M∑
m=1

γm ϵpm |
M∑

m=1

γm = 1

}
(D31)

=

{
M∑

m=1

γm ((1− ϵ)p∗ + ϵpm) |
M∑

m=1

γm = 1

}
. (D32)

In other words, Pϵ(Y |x) is the convex hull of {(1− ϵ)p∗ + ϵpm |m ∈ [M ]}.

Let us denote by pm
ϵ := (1 − ϵ)p∗ + ϵ, m ∈ [M ]. For a fixed ϵ, the problem of

checking the relation ȳ ≻ℓ,P ȳ′ can be translated into checking if the minimum of the
linear program

maximize
p

f(p) ..= p(ȳ′ |x)− p(ȳ |x) (D33)

subject to p−
M∑

m=1

γm pm
ϵ = 0, γm ≥ 0,

M∑
m=1

γm = 1 , (D34)

is negative. Again, a naive algorithmic solution for (D33) is to compute f(p) for the
extreme distribution pm

ϵ , m ∈ [M ] and compare it with 0.
The problem of checking whether a given y ∈ YO

ℓ,P satisfies the relation y ∈ ŶE
ℓ,P

as checking whether a valid solution of a linear program in standard form exists.

maximize
p

f(p) ..= p(y |x) (D35)

subject to p−
M∑

m=1

γm pm
ϵ = 0, γm ≥ 0,

M∑
m=1

γm = 1 , (D36)

p(y |x)− p(y′ |x) ≥ 0 , y′ ∈ Y \ {y} . (D37)

Similar to the case of constructing the credal set using the quantile-based approach,
the naive algorithmic solution, i.e., iterating over all the extreme points, can not be
applied.

D.3 ϵ-contamination approach under cost sensitivity losses

Let ℓ be a cost sensitivity loss of the form (D16). For a fixed ϵ, the problem of checking
the relation ȳ ≻ℓ,P ȳ′ can be translated into checking if the minimum of the linear
program

minimize
p

f(p) ..=
∑
y∈Y

(c(y, ȳ′)− c(y, ȳ)) p(y |x) (D38)

subject to p−
M∑

m=1

γm pm
ϵ = 0, γm ≥ 0,

M∑
m=1

γm = 1 , (D39)

is positive. A naive algorithmic solution for (D38) is to compute f(p) for the extreme
distribution pm

ϵ , m ∈ [M ] and compare it with 0.
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The problem of checking whether a given y ∈ YO
ℓ,P satisfies the relation y ∈ ŶE

ℓ,P
as checking whether a valid solution of a linear program in standard form exists.

maximize
p

f(p) ..= p(y |x) (D40)

subject to p−
M∑

m=1

γm pm
ϵ = 0, γm ≥ 0,

M∑
m=1

γm = 1 , (D41)∑
y∈Y

(c(y, ȳ′)− c(y, ȳ)) p(y |x) ≥ 0 , y′ ∈ Y \ {y} . (D42)

The naive algorithmic solution, i.e., iterating over all the extreme points, can not be
applied.

Appendix E Nested cross-validation and
uncertainty quantification:
Complexities and algorithmic
solutions

E.1 Nested cross-validation

In this section, we leverage the nested structure of CHα(x) to reduce the number of
the linear programs, which are needed to be solved, when doing nested cross-validation
as described in Section 6.1. We also examine the computational complexity in the case
the Maximality rule is employed as an approximate of the E-admissibility rule.

What shall be described can be easily adapted to do nested cross-validation when
Pϵ(Y |x) (29) is employed as an approximation of the credal set. The main difference
would be the computational complexities can (significantly) increase due to more
complex linear constraints in the linear programs as well as larger numbers of extreme
points.

E.1.1 The case of E-admissibility rule

In practice, we can use the following heuristics to (hopefully) reduce the number of
linear programs (35) that need to be solved.

• H1:Ŷ
E
ℓ,P should not include any y ∈ Y \ ŶM

ℓ,P and any y such that

max
p∈Hα(x)

p(y |x) < 1

K
. (E43)

• H2: Ŷ
E
ℓ,P should include all the optimal classes on {p∗} ∪Hα(x) and any class y

such that

max
p∈Hα(x)

p(y |x) ≥ 1

2
. (E44)
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We now further reduce the number of linear programs that need to be solved
by leveraging the nested structure of CHα(x). By definition we have CHα2(x) ⊂
CHα1(x) whenever α2 ≥ α1 because we discard more extreme distributions when
using α2. Therefore, we have the nested structure

ŶE
ℓ,Pα2

⊂ ŶE
ℓ,Pα1

. (E45)

One might want to switch between the backward strategy, which only considers
the members of ŶE

ℓ,Pα1
when computing ŶE

ℓ,Pα2
, and forward strategy, which ignores

the members of ŶE
ℓ,Pα2

when computing ŶE
ℓ,Pα1

, to further reduce the total number

of the number of the linear programs, which are needed to be solved.

E.1.2 The case of Maximality rule

Choosing an optimal α following a nested cross-validation when the Maximality rule
is employed as an approximate of the E-admissibility rule does not require solving any
linear program and can be done relatively fast by relying on the nested structure

ŶM
ℓ,Pα2

⊂ ŶM
ℓ,Pα1

,∀α2 ≥ α1 . (E46)

In practice, one can first sort the extreme distribution pm, m ∈ [M ], using the
preference order (30), and compute their most probable classes. One can then go
backward starting from the smallest value of α and its optimal set-valued prediction
under the Maximality rule, and only focus on potential classes. At each step, one can
first form a set of the most probable classes on the covered extreme distributions and
check whether the other classes that have not been discarded in the previous step
should be included in the current set.

E.2 Decision-related uncertainty quantification

We will first provide a proof for the proposition 5 and then provide a practical
algorithm for computing the empirical expectation (44).

for the proposition 5. Assume the distance d(p,p′), for any p,p′ ∈ ∆, and the most
probable class ŷ on any distribution p ∈ ∆ can be computed in O(K). Assume the
admissible region ∆st

x is convex. Assume the distribution p∗ (14) is already computed.
Since CHα(x) (31) is convex by definition, we have CHα(x) ⊂ ∆st

x whenever the
set of extreme distributions Hα(x) ⊂ ∆st

x . Moreover, Hα(x) \ ∆st
x ̸= ∅ as soon as

there is at least one member of Hα(x) has another most probable class than the one
which is most probable on all the member of ∆st

x . Therefore, whatever the value of
α∗ is, CHα∗(x) should be the convex hull of the longest consecutive subsequence of
p∗ ≻ p(1) ≻ p(2) ≻ p(M) covering p∗, whose elements share the most probable class
with p∗, where p∗ ≻ p(1) ≻ p(2) ≻ p(M) be the permutation on H(x) formed by the
preference order ≻ (30).

Once this consecutive subsequence is determined, the empirical expectation (44)
can be computed in O(M) given S(pm) and S(p∗) since this subsequence can contain
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at most M + 1 distributions. Given the set of distances {d(p∗,pm) |m ∈ [M ]}, which
can be computed in O(MK), the major computation effort should be distributed to
construct the permutation p∗ ≻ p(1) ≻ p(2) ≻ p(M) which takes time O(M log(M)).

Altogether, computing the empirical expectation (44) can be done in O(M(K +
log(M)) given H(x) without having to solve any linear program.

A practical algorithm for computing the expectation (44) is given in Algorithm 1.

Algorithm 1 Compute the empirical expectation RS(H(x)) (44)

1: Input: H(x) ..= {pm |m ∈ [M ]}, a distance d, the representative distribution p∗

(14)
2: Compute the set of distances {d(p∗,pm) |m ∈ [M ]}
3: Construct the permutation p∗ ≻ p(1) ≻ p(2) ≻ p(M)

4: Initialize RS(H(x))←− 1
M+1

(∑M
m=1 S(p

m) + S(p∗)
)

5: Initialize RStemp ←− S(p∗)
6: for m = 1 to M do
7: if p(m) and p∗ have different most probable classes then
8: Update RS(H(x))←− 1

M+1RStemp

9: break
10: end if
11: Update RStemp ←− RStemp + S(p(m))
12: end for
13: Output: RS(H(x))

We close this appendix with discussions on the convexity of the admissible region
∆st

x . It can be easily verified that this assumption is satisfied by any cost sensitivity
loss1 (D16) (and of course the 0/1 loss (5)). Assume the most probable class on ∆st

x

is ŷ. For any p,p′ ∈ ∆st
x and any λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1, we have∑

y∈Y\{ŷ}

c(y, ŷ) (λ1p+ λ2p
′)(y |x)

=λ1

∑
y∈Y\{ŷ}

c(y, ŷ)p(y |x) + λ2

∑
y∈Y\{ŷ}

c(y, ŷ)p′(y |x)

≤λ1

∑
y∈Y\{y′}

c(y, y′)p(y |x) + λ2

∑
y∈Y\{y′}

c(y, y′)p′(y |x)

=
∑

y∈Y\{y′}

c(y, y′) (λ1p+ λ2p
′)(y |x) ,

for any y′ ̸= ŷ. In other words, ŷ is a most probable class on λ1p+ λ2p
′.

1This may be dissatisfied by cost sensitivity losses whose cost matrix depends on the concerned
distribution p, i.e., the cost matrix is defined locally.
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Appendix F Experimental results
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Fig. F1 Correctness of different imprecise classifiers in the case of abstention versus accuracy of the
random forest on training sets without noise (left) and with 25% noise (right).

References

Abellan J, Masegosa AR (2012) Imprecise classification with credal decision trees.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
20(05):763–787

Abellán J, Mantas CJ, Castellano JG (2017) A random forest approach using imprecise
probabilities. Knowledge-Based Systems 134:72–84

Alarcon YCC, Destercke S (2021) Imprecise gaussian discriminant classification.
Pattern Recognition 112:107739

Antonucci A, De Campos CP (2011) Decision making by credal nets. In: 2011 Third
International Conference on Intelligent Human-Machine Systems and Cybernetics,
IEEE, pp 201–204

Augustin T, Coolen FP, De Cooman G, et al (2014) Introduction to imprecise
probabilities. John Wiley & Sons

Bock JD, Campos CPd, Antonucci A (2014) Global sensitivity analysis for map infer-
ence in graphical models. In: Proceedings of the 27th International Conference on
Neural Information Processing Systems (NIPS), pp 2690–2698

Boyd S, Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge university
press

Breiman L (1996) Bagging predictors. Machine learning 24:123–140

40



Cha SH (2007) Comprehensive survey on distance/similarity measures between proba-
bility density functions. International Journal of Mathematical models and Methods
in Applied Sciences 1(4):300–307

Chow C (1970) On optimum recognition error and reject tradeoff. IEEE Transactions
on information theory 16(1):41–46
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Mortier T, Wydmuch M, Dembczyński K, et al (2021) Efficient set-valued prediction
in multi-class classification. Data Mining and Knowledge Discovery 35(4):1435–1469

Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press

Murty KG (1983) Linear programming. Springer

Nakharutai N, Troffaes MC, Caiado CC (2019) Improving and benchmarking of
algorithms for decision making with lower previsions. International Journal of
Approximate Reasoning 113:91–105
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Nguyen VL, Hüllermeier E, Rapp M, et al (2020) On aggregation in ensembles of mul-
tilabel classifiers. In: Proceedings of the 23rd International Conference on Discovery
Science (DS), Springer, pp 533–547
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