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ABSTRACT
CNES has developed the CARS pipeline to massively pro-
duce Digital Surface Models (DSM) for remote sensing appli-
cations. DSM are computed from pairs of very high resolu-
tion satellite imagery using multi-view stereo methods. In this
paper, we compute robust elevation confidence intervals with
more than 90% accuracy alongside the high resolution DSM.
We first estimate disparity confidence intervals using possibil-
ity distributions during the dense matching step, where most
errors usually occur. Disparity confidence intervals are then
processed with caution throughout every step of the pipeline
to be transformed into elevation confidence intervals. Inter-
vals accuracy is evaluated on both urban and glacier high res-
olution images.

Index Terms— Image processing, Photogrammetry,
Stereovision, Digital Surface Model, 3D, Stereo, Uncertainty,
Confidence intervals, Possibility distributions

1. INTRODUCTION

Digital Surface Models (DSM) are used in many remote
sensing applications [1, 2]. The CO3D mission (https:
//co3d.cnes.fr/fr), started by CNES and Airbus De-
fense & Space, aims to automatically produce DSM from
Very High Resolution (VHR) images at a global scale. To
process the VHR images from satellites, CNES has devel-
oped a multi-view stereo pipeline called CARS [3]. This
pipeline allows massively parallel computations to ensure
scalability, robustness and good performances. It produces
DSM from image pairs. It is composed of multiple classical
steps, detailed in figure 1. Alongside the DSM, CARS is

Fig. 1. CARS Pipeline

expected to assess the quality of the height reconstruction.
The pipeline currently produces a confidence measure [4] in-
dicating how trustworthy the elevation value of a given DSM
pixel is. Although very useful, confidence measures do not
indicate if other probable results are near the predicted values
or far away. In this paper, we propose to address this issue by
introducing confidence intervals, as in figure 2. Confidence
intervals enable to capture the notion of error magnitude
missing in classical confidence measures.

Classical approaches for computing confidence intervals
on DSM are a posteriori methods [2, 5, 6], meaning that
the intervals are generated using only the output DSM and
a reference DSM, regardless of the process used to obtain
them. These methods statistically estimate the residuals of
squared errors between the computed DSM and a set of ref-
erence points, obtained from other sources or by resampling
the computed DSM. Thus, it results in a single confidence in-
terval on the mean or median of the squared errors. In this
article, we compute elevation confidence intervals alongside
the DSM, by estimating the errors potentially made by algo-
rithms in the pipeline. We differ in this regard from classical
a posteriori methods, as we do not use a reference DSM. Fur-
thermore, we produce confidence intervals on the elevation of
every pixel of the output raster with a 90% accuracy, instead
of a single confidence interval to estimate the mean or median
of squared errors. One of this paper main contribution is also
to use robust uncertainty models, named possibility distribu-
tion [7], to model the uncertainty of the dense stereo matching
step of the pipeline. Possibility distributions are well suited to
model epistemic uncertainty (i.e. due to a lack of knowledge),

Fig. 2. Elevation intervals along a row of the Peyto scene.
Orthoimage with highlighted row appear in the bottom left
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and enables to retrieve confidence intervals.
The following section explains the method for creating

disparity intervals in the stereo matching step. We then de-
tail the propagation of these intervals to elevation intervals
throughout triangulation, filtering and rasterization steps. Fi-
nally, we evaluate the accuracy of the confidence intervals on
DSM obtained from Pléiades images with a sub-meter res-
olution. We use LiDAR acquisitions as reference data on
the french city of Montpellier, as well as glaciers located in
Peyto in Canada, and mountains from the Yosemite Park in
the USA.

2. METHOD FOR CREATING DISPARITY
INTERVALS

Computation of the disparity map is a crucial step. Its perfor-
mance drives the quality of the DSM. We therefore decide to
determine confidence intervals during the disparity computa-
tion step. CARS pipeline uses a stereo matching framework
developed by CNES and CS called Pandora [8] for computing
the disparity map (see figure 1). To do so, Pandora estimates
a cost volume CV , where CV (i, j, d) is the matching-cost be-
tween pixels (i, j) and (i, j+d) with disparity d from left and
right images. We propose to use this information to determine
intervals of the most probable disparities for every pixel (i, j).
For this purpose, we use possibility distribution to model the
uncertainty on the considered disparities. Possibility distribu-
tions are functions whose values lie in [0, 1], taking the value
1 at least once, strongly related to fuzzy sets [7]. A possibil-
ity distribution represents the degree of possibility that d is
the correct disparity: 1 meaning that d is fully possible, and
0 meaning that d is impossible. By noting Cmin

V , Cmax
V the

minimal and maximal values taken by the cost volume, we
define for every pixel the possibility πi,j as follows:

πi,j(d) = 1− CV (i, j, d)−minδ CV (i, j, δ)

Cmax
V − Cmin

V

(1)

From πi,j , we compute the set of most probable dispari-
ties D as the disparities who have a degree of possibility at
least superior to 0.9. We then define the disparity confidence
interval [d, d] as follows:

D = {d | πi,j(d) ⩾ 0.9}, d = minD, d = maxD (2)

An example of a cost function transformed into a possibil-
ity is presented in figure 3, and disparity intervals along the
row of an epipolar image is presented in figure 4.

In our experiments, we use the CENSUS similarity mea-
sure with a Semi-Global Matching regularization to compute
the cost volume. We also use a median filter to correct lo-
cal outliers and smooth the disparity map. Applying the me-
dian filter independently on the disparity map and the interval
bounds ensures the consistency of the results. For more de-
tails on the method to create disparity intervals, we refer to

Fig. 3. A cost function (left) transformed into a possibility
distribution (right). Arrows represent the disparity interval.

Fig. 4. Disparity intervals along the row of an epipolar image

[9] where the 90% confidence rate of intervals is validated.
The following section details the propagation of the resulting
disparity intervals into elevation intervals.

3. PROPAGATING DISPARITY INTERVALS INTO
ELEVATION INTERVALS

3.1. Triangulation

Knowing the disparity map, as well as the sensor model, it is
possible to compute the 3D point coordinates of every pixel of
the images by intersecting sensors’ lines of sight, also known
as triangulation (figure 1). To each pixel p = (i, j) corre-
sponds a 3D point Pi,j = (x, y, z). Similarly, we also esti-
mate upper/lower coordinates of every 3D point by intersect-
ing lines of sight using bounds of the lower/upper disparity
intervals. To each pixel p = (i, j) thus corresponds a triplet of
3D points Pi,j = (x, y, z), P i,j = (x, y, z), P i,j = (x, y, z)
computed using the disparity prediction and its confidence in-
terval bounds1. To facilitate further processing, only eleva-
tion changes are computed during the processing of the 3D
triplets, meaning we consider that x ≈ x ≈ x and y ≈ y ≈ y.
In our case, this approximation can be done as we have a
B/H ratio of around 0.3, meaning that the variation of x
and y are small compared to the variation of z. For a pixel
p = (i, j), we thus get a triplet of points:

P i,j = (x, y, z), Pi,j = (x, y, z), P i,j = (x, y, z) (3)

1In cases where disparities only have negative values, P i,j is obtained
using d and P i,j is obtained using d



Fig. 5. LiDAR DSM and wrong intervals (red pixels) on the
orthoimage for the Peyto region. Accuracy is 92%.

3.2. Filtering

Different filtering steps are applied to ensure the quality of
the point cloud. Those steps need to be taken with caution
as to maintain coherence between the final prediction and its
confidence intervals. During point cloud filtering step, we
remove statistical outliers and small clusters of 3D points lo-
cated far from any other cluster. Applying the filters inde-
pendently for the predicted point cloud and for its intervals
bounds could lead to inconsistencies. Instead, if we filter a
point Pi,j = (x, y, z) from the main point cloud, then we re-
move the associated upper and lower points P i,j , P i,j as well.

3.3. Rasterization

We convert the point cloud into a raster (figure 1) using a
weighted mean. Weights are computed using a Gaussian on
the distance between each 3D point and the center of the cell.
Applying the Gaussian independently to the main point cloud
and for the interval bounds maintains their consistency.

4. EVALUATION

4.1. Datasets

Using the CARS pipeline, we compute DSM at 0.5m res-
olution from Pléiades images at 0.7m and then resampled
at 0.5m. Validation is performed with reference DSM ac-
quired by LiDAR. The computed DSM and the ground truth
are co-registrated using the method in [10]. Studied scenes
are located in Montpellier in France (MTP), Peyto in Canada
(Peyto) and two scenes are in California, USA (Cal 1 & 2).
More details are presented in table 1. We thank the Engineer-
ing Research Council of Canada, the Tula Foundation (Hakai
Institute), the CESBIO and the Airborne Snow Observatories
for kindly providing ground truth data.

Location Size Date image Date LiDAR

MTP 4001×4000 2019-09-12 2021-07-30
Peyto 5178×4009 2016-09-13 2016-09-13
Cal 1 8354×8315 2017-05-01 2017-02-05
Cal 2 8354×8315 2017-05-02 2017-02-05

Table 1. Size and acquisition date of evaluation data

4.2. Evaluation metrics

We use three metrics to evaluate the performance of our
method. First, we compute the intervals accuracy Iacc, de-
fined as the proportion of intervals that correctly include the
ground truth. It is however possible to obtain 100% accuracy
by extending the confidence intervals to unnecessarily large
sizes. To ensure that the size of the intervals are usable, we
calculate their median size Isize relatively to the disparity to
altitude ratio ralt. This ratio, expressed in m/pix, represents
the amount of altitude gained by a shift of one pixel during
the disparity computation step. The ratio changes from one
scene to another, depending on the viewing angles of the
satellite. For intervals that do not capture the true elevation
Z, we compute the median of the error magnitude to ensure
that wrong intervals remain close to the ground truth. Ierr
is defined as the distance between the true elevation and the
interval bounds. The error is normalized by the ralt to be
expressed in pixels.

Iacc =
#correct intervals

#number of intervals
(4)

Isize = med

(
z − z

ralt

)
(5)

Ierr = med

(
1

ralt
×min(|Z − z|, |Z − z|)

)
(6)

4.3. Results

An example of confidence intervals along the row of a DSM
can be seen in figures 2 and 6. The intervals have differ-
ent sizes depending on their position in the image, adapting
to areas where the algorithm struggles to correctly estimate
the elevation. Some extreme cases in dense urban scenery
are presented in figure 6, where intervals get pessimistic near
building borders. Results on each scene is detailed in table
2, where metrics are evaluated globally, and also for different
slope categories. The main result showing the robustness and
validity of the method is the accuracy superior to 90% on ev-
ery scene when considering every slope. The accuracy drops
below 90% only for slopes superior to 20° for the MTP and
Peyto scenes. The error is spatially correlated to steep slopes,
as seen in figure 5. Intervals sizes are between 2 and 3 pixels
in altitude, which is relatively small. When intervals do not



Metric Slope (°) MTP Peyto Cal 1 Cal 2
Global 90.7 92.0 96.5 94.1
[0, 20[ 93.8 99.3 97.0 95.0
[20, 45[ 89.7 86.9 98.1 96.7

Iacc
(%)

[45, 90] 88.1 59.0 93.9 90.0

Global 2.2 2.1 2.9 2.5
[0, 20[ 2.0 2.1 3.0 2.6
[20, 45[ 1.9 2.1 3.4 2.7

Isize
(pix)

[45, 90] 2.7 2.4 2.4 2.3

Global 0.2 0.3 0.3 0.3
[0, 20[ 0.2 0.1 0.3 0.3
[20, 45[ 0.2 0.2 0.3 0.2

Ierror
(pix)

[45, 90] 0.3 0.5 0.3 0.3

Table 2. Metrics evaluated for different slope categories.

Fig. 6. Elevation intervals along a row of the MTP scene.
Orthoimage with highlighted row appear in the bottom left.

contain the ground truth, they usually miss the ground truth
by less than half a pixel.

5. CONCLUSION

This paper presents a method for computing confidence el-
evation intervals based on the uncertainty of the algorithms
used to create a DSM. The intervals are propagated with cau-
tion and validate the desired accuracy. Contrary to current
methods for evaluating the uncertainty of DSM, our method
does not need a reference DSM to create the intervals. The in-
tervals automatically adapt their size depending on the terrain
and the difficulty experienced by the algorithm to evaluate the
elevation along the image. The code is freely available and
implemented in the CARS pipeline. We hope that this work
will help users handling DSM. Future work will address the
performances of the method for very steep slopes. We will
also investigate the origin of the sub-pixel error, to under-
stand if it results from our method or from the re-sampling
when switching from sensor geometry to epipolar geometry.
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