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• Propose regret-based decision rules which return a limited number of
options.

• Study their consistency with respect to standard imprecise probability
decision rules.

• Provide algorithms for regret-based decision rules and investigate their
numerical behaviour.
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Abstract

One way to make decisions under uncertainty is to select an optimal op-
tion from a possible range of options, by maximizing the expected utilities
derived from a probability model. However, under severe uncertainty, iden-
tifying precise probabilities is hard. For this reason, imprecise probability
models uncertainty through convex sets of probabilities, and considers deci-
sion rules that can return multiple options to reflect insufficient information.
Many well-founded decision rules have been studied in the past, but none
of those standard rules are able to control the number of returned alterna-
tives. This can be a problem for large decision problems, due to the cognitive
burden decision makers have to face when presented with a large number of
alternatives. Our contribution proposes regret-based ideas to construct new
decision rules which return a bounded number of options, where the limit
on the number of options is set in advance by the decision maker as an ex-
pression of their cognitive limitation. We also study their consistency and
numerical behaviour.
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1. Introduction

Consider a decision problem where a decision maker wants to choose the
best option from a set of available options, but where there are some uncertain
variables that also influence the value of the decision. Such problems are
routinely met in machine learning, where a classifier will typically return
an uncertainty model over the possible classes (see [5, Ch. 10] and [22]);
in structure design, where the quality of each design depends on multiple
uncertain factors [12, 4, 6, 23]; in agronomy where the weather and soil
qualities are uncertain by nature [21]; etc. A classical way to model such a
situation is to associate a reward with each option assumed to be expressed
in numerical utility scale and that depends on the uncertain state of nature.
In this way, we can view an uncertain reward, and thereby, each decision, as
a bounded real-valued function on the set of states of nature. Such function
is commonly called an act [2] or a gamble [26] in decision theory.

If uncertainty is described by precise probabilities for all events, a classi-
cal approach is to select the act that yields the highest expected utility [2].
However, such precise probabilities may not always be obtainable in a reliable
way, particularly when we only have little information about the states of na-
ture and their chance to happen. One way to handle this situation is to relax
the need for a unique, precise probability and to consider imprecise probabil-
ity theory, in which uncertainty is modelled by sets of probabilities [5]. This
theory includes as special cases many commonly used uncertainty models,
such as precise probabilities, possibility distributions, and belief functions.
In this paper, we assume that our knowledge about the true state of nature
is represented by a closed convex set of probability mass functions.

Using sets of probabilities then requires to generalize the classical ex-
pected utility criterion. This is usually done either by proposing decision
rules that return a single1 option as optimal such as Γ-maximin, Γ-maximax
or Hurwicz, or decision rules that can return multiple incomparable options
as optimal, such as interval dominance, maximality and E-admissibility [24].
Nevertheless, these criteria can return any subset of options, from a single
optimal act to the whole set of acts [18]. This may be problematic, as it is
conceivable that even if decision makers are keen to consider multiple options,
they still may wish to limit the number of returned options, for example be-
cause of cognitive or monetary constraints. Such requirements are natural

1Or multiple indifferent options.
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in many settings, such as set-valued classification [14, 7] or recommendation
problems [25].

However, such budgeted decision rule that limits the number of returned
decisions still remains to be defined and explored within the imprecise prob-
abilistic setting. This paper aims to propose and study such rules, using
a regret criterion and expressing the rule either as a minimax or maximin
problem. More precisely, we define the value of a given subset (of limited
size) as the regret one would feel if an adversary was to pick an alternative
from outside the retained subset. Note that we already studied the minimax
version of this rule in a previous conference paper [19]. This paper pro-
vides extended proofs, examples and numerical simulation of this minimax
criterion, and introduces the maximin version, which was not studied before.

The paper is organised as follows. In section 2, we present necessary
notations and basic concepts for regret-based budgeted decision rules. We
devote section 3 to review regret-based budgeted decision rules by recalling
the minimax criterion from our previous study. In section 4, we introduce the
new maximin criterion and study their properties and consistency with clas-
sical imprecise probability decision criteria and provide an algorithm for the
maximin criterion. In section 5, we perform some computational experiments
of these two regret-based budgeted decision rules. section 6 provides two il-
lustrative applications of the proposed rules. Finally, section 7 concludes the
paper.

2. Preliminaries and definitions

We denote by Ω a finite set of possible states of nature about which we
are uncertain. We will consider decision problems where a subject can choose
a finite number of acts from a set of acts A. For each act a ∈ A, if ω ∈ Ω
turns out the be the true state of nature, then a(ω) will represent the reward
obtained by the subject (an end-user, a decision maker, . . . ). We assume
that the subject can specify a utility for each reward. Therefore, an act
a can be viewed as a real-valued function on Ω representing an uncertain
reward expressed on a utility scale.

In order to select an act, the subject can take their beliefs about the true
state of nature into account. If their beliefs can be expressed through a prob-
ability mass function p, then they can simply select an act that maximizes
their expectation Ep(a) :=

∑
ω∈Ω p(ω)a(ω). However, when information is
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lacking, they might only be able to represent their knowledge about the un-
known true value ω via a closed convex set of probability mass functions on
Ω. Such a set P of probability mass functions is called a credal set [11].

Let A denote the set of all finite non-empty sets of acts. Mathematically,
we can then define:

Definition 1. A decision rule is a function D : A → A such that D(A) ⊆ A
for every A ∈ A.

In the case of a precise probability mass function, the classical decision
rule is D(A) = argmaxa∈A Ep(a). Given a credal set P , there are several
decision rules that extend expected utility. Some can return a single act, e.g.
Γ-maximin (or Γ-maximax) which maximizes the worst case (or minimal)
expected utility of acts in A, and others a set of multiple acts, e.g. interval
dominance and maximality [24]. In this study, we will compare our budgeted
decision rules to maximality, which is induced by a partial ordering as follows:
for any acts a and a′, we say that an act a dominates a′, denoted a ≻ a′,
whenever E(a − a′) > 0, where E(f) := minp∈P Ep(f) is the lower bound of
the expectation of a function f taken over all probabilities of P ; observe that
a − a′ is the point-wise difference between two acts, and is therefore a real-
valued function over Ω. Note that E(a − a′) > 0 is equivalent to requiring
that Ep(a) > Ep(a

′) for all p ∈ P , and is therefore equivalent to a robust
version of the classical expectation-based decision rule where a dominates a′

if Ep(a) > Ep(a
′).

The set of maximal acts in A with respect to ≻ is then defined by:

DM(A) := {a ∈ A : ∄a′ ∈ A s.t. a′ ≻ a} (1)

which contains all undominated acts in A with respect to ≻. In other words,
a is a maximal element in A if and only if

min
a′∈A

E(a− a′) ≥ 0, (2)

where E(f) := maxp∈P Ep(f) is defined as the upper expectation operator,
which is dual to the lower expectation since E(f) = −E(−f). Note that
maximality can return any non-empty subset of A, from a single act up to
the whole set A [18]. If most or all elements of A are returned by maximality,
this may not be helpful to a decision maker, especially when A is very large
or when checking alternatives is costly.

To address this issue, we introduce a so-called budgeted decision rule.
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Definition 2. A decision rule D is said to be k-budgeted if |D(A)| ≤ k for
all A ∈ A.

In the above, |D(A)| denotes the cardinality of D(A) (i.e. the number
of elements of D(A)). The parameter k is therefore an upper bound on
the number of returned alternatives. In practice, its value can be settled
accordingly to the application constraints, i.e., the number of alternatives
that can be realistically inspected, for instance by a decision maker or by a
second automatic processing step. It may also depends on the cardinality
|A|, e.g., passing on at most 10% of A to the next processing step.

Next, we consider whether a k-budgeted decision rule preserves maximal-
ity. Specifically, we define consistency properties with respect to maximality
as follows:

Definition 3. A decision rule D is said to be strongly consistent (with DM)
if for all A ∈ A, we have

D(A) ⊆ DM(A) (3)

Definition 4. A decision rule D is said to be weakly consistent (with DM)
if for all A ∈ A

D(A) ∩DM(A) ̸= ∅ (4)

Strong consistency ensures that a rule selects maximal acts only. Weak
consistency ensures that it selects at least one maximal act, though it may
also select non-maximal acts. Clearly, strong consistency implies weak consis-
tency. One can easily adapt those definitions to other decision rules possibly
returning multiple elements, but we will focus here on maximality.

Example 1. Consider the state space Ω = {ω1, ω2, ω3} and the acts of Ta-
ble 1. Suppose furthermore that the credal set is specified as

P = {p ∈ P : p(ω3) ≤ p(ω1), p(ω3) ≤ 0.3} (5)

where P denotes the set of all probability mass functions on Ω. The corre-
sponding credal set is displayed in Figure 1.

Table 2 gives the values of E(aj−ai) = −E(ai−aj) where j ̸= i. The set of
maximal elements of A is DM(A) = {a1, a2, a3, a4}, as only row 5 of Table 2
contains negative values. For instance, we have that a5 − a1 = (−5,−1, 5),
and the upper expected value E(a5 − a1) = −0.4 is obtained by considering
the distribution p(ω1) = 0.3, p(ω2) = 0.4, p(ω3) = 0.3 (the extreme point of
the credal set that is the intersection of the dotted lines in Figure 1), which
gives E(a5 − a1) = −5× 0.3 + (−1)× 0.4 + 5× 0.3 = −0.4.

5



p(ω1)

p(ω2)p(ω3)

p(ω3) = 0.3

p(ω3) = p(ω1)

Figure 1: Credal set of example 1 in barycentric coordinates (in green)

ω1 ω2 ω3

a1 6 3 1
a2 2 7 4
a3 5 1 8
a4 5 4 3
a5 1 2 6

Table 1: Acts of example 1

j
i

1 2 3 4 5

1 - 4.0 2.0 1.0 5.0
2 4.0 - 6.0 3.0 5.0
3 1.4 3.3 - 1.5 4.0
4 1.0 3.0 3.0 - 4.0
5 −0.4 −0.1 1.0 −1.1 -

Table 2: Values of E(aj − ai)
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In the next section, we will construct k-budgeted decision rules based on
the idea of regret. We introduce first the notion of regret we will consider in
our decision rules, before proposing and studying its minimax and maximin
versions to obtain recommendations with a limited budget.

3. Minimax criterion

3.1. Regret

Let a and a′ be acts in A. Then E(a′−a) = maxp∈P Ep(a
′−a) = −E(a−a′)

is the maximal expected gain if we exchange a′ for a, in other words, the worst
possible expected loss, or regret, to us if we keep a instead of replacing a for
a′. If a has a better expected utility than a′ under all p ∈ P , then this value
will be negative. Consider an act a and any set of acts S ′ which does not
contain a. The maximal loss, or worst reget, of not replacing a for any act
a′ ∈ S ′ is therefore

ML(a, S ′) := max
a′∈S′

E(a′ − a). (6)

where we take the maximum to be −∞ if S ′ = ∅. If we had to pick a single
alternative from A, a natural choice would be to minimize our worst regret
given by eq. (6) for S ′ = A \ {a}.

3.2. Review minimax criterion

In this section, we recall the main results from [19], with some additional
elements and illustrations here for the sake of completeness, and to enable
comparison to the maximin approach that will be introduced later.

We now consider a set-valued criterion based on eq. (6). Consider any set
S of acts such that ∅ ̸= S ⊆ A. In this first minimax scenario, we first have
to choose an element a within the set S, and for each a ∈ S, the opponent
can then pick a′ ∈ S ′ := A\S yielding the highest gain to them (the maximal
loss to us), maxa′∈S′ E(a′ − a). The minimax regret of choosing a given set
S is then [19, eq. (3)]:

mML(S,A) := min
a∈S

ML(a, S ′) = min
a∈S

max
a′∈S′

E(a′ − a). (7)

Note that mML(A,A) = −∞, because for S = A we have S ′ = ∅.
Next, we recall some basic properties of mML(S,A). First, eq. (7) is

monotone with respect to set inclusion (the bigger the set we can select
from, the lower our loss) [19, Lemma 1]:
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Lemma 1. For any ∅ ≠ S ⊆ T ⊆ A ∈ A, we have that mML(S,A) ≥
mML(T,A).

Proof. Recall S ′ := A \ S and T ′ := A \ T . Indeed,

mML(T,A) = min
a∈T

ML(a, T ′) (8)

≤ min
a∈S

ML(a, T ′) (since S ⊆ T ) (9)

= min
a∈S

max
a′∈T ′

E(a′ − a) (10)

≤ min
a∈S

max
a′∈S′

E(a′ − a) (since T ′ ⊆ S ′) (11)

= mML(S,A) (12)

Next, ifmML(S,A) is negative, then S is a superset of the set of maximal
elements [19, Theorem 1]:

Theorem 1. For ∅ ≠ S ⊆ A, mML(S,A) < 0 if and only if there is an
a ∈ S such that for all a′ ∈ S ′ := A \ S we have that a ≻ a′.

Proof. By the definition, we have

mML(S,A) < 0 ⇐⇒ min
a∈S

max
a′∈S′

E(a′ − a) < 0 (13)

⇐⇒ ∃a ∈ S, max
a′∈S′

E(a′ − a) < 0 (14)

⇐⇒ ∃a ∈ S, ∀a′ ∈ S ′, E(a′ − a) < 0 (15)

⇐⇒ ∃a ∈ S, ∀a′ ∈ S ′, E(a− a′) > 0 (16)

Corollary 1. If mML(S,A) < 0 then DM(A) ⊆ S.

Proof. By theorem 1, if mML(S,A) < 0 then all a′ ∈ S ′ are dominated by
some a ∈ S, and therefore, no a′ ∈ S ′ can be maximal. Consequently, it
must be that S contains all maximal elements.

Given the fact that a decision maker wants to choose S so as to minimize
its regret, an optimal subset S ⊆ A with respect to the mML criterion can
be defined as

S∗
k(A) := arg min

∅̸=S⊆A
|S|≤k

mML(S,A). (17)
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As the argmin may not be unique, but may contain sets of alternatives that
are indifferent from a regret viewpoint, we assume one set is picked at random
if need be. The minimum value is denoted by

mML∗
k(A) := mML(S∗

k(A), A). (18)

By lemma 1, S∗
k(A) will always be either A if |A| ≤ k, or a set contain-

ing exactly k elements if |A| > k, and by corollary 1, DM(A) ⊆ S∗
k(A) if

mML∗
k(A) < 0. In particular, we know that DM(A) ⊆ S∗

k(A) if mML∗
k(A) <

0 or |A| ≤ k. Therefore, it makes sense to define an mML budgeted decision
rule as follows:

Dk
mML(A) :=

{
DM(A) if mML∗

k(A) < 0 or |A| ≤ k

S∗
k(A) otherwise

(19)

In [19], we provided an example to show that S∗
k(A) is not unique, and

that we can have S∗
k(A) ̸⊆ S∗

k+1(A). The latter fact shows in particular that
the solution of Eq. (17) cannot always be obtained incrementally by gradually
increasing k, i.e., that a greedy approach will generally be sub-optimal.

Fortunately, there is an efficient algorithm [19, Algorithm 1] to obtain
S∗
k(A) and mML∗

k(A) without evaluating all possible sets S of size k, of
which there are

(|A|
k

)
. This algorithm is represented in Algorithm 1. Note

that this algorithm is polynomial. Loop 2-4 requires computing a quadratic
number of upper expectations (which can be done by linear programming),
and loop 6-10 is a sorting procedure.

The next example continues Example 1, illustrating the new decision rule
and the algorithm to obtain S∗

k(A) [19, Example 1]. It also illustrates a case
where S∗

k(A) ̸⊆ S∗
k+1(A).

Example 2. Consider the credal set given by Example 1, then the optimal
sets given by Eq. (17) and obtainable through Algorithm 1 are

• S∗
1(A) = {a4} with mML∗

1(A) = 3,

• S∗
2(A) = {a1, a2} with mML∗

2(A) = 1.4,

• S∗
3(A) = {a1, a2, a3} or {a2, a3, a4} with mML∗

3(A) = 1 and

• S∗
4(A) = {a1, a2, a3, a4} with mML∗

4(A) = −1.1.
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Algorithm 1 Finding S∗
k(A)

Require: A = {a1, a2, . . . , an}, P , k
Ensure: S∗

k(A), mML∗
k(A)

1: for i = 1: n do
2: for j = 1: n, j ̸= i do
3: compute eij := E(aj − ai)
4: end for
5: end for
6: for i = 1: n do
7: S[i] ← set such that {eij : j ∈ S[i]} are the k largest elements of
{eij : j ̸= i}

8: M [i]← minj∈S[i] eij
9: J [i]← argminj∈S[i] eij

10: end for
11: i∗ ← argminn

i=1 M [i]
12: return {aj : j ∈ {i∗} ∪ S[i∗] \ {J [i∗]}}, M [i∗]

Note that S∗
1(A) ̸⊆ S∗

2(A). Let us detail how Algorithm 1 works to get S∗
2(A).

Line 7 gives S[1] = {2, 3} as the two largest elements of column 1 in Table 2
are in 4.0 (row 2) and 1.4 (row 3). For the other columns, we get S[2] =
{1, 3}, S[3] = {2, 4}, S[4] = {2, 3}, and S[5] = {1, 2}. We then get M [1] =
1.4, M [2] = 3.3, M [3] = 3, M [4] = 1.5, and M [5] = 5 (of which the minimum
is 1.4 at i∗ = 1), as well as J [1] = 3, J [2] = 3, J [3] = 4, J [4] = 3,
and J [5] = 1. From this, we obtain S∗

2(A) = {1} ∪ {{2, 3} \ {3}} and the
corresponding mML value 1.4. In the case of S∗

3(A), the rule would return
one of the two sets {a1, a2, a3} or {a2, a3, a4}, picking one at random.

We previously gave some properties of the mML(S,A) function. Next
are some properties of S∗

k(A) [19, Theorem 2]:

Theorem 2. For all k ≥ 1,

S∗
k(A) ∩DM(A) ̸= ∅. (20)

Proof. For brevity, define S := S∗
k(A) and S ′ := A \ S∗

k(A). If |A| ≤ k
then S = A by Lemma 1 and therefore S ∩ DM(A) = DM(A) ̸= ∅. If
mML(S,A) < 0 then the statement follows from Corollary 1. So, suppose
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that |A| > k and mML(S,A) ≥ 0. Let

ai∗ := argmin
ai∈S

max
aj∈S′

E(aj − ai), (21)

aj∗ := arg max
aj∈S′

E(aj − ai∗). (22)

Note that

0 ≤ mML(S,A) = min
ai∈S

max
aj∈S′

E(aj − ai) = E(aj∗ − ai∗), (23)

and it follows that

E(aj∗ − ai∗) ≥ 0, (24)

∀aj ∈ S ′, E(aj − ai∗) ≤ E(aj∗ − ai∗) (25)

∀ai ∈ A, ∀j ∈ S[i], E(aj − ai) ≥ E(aj∗ − ai∗) (26)

where S[i] is defined as in Algorithm 1. Equation (26) holds because, from
the algorithm, we know that

M [i] = min
j∈S[i]

E(aj − ai) ≥M [i∗] = E(aj∗ − ai∗) (27)

We have now everything in place to show that ai∗ is maximal, i.e. E(ai∗−
aℓ) ≥ 0 for all aℓ ∈ A. Fix any aℓ ∈ A and consider the set

B := {am : E(am − aℓ) ≥ E(aj∗ − ai∗)} (28)

This set has at least k elements by Equation (26) and the definition of S[i]. If
ai∗ ∈ B, then we are done, by Equation (24). Otherwise, B must contain at
least one element outside of S and thus in S ′, since S has exactly k elements
and ai∗ ∈ S. Choose am ∈ B ∩ S ′. Then

E(ai∗ − aℓ) ≥ E(am − aℓ)− E(am − ai∗)

= E(am − aℓ)− E(aj∗ − ai∗)︸ ︷︷ ︸
non-negative by eq. (28)

+E(aj∗ − ai∗)− E(am − ai∗)︸ ︷︷ ︸
non-negative by eq. (25)

≥ 0.

and thus, in this case, the desired inequality also holds.

From this theorem follows two simple corollaries [19, Corollaries 2 and 3]:
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Corollary 2. For all k ≥ 1, S∗
k and Dk

mML are weakly consistent with DM .

Corollary 3. S∗
1 and D1

mML are strongly consistent with DM .

We conclude this section by noting that Algorithm 1 gives us an efficient
way to compute the decision rule Dk

mML, which is weakly consistent with
the usual maximality criterion by Theorem 2. However, we will see in the
empirical experiment that the observed consistency is indeed kind of weak,
and in any case weaker than for the maximin criterion, studied in the next
section.

4. Maximin criterion

4.1. Definition

In the previous formulation of the problem, the minimax criterion is ex-
pressed as the fact that given a subset S to us, for each possible a ∈ S we
select, the adversary is then free to choose a′ among the remaining options
S ′ = A \ S for which it will bring the highest possible gain to him (or the
highest possible loss to us). It then makes sense to look for the set that
minimizes this possible loss.

Conversely, given a subset S ⊆ A, we could consider that the adversary
first picks any action within S ′ := A \ S, knowing that we are then free to
choose any action within S to limit our loss as much as possible. This is
expressed as a maximin criterion as follows:

MmL(S,A) := max
a′∈S′

min
a∈S

E(a′ − a). (29)

Note that MmL(A,A) = −∞ because for S = A we have S ′ = ∅, and as
before we take the maximum over the empty set to be −∞. For any S ⊆ A,
the following relation holds:

max
a′∈S′

min
a∈S

E(a′ − a) ≤ min
a∈S

max
a′∈S′

E(a′ − a). (30)

Thus, MmL(S,A) ≤ mML(S,A). We will show further that this inequality
can be strict, but first we will explore some properties of MmL(S,A).

12



4.2. Properties of MmL(S,A)

We can show that the maximin criterion satisfies properties that are very
similar to those of the minimax criterion.

Lemma 2. For any ∅ ≠ S ⊆ T ⊆ A ∈ A, we have that

MmL(S,A) ≥MmL(T,A).

Proof. Recall S ′ := A \ S and T ′ := A \ T . Then

MmL(T,A) = max
a′∈T ′

min
a∈T

E(a′ − a) (31)

≤ max
a′∈T ′

min
a∈S

E(a′ − a) (since S ⊆ T ) (32)

≤ max
a′∈S′

min
a∈S

E(a′ − a) (since T ′ ⊆ S ′) (33)

= MmL(S,A). (34)

The next property shows that MmL(S,A) is negative if and only if every
element in S ′ is dominated by some maximal element in S. This is similar but
not quite the same as the corresponding property for the minimax criterion
in theorem 1: the quantifiers are swapped.

Theorem 3. MmL(S,A) < 0 if and only if for all a′ ∈ S ′ := A \S, there is
an a ∈ S such that a ≻ a′.

Proof. By the definition, we have

MmL(S,A) < 0 ⇐⇒ max
a′∈S′

min
a∈S

E(a′ − a) < 0

⇐⇒ ∀a′ ∈ S ′, ∃a ∈ S, E(a′ − a) < 0

⇐⇒ ∀a′ ∈ S ′, ∃a ∈ S, E(a− a′) > 0

So, contrary to theorem 1, the act a ∈ S dominating a given a′ ∈ S ′

in theorem 3 can be different for each a′. This has an important practical
impact, as will be confirmed in further experiments. Theorem 3 also leads
to the following corollary.

Corollary 4. If MmL(S,A) < 0 then DM(A) ⊆ S.
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Proof. By Theorem 3, each a′ ∈ S ′ is dominated by a maximal element in
S. Therefore, S ′ contains no maximal elements, so consequently all maximal
elements must be in S.

Similar to the minimax criterion, we can define an optimal maximin sub-
set of a given size as

S+
k (A) := arg min

∅̸=S⊆A
|S|≤k

MmL(S,A) (35)

and we denote the minimum value by

MmL+
k (A) := MmL(S+

k (A), A). (36)

Note that S+
k (A) is also not guaranteed to be unique. If this occurs, we

assume one set is picked at random, as these are indifferent sets. This can
be employed as a budgeted decision rule as follows:

Dk
MmL(A) :=

{
DM(A) if MmL+

k (A) < 0 or |A| ≤ k

S+
k (A) otherwise.

(37)

4.3. Computing S+
k (A)

Let us now deal with the problem of computing S+
k (A). A first question

that arises is then to know whether S+
k (A) and S∗

k(A) do not coincide in
general, in which case one could use Algorithm 1 to solve the problem in
polynomial time. Let us first give the solution for our previous example.

Example 3. Consider the same situation as in Example 1. For this situation
and various values of k, we have that

• S+
1 (A) = {a4} with MmL(S+

1 , A) = 3.0,

• S+
2 (A) = {a1, a2} with MmL(S+

2 , A) = 1.4,

• S+
3 (A) = {a1, a2, a3} or {a2, a3, a4} with MmL(S+

3 , A) = 1.0 and

• S+
4 (A) = {a1, a2, a3, a4} with MmL(S+

4 , A) = −1.1,

Again, in the case of S+
3 (A), the rule would return one of the two sets, picking

one at random.

14



In the above example, we get the same results for S+
k (A) and values

MmL+
k (A) as for the minimax criterion. This shows, among other things,

that S+
k (A) ̸⊆ S+

k+1(A) and that a greedy approach applied to maximin will
generally result in sub-optimal solutions. The next example however shows
that such equalities do not hold in general, and experiments will later confirm
that this is often the case.

Example 4. Suppose that we have the same space Ω, the credal set specified
by Equation (5) with the following set of acts:

ω1 ω2 ω3

a1 6 4 2
a2 7 1 4
a3 10 4 8
a4 2 7 2
a5 7 1 9
a6 7 8 2

Table 3: Acts of Example 4

j
i

1 2 3 4 5 6

1 - 3.0 0.0 4.0 3.0 −0.7
2 1.3 - −3.0 5.0 0.0 0.6
3 4.6 3.3 - 8.0 3.0 3.9
4 3.0 6.0 3.0 - 6.0 −1.0
5 2.8 1.5 −1.8 5.6 - 2.1
6 4.0 7.0 4.0 5.0 7.0 -

Table 4: Values of E(aj − ai)

According to values E(aj − ai),∀j ̸= i in table 4, we see that all maximal
elements of A are DM(A) = {a3, a6} (only lines 3 and 6 of Table 4 are non-
negative for every column) and the optimal solution S∗

k(A) for each k are
given as follows:

• S∗
1(A) = {a6} with mML∗

1(A) = 3.9,

• S∗
2(A) = {a3, a6} with mML∗

2(A) = 2.1,

• S∗
3(A) = {a3, a4, a6} with mML∗

3(A) = 0,

• S∗
4(A) = {a1, a3, a4, a6} with mML∗

4(A) = −1.8 and

• S∗
5(A) = {a1, a3, a4, a5, a6} with mML∗

5(A) = −3.0.

For S+
k (A), we have

• S+
1 (A) = {a6} with MmL+

1 (A) = 3.9,

• S+
2 (A) = {a3, a6} with MmL+

2 (A) = −0.7,

15



• S+
3 (A) = {a1, a3, a6} with MmL+

3 (A) = −1.0,

• S+
4 (A) = {a1, a3, a4, a6} with MmL+

4 (A) = −1.8 and

• S+
5 (A) = {a1, a3, a4, a5, a6} with MmL+

5 (A) = −3.0.

This example confirms that mML∗
k(A) ̸= MmL+

k (A) is possible, even
when S∗

k(A) = S+
k (A) (see k = 2 and k = 3 in example 4), and that it is

possible to have S∗
k(A) ̸= S+

k (A) (see k = 3 in example 4). This confirms
that our previous algorithmic solution cannot be applied to find S+

k (A) in
general. Notable exceptions where the two criteria will always coincide are
when k = 1 and k ≥ |A| − 1, as show the next two results.

Theorem 4. For k = 1 and all k ≥ |A| − 1 we have that

S∗
k(A) = S+

k (A) and mML∗
k(A) = MmL+

k (A). (38)

Proof. For k ≥ |A|, by lemmas 1 and 2,

S∗
k(A) = S+

k (A) = A and mML∗
k(A) = MmL+

k (A) = −∞. (39)

For k = 1, it holds because

S∗
1(A) = arg min

S∈A1

mML(S,A)

= argmin
a∈A

max
a′∈A\{a}

E(a′ − a)

= argmin
a∈A

max
a′∈A\{a}

min
a′′∈{a}

E(a′ − a′′)

= arg min
S∈A1

MmL(S,A)

= S+
1 (A)

and note that the minima are achieved at the same values in each of the
above steps so mML∗

1(A) = MmL+
1 (A).

For k = |A| − 1, it holds because (with n := |A|)

S∗
n−1(A) = arg min

S∈An−1

mML(S,A)

= arg min
S∈An−1

(
min
a∈S

max
a′∈A\S

E(a′ − a)

)
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and now, writing S ∈ An−1 as S = A \ {a′} for a′ ∈ A,

= argmin
a′∈A

(
min

a∈A\{a′}
max

a′′∈A\(A\{a′})
E(a′′ − a)

)
= argmin

a′∈A

(
min

a∈A\{a′}
E(a′ − a)

)
,

and

S+
n−1(A) = arg min

S∈An−1

MmL(S,A)

= arg min
S∈An−1

(
max
a′∈A\S

min
a∈S

E(a′ − a)

)
and again, writing S ∈ An−1 as S = A \ {a′} for a′ ∈ A,

= argmin
a′∈A

(
max

a′′∈A\(A\{a′})
min

a∈A\{a′}
E(a′′ − a)

)
= argmin

a′∈A

(
min

a∈A\{a′}
E(a′ − a)

)
.

and again note that the minima are achieved at the same values in each of
the above steps so mML∗

n−1(A) = MmL+
n−1(A).

Let us now consider the problem of finding S+
k (A) as well as the corre-

sponding MmL+
k (A). In order to explain our algorithm, we first consider

another question: given a value α, can we find an S ⊆ A of size k such
that MmL(S,A) ≤ α? Finding S+

k (A) then amounts to find the lowest α
for which the answer is yes. Denoting as before by eij := E(aj − ai) the
upper expectation, let us first notice that MmL(S,A) can only take as value
negative infinity (if S = A), or one of the finite values eij.

Assume we choose α = ei′j′ . We should then put within S elements ai
such that those elements can be responses to the adversary choices leading to
losses eij lower than α. The set Cα[i] of adversary choices for which a given
element ai is an adequate response is given as

Cα[i] := {j : eij ≤ α}. (40)

Consider for instance Table 4, the value α = −1.0 and i = 3, then C−1.0[3] =
{2, 5} corresponding to the values −3 (e32) and −1.8 (e35). This means that
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if a3 ∈ S, then it is a response to adversary choices a2, a5 (if those are not
in the set S) leading to a value lower than α = −1.0. Note that we can do
this operation for any i and any α. Given this, there is a subset S having
k elements leading to MmL(S,A) ≤ α only if we can find k elements whose
union of sets Cα[i] includes all elements in A \ S, or formally if we can find
a set S such that

∪i∈S(Cα[i] \ S) = A \ S. (41)

This equation means that for every act aj in S ′ = A \ S that the adversary
can pick (right hand-side of the equation), there is at least one element ai in
S (the union of the left-hand side) we can pick such that E(aj − ai) ≤ α, i.e.
one for which j ∈ Cα[i].

Lemma 3. Let α ∈ R∪{−∞}, and ∅ ≠ S ⊆ A. Then Equation (41) implies

MmL(S,A) ≤ α. (42)

Proof. For every a ∈ S, define

C ′
α(S, a) := {a′ ∈ S ′ : E(a′ − a) ≤ α}. (43)

By Definition,
∀a ∈ S, ∀a′ ∈ C ′

α(S, a) : E(a′ − a) ≤ α. (44)

Consequently,

∀a′ ∈ ∪ã∈SC ′
α(S, ã), ∃a ∈ S : E(a′ − a) ≤ α (45)

Since ∪a∈SC ′
α(S, a) = S ′ by assumption, equivalently,

∀a′ ∈ S ′, ∃a ∈ S : E(a′ − a) ≤ α (46)

or equivalently,

max
a′∈S′

min
a∈S

E(a′ − a) ≤ α (47)

which is what we had to show, by eq. (29).

Lemma 4. Let 1 ≤ k ≤ |A|. If eq. (41) holds for some α ∈ R ∪ {−∞} and
S ⊆ A with |S| = k, then MmL+

k (A) ≤ α.
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Proof. Since |S| = k, by definition of MmL+
k (A) we have

MmL+
k (A) ≤MmL(S,A) (48)

Now use lemma 3.

Lemma 5. Let 1 ≤ k ≤ |A|. Then eq. (41) holds for α = MmL+
k (A) and

S = S+
k (A), where |S

+
k (A)| = k.

Proof. That |S+
k (A)| = k follows from lemma 2 and eq. (35).

For brevity of notation, throughout the rest of the proof, we write S for
S+
k (A) and α for MmL+

k (A). It now suffices to show that⋃
a∈S

C ′
α(S, a) = S ′ (49)

Since each C ′
α(S, a) is a subset of S ′, equivalently, it suffices to show that

∀a′ ∈ S ′, ∃a ∈ S : a′ ∈ C ′
α(S, a) (50)

Since C ′
α(S, a) = {a′ ∈ S ′ : E(a′ − a) ≤ α}, equivalently, we must show that

∀a′ ∈ S ′, ∃a ∈ S : E(a′ − a) ≤ α (51)

or equivalently,
max
a′∈S′

min
a∈S

E(a′ − a) ≤ α (52)

But this translates to MmL(S,A) ≤ α, and we know that MmL(S,A) = α
by choice of S and α, so the condition is satisfied.

These last two lemmas tell us that we need to find the lowest α ∈ R ∪
{−∞} for which there is a set S of size k such that eq. (41) is satisfied.
While the search can be performed across all values in R∪{−∞}, we will in
practice (see Algorithm 2 below) restrict it to the finite set of distinct values
eij (and −∞), as MmL(S,A) can only take one of these values.

Finally, note that eq. (41) can be rewritten as follows:⋃
i∈S

(Cα[i] \ S) = A \ S (53)

⇐⇒

(⋃
i∈S

Cα[i]

)
\ S = A \ S (54)

⇐⇒

(⋃
i∈S

Cα[i]

)
∪ S = A (55)
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The next question is: what should be a range of α that we are looking
for? According to eq. (30), we know that for |A| = n and 1 ≤ k ≤ |A|,

MmL+
k (A) ≤ mML∗

k(A), (56)

where mML∗
k(A) can be obtained by algorithm 1, therefore, mML∗

k(A) will
be an upper bound of α. For a lower bound, we notice that if we set α as
the (n − k)th lowest value of all eij, then there are at least n − k values of
eij that are lower or equal to α. Thus, the corresponding set ∪i∈S(Cα[i] \ S)
may contain n− k = |A \ S| elements for A \ S, and this is not true for any
value lower than that.

Let us illustrate this notion on our previous example, before formalizing
it into an algorithm.

Example 5. Consider our Example 4, together with the value α = −1
and k = 2. The obtained sets C−1.0[i] are pictured in Table 5, with the α
value circled, and the values lower than it squared. We do have C−1.0[3] =
{2, 5}, C−1.0[6] = {4} and C−1.0[i] = ∅ for all other i’s. At best, we have
for S = {3, 6} that C−1.0[3] ∪ C−1.0[6] = {2, 5, 4} which is different from
A \ S = {1, 2, 5, 4}. We therefore cannot find a set S of two elements such
that MmL(S,A) ≤ −1.0. Note that −1.0 is not the 4th (or (n− k)th) lowest
value of all eij, but it is the 3rd lowest value of all eij. Therefore, there are
only three values lower or equal to −1.0, and the set ∪i∈S(C−1.0[i]\S) cannot
include, by definition, 4 elements for A \ S as we want.

j

i
1 2 3 4 5 6

1 - 3.0 0.0 4.0 3.0 −0.7
2 1.3 - −3.0 5.0 0.0 0.6

3 4.6 3.3 - 8.0 3.0 3.9

4 3.0 6.0 3.0 - 6.0 −1.0

5 2.8 1.5 −1.8 5.6 - 2.1

6 4.0 7.0 4.0 5.0 7.0 -

Table 5: Representation of C−1.0[i] = {j : eij ≤ −1.0} in Example 5

The next value after −1.0 in Table 4 is −0.7, which is the 4th lowest value
of all eij for which there are 4 values lower or equal to −0.7. Therefore,
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the corresponding set ∪i∈S(C−0.7[i] \ S) will have a potential to be a set of 4
elements for A\S. Specifically, the corresponding sets C−0.7[i] are represented
in Table 6 and are C−0.7[3] = {2, 5}, C−0.7[6] = {1, 4} and C−1.0[i] = ∅ for
all other i’s. This time, we do have for S = {3, 6} that C−0.7[3] ∪ C−0.7[6] =
{1, 2, 5, 4} = A\S, meaning that we can find an S with MmL(S,A) ≤ −0.7,
and since this is the lowest value for which we can, we have S+

2 = {3, 6}.

j

i
1 2 3 4 5 6

1 - 3.0 0.0 4.0 3.0 −0.7

2 1.3 - −3.0 5.0 0.0 0.6

3 4.6 3.3 - 8.0 3.0 3.9

4 3.0 6.0 3.0 - 6.0 −1.0
5 2.8 1.5 −1.8 5.6 - 2.1

6 4.0 7.0 4.0 5.0 7.0 -

Table 6: Representation of C−0.7[i] = {j : eij ≤ −0.7} in Example 5

We are now ready to put these ideas into a corresponding algorithm.
Algorithm 2 provides the iterative strategy to find S+

k (A) and MmL+
k (A), by

finding the lowest value for which the condition of Equation (41) is satisfied.
Algorithm 3 simply checks that this condition can be satisfied.

Looking at the algorithms, it is clear that Algorithm 3 has a combina-
torial nature, and represents a bottleneck in our approach. The next result
indicates that this part of the Algorithm is indeed a computational barrier.

Theorem 5. Checking whether the condition of Equation (41) can be satisfied
is NP-complete.

Proof. To show this, we will show that it is equivalent to solving a dominating
set problem, which is a known NP-complete problem. We can rephrase the
problem we try to solve as having a set [n] = {1, . . . , n} of integer indices,
to which are associated (possibly empty) subsets Ai ⊆ [n] such that i ̸∈ Ai.
For a given k ≤ n, we want to solve the following optimisation problem:

Find a subset B ⊆ [n] of indices such that
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Algorithm 2 Finding S+
k (A)

Require: A = {a1, a2, . . . , an}, P , k
Ensure: MmL+

k (A), S
+
k (A)

1: for j = 1: n do
2: for i = 1: n, i ̸= j do
3: compute eij := E(aj − ai)
4: end for
5: end for
6: S+

k (A)← ∅
7: m← n− k
8: while S+

k (A) = ∅ do
9: e′ ← ei′j′ such that ei′j′ is the mth lowest value of all eij

10: for i = 1: n do
11: C[i]← Ce′ [i] := {j : eij ≤ e′}.
12: end for
13: S+

k (A)← result of Algorithm 3 with C[i] and e′

14: m← m+ 1
15: end while
16: MmL+

k (A)← e′

17: return S+
k (A),MmL+

k (A)

Algorithm 3 Reachable value α

Require: Cα[i] for i = 1, . . . , n, k
Ensure: A non-empty subset S if there is a solution, ∅ if not
1: S ← ∅
2: for every subset T ⊆ {1, . . . , n} with |T | = k do
3: if ∪i∈T (Cα[i] \ T ) = A \ T then
4: S ← T break for
5: end if
6: end for
7: return S
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1 2 3

4 5 6

Graph for α = −1.0

1 2 3

4 5 6

Graph for α = −0.7

Figure 2: Corresponding graphs of Example 5

|B| = k (57)

∪i∈BAi = {1, . . . , n} \B (58)

In the above reformulation, the subset B corresponds to S, and the subsets
Ai to the subsets Cα[i]. We can then consider the directed graph G =
(V,E) where the vertices are V = {1, . . . , n}, and where there is an edge
(i, j) ∈ E whenever j ∈ Ai (Ai are the out-neighbours of i). Now, there is
straightforward reduction of our problem to a dominating set problem, in
the sense that taking i in the dominating set is equivalent to taking Ai in
B ⇒ Ai “dominates” i and every index in Ai.

So, identifying whether there is a dominating set of size k in G is equiv-
alent to identify whether there is a solution to our problem, hence the two
problems have the same complexity.

Figure 2 illustrates the equivalent graphs of the sets used in Example 5.
One can easily see that for α = −1.0, there is no way to pick a cover for k = 2,
i.e., two vertices i, j such that all other vertices except i, j are their direct
neighbours (one would need to pick at least three vertices). In contrast, this
is possible in the graph corresponding to α = −0.7.

Such a result clearly goes against trying to find the maximin approach
rather than the minimax one, at least in terms of computability and with
the algorithms we have presented. However, if k remains of low value (which
we expect to be the case in most applications of a budgeted rule), the com-
putational burden will remain limited. Also, we will see in the experiments

23



that the maximin approach is very often (but not always) strongly consistent
with DM and the maximality decision rule in practice, which is not the case
for the minimax one. Before that, we will show that the maximin rule is also
always weakly consistent with DM

4.4. Weak Consistency of maximin criterion

Similarly to S∗
k , we will show that S+

k is weakly consistent with max-
imality. Weak consistency for A such that MmL+

k (A) < 0 is ensured by
Corollary 4, therefore we now look at the case MmL+

k (A) ≥ 0.

Theorem 6. For any S ⊆ A with cardinality k, there is a T ⊆ A with
cardinality k such that T ∩DM(A) ̸= ∅ and MmL(T,A) ≤MmL(S,A).

Proof. If S ∩DM(A) ̸= ∅ then we can take T = S and we are done. For the
remainder of the proof, we can therefore assume that S ∩ DM(A) = ∅. It
suffices to construct a subset T of A with cardinality k such that T∩DM(A) ̸=
∅ and MmL(T,A) ≤MmL(S,A), establishing the desired result.

For brevity, define S ′ := A \ S. If S ∩DM(A) = ∅, then MmL(S,A) ≥ 0
by Theorem 3. There are a+ ∈ S and a′+ ∈ S ′ such that

0 ≤MmL(S,A) = E(a′+ − a+) (59)

Since S ∩ DM(A) = ∅, and a+ ∈ S, we know that a+ is non-maximal in
A. Therefore, a+ must be dominated by a maximal element of A, which
is by assumption guaranteed to belong to S ′. In other words, there is a
b ∈ S ′ ∩DM(A) such that

E(a+ − b) < 0 (60)

Define T := (S \ {a+}) ∪ {b}. Clearly, T has the same cardinality as S,
since a+ ∈ S and b ̸∈ S by construction, and T∩DM(A) ̸= ∅ since b ∈ DM(A).
Since MmL(S,A) = E(a′+−a+), also by construction, it suffices to show that

MmL(T,A) = max
a′∈T ′

min
a∈T

E(a′ − a) ≤ E(a′+ − a+) (61)

to finish our proof. In other words, we are left to prove that

∀a′ ∈ T ′, ∃a ∈ T : E(a′ − a) ≤ E(a′+ − a+). (62)
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Indeed, by the definition of MmL(S,A) we already know that

∀a′ ∈ S ′,∃a ∈ S, E(a′ − a) ≤ E(a′+ − a+) (63)

First note that we have E(b− a+) > 0, due to Equation (60) and the duality
relation E(f) = −E(−f). From this we can deduce

E(b− a) ≥ E(b− a+) + E(a+ − a) > E(a+ − a) (64)

so when a′ = b in eq. (63), we can replace a′ with a+ whilst still respecting
the inequality. Therefore,

∀a′ ∈ T ′, ∃a ∈ S : E(a′ − a) ≤ E(a′+ − a+). (65)

Now fix any a′ ∈ T ′. If the a ∈ S in the above condition is not equal
to a+, then a ∈ T and we are done. Otherwise, if a = a+, note that again
we can replace it with b whilst still respecting the inequality, because, since
E(a+ − b) > 0,

E(a′ − b) ≤ E(a′ − a+) + E(a+ − b) < E(a′ − a+) (66)

This concludes the proof.

Theorem 6 tells us that whenever we have a set of k elements without
any maximal ones, we can add a maximal ones and improve the solution
by decreasing its MmL value. This is sufficient to prove that at least one
set S+

k (A) contains a maximal element. Consequently, we have the following
corollaries from Theorem 6 and Corollary 4.

Corollary 5. S+
k and Dk

MmL are weakly consistent with DM .

Corollary 6. S+
1 and D1

MmL are strongly consistent with DM .

After investigating the properties of our two budgeted regret-based rules,
as well as the computational methods to obtain them, we are ready to proceed
to some experiments to test some of their behaviours.
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5. Computational experimentation

In this section, we will perform some experiments to compare S∗
k and S+

k

with their greedy approximations Sg∗
k and Sg+

k , obtained as follows: given a
set of actions A, we compute Sg∗

1 (A) = S∗
1(A). Then, for k ≥ 2, we compute

Sg∗
k (A) = Sg∗

k−1(A)∪S∗
1(A\S

g∗
k−1(A)) and determine mML(Sg∗

k , A). Similarly,

we compute Sg+
1 (A) = S+

1 (A) and determine MmL(Sg+
k , A). Then, for k ≥

2, we can compute Sg+
k (A) = Sg+

k−1(A) ∪ S+
1 (A \ S

g+
k−1(A)) and determine

mML(Sg+
k , A). Recall that the greedy algorithms are not optimal and will

usually not result in S∗
k and S+

k , as already shown in Examples 2 and 4.
We aim to compare S∗

k and S+
k with their greedy approach for consistency

with respect to maximality. Basically, we want to find out how much S∗
k , S

g∗
k ,

S+
k and Sg+

k can capture maximal elements in the set DM . This can measure
the quality of the greedy approximations with our proposed algorithms to
find S∗

k and S+
k . Since S∗

1 and S+
1 are weakly and strongly consistent with

DM by Corollaries 2 and 3 and Corollaries 5 and 6 respectively, we will not
consider case k = 1.

We fix |A| = 20, |Ω| = 5, |P| =20. We generate p ∈ P by sampling a
probability mass function p uniformly from the unit simplex as follows. For
each ω, we sample q(ω) uniformly from (0,1) and then for each ω, we assign

p(ω) := ln q(ω)∑
ω ln q(ω)

. This ensures that generated distributions p(ω1), . . . , p(ωn)

follow a Dirichlet Dir(1, . . . , 1) distribution which has uniform density over
the unit simplex [8]. Note that the convex hull of P may have less than
twenty extreme points, as some generated probabilities may be convex com-
binations of the others. Next, we generate a set of elements A on Ω for which
|DM(A)| = 6 by using algorithm 6 in [20]. We will compute S∗

k , S
g∗
k , S+

k and
Sg+
k for the cases k ∈ {2, . . . , 6}. To do so, for all ai ̸= aj ∈ A, we compute

E(aj−ai) with respect to the credal set P as an input to our algorithms and
compute S∗

k , S
g∗
k , S+

k and Sg+
k with respect to A. Next, we check whether S∗

k ,
Sg∗
k , S+

k and Sg+
k are weakly consistent (having only one maximal element in

the set) or strongly consistent (having all elements in the set being maximal)
with DM or not. We also compute the proportion of elements in S∗

k , S
g∗
k , S+

k

and Sg+
k that are in DM . We repeat this process 500 times and summarise

the result in Table 7. The percentages of these sets that satisfy weakly and
strongly consistent properties and the average percentages of elements in
these sets which are in DM are showed in the 3rd-5th columns of Table 7.

According to the results, we see that S∗
k and S+

k and their greedy approach
are weakly consistent with DM . Interestingly, only S+

k is likely to be strongly
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Dk k w.c. s.c.
|Dk ∩DM |
|Dk|

S∗
k

2 100% 100% 100%

S∗
k = Sg∗

k

|Sg∗
k ∩ S∗

k |
|Sg∗

k |

3 100% 90.2% 96.7%
4 100% 73.8% 92.7%
5 100% 57.0% 89.8%
6 100% 44.0% 88.4%

Sg∗
k

2 100% 94.8% 97.4% 32.2% 64.3%
3 100% 78.6% 92.5% 13.0% 61.4%
4 100% 58.2% 87.8% 9.2% 65.9%
5 100% 37.0% 82.9% 7.0% 69.4%
6 100% 15.8% 77.9% 9.4% 73.6%

S+
k

2 100% 99.2% 99.6%

S+
k = Sg+

k

|Sg+
k ∩ S+

k |
|Sg+

k |

3 100% 99.8% 99.9%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%

Sg+
k

2 100% 94.8% 97.4% 32.6% 63.0%
3 100% 78.6% 92.5% 18.6% 65.8%
4 100% 58.2% 87.8% 16.4% 71.1%
5 100% 37.0% 82.9% 15.2% 74.9%
6 100% 15.8% 77.9% 15.8% 77.9%

Table 7: Percentages averages of S∗
k , S

g∗
k , S+

k and Sg+
k that satisfy different conditions.

consistent while the rest of the sets are rarely strongly consistent with DM

(the numbers in the fourth column quickly drop for all sets as k increase, while
they actually increase for S+

k ). Moreover, the average percentages of maximal
elements in S∗

k and S+
k are higher than in their greedy approximations Sg∗

k

and Sg+
k .

By Theorem 4 and the procedure of construct Sg∗
k and Sg+

k , we have Sg∗
k =

Sg+
k for all k. Therefore, the percentages of Sg∗

k and Sg+
k that are weakly and

strongly consistent with DM are equal. In addition, to see how close those
greedy approximations are to S∗

k and S+
k , we compare the optimal solutions

with the greedy approach solutions. To do so, we record the number of
S∗
k = Sg∗

k and the number of S+
k = Sg+

k and present the averages percentages
of these sets that satisfy these conditions in the column 6th. In the column
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7th, we calculate the average of proportion of elements in Sg∗
k that are in S∗

k

and and the proportion of elements in Sg+
k that are in S+

k .
As we can employmML andMmL as budgeted decision rules as in Equa-

tions (19) and (37), we want to find out how fast S∗
k and S+

k will become
supersets of DM (or mML∗

k(A) < 0 and MmL+
k (A) < 0) so that we can

simply return DM instead of S∗
k or S+

k . To do so, we regenerate a set of
elements A on Ω such that |DM | = m for m ∈ {2, 5, 10}. Next, we com-
pute mML∗

k(A) and MmL+
k (A) for k = m + i, where i ∈ {0, 1, 2, 3}. We

repeat this process 100 times and present the result in Table 8. The average
percentages of mML∗

k(A) < 0 and MmL+
k (A) < 0 are presented in the 2nd

and 3rd columns while the average percentages of mML∗
k(A) = MmL+

k (A)
is presented in the 4th column of Table 8. According to the result, we found
that S+

k becomes a superset of DM much faster than S∗
k as the average per-

centages of MmL+
k (A) < 0 are much higher than the average percentages

of mML∗
k(A) < 0. If the cardinality of DM is increasing, then the average

percentages of mML∗
k(A) = MmL+

k (A) tend to be decreasing.

|DM | k mML∗
k(A) < 0 MmL+

k (A) < 0 mML = MmL

2

2 54% 100% 46%
3 76% 100% 51%
4 89% 100% 51%
5 96% 100% 54%

5

5 33% 100% 23%
6 64% 100% 25%
7 85% 100% 31%
8 96% 100% 34%

10

10 28% 100% 15%
11 66% 100% 22%
12 84% 100% 19%
13 97% 100% 24%

Table 8: Percentages averages of S∗
k and S+

k that satisfy different conditions.

All those numbers show that, in practice, the maximin approach has a
quite stronger consistency with maximality, and its negativity can be used
as a quite reliable signal that we have captured all the maximal elements.
In contrast, the minimax rule shows a much weaker consistency, and will
often contain non-maximal elements. As maximality rests on very strong
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ω1 ω2 ω3 ω4 ω5

a1 37 25 23 73 91
a2 50 67 2 44 94
a3 60 4 96 1 83
a4 16 24 31 26 100
a5 3 86 76 85 11
a6 12 49 66 56 14
a7 39 10 92 88 57
a8 62 52 80 71 42
a9 90 8 74 70 38
a10 63 68 36 69 9

Table 9: Payoffs for the acts of the financial application example from [10].

theoretical foundations, our conclusion is that the maximin rule should be
preferred whenever its computational burden remains affordable, and that
one should resort to the minimax rule only when computational efficiency is
a key issue.

6. Two illustrative use cases

In this section, we demonstrate how our method can be applied in prac-
tice. The first example is inspired from Jansen et al. [10], but adapted to
provide more than 3 maximal acts, while the second one concerns a situa-
tion where we must predict binary vectors over a set of labels, which is the
situation encountered in multi-label learning, a specific multi-task machine
learning problem.

6.1. Financial investment example

We follow the financial application example in [10], where a subject wants
to invest her money in some stocks. An act corresponds to investing in a
specific stock. Suppose that a financial agent offers her ten different stocks,
so we have A = {a1, . . . , a10}. There are five possible states of nature Ω =
{ω1, . . . , ω5} corresponding to different economic scenarios that are uncertain
to the agent. The payoff for each stock under each possible scenarios is given
in table 9.

In addition, based on the decision maker’s experience in the financial
market, she specifies her credal set through probability bounds as follows
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j
i

1 2 3 4 5 6 7 8 9 10

1 - 11.65 25.0 23.5 22.85 29.35 2.9 4.7 9.8 19.5
2 5.0 - 21.6 20.7 21.5 28.4 6.9 3.0 9.6 14.3
3 4.05 7.3 - 15.95 20.8 26.35 −3.0 −1.4 0.3 16.65
4 −7.4 −4.25 6.5 - 8.95 15.0 −7.4 −11.2 −3.0 4.35
5 16.2 22.0 33.1 34.8 - 19.8 2.6 2.6 10.6 12.2
6 −3.6 2.2 13.3 15.0 −5.55 - −16.2 −17.2 −9.2 −3.1
7 16.15 26.3 30.5 37.75 23.8 30.4 - 8.7 10.6 26.95
8 19.0 23.45 32.3 34.95 23.1 28.7 8.0 - 8.6 18.5
9 18.9 26.95 30.3 39.25 27.0 32.85 5.8 4.6 - 20.25
10 10.0 11.6 27.2 27.2 8.5 19.5 2.7 −4.8 −0.5 -

Table 10: Values of E(aj − ai).

(note these are slightly wider than the ones from Jansen et al. [10] to better
demonstrate the benefits of our method):

P = {p ∈ P : 0.1 ≤ p(ω1) ≤ 0.3, 0.05 ≤ p(ω2) ≤ 0.2,

0.1 ≤ p(ω3) ≤ 0.2, 0.2 ≤ p(ω4) ≤ 0.4, 0.1 ≤ p(ω5) ≤ 0.3}.
(67)

From these bounds, the values of E(aj − ai), for all j ̸= i, can be calculated
by linear programming. They are provided in table 10.

We see that while our information can discard some items as being non-
maximal, we still have {a1, a2, a5, a7, a8, a9} for the set of maximal acts, which
may be judged too high if these represent complex financial portfolios. Re-
sults of our algorithms are shown in table 11. In this case, the two approaches
only differ slightly, and are completely consistent with the notion of maxi-
mality, as all selected examples for k ≤ 6 are maximal.

6.2. Multi-label example

To demonstrate our approach in machine learning, we consider multi-
label classification [13], a sub-category of multi-task learning where one first
observes an input x and then has to predict binary vectors over a set of labels
ℓ := (ℓ1, . . . , ℓn) with ℓi ∈ {0, 1}. A value ℓi = 1 usually means that the label
is present in the instance x, while a zero means that the label is absent.
There are many learning schemes to solve this problem, including imprecise
ones [3, 17, 1], as well as many commonly used loss functions.
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k S∗
k(A) mML∗

k(A) S+
k (A) MmL+

k (A)
1 a7 8 a7 8
2 a7, a8 4.7 a7, a8 4.6
3 a1, a7, a8 4.6 a7, a8, a9 3
4 a2, a7, a8, a9 2.9 a2, a7, a8, a9 2.9
5 a1, a2, a7, a8, a9 2.6 a1, a2, a7, a8, a9 2.6
6 a1, a2, a5, a7, a8, a9 −1.4 a1, a2, a5, a7, a8, a9 −3.0

Table 11: S∗
k and S+

k for different values of k.

[000] [001] [010] [011] [100] [101] [110] [111]
[000] 0 −1 −1 −2 −1 −2 −2 −3
[001] −1 0 −2 −1 −2 −1 −3 −2
[010] −1 −2 0 −1 −2 −3 −1 −2
[011] −2 −1 −1 0 −3 −2 −2 −1
[100] −1 −2 −2 −3 0 −1 −1 −2
[101] −2 −1 −3 −2 −1 0 −2 −1
[110] −2 −3 −1 −2 −1 −2 0 −1
[111] −3 −2 −2 −1 −2 −1 −1 0

Table 12: Example of multi-label utility based on Hamming distance for n = 3.
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As is classically done in machine learning, our sets of acts and of states will
coincide, acts being prediction of the possible ground truth when observing
x. We will therefore have Ω = A = {0, 1}n, with an exponentially increasing
size of sets of alternatives as a function of the number of labels n. We will
also consider here the utility version of the standard Hamming loss function,
which means that if ℓ̂ is the predicted vector (i.e., the act, in our setting),
and ℓ the true one (i.e., the state, in our setting), then

ℓ̂(ℓ) = −
n∑

i=0

Iℓ̂i ̸=ℓi
,

where IA denotes the indicator function of event A. Table 12 illustrates
the obtained utility matrix when n = 3. As a model, we will consider in
this example an imprecise version of the classical binary relevance scheme,
where the probability mass of a given vector ℓ is the product of label-wise
probability masses, i.e.,

p(ℓ) =
n∏

i=1

pi(ℓi) (68)

Here, the pi’s values are outputted by classifiers. We will consider here that
instead of having precise label-wise estimates, we have imprecise ones given
as follows:

p1(ℓ1 = 1) ∈ [0.4, 0.8], p2(ℓ2 = 1) ∈ [0.2, 0.6], p3(ℓ3 = 1) ∈ [0.1, 0.7].

By robustifying the product in eq. (68), we get a set of extreme probabilities
obtained by considering all the combinations of interval bounds. Those are
summarised in Table 13.

All is left to do now is to compute the pairwise matrix of upper expecta-
tions, which is summarised in Table 14. From this table it is clear that all
alternatives are maximal, hence using a robust decision rule such as max-
imality is not helpful at all to select an alternative. In general, we would
expect the number of maximal vectors to be quite large but not equal to Ω.
Also note that due to the simplicity of the model and the highly structured
form of the utility matrix in Table 12, upper expectations only take a limited
number of values. This would however not be the case in actual applications,
where an analyst would probably consider more complex models, as well as
utility or loss functions that would be different for different label mistakes.
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p([000]) p([001]) p([010]) p([011]) p([100]) p([101]) p([110]) p([111])

p1 0.432 0.048 0.108 0.012 0.288 0.032 0.072 0.008
p2 0.144 0.336 0.036 0.084 0.096 0.224 0.024 0.056
p3 0.216 0.024 0.324 0.036 0.144 0.016 0.216 0.024
p4 0.072 0.168 0.108 0.252 0.048 0.112 0.072 0.168
p5 0.144 0.016 0.036 0.004 0.576 0.064 0.144 0.016
p6 0.048 0.112 0.012 0.028 0.192 0.448 0.048 0.112
p7 0.072 0.008 0.108 0.012 0.288 0.032 0.432 0.048
p8 0.024 0.056 0.036 0.084 0.096 0.224 0.144 0.336

Table 13: Extreme probabilities of multi-label example.

[000] [001] [010] [011] [100] [101] [110] [111]
0.0 0.8 0.6 1.4 0.2 1.0 0.8 1.6
0.4 0.0 1.0 0.6 0.6 0.2 1.2 0.8
0.2 1.0 0.0 0.8 0.4 1.2 0.2 1.0
0.6 0.2 0.4 0.0 0.8 0.4 0.6 0.2
0.6 1.4 1.2 2.0 0.0 0.8 0.6 1.4
1.0 0.6 1.6 1.2 0.4 0.0 1.0 0.6
0.8 1.6 0.6 1.4 0.2 1.0 0.0 0.8
1.2 0.8 1.0 0.6 0.6 0.2 0.4 0.0

Table 14: Upper pairwise expectations for the multi-label example.

Assuming that we want to return only two vectors, let us first consider
the minimax criterion. Applying Algorithm 1 to Table 14, we get that the
minimal second largest element is obtained for column [100] (the only one
for which it is below 1), with S∗

2 = {[100], [011]} and mML(S∗
2) = 0.6.

Considering now the maximin criterion, if we fix α = 0.4 (from the mML
value, we already know it is equal or lower than 0.6), we get C0.4([100]) =
{[000], [010], [101], [110]} and C0.4([101]) = {[001], [011], [111]}, that do pro-
vide a dominating set, and one can check S+

2 = {[100], [101]} andMmL(S+
2 ) =

0.4. Despite the high structure of the problem, the two approaches deliver
distinct, unique solutions. They also seem to adopt different strategies, the
minimax recommending very diverse, complementary vectors, while the max-
imin sends back two similar vectors, that differ only by the label that is the
most uncertain (ℓ3).
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7. Discussion and conclusion

In this study, we have studied k-budgeted regret-based decision rules
that return an optimal subset of size k with respect to some value function.
To do so, we recalled minimax criteria which minimizes the maximal gain
to the adversary on a given set of alternatives and proposed a new regret-
based decision rule called maximin criteria which swaps the order of selecting
alternatives by the decision maker and the adversary. We also provided
algorithms for both criteria and discussed their properties with respect to
maximality. Note that our framework can be extended straightforwardly to
continuous spaces as long as one can compute upper expectations over it,
while extending it to an infinite set of acts would be trickier.

From the experimental perspective, we compared the minimax and max-
imin criteria and their greedy approximation on generated sets. Overall,
both algorithms perform better than their greedy approximation. We also
observed that the maximin criteria can capture all maximal elements faster
than the minimax criteria and is more consistent with the maximality deci-
sion rule. However, the computational complexity of our proposed algorithm
for maximin criteria is much harder than for the minimax criteria, as we
showed that the former requires to solve an NP-complete problem, while the
latter can be solved in polynomial time. This drawback is however of limited
importance for small values of k. So, one should clearly prefer the maximin
approach as long as it is computationally affordable, and otherwise take the
minimax approach.

Note that whilst we are not aware of other works considering the specific
problem of delivering at most k alternatives when modelling uncertainty as
a credal set, some works provide methods and ideas that could easily be
leveraged to do so. A first strand of works in this direction would consist
in considering nested models where the imprecision is controlled by some
parameter, allowing one to go from a precise probability mass function (and
having a unique optimal action) to the full credal set. Jansen et al. [9] con-
sider such a parametric model for imprecisely defined utility functions (that
we assume here well-defined), further discussed by Miranda et al. [16] in
combination with credal set approximation. Those same authors also dis-
cuss the notion of centroid for credal sets [15], and it would be easy to go
from this to the idea of a nested sequence. A second proposal is to associate
an evaluation to each possible maximal and/or E-admissible (a concept we
did not consider here) alternatives [10], to rank-order them according to this
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evaluation and to take the top-k alternatives. Such approaches also appear
legitimate to solve the issue considered in this paper, with a different phi-
losophy. In particular, they would consider alternatives individually, rather
than offering an evaluation for a whole set of alternatives. One risk is then
that potential interactions between alternatives would be ignored, and that
similar alternatives could be selected in the k retained ones (or, in the case
of E-admissibility degrees, that none of a collection of similar alternatives
would be retained, while it would probably be desirable to retain at least
one of those). On the other hand, one advantage over our approach is that
such approaches makes it easier to be coherent with existing decision rules,
and some of them can be solved efficiently. Finally, we also think that re-
gret formulations are well-known and appealing to many researchers, which
is also an argument to develop such methods in addition to others. One of
our future endeavour would be to compare those various approaches, both
from theoretical and practical perspectives, yet this would require to discuss
desirable properties of credal budgeted decision rules, something that is out
of the scope of the current paper.

In other future work, we can look at a more practical perspective, for
example, we may apply these proposed budgeted rules to actual decision
problems such as machine learning with structured outputs or system de-
sign, where the decision maker is limited by human cognitive limits or where
inspecting more closely the different proposed options can lead to a high
monetary cost.
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