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Abstract

This contribution presents a concrete example of uncertainty propagation in a
stereo matching pipeline. It considers the problem of matching pixels between
pairs of images whose radiometry is uncertain and modeled by possibility
distributions. Copulas serve as dependency models between variables and
are used to propagate the imprecise models. The propagation steps are
detailed in the simple case of the Sum of Absolute Difference cost function
for didactic purposes. The method results in an imprecise matching cost
curve. To reduce computation time, a sufficient condition for conserving
possibility distributions after the propagation is also presented. Finally,
results are compared with Monte Carlo simulations, indicating that the
method produces envelopes capable of correctly estimating the matching cost.
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1. Introduction

This contribution presents a concrete example of uncertainty propagation
in the context of photogrammetry, and more specifically in the crucial step of
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matching cost computation [1]. Recent research in this field aims to estimate
the uncertainty associated with dense stereo matching in specific steps of
the pipeline [2, 3, 4], or with end-to-end methods [5]. Those methods either
estimate the uncertainty a posteriori without considering the uncertainty
of the input data, or are not explainable, as for the case of deep-learning
based methods. In [6], authors have estimated the uncertainty using a
precise density function, and adapt their matching strategy to minimize this
uncertainty. Instead, we argue in favor of using imprecise models to represent
the uncertainty regarding our data, due to the noise, partial volume effect
and various processing steps that can affect the images. In this contribution,
we will use belief functions, and more specifically possibility distributions [7],
to model the uncertainty on image intensities. We use copulas to characterize
the dependency between models of uncertainty, and to create multivariate
uncertainty models. The uncertainty is then propagated using a cost function
from classical stereo matching problems. The resulting belief function [8,
9] allows us multiple envelopes with different degrees of plausibility to be
defined, centered on the matching cost computed without uncertainty. Those
envelopes are validated using Monte Carlo simulations with multiple models
of noise on the input images.

Section 2 presents the stereo matching problem and the considered sources
of uncertainty. Section 3 describes the univariate uncertainty models considered
in this study, notably those used on the input images. Section 4 then deals
with the construction of a joint model definition through dependency models
that are copulas. Section 5 explains the method used to propagate the
imprecise models based on copulas and details the specific case of propagation
through a matching cost function. A sufficient condition for conserving
possibility distributions through the propagation is also described. Finally,
we present the resulting belief functions as well as Monte Carlo simulations
for different copulas in Section 6. Note that this paper extends a previously
published paper [10], notably by discussing in more details the relation
between copula and possibility distributions, and by providing complete
experiments on large-scale images, thereby demonstrating the applicability
of the developed models and propagation tools (that are also more detailed)
to actual stereo matching issues.
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2. The Stereo Matching Problem

2.1. Dense Matching

Stereo Matching is one of the main steps when reconstructing 3D models
from pairs of images by photogrammetry. For a complete description and
review of stereo methods, we refer to [1]. In photogrammetry, images of the
same scene are acquired from different points of view, and depth information
of each pixel is retrieved by evaluating its displacement between images.
Figure 1 presents a pair of images and highlights the position of the same pixel
in both images. This displacement is called “disparity”. We consider the case
with two images, referred to as the left and right images. Images are often
rectified so that the displacement of pixels can only occur in one direction,
usually horizontally [11]. This can be a source of uncertainty on pixel values.
The rectification allows us to restrict the search for a pixel’s match to a single
row. The problem could be briefly summarised as follows: given a pair of left-
right images (IL, IR), determine for every pixel pL(i, j) ∈ IL of the left image
the disparity d of position, allowing its homologous pixel pR(i, j − d) ∈ IR in
the right image to be found. By knowing the disparity d of an object, the
displacement B and focal length f of the camera, the depth z of the object
is computed using the following relation:

z =
Bf

d
. (1)

In practice, not all pixels of the left image have a corresponding pixel
in the right image. Some zones can become occluded by an object when
changing the camera’s point of view, or similarly, pixels that where hidden
behind an object in the left image might appear in the right image. Those
occluded zones can be identified a posteriori [12], so we will not consider this
issue here.

2.2. Cost Functions

For each pixel, we evaluate whether pixels of the other image are good
candidates for a match by measuring their similarity. Cost functions measure
the similarity between two patches centered on the pixels that are compared.
Patches are usually squared windows, although other shapes can be considered
[13]. Evaluating the matching cost of a function between a patch in the left
image and a list of potential matches in the right image, gives a cost curve.
In the case where the cost function measures a distance, low values represent
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Figure 1: Homologous pixels in a pair of images

Figure 2: Patch comparison to find the disparity between two images. From top to bottom:
left image patch, patches from the right image, cost curve
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Figure 3: Example of the SAD cost function

a strong similarity, and the correct disparity is determined by finding the
minimum of a cost curve. In the case where the cost function measures
a correlation, the correct disparity is determined by finding the maximum
of the cost curve. In this article, we consider a cost function measuring a
distance, and look for its minimum. An example of this procedure is shown
in Figure 2. The top and middle figures present a patch of the left image and
a row of the right image, where a potential match is sought. The bottom
plot shows the corresponding cost curve, where each patch of the right image
row is compared with the left image patch. The minimum of the cost curve
indicates the correct disparity.

In this article, we will focus on using a basic Sum of Absolute Differences
(SAD) cost function, defined as follows. Given patches WL ⊂ IL and WR ⊂
IR of the same shape with n pixels (usually squares):

SAD(WL,WR) =
∑

(pi,qi)∈(WL,WR)

|IL(pi)− IR(qi)| , (2)

where pi and qi are pixels at the same position i in their patch. For convenience
purposes, we will refer to the Absolute Difference as AD. This cost function

5



is not ideal, but it is preferred here for its didactic properties. An illustration
of the SAD cost function can be found in Figure 3.

An ideal cost function would generate a cost curve with a unique minimum
corresponding to the correct disparity. In practice, such a function is hard
to determine. There is no guarantee that the minimum is unique, nor that
it corresponds to the correct disparity. Different cost functions have been
proposed to better identify the correct match [14], some being robust to
small variations of intensities [15], or determined using advanced method
such as deep learning approaches [16]. We have chosen the SAD method to
focus on simplicity and to ease didactic explanations regarding uncertainty
propagation. Other cost functions can produce better results but with less
facility to explain this paper’s methodology.

2.3. Sources and Modeling of Uncertainty in Stereo Matching

In Section 2.1, we stated that images can be rectified to ensure horizontal
displacement of pixels. It is often the case in remote-sensing, where images
are taken by airplane or satellites [17]. This pre-processing step, added to the
noise of the sensor taking the image, generates uncertainty surrounding the
value of every pixel. Our aim is to propagate this uncertainty through the
matching cost evaluation, in order to have an estimation of the uncertainty
attached to the matching cost of two patches. Knowing this uncertainty can
help in better identifying the correct disparity [6], for instance in the case
where multiple minima of the cost curve exist, a good strategy may be to
select the disparity with the least uncertainty. The following section presents
models of uncertainty used in this contribution.

3. Uncertainty Models

The noise of the sensor and the uncertainty due to the pre-processing
steps make it difficult to specify a precise probability model. Consequently,
an imprecise model is preferred for this problem. Definitions regarding the
imprecise probability framework are now presented.

3.1. Belief Functions

Consider a random variable X defined over a measurable space X . A
probability mass function m over a space X is a mapping P(X) → [0, 1]
satisfying:

m(∅) = 0,
∑
X⊆X

m(X) = 1 , (3)
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where P(X ) is the power set of X . The subsets of X whose mass is strictly
positive are referred with the letter a. For clarity, the exponent of focal sets
will refer to the space or variable they are defined over, and the subscripts
will refer to an order (if it exists). For instance, aX3 refers to the third focal
set of variable X. From a mass function, it is possible to define a belief Bel
and a plausibility Pl function, which are mappings P(X) → [0, 1] defined as:

∀A ⊆ X ,Bel(A) =
∑
a⊆A

m(a) ,

∀A ⊆ X ,Pl(A) =
∑

a,a∩A ̸=∅

m(a) , (4)

Similarly, a belief function can also be interpreted as the lower bound of a
convex set of probability measures M, called a credal set, defined as:

M = {P | P (A) ⩾ Bel(A),∀A ⊆ X} . (5)

3.2. Possibility Distributions on Image Intensities

We work with grayscale images with a quantification of intensity levels in
[0, 255], corresponding to our measurable space X . In this paper, we make the
hypothesis that the value of a pixel cannot be more than 1 intensity level away
from its observed value, and that the observed value is the most plausible.
This is due to the quantification of the observed radiometry into integers, but
it could be extended to also take into consideration the uncertainty resulting
from the rectification step of section 2.1. We keep a simple hypothesis for
didactic purposes. We thus chose to model the uncertainty of the intensity of
every pixel p ∈ IL, IR by a possibility distribution π centered on the observed
intensity ip:

π(ip) = 1, π(ip ± 1) = α , (6)

with α ∈ [0, 1]. ± means that we consider both the plus or minus values. In
our simulation, α = 0.3 for pixels in the left image, and α = 0.4 for pixels in
the right image. We use different values of alpha for the left and right image
because the uncertainty model could change from one image to the other,
due to a different exposure, different noise or different calibration of our
camera. This model is equivalent to state that we accept every probability
with support in [ip − 1, ip + 1] and whose probability measure P verifies
{P (A) ⩽ supi∈A π(i)} as an acceptable model for our uncertainty. It has been
shown [7] that to every possibility distribution corresponds a minitive belief
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function (also called a necessity function) whose mass distribution function
for every focal set ap is in our case:

mp(a
p
1 = [[ip, ip]]) = 1− α ,

mp(a
p
2 = [[ip − 1, ip + 1]]) = α , (7)

with [[·, ·]] referring to integer intervals. In particular, [[ip, ip]] correspond to
the singleton {ip}

It is noteworthy that in this problem of disparity estimation, we only
consider the uncertainty of our input image intensities, but do not consider
the uncertainty regarding our cost function’s ability to correctly identify
the true disparity as its minimum. In other words, we don’t take into
consideration the uncertainty resulting from the difference between “two
patches are very similar” and “the pixels at the center of the patches are
homologous”. To better illustrate this, consider a case where two pixels
should be matched, but the pixels in the patches surrounding them are
dissimilar. Then the cost function between those two patches would be high,
and there can be another patch with a lower cost function that would be
wrongly selected as it is the minimum of the cost curve.

4. Joint Uncertainty Models

4.1. Copulas as Dependency Models

When propagating probability densities, one has to take into account the
dependency between the different sources of uncertainty. Copulas are great
tools to model the dependency between variables, as it has been shown that
they can represent any kind of probabilistic dependency [18]. A copula, or
N -copula, is a mapping C : [0, 1]N → [0, 1] satisfying a number of properties
[19] expressed here in the N dimensional case. For all k in [[1, N ]] and for all
(u1, . . . , uN) in [0, 1]N :

C(u1, . . . , uk−1, 0, uk+1, . . . , uN) = 0 , (8)

C(1, . . . , 1, uk, 1, . . . , 1) = uk . (9)

It also needs to be N -increasing, meaning that for all U = (u1, . . . , uN) in
[0, 1]N , and for all V = (v1, . . . , vN) in [0, 1]N , such that ∀k ∈ [[1, N ]], uk ⩽ vk:∑

(w1,...,wN )∈
⊗k{uk,vk}

(−1)|{k | wk=uk}|C(w1, . . . , wk) ⩾ 0 , (10)
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with ⊗ representing the Cartesian product of sets, and | · | corresponding to
the cardinal of a set. The left term of the previous inequality is also called the
hyper-volume or H-volume of the copula. The inequality then reads as the
H-volume of the copula of every segment of the unit hypercube is positive.

A copula can also be interpreted as a multivariate distribution function
whose marginals are uniform on the unit interval.

Some famous copulas include:

• The product copula representing independence:
CΠ = Πkuk

• The upper Fréchet-Hoeffding bound representing complete co-monotonicity:
Cmin = mink uk

• the Gaussian copula with correlation matrix R:
CR = ΦR(Φ

−1(u1), . . . ,Φ
−1(uN)), where ΦR is the joint multivariate

distribution function of a Gaussian variable with correlation matrix R,
and Φ−1 is the inverse distribution function of a univariate Gaussian
variable.

Sklar’s theorem states that every multivariate cumulative distribution
function (CDF) G : ⊗kXk → [0, 1] can be expressed by means of its marginal
CDFs Fk : Xk → [0, 1], k ∈ [[1, N ]] and a copula C:

G = C(F1, . . . , FN) . (11)

The reverse implication is also true, meaning that joining any number of
univariate CDFs with a copula returns a correctly defined multivariate CDF.

4.2. Building Joint Belief Functions with Copulas

In the following paragraph, we will explain how we use copulas to join
the uncertainty models. Let us first explain it in the precise case. Let
X = x1, . . . , xNX , Y = y1, . . . , yNY and Z be three discrete spaces, and let
X, Y be two discrete random sets taking values in X ,Y respectively, with
respective CDFs FX : X → [0, 1], FY : Y → [0, 1] and whose dependency can
be represented by a copula C. To avoid heavy notations, we will refer to
Hu2,v2

u1,v1
as the H-volume of the copula C over [u1, u2]⊗ [v1, v2] ⊆ [0, 1]2. Then

we know that the joint probability mass distribution p : X ⊗ Y → [0, 1] is
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defined as

∀(i, j) ∈ [[1, NX ]]⊗ [[1, NY ]],

p(xi, yj) = H
FX(xi),FY (yj)

FX(xi−1),FY (yj−1)
, (12)

with the convention that FX(x0) = FY (y0) = 0.
Let us now consider the case where we do not know the CDFs of X and Y ,

but only the belief functions BelX ,BelY and their associated mass functions
mX : P(X ) → [0, 1],mY : P(Y) → [0, 1]. Joining belief functions can be done
in a similar manner as in (12), replacing the CDFs by cumulated masses [20].
In order to do so, we need to fix an arbitrary order over the focal sets of mX

and mY . Let us suppose we have such an order and that the focal sets of mX

are {aX1 , . . . , aXNX
a
} and those of mY are {aY1 , . . . , aYNY

a
}. Then the joint mass

for X and Y is defined as:

mXY (a
X
i , a

Y
j ) = H

∑i
k=1 mX(aXk ),

∑j
k=1 mY (aYk )∑i−1

k=1 mX(aXk ),
∑j−1

k=1 mY (aYk )
. (13)

We refer to a previous publication for details about this method and
details on other ways of aggregating credal sets with a copula, as well as the
importance of the order over focal sets [21]. Detailed work on joining random
sets and with copulas can be found in [8, 9].

An important thing to note here is that a copula does not bare the same
meaning when used with precise models in (12) and when used with imprecise
models as in (13). In the precise case, the copula will encode the dependency
between the values of the random variables. For instance in the case of co-
monotonicity inside an image patch, using the minimum copula Cmin would
mean that a high value of a pixel is strongly correlated to high intensities of
neighbouring pixels. In the imprecise case and according to our definition,
the copula will encode the dependency between degrees of belief regarding the
values of random sets (supposing that there exist such underlying random sets
behind our models). Using the minimum copula Cmin in that case indicates
that a high belief regarding a pixel’s intensity is correlated to a high belief
regarding its neighbours. However, the confident values of pixels could be
very low and very high, which would not be the case using equation (12).

4.3. On copulas, possibility distributions and inclusion

Properties regarding copulas can be sometimes difficult to grasp, even
more when they are used to join imprecise models such as possibilities. We
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explore here some observations to better grasp the behaviour of copulas in
an imprecise setting. We aim to be as didactic as possible, in order to avoid
any misconceptions regarding the use of possibilities and copulas.

We look in particular to relations of inclusions/dominance one could think
hold in general. This seems quite natural, given the nested nature of the focal
sets of possibility distributions. We however show in this section that many
such intuitions are actually invalid.

4.3.1. Domination relation on copulas does not propagate to possiblities

Contrary to what one could think, a domination relation on copulas does
not create a domination relation on joint possibilities. Statement such as
“C ′ ≤ C then π′ ≤ π” cannot be made. Let us illustrate this with an
example, by taking two symmetrical uni-modal possibility distributions, and
propagating them with a copula C and a mapping f . Let x, y, δx, δy be reals
such that δx > 0 and δy > 0. Let X, Y be two random sets with mass
functions mX ,mY , noted:

mX([x, x]) = mX
1 , mY ([y, y]) = mY

1 ,
mX([x− δx, x+ δx]) = mX

2 , mY ([y − δy, y + δy]) = mY
2 .

These mass functions induce two symmetric uni-modal possibility distributions,
which can be propagated into another possibility distribution using a copula
C and a linear combination f : R × R → R (see Section 5.3 for details on
why the linear combination yields a possibility distribution). The joint mass
mXY can be computed using C and the natural order on focal sets of mX

and mY :

mC
XY ([x, x]× [y, y]) = C(mX

1 ,m
Y
1 ) ,

mC
XY ([x− δx, x+ δx]× [y, y]) = mY

1 − C(mX
1 ,m

Y
1 ) ,

mC
XY ([x, x]× [y − δy, y + δy]) = mX

1 − C(mX
1 ,m

Y
1 ) ,

mC
XY ([x− δx, x+ δx]× [y − δy, y + δy]) = 1−mX

1 −mY
1 + C(mX

1 ,m
Y
1 ) .

Computing the corresponding possibility πC
f(X,Y ) is achieved by looking

at the Plausibility function

πC
f(X,Y )(f(x, y)) = Pl(f(x, y)) =

∑
A | (x,y)∩A ̸=∅

mC
XY (A) .
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Consider events [x − δx, x + δx] × [y, y] and [x, x] × [y − δy, y + δy]. For
simplicity, let say that a, b, c, δx, δy are all positive and:

f(x, y) = ax+ by + c

Then,

f([x− δx, x+ δx]× [y, y]) = [ax+ by + c− aδx, ax+ by + c+ aδx]

f([x, x]× [y − δy, y + δy]) = [ax+ by + c− bδy, ax+ by + c+ bδy]

The results are two intervals with the same center ax+ by+ c, and with sizes
2δx and 2δy respectively. There necessarily is an inclusion relation between
them, and we will only deal with the first one as the second inclusion is
similar. The same results hold for any real value of a, b and c.

If f([x−δx, x+δx]× [y, y]) ⊆ f([x, x]× [y−δy, y+δy]), then in particular:

πC
f(X,Y )(f(x± δx, y)) = 1− C(mX

1 ,m
Y
1 )

πC
f(X,Y )(f(x± δx, y ± δy)) = 1−mX

1 −mY
1 + C(mX

1 ,m
Y
1 ) .

The case where the inclusion is reversed is similar. Evaluating those values
for two copulas C,C ′ such that C < C ′, we remark that:

πC
f(X,Y )(f(x± δx, y)) > πC′

f(X,Y )(f(x± δx, y)) ,

πC
f(X,Y )(f(x± δx, y ± δy)) < πC′

f(X,Y )(f(x± δx, y ± δy)) ,

simply because the possibility degree πC
f(X,Y )(f(x± δx, y)) is decreasing with

C(mX
1 ,m

Y
1 ), while it is increasing in the same variable for for πC

f(X,Y )(f(x±
δx, y ± δy)), meaning that domination properties on the copulas are not
transferred to the possibilities.

4.3.2. Applying copulas to mass functions against point-wise application

Equation 5 reminds us that a mass function can also be interpreted as a set
of probability M. When considering possibility distributions π1 and π2 and
their associated probability sets M1 and M2, one is tempted to think that
applying a copula as in Equation 13 could have some inclusion relationship
with a point-wise application of the same copula to M1 and M2. After all,
such a relation is known to hold for the product copula [22], as well as for
all copulas in the case of p-boxes [9]. It is however shown in this same later
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paper that this inclusion is generally not true. The next counter-example
shows that this is also the case for possibility distributions. Consider the
same distributions

mX([x, x]) = mX
1 , mY ([y, y]) = mY

1 ,
mX([x− δx, x+ δx]) = mX

2 , mY ([y − δy, y + δy]) = mY
2 .

as before. Let us now consider the copula C = min, giving when we apply it
as in Equation 5 the joint mass

mC
XY ([x, x]× [y, y]) = min(mX

1 ,m
Y
1 ) ,

mC
XY ([x− δx, x+ δx]× [y, y]) = mY

1 −min(mX
1 ,m

Y
1 ) ,

mC
XY ([x, x]× [y − δy, y + δy]) = mX

1 −min(mX
1 ,m

Y
1 ) ,

mC
XY ([x− δx, x+ δx]× [y − δy, y + δy]) = 1−mX

1 −mY
1 +min(mX

1 ,m
Y
1 ) .

If we compute the belief of the event {x} × {y}, this gives

Bel({x} × {y}) = mC
XY ([x, x]× [y, y]) = min(mX

1 ,m
Y
1 ) . (14)

Now, let us consider the two probability distributions pX(x) = mX
1 , pX(x +

δx) = mX
2 and pY (y) = mY

1 , pY (y − δy) = mY
2 . Applying copula C = min to

this gives the joint probability:

pCXY ({x} × {y − δy}) = min(mX
1 ,m

Y
2 ) ,

pCXY ({x} × {y}) = mX
1 −min(mX

1 ,m
Y
2 ) ,

pCXY ({x+ δx} × {y − δy}) = mY
2 −min(mX

1 ,m
Y
2 ) ,

pCXY ({x+ δx} × {y}) = 1−mX
1 −mY

2 +min(mX
1 ,m

Y
2 ) .

The joint value pCXY ({x} × {y}) = mX
1 − min(mX

1 ,m
Y
2 ) can be lower than

Equation (14), depending on the values of mX
1 ,m

Y
1 ,m

Y
2 . For instance taking

mX
1 = 0.1,mY

1 = 0.9,mY
2 = 0.1 yields:

pCXY ({x} × {y}) = 0.1−min(0.1, 0.1) = 0 ,

Bel({x} × {y}) = min(0.1, 0.9) = 0.1 .

This shows that there will be in general no inclusion between the joint models
obtained from a mass-wise and a point-wise applications of copulas in the
case of possibility distributions. Another example of this can be found in
Example 6 from [9], which also contains additional insights on the inclusion
when the copula verifies symmetric properties.
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5. Using Copulas to Propagate Uncertainty

5.1. Propagating the Uncertainty using Multivariate Belief Functions

Let f : X ⊗Y → Z be a mapping and we define the random variables Z
as Z = f(X, Y ). In a precise setting, the probability mass distribution pZ of
Z is:

∀z ∈ Z, pZ(z) =
∑
x,y

z=f(x,y)

p(x, y) . (15)

Determining every (x, y), whose image by f equals z, is not always trivial.
This becomes even more complex when we are considering copulas with
N > 2 variables. Note that the H-volume is a sum of 2N terms, which
also increases exponentially with the dimension. In the continuous case, the
H-volume is replaced with the density h of the joint CDF, and the density
of Z is:

pZ(z) =

∫
X

∫
Y
h(x, y)Ind(f(x, y) = z)dxdy , (16)

where Ind is an indicator function.
The same principle can be used with belief functions instead of precise

probability distributions. Given the joint mass distribution function constructed
with the copula, it is then possible to compute the mass distribution function
of a random set Z:

∀aZ ⊆ Z,mZ(a
Z) =

∑
aXi ,aYj

aZ=f(aXi ,aYj )

mXY (a
X
i , a

Y
j ) . (17)

As in the precise case, computing the image of f for every pair of focal sets
(aXi , a

Y
j ) is not always trivial.

5.2. Uncertainty Propagation through the SAD Cost Function

To illustrate how to propagate the uncertainty using belief functions and
a copula, we will present in this section the case of the uncertainty related
to the SAD cost function.

The SAD is computed between two 3× 3 windows WL,WR. We use the
mass distribution mp of Equation (7) to represent the uncertainty of each
pixel p. For every pair of pixels p ∈ IL, q ∈ IR, we note ADpq = |ip − iq|.
There exists 3 focal sets related to the AD:
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• aAD
1 is obtained by computing the AD of ap1 and aq1

• aAD
2 is obtained by computing the AD of ap2 and aq1 or ap1 and aq2

• aAD
3 is obtained by computing the AD of ap2 and aq2

To compute their exact image through the AD, we need to take into account
the non-monotonicity of the absolute value around 0:

aAD
1 = [[ADpq, ADpq]] ,

aAD
2 = [[ADpq − 1, ADpq + 1]] if ADpq > 0 ,

= [[ADpq, ADpq + 1]] otherwise ,

aAD
3 = [[ADpq − 2, ADpq + 2]] if ADpq > 1 ,

= [[ADpq − 1, ADpq + 2]] if ADpq = 1 ,

= [[ADpq, ADpq + 2]] otherwise .

Obtaining the final SAD is easier as the bounds of each interval can be
simply summed. The mass mSAD of each focal set of the SAD is computed
using Equations (13) and (17). The dependency between all of the pixels is
represented by a Gaussian 9-copula.

5.3. Reducing the Computation Time of Exact Propagation

Determining the SAD focal sets bounds is an easy task. Computing
the joint mass over two 3 × 3 windows is not as easy. The H-volume
is now computed for a 18-copula, which is a sum of 218 terms. Because
the uncertainty of each pixel is represented by 2 focal sets, there are 218

combinations of focal sets to evaluate for the two 3 × 3 windows. A way of
reducing the computation time is to take advantage of the fact that the focal
sets derived from a possibility distribution (or equivalently from its necessity
measure) form a nested family of sets. In the general case, propagating two
necessity measures NecX : P(X ) → [0, 1], NecY : P(Y) → [0, 1] through a
mapping f : X × Y → Z with a copula C does not yield a necessity measure
but “only” a belief function. For the special case where NecX ,NecY are
defined by symmetric uni-modal possibility distributions (typically triangular
possibilities), and f is a monotone function applied to a linear combination
αX + βY + γ of X and Y , (α, β, γ) ∈ R3, then the focal sets of Z = f(X, Y )
form a nested family of sets, which is characteristic of necessity measures
[23]. Indeed, the focal sets of NecX ,NecY are families of nested sets that can
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be written as ([X±∆xi]), ([Y ±∆yj]), with X ∈ X , Y ∈ Y and (∆xi), (∆yj)
positive scalars. The focal sets of the linear combination of αX+βY +γ are
of the form:

aij = [αX + βY + γ − (|α|∆xi + |β|∆yj),

αX + βY + γ + (|α|∆xi + |β|∆yj)] ,

and is a nested family of sets. Applying a monotone function to those focal
sets will keep the nesting property (but not their symmetry), which results
in BelZ being a necessity measure. For more advanced functions such as
multiplication, exponentials, sigmoids, etc. . . , this property is not always
true (it is easy to find examples where the nesting property is not retained
for BelZ), as shows the next example.

Example 1. Consider the function f(x, y) = (x2 + 1) + (y2 + 1), and the
following mass functions

mX([0]) = mX
1 , mY ([1]) = mY

1 ,
mX([−2, 2]) = mX

2 , mY ([0, 2]) = mY
2 .

After propagating through the product function, one gets:

mC
XY (f([0], [1])) = mC

XY ([3]) = C(mX
1 ,m

Y
1 ) ,

mC
XY (f([−2, 2], [1])) = mC

XY ([3, 7]) = mY
1 − C(mX

1 ,m
Y
1 ) ,

mC
XY (f([0], [0, 2])) = mC

XY ([2, 6]) = mX
1 − C(mX

1 ,m
Y
1 ) ,

mC
XY (f([−2, 2], [0, 2])) = mC

XY ([2, 10]) = 1−mX
1 −mY

1 + C(mX
1 ,m

Y
1 ) .

The output focal sets do not form a nested family, and thus the mass function
mC

XY defines a belief function that is not a necessity function.

This property can be used to simplify and reduce the computations of
focal sets bounds and their masses in the case where all of the AD are superior
to 2 (to avoid the non-monotonicity of the absolute value around 0). In the
case where the focal sets are nested, it holds that for every focal sets aXi , a

Y
j

of NecX ,NecY [21]:

BelXY (a
X
i , a

Y
j ) = C(NecX(a

X
i ),NecY (a

Y
j )) , (18)

hence the joint belief function can be computed solely with the marginal
masses of NecX and NecY and the copula. There is no need to compute the
joint mass, thus avoiding the computation of the H-volume with (10).
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5.4. Reducing the number of operations during simulation

When joining multiple sources of uncertainty, the number of operations
needed to compute the output mass function mout grows exponentially. For
instance, let us consider n sources of uncertainty, each represented by k focal
sets. Here are some factors that can generate difficulties when trying to
compute mout:

• there are kn output focal sets for which the mass mout needs to be
computed.

• Every value of mout is being computed using the H-volume of a n-
copula. The H-volume is the sum of 2n evaluation of its copula.

• For copulas for which only the density is known, such as the Gaussian
copula, each evaluation of the copula is a result of the integration of a
n variate function. This can quickly become quite costly.

In our experiments, the images have a size of 375 × 450 and the disparity
interval is [−60, 0]. We therefore compute more that 107 belief functions.
Each belief function is the result of joining the uncertainty of n = 2×3×3 =
18 pixels, possessing only k = 2 distinct focal sets. In total, more than
107 × (2 × 2)18 integration of 18 variate functions needs to be integrated,
which takes large amounts of time, even when maximizing the parallelization
of the code. To give an order of magnitude: computing a gaussian copula
of dimension 18 takes around 20 seconds on a AMD EPYC 7713 64-Core
Processor with 2GHz, using Python and the SciPy library. It is however
possible to take advantage of some properties of our models and of the copula
to drastically reduce the computation time.

Firstly, if we can split the variables in multiple independent sets, then
the H-volume can be computed more efficiently. This is due to the following
property:

Proposition 1. If a n-copula C can be expressed as the product of a k-
copula C ′ and a n − k-copula C ′′, then the H-volume of C is the product of
the H-volume of C ′ and the H-volume of C ′′.

Proof. LetX1, . . . , Xn be n real random variables, and C a n copula representing
their dependency. Let assume that there is a k ∈ N such that X1, . . . , Xk are
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independent from Xk+1, . . . , Xn. Then there exists to copulas C ′, C ′′ such
that:

C(X1, . . . , Xn) = C ′(X1, . . . , Xk)× C ′′(Xk+1, . . . , Xn) .

Let (xi, xi)1⩽i⩽n ∈ R2n such that ∀i ∈ [[1, n]], xi ⩽ xi. Computing the product
of the cost volume of C ′ and C ′′ yields:

H ′x1,...xk

x1,...xk
×H ′′xk+1,...xn

xk+1,...xn
=

 ∑
(xi)∈Πk

i=1{xi,xi}

(−1)#{xi | x=xi}C ′(x1, . . . , xk)


×

 ∑
(xj)∈Πn

j=k+1{xj ,xj}

(−1)#{xj | x=xj}C ′′(xk+1, . . . , xn)


=

∑
(xi)∈Πk

i=1{xi,xi}

×
∑

(xj)∈Πn
j=k+1{xj ,xj}

(−1)#{xi | x=xi, i⩽k}

×(−1)#{xj | x=xj , j>k}C ′(x1, . . . , xk)C
′′(xk+1, . . . , xn)

=
∑

(xi)∈Πn
i=1{xi,xi}

(−1)#{xi | x=xi}C ′(x1, . . . , xk)

×C ′′(xk+1, . . . , xn)

= Hx1,...xn
x1,...xn

Extending this result to any number of independent subsets of {X1, . . . , Xn}
is straightforward. This allows to reduce the computation of the H-volume
for high dimensions. Take as an example a split into two sets of j and j − n
elements. The H-volume is now computed by evaluating a j-copula 2j times,
and a n − j copula 2n−j times instead of a n copula 2n times. For density
based copulas such as the gaussian copula, it also shifts the problem from
integrating a n dimension function into the integration of two lower dimension
functions. Using an AMD EPYC 7713 64-Core Processor with 2GHz and the
SciPy library for Python, it takes 20 seconds to compute a 18-gaussian-copula
but only around 1 second to compute a 9-gaussian-copula.

Another way of reducing the computation time in our case is to notice
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that the gaussian copula used with correlation matrices of type:
1 . . . σ . . . σ
...

...
...

σ . . . 1 . . . σ
...

...
...

σ . . . σ . . . 1

 ,

are exchange/permutation symmetrical (i.e., the order between variables
inside the copula does not matter). When every univariate focal sets have
the same mass distribution functions, then:

C(m1,m1,m2) = C(m1,m2,m1) = C(m2,m1,m1) .

For every pixel of the same cluster of j pixels, we thus only need to evaluate
the copula j + 1 times instead of 2j.

6. Resulting Envelopes and Monte Carlo Simulations

We have presented the tools used for propagating belief functions through
the cost function. This section details the construction of the correlation
matrix for the Gaussian copula, and how envelopes were computed from
the propagated belief function. We also generate samples from different
noise models with a dependency specified by the product and Gaussian
copulas. This noise is added to the input images, and we apply the Monte
Carlo method to generate multiple “noised” cost curves. Those curves are
compared to the envelopes to determine if the propagated belief functions is
able to correctly characterize the uncertainty.

6.1. Sampling from Copulas

In our case, we want to model with a copula the dependency between the
random intensities of two pixels: one in the left image, and one in the right
image. We propose to model their dependency with the product copula if the
pixels are not from the same physical object (meaning that the value of their
intensities are independent), and by a Gaussian copula with a covariance

matrix
( 1 σobj

σobj 1

)
, σobj ∈ R+, if they belong to the same physical object

in the scene. A segmentation of the image based on the ground truth of
the disparity is used to determine if two pixels belong to the same object.
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As we validate our method using Monte Carlo simulations in Section 6, we
need to be able to sample random vectors from a copula. We now detail a
method for sampling from copulas in general and a method for sampling from
the Gaussian copula. Given a copula C, and two cumulative distribution
functions FX and FY , the method used to generate a pair of observations
(x, y) from a joint CDF C(FX , FY ) is the following:

• Sample two independent samples u1, u2 from a uniform distribution on
[0,1]

• Set v = ∂C−1(u2) where ∂C
−1 is the quasi-inverse of the partial derivative

of C regarding its first variable (which exists almost everywhere and is
invertible).

• (u1, v) each follow a uniform distribution on [0, 1], and their associated
copula is C

• The desired pair is (x1, x2) = (F−1
X (u1), F

−1
Y (v)), with F−1

X , F−1
Y being

the quasi-inverses of the marginals CDFs.

Details of this method in the N -dimensional case can be found in [24].
Simulation draws from the Gaussian N -copula with correlation matrix R
are simpler to obtain:

• Compute the Cholesky decomposition A of the correlation matrix R

• Draw N independent random samples u = (u1, . . . , uN)
′ from N (0, 1)

• Set v = Au

• Set wk = Φ(vk) where Φ is the univariate normal cumulated distribution
function

• The desired draw is (x1, . . . , xN) = (F−1
1 (w1), . . . , F

−1
N (wN)) with F−1

k ,
being the quasi-inverse of the k-th marginal CDF.

6.2. Constructing a Correlation Matrix for the Gaussian Copula

Section 6.1 presented our aim to sample from copulas to validate the
computed envelopes. The current section details the construction of the
Gaussian copula which will be used. The Gaussian copula is parameterized
by a correlation matrix R. The correlation between the uncertain sources
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is based on a segmentation S : (IL ∪ IR) → [[0, K]], K ∈ N, of the images,
performed on the ground truth disparity of each pixel. Given two pixels
(p, q) ∈ (IL ∪ IR)

2, their covariance is determined by:

cov(p, q) =


1 if p = q ,

ρk, if p ̸= q and S(p) = S(q) ,

0, otherwise .

(19)

The segmentation containsK = 8 different clusters, and for every k in [[0, K]],
ρk is assigned an arbitrary value between 0.9 and 1.

We can thus build a correlation matrix R for all pixels of (IL ∪ IR), and
sample a perturbation on all of the pixels using a Gaussian copula with this
correlation matrix. The Gaussian 2−copula and Gaussian 9−copula are used
to model the dependency between masses in the uncertainty propagation step
and their correlation matrix is also constructed using Equation (19).

6.3. Envelopes from the Propagated Belief Function

To illustrate the propagation of uncertainty with a concrete example, we
used the Middlebury dataset1, consisting of pairs of left-right images with
the correct disparity map available. An example of an image pair from
this dataset is presented in Figure 1. For every pixel in the left image,
we computed its SAD cost curve, while propagating the uncertainty model
presented in (3.2). The focal sets representing the uncertainty related to the
SAD value at every considered disparity are intervals containing the “precise”
SAD value. Upper and lower envelopes with different plausibility levels γ
have been computed. They represent the biggest (resp. lowest) focal set
bound a whose plausibility, computed using Equation (4), is above a given
threshold γ: Pl(a) ⩾ γ. There are thus two bounds for every plausibility
level γ. The plausibility threshold 0 is strict Pl(a) > 0 and represents the
support of the SAD. The plausibility threshold 1 coincides with the value of
the cost curve obtained in the “precise setting” (i.e. without considering the
uncertainty).

Figure 4 contains different plausibility levels of the cost curve computed
with the product copula CΠ and a gaussian copula CR. The support of the
SAD (Pl > 0) is the same for both copulas, as both copulas assign non-
null masses to the same focal sets. The plausibility levels are different when

1https://vision.middlebury.edu/stereo/data/scenes2003/
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(a) SAD using the product Copula (b) Zoom of the rectangle in (a)

(c) SAD using the Gaussian Copula (d) Zoom of the rectangle in (c)

Figure 4: Plausibility levels of a cost curve for the product copula CΠ and the gaussian
copula CR. The green vertical line represents the true disparity. The figure on the right
are a zoom of the black dashed rectangle.

considering different copulas, except for γ = 1. This can be observed on
figures 4(b) and 4(d). In the specific case of the product copula CΠ, the joint
mass is easy to compute as it is simply the product of the marginal masses.
As stated previously, the envelopes corresponding to plausibility levels 0 and
1 are the same for both copulas. However, the plausibility levels 0.85 and 0.5
are more concentrated around plausibility level 1 in the case of the product
copula than in the case of the Gaussian copula. The inverse observation can
be done for plausibility level 0.9. By construction, the Gaussian copula CR is
more comonotone than the product copula, which could explain this effect.
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(a) Plausibility levels and Monte Carlo sampling using a gaussian copula

(b) Zoom over the first rectangle (c) Zoom over the second rectangle

Figure 5: Plausibility levels and Monte Carlo sampling for a pixel of the left image
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(a) Plausibility levels and Monte Carlo sampling using a gaussian copula

(b) Zoom over the first rectangle (c) Zoom over the second rectangle

Figure 6: Plausibility levels and Monte Carlo sampling for a pixel of the left image
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6.4. Comparison with Monte Carlo Samplings

Figure 5 and 6 contains plausibility levels and Monte Carlo draws sampled
from the Gaussian copula as in Section 6.1, with marginals uniformly sampled
from the credal sets of 3.2. Different plausibility levels computed with
their respective copula are also plotted. We observe that all Monte Carlo
samplings are correctly contained in the support envelopes. This holds for
both the product and the Gaussian copulas. It appears in Figure 6(c) that
although the different plausibility levels seem to correctly contain the Monte
Carlo samples, they sometimes fail to correctly grasp the fluctuations of the
dispersion of the samples. For instance the Monte Carlo draws are first
dense around disparity −37, then seem to spread around −35, and finally
regather around disparity −32. The plausibility envelopes are more regular
around those disparities. This illustrates that the joint credal set computed
is different from the “true” point-wise credal set described in section 4.3.2.
Despite the differences between those sets, the Monte Carlo sampling suggests
that joining belief functions using a copula can correctly estimate the point-
wise credal set, as in Figure 5(c) or 6(c). A quantitative analysis of this
estimation is presented in Table 1, where the coverage, i.e . the proportion of
Monte Carlo samplings that are contained inside the plausibility envelopes,
is computed for different plausibility levels γ. First and second rows of Table
1 represent the average coverage for pixels in Figures 5 and 6 respectively,
while the last row represent the average global over the whole left image. The
fact that the coverage is always 100% for γ = 0 indicates that every sample
is contained inside the support envelopes. Because we defined the envelopes
as lower and upper bounds of the focal sets with a plausibility superior to γ,
the coverage should be superior to 1− γ, which is indeed the case.

pL = (i, j) γ = 0.9 γ = 0.85 γ = 0.5 γ = 0
(100, 120) 64, 5% 94, 5% 99, 0% 100%
(200, 150) 30, 0% 82, 6% 95, 2% 100%
Global 41, 1% 87, 6% 96, 8% 100%

Table 1: Average coverage for different pixels pL of the left image and plausibility levels γ

6.5. Potential improvement for stereo-algorithms

Computing confidence envelopes for the cost volume provides additional
information on potential matches. This section presents observations supporting
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(a) γ = 0.9, ∆sγ = 4.05% (b) γ = 0.85, ∆sγ = 16.11%

(c) γ = 0.5, ∆sγ = 21.41% (d) γ = 0, ∆sγ = 28.87%

Figure 7: Spatial disposition of potential improvements for different values of γ. Pixels
where improvements can occur appear in blue. Pixels in occluded regions appear in orange.
The background contains the grayscale left image.

the idea that this information has the potential to improve the results of
stereo-matching algorithms.

A popular method for evaluating the performances of stereo-algorithms is
to compute the proportion of pixels (i, j) for which the distance between the
true disparity and the predicted disparity is less than a pixel. By denoting
dtrue(i, j) the true disparity and d̃(i, j) = argmindSAD(i, j, d) the estimated
disparity at position (i, j), this score s is expressed as:

s =
#{(i, j) s.t. |dtrue(i, j)− d̃(i, j)| < 1}

#{(i, j)}
. (20)

Furthermore, for a given plausibility value γ ∈ [0, 1], and for a pixel (i, j) we

26



can define sets of potential disparities Di,j
γ as:

Di,j
γ = {d | SADγ(i, j, d) ⩽ SADγ(i, j, d̃)} . (21)

This is the set of all disparities for which the lower estimation of SADγ for
plausibility γ is inferior to the upper estimation of SADγ for the predicted
disparity. To see if this set contains relevant information, we wan compute
the optimal s1 score that could be obtain using this set of possible disparities:

soptγ =
#{(i, j) s.t. mind∈Di,j

γ
|dtrue(i, j)− d(i, j)| < 1}

#{(i, j)}
. (22)

We define the potential gain as ∆sγ = soptγ −s. Example of optimal scores
and potential gain can be found in Table 2. We can see that the potential
gain for γ = 0.9 is small, but increases rapidly for lower values of γ. We
consider that a pixel at position (i, j) benefits from the method if:

|dtrue(i, j)− d̃(i, j)| ⩾ 1 and min
d∈Di,j

γ

|dtrue(i, j)− d(i, j)| < 1 . (23)

In plain words, a pixel can benefit from the method if the estimated disparity
is more than one pixel away from the true disparity, but there is a pixel
in Di,j

γ that is less than a pixel away from the true disparity. Figure 6.5
displays the spatial disposition of pixels that can benefit from our method.
Pixels in occluded regions who do not have a match appear in orange. Pixels
where improvement can occur appear in blue. We can see that the pixels
with potential improvements are logically positioned in homogeneous areas,
where many disparities have low matching costs (as in Figure 6(a)).

s = 52.87% γ = 0.9 γ = 0.85 γ = 0.5 γ = 0
soptγ 56.92% 66.99% 74.28% 81.75%

∆sγ 4.05% 16.11% 21.41% 28.87%

Table 2: Optimal score and potential gain for different plausibility γ

7. Conclusion

This contribution presents a real-life application of uncertainty propagation
using possibility distributions as models, and copulas to characterize the
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dependency between different random sources. In order to propagate the
uncertainty in the matching step of a photogrammetry 3D pipeline, we
introduce the use of cost functions, and presented a simple model to represent
the sources of uncertainty in input images. The different steps for propagating
the uncertainty are detailed for didactic purposes, with the intention of
highlighting the potential of using imprecise models in concrete cases. Additionally,
a sufficient condition for preserving possibilities (i.e., keeping the focal elements
nested) after the propagation is proposed, which can be used to reduce the
computational time.

Envelopes are deduced from the propagated plausibility functions, which
correctly frame different types of input noise, generated using Monte Carlo
simulations in our empirical studies. Although copulas do not bear the same
meaning when used with precise density functions and when used on mass
functions induced by belief functions, simulations show that the propagated
belief functions allow us to generate correct envelopes which estimate the
possible value of the cost function. We also show that dealing with uncertain
cost functions has the potential to improve the results of stereo matching
algorithms, albeit at the expense of additional uncertainty.

We presented a case of using imprecise probability to estimate the cost
function in a photogrammetry 3D pipeline problem, yet did not consider the
uncertainty stemming from the formulation of the function itself. In short,
we have accounted for uncertainty in the input, and not in the model. It
is however not guaranteed that comparing two patches of images as we did
is sufficient to determine all disparities with certainty. A future work would
consist in taking into account both the uncertainty on the input image and
the uncertainty related to the cost function’s ability to correctly distinguish
homologous pixels. Indeed, this is influenced by many parameters, such
as the choice of the cost function, the size and shape of the windows, the
use of geometric regularization etc. Imprecise models could provide the
necessary tools to correctly process this uncertainty. Another perspective
is to extend this work to more complex cost functions and to other steps
of the 3D pipeline, such as rasterisation of imprecise 3D point clouds or
stereo-rectification of pairs of images.
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