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Abstract. Quantum computers are getting increasingly large and available thanks to some
major technological advancements, but they remain in the realm of NISQ (Noisy Intermediate
Scale Quantum) devices. On such devices, due to the limited connectivity of the physical
qubits, most quantum circuit-based programs cannot be executed without transpilation. This
latter includes an important step, referred to as qubit mapping, which consists in converting
the quantum circuit into another one which best matches the graph of physical qubits taking
into account its limited connectivity constraint.
In this paper, we propose a Parallel Genetic Algorithm to Qubit Mapping (PGA-QM).
The challenge is to minimize the depth of the transformed circuit and the execution time
and error rate consequently. PGA-QM has been experimented using various medium-to-large
scale circuit benchmarks. It is compared against the SABRE heuristic currently implemented
in Qiskit, the IBM’s library for quantum computing. The reported results show that PGA-
QM can provide better solutions and with better consistency than its counterpart while
parallelism greatly reduces its execution time during the transpilation.

1 Introduction

In recent years, quantum computers have become increasingly available, including a growing num-
ber of qubits. Using the principles of quantum physics such as superposition and entanglement,
these systems are promised to offer significant speedup over classical ones for a variety of applica-
tions. While Grover’s search algorithm [9] and Shor’s integer factorization [15] can be cited as two
significant historical quantum-related contributions, other notable advancements include quantum
combinatorial optimization [5,7], quantum machine learning [12], and so forth [10].

However, such promising results, often referred to as the quantum advantage, cannot be easily
achieved without quantum error correction, which would require much more qubits than currently
supplied. Actually, current quantum computers are noisy, and the results of the computations they
return have a non-zero chance of being wrong. To make use of current quantum devices, one needs
to minimize the error rate so that the returned results can be trusted. In addition, like in classical
computing, a quantum program (circuit in this paper) needs to be complied (or transpiled) to be
executable on a device. This transpilation consists in several steps, including gate decomposition
and mapping of the quantum (or logical) circuit on a graph of physical qubits composing a quantum
machine.

This mapping step has a great impact on the error rate of the executed quantum circuit. In this
paper, we investigate this circuit mapping problem referred to in the literature as qubit allocation
problem [16], qubit initialization problem [6] or qubit mapping problem [11,4]. Depending on how
the logical qubits of the circuit are mapped to the physical ones in the hardware, one may need to
add a lot of gates to the circuit to match the hardware connectivity. That will increase the depth
of the circuit, increasing the likelihood of decoherence, thus increasing the error rate of the circuit.
Given that gates are noisy, adding more gates increases the error rate. For these two reasons,
finding a correct mapping can greatly limit the error rate.

The main contributions of this paper are the following:

• We propose a parallel genetic algorithm the solve the qubit mapping problem (PGA-QM). The
parallel contribution is done at the evaluation step of the GA as computing the cost of each
individual is costly (and doable in parallel).
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• We compared the performance of this PGA-QM using various benchmarks, against the cur-
rently used SABRE [11] heuristic supplied in IBM’s Qiskit [13] library for quantum comput-
ing. The reported results highlight the ability of the PGA-QM to outperform SABRE and
find better mappings, albeit at a higher computational cost. The added parallelism limits the
computational expensiveness of the genetic algorithm.

The rest of this paper is organized as follows. Section 2 starts with a brief introduction to
quantum computing followed by a proper formulation of the qubit mapping problem and some
related works. In Section 3, the proposed parallel GA approach in presented. The experimental
protocol and benchmarks are described in Section 4 and the results are discussed in Section 5.
Finally, a conclusion is drawn in Section 6 with some future works.

2 Background, Problem Formulation and Related Works

In this section, we introduce the basic concepts of quantum computing necessary to understand
the qubit mapping problem. Then, a proper problem formulation is given. Lastly, related works
are presented.

2.1 Background

To introduce the problem at hand in this paper, let us give a brief introduction to the main con-
cepts of quantum computing.

Quantum bits While traditional computing relies on bits as the unit of information, quantum
computing relies on quantum bits or qubits. Based on the principles of quantum mechanics, a qubit
can be a superposition of the two basis state denoted |0⟩ and |1⟩. That is, bits are deterministic be-
ing in either one of those states while qubits are in a state |Ψ⟩ = α|0⟩+β|1⟩, where α, β ∈ C can be
normalized such that |α|2+|β|2 = 1. From a theoretical point of view, the basis state |0⟩ and |1⟩ can
be seen as a basis of a vector space, while α and β are the coefficients of the vector |Ψ⟩ in said basis.

Quantum gates An operation on one or more qubit(s) is a quantum gate, similarly to logical
gates in classical computing. Mathematically, quantum gates are unitary operations that trans-
form the current quantum state of the system into another. Being unitary operations, they are
also reversible. For example, the Hadamard gate, usually denoted as H is a very commonly used
single-qubit gate creating a superposition state. The Control-NOT, or CNOT, gate is a two-qubit
gate that creates entanglement. It involves a control qubit and a target one applying the NOT
operation to the target if the control is in the state |1⟩, else leaving the target unchanged. It has
been proven in [3] that the set of all one-qubit gates and the CNOT gate form a universal set of
gates. This means that any quantum operation can be decomposed into a sequence of one-qubit and
CNOT gates. Actually, only a few carefully selected one-qubit gates and CNOT ones are enough
to form a universal set. For that reason, one can consider the CNOT gate as the only multi-qubit
gate without loss of generality.

Measurement The only operation that is not a quantum gate is the measurement. Measure-
ment means observing in which state one or more qubit(s) is (are). With the normalization of
α and β mentioned before, |α|2 and |β|2 are the probabilities of measuring the states |0⟩ and |1⟩
respectively. Due to the properties of quantum mechanics, this measurement operation changes the
quantum state in a destructive way3, meaning that this operation is not reversible and therefore
not unitary. Measurement is the way to obtain some results, usually at the end of the computation.

Quantum circuits One of the most commonly used quantum programming paradigms is based
on quantum circuits. A quantum circuit represents the sequence of gates applied to its qubit(s).
Figure 1 illustrates a four-qubit circuit made of H gates and CNOTs, followed by measurements.
On such a representation of a quantum circuit, each line represents a qubit, and the list of gates

3 One says that the quantum state collapses to the measured state.



Parallel Genetic Algorithm for Qubit Mapping 3

on that same line is the list of operations sequentially applied to that qubit.

NISQ Computers In this paper, Noisy Intermediate Scale Quantum (NISQ) computers are con-
sidered. On these systems, quantum gates and measurements are noisy, meaning there is a non-zero
chance that a gate is wrongly applied or that a measurement does not return the correct state.
They also present a limited number of qubits (< 103) that are scarcely interconnected (see Fig-
ure 2). In theory, when designing a quantum circuit, the CNOT(qi, qj) between two qubits qi ̸= qj
can always be applied. However, on NISQ hardware, qi and qj need to be connected, which is a
strong restriction given the scarcity of the connectivity graph. Finally, on these hardware, a limited
set of gates is feasible in practice.

Circuit mapping To get around these restrictions, a quantum circuit must be transformed into
an equivalent circuit to match the hardware requirement. Gates are decomposed into the basis
gates of the system, and extra SWAP operations are added to match the connectivity. A SWAP
gate is actually made of three consecutive CNOT gates, and exchanges the quantum states of two
qubits. These transformations, and especially the added SWAPs heavily depend on the one-to-one
mapping between abstract circuit qubits and physical ones illustrated in Figure 3. Finding the
mapping leading to the least noisy circuit is known as the Qubit Mapping Problem.

q0 : H • H

q1 : • H

q2 :

q3 : H •
c : /4

0

��
1

��
2

��
3

��

Fig. 1. A 4-qubit quantum circuit made of a some
Hadamard and CNOT gates, a barrier (dashed line)
followed by measurements.

Fig. 2. IBMQ Washington’s connectivity graph

2.2 Problem formulation

Formally speaking, the qubit mapping problem can be formulated as follows. The data include
a circuit of d virtual qubits Q = {q0, . . . , qd−1} and a graph representing the connectivity of a
physical machine made of m ⩾ d qubits P = {p0, . . . , pm−1}. The objective is to find the best
mapping π : Q → P , which can be simply represented by an ordered list of d different integers in
{0, . . . ,m−1}. For example, [1, 3, 0] designates the mapping π(q0) = p1, π(q1) = p3 and π(q2) = p0.

A solution is then made of d ordered integers among m, leading to
m!

(m− d)!
possible mappings in

total. The problem can also be considered as a partial permutation problem.

To each mapping is associated a cost, which is ideally the error rate of the resulting transpiled
circuit. However, the error rate is hard to compute. For that reason, it is common to use other
metrics that influence the error rate instead. In this paper, we consider the depth of the circuit as
the cost function. Essentially, our cost function takes a mapping, i.e. a list of d different integers,
and returns the depth of the transpiled circuit to fit the mapping. The depth of a quantum circuit
is defined as the largest number of gates the quantum device has to execute sequentially to run
the whole quantum program. Another way to view this is to represent the quantum circuit by
regrouping the gates that can be applied simultaneously in one layer. The depth is then the number
of layers.

The depth is chosen among other possible choices, namely, the total cost of circuit transforma-
tions as defined in [16] or the number of additional gates [11]. Let us justify the choice made here.
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Fig. 3. Visual representation of a mapping π of a circuit on the connectivity graph of some quantum
device. Here, π(q0, q1, q2, q3) = (p4, p1, p2, p5), which can be simply represented by [4, 1, 2, 5].

Recall that the goal is to generate a resulting circuit with the lowest possible error rate. This error
rate depends not only on the individual gate error rates but also on the circuit’s execution time,
due to decoherence. Although negligible at our scale, as it takes a microsecond at worst, longer
execution times increase the likelihood of decoherence, leading to an inaccurate quantum state of
the outcome. Minimizing the circuit depth reduces the execution time since each layer is executed
in parallel, which consequently diminishes the risk of decoherence. A lower depth also translates to
fewer SWAP gates as they increase the circuit depth by 3. Moreover, since SWAP gates have a high
error rate4, their number has to be minimized. Hence, a reduced depth addresses both gate-related
errors and decoherence likelihood.

The other previously mentioned choices primarily focus on minimizing added CNOT gates to
lower the circuit error rate given their higher individual error rates compared to 1-qubit gates
(7.524e−3 for CNOT, 2.332e−4 for 1-qubit gates)5. However, these approaches do not directly
reduce circuit depth, and consequently, the risk of decoherence.

2.3 Related works

The qubit mapping problem has been tackled using different approaches in the recent literature.
In [16], an exact algorithm is proposed, but its complexity is too large to be applied to practical
problems. A heuristic search is also proposed to deal with this issue. However, the formulation
of the problem is quite different as the authors considered unidirectional CNOT, meaning that
if the CNOT(qi, qj) is feasible on the hardware, CNOT(qj , qi) is not. To be exact, it is feasible
but demands a “reversal” transformation. Unidirectional CNOTs were the norm at the time the
paper was written (in 2018). On current quantum systems, CNOTs are bidirectional, so the added
difficulty of unidirectionality is no more.

Other heuristic approaches to this problem have been studied. For instance, the SABRE
(SWAP-based BidiREctional) heuristic search [11] is currently implemented in Qiskit [13], a Python
library developed by IBM for quantum computing. This heuristic approach has been developed
with the goal of being efficient while remaining fast to run. This is achieved through greatly re-
ducing the search space and an efficient initial mapping finder. Indeed, heuristic approaches in the
literature have shown to be significantly dependent on the initial mapping they start with.

Duostra (Dual-source Dijkstra) [4] is another fairly recent heuristic contribution designed with
large circuits in mind. Their result compared fairly well with SABRE, but the article mentions
using the optimization level 0 of Qiskit, i.e. the lowest one.

Metaheuristic approaches have also been developed, and coupled with heuristic search operator.
The mapping is found using the metaheuristic while a heuristic search adds the necessary gates to
the circuit according to the previously found mapping. Indeed, in the literature, heuristics often try
to simultaneously find a mapping and, given that mapping, they find the necessary SWAPs to be
performed on the circuit. On the contrary, metaheuristic approaches focus on finding the mapping,
leaving the task of adding gates to a heuristic operator. Namely [17] proposed a simulated annealing
algorithm to search for the mapping as well as as specific look-ahead heuristic search to add the
necessary SWAPs.

4 Recall that SWAP gates are made of three consecutive CNOTs, which have high error rate.
5 https://quantum-computing.ibm.com/
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A genetic algorithm has also been developed in [6]. In this work, the GA finds a good mapping
and the SABRE heuristic adds the necessary gates to match the requirement. Our approach shares
this principle but is actually quite different. While [6] focuses on one type of circuit of different
sizes on different hardware, our study focuses on testing different large scale circuits on one hard-
ware. We also study the potential improvement parallel computing could provide. Indeed, [6] shows
the promising results of the genetic algorithm but the execution gets much longer than the other
approaches, and our contribution aims to lower that time.

Another completely different approach using Deep Neural Network (DNN) has been developed
in [1]. In this paper, the qubit mapping problem is modeled as a classification task instead of an
optimization problem. An important contribution of this work is that the execution time does
not increase with the depth of the input circuit. However, the study was conducted on a 5-qubit
hardware and fairly limited circuit sizes. Moreover, generating data to train the DNN for other
architectures relies on an additional heuristic search.

3 The Proposed Parallel Genetic Algorithm : PGA-QM

GAs are a type of optimization algorithms inspired by nature, where a population of initially
randomly selected individuals evolves throughout a number of generations to find a near-optimal
solution to the problem. A pseudo-code of the parallel GA is given in Algorithm 1 and described
below.

The population P is initialized with randomly selected genes for each individual. In our appli-
cation, a gene is simply the mapping of one qubit, i.e. there are d genes which simply consist of one
integer each. A generation starts with the selection of parents, which consists of randomly selecting
individuals that will be subsequently recombined by a two-point crossover operator (see Figure 4).
A mutation operator is then applied to the newly created population P2, mimicking natural gene
mutations. Here, each gene has a 0.1 probability of being changed to another randomly chosen
value. Finally, the cost of each individual of P2 is evaluated and based on that evaluation, the
population is updated for the next generation. Here, an elitist replacement is considered, that is,
only the best individuals are kept. Note that an early stopping criterion may be used, in particular,
if for several generations, the best solution has not been improved. In this paper, we considered
either no early stopping criterion or a stop after 10 generations without improvement.

Other variations of parameters (crossover type, mutation probability) have been tested to try
and get the best possible results, but no significant differences have been observed.

(a) Two parent mappings : [4, 0, 2, 5] (left) and [1, 0, 7, 4] (right)

(b) Their two offspring mappings after crossover : [4, 0, 7, 5] (left) and [1, 0, 2, 4] (right)

Fig. 4. Illustration of the two-point crossover operator
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Algorithm 1: Pseudo-code of a parallel genetic algorithm

P ← Initialize Population(m, d, pop size) ;
v ← Parallel Evaluation(P );
for i=0, . . . , N do

S ← Random Parents Selection(P, nb new individuals);
P2← Two Point Crossover(S);
P2← Random Mutation(P2);
v2← Parallel Evaluation(P2);
P, v ← Elitist Replacement(P, P2, v, v2);
if Early Stopping Criterion (v,v2) then

break
end

end

To select the best individuals for the next generation, one needs to know the cost of each individ-
ual, i.e. the depth of the quantum circuit transpiled to match the mapping. This evaluation phase is
done in parallel and can significantly reduce the time required for this step, as shown in Section 5.4.

4 Performance Evaluation

4.1 Quantum hardware and circuits

In this section, we describe the benchmarks used in the experiments as well as the experimen-
tal protocol and goals. The operation that transforms the abstract circuit into one that fits the
hardware requirements is known as the transpilation. Qiskit’s transpilation function relies on six
steps6 : initialization, layout, routing, translation, optimization and scheduling. The layout step
is the one responsible to find the best mapping, and our proposed PGA-QM aims to replace that
step, leaving the other steps unchanged for a fair comparison7.

An instance of the problem is partly defined by the architecture of the used hardware. Given
our aim to consider large circuits, and the available resources built-in within Qiskit, we focused our
study on a single architecture, namely, the IBMQ Washington system, whose connectivity graph is
given in Figure 2. On such graph, each vertex designates one qubit, and an edge is present between
two vertices if a CNOT gate can be applied between these two qubits.

The other element to choose to get one instance of the qubit mapping problem is the quantum
circuit to efficiently and effectively deal with. We focused our study on using large circuits of 80
and 120 qubits. These sizes were not chosen randomly. Given that the largest quantum hardware
currently provided in Qiskit is, at the time these experiments are performed, made of 127 qubits,
we considered the mapping of a “medium-sized” circuit (∼ 2/3 of all 127 available qubits are used)
and a “full” one (∼ all 127 available qubits are used). A medium mapping problem leads to a partial
permutation problem while a full one leads to a true permutation problem (partial permutation
problem with d = m).

We considered three different quantum circuits, two of which being taken from [14], the Green-
berger–Horne–Zeilinger (GHZ) and Deutsch-Jozsa (DJ) circuits. The third one we used will be
referred to as GHZALL. Both GHZ and GHZALL lead to the same quantum state at the end,
precisely a state where qubits are either all in state |0⟩ or all in state |1⟩, with probability 0.5 for
each state. However, they achieve this state through two different means. GHZALL connects all
qubits to the same one through CNOT gates while GHZ makes a cascade of CNOT connections
as shown in Figure 5. As we will see in Section 5, this leads to very different results.

6 https://docs.quantum.ibm.com/api/qiskit/transpiler
7 In this paper, we worked using Qiskit 0.43.3
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The three circuits studied have been chosen for their scalability. Actually, since we aimed to
study large circuits, we considered those from [14]. The scalability of the circuits limits the type
of circuits one can use as not all circuits can be extended to large numbers of qubits.

q0 : H • •
q1 :

q2 :

q0 : H •
q1 : •
q2 :

(a) GHZALL with 3 qubits (b) GHZ with 3 qubits

Fig. 5. GHZALL and GHZ circuits

4.2 Objectives of the performance evaluation

The first goal is to evaluate the efficiency and effectiveness of the PGA-QM compared to SABRE.
Given the stochastic nature of the algorithms, each execution is done 30 times and the median of
the best results found was considered. The median is favored over the average since it is not as
sensible to extreme values.

To evaluate the efficiency of our approach compared to SABRE, we considered the execution
times of both approaches and their ratio. As shown in Table 1, three variants of the PGA-QM are
considered varying their three parameters (population size, number of offsprings per generation and
maximum number of generations). These three variants have also been tested with two different
stopping criteria: either all the generations are run, or the algorithm is allowed to stop earlier if
the best solution did not evolve for 10 consecutive generations. The idea behind those various sets
of parameters was to evaluate how impactful they are on both the execution time and quality of
the solutions.

A third comparison one can make is based on the robustness of the approaches. Given their
stochastic nature, they do not always lead to the same result from one execution to another one.
To study the robustness, we considered two statistical metrics: the Inter Quartile Range (IQR) and
Median Average Deviation (MAD). The lower these two values are, the less scattered the results
are and the more robust the algorithm is.

Finally, we studied the speedup provided by the parallel computing part of the PGA-QM,
questioning how much the parallelization actually improved the execution time and how does it
scale.

Table 1. Different set of parameters of the GAs.

# Individuals # Offsprings per generation # Total generation

PGA 1 40 20 30

PGA 2 30 20 30

PGA 3 20 15 35

In this paper, we used the parallel GA implementation provided in the PYGAD [8] Python
library, and compared its performances with SABRE heuristic [11] currently used in Qiskit. Ex-
periments were run on the GRID5000 testbed [2], using a processing node of 2 AMD EPYC 7301
CPUs. Their characteristics are the following: 16 cores/CPU, 2.2GHz base frequency, 64MB total
L3 memory. All codes are available at https://github.com/Jrouze/PGA-QM.

5 Results and Discussion

In this section, we report some experimental results and their discussion. Note that in the following
tables the stop10 rows refer to the variants of PGA-QM with an early stop after 10 generations
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without improvement while the others refer to the variants without an early stopping criterion.

5.1 Depth analysis

Table 2. Median best found depth for all studied quantum circuits and algorithms

Solver GHZALL 80 GHZALL 120 DJ 80 DJ 120 GHZ 80 GHZ 120

PGA1 292 446.5 362 564.5 790 1335.5

PGA2 290.5 451.5 363.5 565 797 1346

PGA3 292 457.5 365 569.5 814.5 1340

SABRE 344 537.5 389.5 618.5 83 844

PGA1 stop10 292.5 459.5 370 568 808.5 1326

PGA2 stop10 297 462 367 568 803.5 1355.5

PGA3 stop10 298 465 375.5 570.5 814 1356.5

Our first analysis is the study of the best mapping each algorithm has found. According to
Table 2 one can observe that the PGA-QM variants can outperform SABRE and find a better
mapping, but not for every type of quantum circuit. Indeed, the PGA-QM variants found better
solutions for the GHZALL and DJ problems, but a worse one for the GHZ instances. One may also
notice that the PGA-QM variants present rather similar results. That can be easily explained by
the fact that they all rely on the same operators at each step. Recall that the differences between
the three variants of PGA-QM are the population sizes and numbers of generations. The similarity
in terms of best result found by each of these variants leads us to conclude that one can lower those
parameters to improve the computational time (see next section) while maintaining the quality of
the found solution. A study of the best parameters of the GAs (crossover, selection and mutation
operators) could likely lead to improving those results.

One thing we have yet to mention is the differences between PGA-QM variant and SABRE
and why one is better than the other depending on the circuit. To explain the differences, we
studied the solutions they returned. Figure 6 illustrates the connectivity graph of the used hard-
ware, where the red-colored qubits are the ones selected to be part of the solution found by either
PGA1 or SABRE for each 80-qubit problems. One can notice that the PGA-QM’s solutions are
scattered while SABRE ones are connected subgraphs of the connectivity graph. This is due to
the SABRE routine that actively searches for connected solutions. It seems that such solutions
are more adapted to the GHZ instances. Therefore, the PGA-QM struggles to outperform SABRE
for those instances because it does not enforce connected solutions. However, the GHZALL and
DJ instances seem to favor scattered solutions and therefore, the PGA-QM finds better solutions
for those instances. The GHZALL circuit requires that all qubits are connected to one particular
qubit (see Figure 5). That means there is a CNOT between qubit j and qubit 0 for all j > 0 while
the GHZ circuit does not present such “overloaded” qubit. Our assumption to explain why the
GHZALL seems to prefer scattered solutions is that the overloaded qubit is easier to connect to
all the others in a scattered mapping, i.e. it required fewer gates to do so. On the other hand, for
the GHZ circuits, a connected mapping works best.

It is especially true for the GHZ 80-qubit circuit since the displayed solution is the global
minimum: a 80-qubit linear subgraph is found. For that particular instance, the PGA-QM leads
to much worse result (10 times SABRE’s one). The reason is, for that instance, there actually is a
solution that requires no circuit transformation and SABRE is able to find that solution because
it looks for it first. Our metaheuristic approach struggles to find such a perfect solution. Our
understanding of this is that the PGA-QM explores the search space reasonably well and finds a
promising region but struggles to find the local minimum of said region. An hybridization of the
PGA-QM with a local search operator could likely help in that regard.
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(a) 80-qubit GHZALL — PGA1 (b) 80-qubit DJ — PGA1 (c) 80-qubit GHZ — PGA1

(d) 80-qubit GHZALL — SABRE (e) 80-qubit DJ — SABRE (f) 80-qubit GHZ — SABRE

Fig. 6. Selected qubits of the solutions found (in red) by either GA1 (a) to (c) or SABRE (d) to (f) of for
each 80 qubits problem.

5.2 Time analysis

From a computational time point of view, the execution of the PGA-QM is up to 65 times slower
than SABRE for the larger (120-qubit) circuits (see Table 3). However, one can notice that reduc-
ing the population size and total number of generations with the early stopping criteria do not
lead to significant worsening of the quality of the produced solutions while it greatly decreases the
execution time. In particular, one can get similar results with a PGA-QM just 35 times slower than
SABRE in the worst studied case. It is still a lot, but the execution time remains reasonable (a few
minutes), and with finer tuned parameters, these results could likely be further improved. Note
that in this section, we only compared PGA-QM with enough parallel threads to compute the cost
of all individuals in parallel. The conclusion one can draw up here is that PGA-QM can outper-
form SABRE and find better mappings, and despite being quite slower, remains computationally
acceptable.

5.3 Robustness analysis

Another comparison that can be made concerns the robustness of both approaches, defined as
their sensibility to randomness. An algorithm is said to be more robust that another one if several
executions return similar results despite stochastic operations. Looking at Table 4, one can notice
that the PGA-QM variants are more robust. It is an important factor to take into account because
a high sensibility to randomness means one can get an “unlucky” bad mapping, leading to a higher
error rate of the corresponding quantum program. PGA-QM tends to fix that by being more robust.
One can also notice that all PGA-QM variants are more robust than SABRE, but our fastest variant
(PGA3 with an early stopping criterion of 10 generations without improvement) is less robust than
our slowest one (PGA1 with a stopping after 30 generations). While the median result of both sets
of parameters is very similar (see Section 5.1), the results with PGA3 are more split around that
median, meaning that the time saved by the faster versions is lost dealing with robustness. However
PGA3, even with early stopping after 10 generations without improvement, remains more robust
than SABRE. Regarding the robustness scale, PGAs exhibit a better performance.
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Table 3. Median time and Ratio (=PGA time/SABRE time) for all studied circuits and algorithms

Solver GHZALL 80 GHZALL 120 DJ 80

Time (s) Ratio Time (s) Ratio Time (s) Ratio

PGA1 182.841 49.074 285.422 64.203 187.749 48.690

PGA2 143.695 38.568 225.280 50.674 133.018 34.496

PGA3 147.355 39.550 232.732 52.351 136.895 35.502

SABRE 3.725 4.445 3.856

PGA1 stop10 110.17 29.570 163.822 36.850 98.008 25.417

PGA2 stop10 78.825 21.156 111.972 25.187 68.503 17.765

PGA3 stop10 72.459 19.448 98.426 22.140 71.798 18.619

Solver DJ 120 GHZ 80 GHZ 120

Time (s) Ratio Time (s) Ratio Time (s) Ratio

PGA1 289.968 61.093 339.5609 1.164 588.809 13.139

PGA2 212.788 44.832 274.653 0.941 496.930 11.089

PGA3 212.439 44.759 284.734 0.976 508.984 11.358

SABRE 4.746 291.703 44.812

PGA1 stop10 151.263 31.869 189.291 0.648 357.661 7.981

PGA2 stop10 115.103 24.251 137.801 0.472 290.116 6.473

PGA3 stop10 96.942 20.425 152.789 0.523 248.505 5.545

Table 4. Inter Quartile Range and Median Average Difference for all studied circuits and algorithms

Solver GHZALL 80 GHZALL 120 DJ 80 DJ 120 GHZ 80 GHZ 120

IQR MAD IQR MAD IQR MAD IQR MAD IQR MAD IQR MAD

PGA1 11.5 5.5 14.75 8.5 8.75 6 12 6 26.75 16.5 49.25 27

PGA2 9.75 4.5 16.5 7.5 6.75 3.5 17.75 8.5 45 25 35 19.5

PGA3 10.25 5 14 7.5 10.25 5.5 15.25 8 32.75 17.5 57.5 34.5

SABRE 21 9 27.5 14.5 22.5 11 27.5 15 0 0 63 34

PGA1 stop10 9.75 5 18.5 9.5 13.75 6.5 22.5 12 27.25 13.5 38.5 19.5

PGA2 stop10 16.5 7.5 13 7 16.5 9 15.75 6.5 43 22 55.5 24.5

PGA3 stop10 15.5 8.5 11.75 7 13.75 7 25.75 32.75 18 49.25 24.5

5.4 Parallel scalability analysis

Lastly, let us discuss the scalability obtained with the parallelization of the PGA-QM for two differ-
ent quantum circuits, the 80-qubit GHZ and the 40-qubit Quantum Fourier Transform (QFT) [14].
As one can notice in Figure 7, the speedup for GHZ reaches only 12.5 over 20 parallel threads. The
two reasons behind this limited scalability are the following. First, the GA is not entirely parallel.
As only the evaluation phase is done in parallel, the serial part negatively impacts the speedup.
Secondly, the evaluation of the cost function is quite fast for the GHZ circuit (∼3 seconds). There-
fore, parallel evaluations speed up the execution moderately as the serial parts remain important.
Another important factor is the irregularity of the application. Given that the parallelization is
done using the Master-Worker model, the workload is likely to be poorly balanced because of the
irregularity of the application.

The QFT circuit is included as an additional problem instance to confirm the irregularity of
the application. While using fewer qubits, this circuit is made of a lot more gates (80 for 80-qubit
GHZ versus 840 for 40-qubit QFT), making the cost function more computationally expensive
(∼40 seconds). Actually we can observe on the right side of Figure 7, the speedup is much better,
reaching 16 over 20 parallel threads. Indeed, with an objective function more computationally
expensive, the parallel part becomes significantly more important than the serial one, leading to a
better speedup. This result indicates that the parallel GA is better suited for larger circuits (with
many gates).
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Fig. 7. Speedup for the PGA-QM for either the GHZ (left figure) or QFT (right figure).

6 Conclusions and Future Works

In this paper, we have proposed a Parallel Genetic Algorithm to solve the Qubit Mapping problem
(PGA-QM). This latter consists in mapping a quantum circuit on a graph of physical qubits
composing a NISQ machine. This mapping is an important step in the transpilation of circuit-
based quantum programs in NISQ computers. The objective is to transform the quantum circuit
into another one which best matches the graph of physical qubits taking into account its limited
connectivity constraint. The challenge is therefore to minimize the depth of the transformed circuit
and the execution time and error rate consequently. The parallel GA has been integrated into the
IBM Qiskit framework, experimented and compared to the SABRE heuristic provided in this latter.
Medium-to-large circuits are considered as benchmarks in the experiments.

The reported results show that our proposed PGA-QM outperforms SABRE on some circuits
in terms of error rate, while it is quite slower. Parallelism played a major role in speeding up the
execution. The parallel scalability depends on the circuit and its size (number of gates). In addition,
while for medium circuits, the parallel GA does not outperform SABRE, it is always more robust,
meaning it more often leads to good mappings while it is not as heavily impacted by unlucky draws.

In the future, we plan to combine PGA-QM with single-solution metaheuristics in a two-level
approach. At the high level, the hybridization will consist in applying a multi-start local search to
the final population produced by the PGA-QM parallel algorithm. At a low level, a local search
will be used as a mutation operator in the GA. A second perspective of this work will consist in
extending the problem formulation to a multi-objective one considering additional cost functions
than the circuit depth.
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