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Abstract Cyclical ground deformation, associated seismicity, and elevated degassing are important
precursors to explosive eruptions at silicic volcanoes. Regular intervals for elevated activity (6–30 hr) have
been observed at volcanoes such as Mount Pinatubo in the Philippines and Soufrière Hills in Montserrat.
Here, we explore a hypothesis originally proposed by Michaut et al. (2013, https://doi.org/10.1038/
ngeo1928) where porosity waves containing magmatic gas are responsible for the observed periodic
behavior. We use two-phase theory to construct a model where volatile-rich, bubbly, viscous magma rises
and decompresses. We conduct numerical experiments where magma gas waves with various frequencies
are imposed at the base of the model volcanic conduit. We numerically verify the results of Michaut
et al. (2013, https://doi.org/10.1038/ngeo1928) and then expand on the model by allowing magma viscosity
to vary as a function of dissolved water and crystal content. Numerical experiments show that gas
exsolution tends to damp the growth of porosity waves during decompression. The instability and resultant
growth or decay of gas wave amplitude depends strongly on the gas density gradient and the ratio of the
characteristic magma extraction rate to the characteristic magma degassing rate (Damköhler number, Da).
We find that slow degassing can lead to a previously unrecognized filtering effect, where low-frequency gas
waves may grow in amplitude. These waves may set the periodicity of the eruptive precursors, such as
those observed at Soufrière Hills Volcano. We demonstrate that degassed, crystal-rich magma is susceptible
to the growth of gas waves which may result in the periodic behavior.

1. Introduction
Periodic cycles of ground deformation, seismicity, and rapid dome-building eruptions have been observed
at silicic volcanoes and are considered to be precursors of explosive eruptions. For example, both Mount
Pinatubo in the Philippines and Soufrière Hills in Montserrat experienced periodic cycles of ground defor-
mation and seismicity in 1991 and 1996–1997, respectively, with periods of about 10 hr at both volcanoes
(Denlinger & Hoblitt, 1999; Lensky et al., 2008; Mori et al., 1996; Voight et al., 1999). Following the major
eruption of 1991, Pinatubo experienced an increase in low-frequency seismicity, developing cyclic behav-
ior with periods of 7–10 hr. At Soufrière Hills Volcano, the periodic activity was observed prior to episodes
of rapid dome-building and major eruptive events. For examples of low-frequency seismicity observed at
Pinatubo and Soufrière Hills Volcano, see Figure 1.

Several mechanisms for controlling this phenomenon have been proposed, including the stick-slip behavior
of a crystalline plug atop the magma conduit (Anderson et al., 2010; Girina, 2013; Lensky et al., 2008; Mori
et al., 1996; Voight et al., 1999). Periodic behavior has also been observed at other silicic volcanoes such as
Volcan Santiaguito in Guatemala, where it is interpreted that magma flow, gas exsolution, and segregation
pressurize a shallow region of the volcanic system beneath the vent (Johnson et al., 2014) or Sakurajima in
Japan where the crystal-rich plug hypothesis remains the preferred explanation (Yokoo et al., 2013). As an
alternative explanation for the cyclical occurrence of low-frequency seismicity, Michaut et al. (2013) pro-
posed that porosity waves rising in the magma column are responsible for periodic behavior. The origin
of porosity waves in the magma column could be the result of bubble accumulation during convection or
heterogeneity in the magma chamber (Murphy et al., 1998; Parmigiani et al., 2016). Magma gas waves are
effectively subjected to a band-pass filter during their ascent because of competition between gas expan-
sion and compaction of the magma. Specifically, short wavelength gas waves are compressed by magma
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Figure 1. Cycles of high-intensity seismicity observed at two different silicic volcanoes. Real-time seismic amplitude
measurements (RSAM) data are shown for Mount Pinatubo in the Philippines prior to the 1991 eruption and Soufrière
Hills in Montserrat in 1997. At Pinatubo, elevated seismic activity was observed with a periodicity of 7–10 hr. At
Soufrière Hills, periodic low-frequency seismicity was observed with periods of +6 hr. Data were extracted from Mori
et al. (1996) and Voight et al. (1999).

compaction. Conversely, moderately long wavelength waves grow as gas expansion overcomes magma com-
paction. Very long waves do not grow as fast because gas escapes through overlying permeable magma more
readily as it expands. Ultimately, the moderately long gas waves have the fastest growing amplitudes and are
selected—or pass through the filter—eventually inducing the cyclical ground deformation that is observed.

Volatiles dissolved in magma, primarily dominated by water, play a crucial role in volcanic eruptions
(Aiuppa et al., 2017; Huppert & Woods, 2002; Owen et al., 2013). Depressurization of volatile saturated
melt results in the exsolution of volatile components, which increases the buoyancy of the magma column,
thereby enhancing magma ascent (Eichelberger, 1995; Gardner, 2009; Gardner et al., 1995; Gonnermann
& Manga, 2007; Huppert & Woods, 2002; Massol & Jaupart, 1999; Owen et al., 2013; Pistone et al., 2015).
Additionally, increases in magma viscosity associated with degassing inhibit bubble coalescence and poten-
tially limit volcanic degassing (Melnik & Sparks, 1999; Ruprecht & Bachmann, 2010; Sable et al., 2006),
which can be further enhanced by degassing-induced crystallization. On the other hand, increasing gas
exsolution rates or decreasing velocity of magma ascent may allow significant bubble coalescence and lead
to permeable magma and more efficient volcanic degassing. Volcanic conduit models commonly assume
that magma ascent is sufficiently slow such that the diffusion of volatile components into gas bubbles is
not rate limiting and the gas and magma are in equilibrium (e.g., Melnik & Sparks, 1999). However, with
magma ascent and volatile content varying, equilibrium may not always be maintained between gas bub-
bles and magma (Lyakhovsky et al., 1996; Mangan & Sisson, 2000; Navon et al., 1998). Recent, improved
steady-state models for volcanic conduits consider the effects of magma degassing (Aravena & Vitturi, 2018;
Aravena et al., 2017) but do not directly address effects that may arise from time-dependent variations in
volatile exsolution. Although previous studies examine the effects of developing permeability in depres-
surized volatile-rich magma (Klug & Cashman, 1996; Saar & Manga, 1999) and changes in eruption style
associated with changes in vesicularity and volatile content (Burton et al., 2007; Eichelberger et al., 1986;
Woods & Koyaguchi, 1994; Wylie et al., 1999), it remains unclear how the rate of volatile exsolution and
variations in local viscosity would affect the growth of porosity waves proposed by Michaut et al. (2013).

In this manuscript, we construct a theoretical model with the goal of elucidating how volatile release dur-
ing magma ascent may play a role in exciting or dampening long period oscillations in volcanic processes
(e.g., ground deformation). This conceptual model extends the theory of Michaut et al. (2013) to include
disequilibrium degassing and its effect on volatile transport and local variations in magma viscosity. We
use numerical models to examine how a range of volatile exsolution rates affect the growth of magma
gas waves over a large range of wavelengths. We compare new numerical results to the results of Michaut
et al. (2013) and identify an additional mechanism for gas wave selection that arises due to gas exsolution
during magmatic ascent.
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2. Theory
2.1. The Conceptual Model

We begin with a conceptual model wherein porosity waves containing compressible gas rise in a magma
column. Upon arrival at the surface, porosity waves induce pore overpressurization resulting in episodic
disturbances. We extend the theory of Michaut et al. (2013) to include dissolved water in melt exsolving to
the gas phase and the associated effects on vesicularity, buoyancy, and melt viscosity. The magma column is
assumed to be isothermal, due to the large heat capacity of magma (Bercovici & Michaut, 2010) but may be
out of chemical equilibrium; for example, during depressurization, the magma may become supersaturated
in water, which is exsolved into the gas phase. As water is released by the melt, the magma viscosity increases
considerably (Giordano et al., 2008; Gonnermann & Manga, 2007; Hess & Dingwell, 1996). However, we do
not consider melt density variations caused by changes in volatile content, which are on the order of a few
percent (see and references therein Gonnermann & Manga, 2007).

Crystals are present throughout the eruption and contribute to rheological stiffening of the magma, and here
are considered as passive cargo in the melt. If the crystal cargo does not reach a critical threshold, the form
of the equations in theoretical model is not greatly affected. Thus, we neglect crystallization during magma
ascent. Small amounts of crystallization (≪10% by volume) may occur for continuous depressurization over
relevant time scales (3–4 MPa hr−1) for the effusively erupting silicic magma modeled in this study (Befus
& Andrews, 2018). Other anhydrous phases such as pyroxenes will also crystallize during magma decom-
pression. Therefore, crystallization of ≪10% by volume is a lower bound estimate. The potential dynamic
effect of crystallization within our theoretical framework is discussed in detail later. Crystals carried by the
ascending magma do not exchange dissolved water with the magma or gas phase (Barmin et al., 2002).

In previous studies (e.g., Mori et al., 1996; Yokoo et al., 2013) of ultra-low-frequency periodicity, cyclic
behavior is often related to the geometry of the conduit, a stiffened magma in the form of a crystal-rich
plug and the associated friction between them. Thus, it should be expected that, in events sensitive to
the shallow volcano plumbing geometry such as dome collapse, reshaping of the conduit from explosive
events or erosion via viscous dissipation near conduit walls will lead to significant variations in cycle fre-
quency. However, once ultra-low-frequency periodic behavior is established, significant variations in cycle
frequency are not observed. To examine the physics of the system that are insensitive to conduit geometry,
we neglect conduit wall drag and focus on changes in the properties of the magma-gas mixture due to water
exsolution from the melt during ascent. The ascending magma-gas mixture behaves as a shear-thinning,
non-Newtonian fluid that rises in the conduit as a stiff, columnar plug rather than traditional Poiseuille flow
appropriate to describe Newtonian fluids in a pipe (Gonnermann & Manga, 2007; Jellinek & Bercovici, 2011).
Given the shear-thinning nature of the mixture close to the walls and the modest magma ascent rate (e.g.,
∼0.01 m s−1 during effusive periods of dome building at both Pinatubo and Soufrière Hills Volcano; see
Cassidy et al., 2018 and references therein), the effect of wall friction only partially mitigates the buoyancy
forces acting on the magma in the center of the column (Michaut et al., 2009). In this study, we seek to
understand a process by which porosity waves grow or decay as a function of their wavelength. However, we
acknowledge that to construct a full conduit model where magma ascent accelerates significantly, triggering
a change in eruptive behavior, wall drag is an essential portion of the physics that should be considered.

Vesicularity at the base of the conduit may vary owing to convection in the underlying magma chamber,
which promotes bubble accumulation in the crystal poor, top of the underlying magma chamber (Parmi-
giani et al., 2016). The dissolved water content in magma at the base of the conduit may vary slightly due
to heterogeneity within magma chamber, episodic recharge, or uneven degassing from variations in tem-
perature during convective mixing in the porous magma chamber mush (Caricchi & Blundy, 2015; Caricchi
et al., 2014; Cashman et al., 2017; Murphy et al., 1998).

A summary of parameters and calculated scaling quantities tested in numerical models are given in Table 1,
and a schematic of the conceptual model model is shown in Figure 2.

2.2. Basic Equations

The one-dimensional continuity equations for magma and gas are

𝜕𝜌m(1 − 𝜙)
𝜕t

+
𝜕𝜌m(1 − 𝜙)wm

𝜕z
= −Γ, (1)
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Table 1
Symbology, the Full Range of Parameter Values, and Calculated Scaling Quantities Tested in Numerical Models

Variable Description Value Dimensions
[·]′ Superscript indicating dimensionless quantity (−) (−)
z Vertical spatial coordinate (−) m
t Time (−) s
𝜌m Magma density 2,500 kg m−3

𝜌g Gas density (−) kg m−3

𝜌0 Reference gas density, (z = 0) (200, 500) kg m−3

𝜙 Gas fraction (−) (−)
𝜙0 Reference gas fraction, (z = 0) (0.1, 0.3) (−)
rc Characteristic bubble radius (10−5, 10−3) m
𝜙c Gas fraction characteristic bubble radius (10−5, 10−3) m
rb Bubble radius rc(𝜙/𝜙c)1/3 m
wm Vertical magma velocity (−) m s−1

wg Vertical gas velocity (−) m s−1

Pg Gas pressure (−) Pa

Cg Sound speed of gas (650, 1,000) m s−1

Γ Mass transfer (−) kg m−3 s−1

𝜗 Crystal fraction of magma (0, 0.5) (−)
𝜗p Packing volume fraction of crystals (0.6, 0.9) (−)

b Einstein coefficient for dilute suspensions 2.5 (−)
Xl Mass fraction of water dissolved in liquid, (z = 0) (𝜌0∕𝜌m)n (−)
𝛾 Volatile weakening constant for liquid (0, 100) (−)
𝜇wf

l Shear viscosity of water-free liquid (107, 1010) Pa s

𝜇m Shear liquid viscosity (−) Pa s
𝜇g Shear viscosity of gas 10−5 Pa s

𝜇m Shear magma viscosity (−) Pa s
 Pore geometry constant 4/3 (−)
k(𝜙) Magma permeability (−) m2

k0 Reference permeability of magma 10−12 m2

s Saturation coefficient for volatile in magma 4.11× 10−6 Pa−n

n Gas pressure exponent for water solubility 1/2 (−)
 Magma injection velocity, (z = 0) (0.01, 0.1) m s−1

cj Magma-gas drag coefficient (j∈ [D, St]) (−) (Pa s) m−2

cD Darcy drag coefficient 𝜇g/k0 (Pa s) m−2

cSt Stokes drag coefficient (3𝜇l𝜙
1∕3)∕(rc∕𝜙

1∕3
c )2 (Pa s) m−2

𝛿j, 0 Reference compaction length for Darcy or Stokes drag (𝜇wf
m ∕c𝑗 )1∕2 m

ta Characteristic advective time scale 𝛿𝑗,0∕ s

tR Characteristic degassing time scale (10, 105) s
Da Damköhler number ta/tR (−)
 Scaled water saturation of magma sC2n

g 𝜌n
m (−)

X0 Basal volatile content, (z = 0) (𝜌0∕𝜌m)n (−)
𝛼j Magma-gas segregation parameter c𝑗∕(𝜌mg) (−)

𝛽 j Gas compressibility parameter C2
g∕g𝛿𝑗,0 (−)

 Analytical growth rate for linearized governing equations (−) s−1

q Numerical growth rate for full governing equations (−) s−1

Note. Variations in model parameters are noted in text within figures and accompanying captions.
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Figure 2. A schematic diagram for the conceptual model of a silicic volcano and corresponding simplified model
domain. In the conceptual model, magma chamber recharge and convection may lead to small variations in gas
fraction and dissolved water in magma. The magma and gas mixture enters the domain with initial vertical velocity,  ,
gas density 𝜌0, gas fraction 𝜙0, and weight percent of water dissolved in the melt portion of the magma mixture, X0.
The magma flows upward as a plug in the conduit, owing to the shear-thinning properties of the melt, crystal, and gas
mixture (Gonnermann & Manga, 2007). Thus, in the conceptual model for effusive periods of eruption, we neglect
conduit wall drag. As the magma and gas ascend, decompression leads to gas expansion and volatile exsolution. In the
shallow subsurface and lava-dome portion of the volcanic system, variations in gas content and overpressure lead to
ground deformation and the periodic real-time seismic amplitude measurements (RSAM) signals observed in Figure 1.

𝜕𝜌g𝜙

𝜕t
+

𝜕𝜌g𝜙wg

𝜕z
= Γ, (2)

where, 𝜙 is the porosity, t is the time, z is the vertical coordinate, 𝜌i is the density, and wi is the velocity
of phase i∈ [m, g], in which m and g denote the magma and gas phases, respectively. The magma phase
is comprised of liquid melt and solid crystals that travel together at velocity wm. The density of crystals
and melt are assumed equal, (𝜌m = 𝜌crystal = 𝜌liquid), and all crystallizations are assumed to occur in the
magma chamber (i.e., ascent-driven crystallization is neglected). This implies that the crystalline portion
of the magma, 𝜗, is constant. The right-hand sides of Equations 1 and 2 represent mass transfer due to gas
exsolution and are discussed in detail below.

The gas pressure, Pg, obeys the ideal gas law

𝜌g = Pg∕C2
g , (3)

where

Cg =
√

RT∕M, (4)
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is the isothermal sound speed in which R is the ideal gas constant, T is temperature, and M is the molar
mass of the gas. Equations 1 and 2 are similar to those presented in Michaut et al. (2013) with the addition
of a mass transfer term (Γ).

Conservation of mass for the water dissolved in the liquid component of the magma is

𝜕𝜌m(1 − 𝜙)(1 − 𝜗)Xl

𝜕t
+

𝜕𝜌m(1 − 𝜙)(1 − 𝜗)Xlwm

𝜕z
= −Γ, (5)

where Xl is the mass fraction of water dissolved in the liquid portion of the magma and 𝜗 is the crystal
fraction in the magma.

The force balance equations for gas and magma are respectively

−𝜙C2
g

𝜕𝜌g

𝜕z
− 𝜙𝜌gg + c𝑗Δw = 0, (6)

−(1 − 𝜙)
𝜕Pm

𝜕z
− (1 − 𝜙)𝜌mg + 𝜕

𝜕z

[
4
3
𝜇m(1 − 𝜙)

𝜕wm

𝜕z

]
− c𝑗Δw + ΔP 𝜕𝜙

𝜕z
= 0, (7)

where Pm is the magma pressure, 𝜇m is magma viscosity, and g is gravitational acceleration (Michaut
et al., 2013). The term cj represents the interaction force between phases and is discussed in detail below. We
also adopt the convention Δx = xm −xg for any quantity x. In Equation 7, conduit wall drag is neglected. Fol-
lowing Michaut et al. (2009), we assume that variations in velocity along the vertical coordinate z are small
compared to the variations in velocity across the width of the conduit. In the results presented here, wall
friction would only partially offset a small portion of the buoyancy force acting on the magma. For details,
see Michaut et al. (2009).

After Bercovici and Ricard (2003), the pressure difference in a viscously compacting magma matrix
(neglecting surface tension) is

ΔP = −
𝜇m

𝜙

𝜕wm

𝜕z
, (8)

where  ∼ 1 is a constant associated with pore geometry which is taken to be 4/3 for spherical pores (e.g.,
Yarushina & Podladchikov, 2015). The relationship (Equation 8) is akin to the bulk viscosity formulation of
McKenzie (1984). The interaction force between the gas and magma matrix is characterized by the drag coef-
ficient cj ∈ [cSt, cD] for either Stokes' or Darcy drag. Consequences of different flow regimes on the selection
of drag coefficient are discussed below after we introduce descriptions of volatile dependent melt viscosity
and mass transfer from the liquid portion of the magma to the gas phase (i.e., degassing). The weighted dif-
ference of the force balance equations ((1−𝜙) × (6) minus 𝜙 × (7)) is combined with Equation 8 yielding,

𝜕

𝜕z

[
4
3
𝜇m

1 − 𝜙2

𝜙

𝜕wm

𝜕z

]
− (1 − 𝜙)Δ𝜌g −

c𝑗
𝜙
Δw = 0. (9)

The magma viscosity is modeled assuming a suspension of rigid crystals in melt, following Krieger and
Dougherty (1959)

𝜇m = 𝜇l

(
1 − 𝜗

𝜗p

)−b𝜗p

, (10)

where b is the Einstein coefficient for dilute suspensions and 𝜗p is the maximum packing volume fraction
of crystals. The Einstein coefficient has a theoretical value of b = 2.5 (Jeffrey & Acrivos, 1976). For packing
of spheres of various sizes, 𝜗p may range from ∼0.6 to 0.9 for applications to volcanic systems (Costa, 2005),
and it is assumed that 𝜗p < 1 to avoid magma viscosity reaching infinity or taking negative and imaginary
values depending on the Einstein coefficient.

In this theoretical model, all significant crystallizations are assumed to occur within the magma chamber
prior to transport up the conduit. In reality, as the melt phase expels water due to depressurization, the liq-
uidus and solidus surfaces change, resulting in the growth of microlite crystals. In the case of Pinatubo,
previous experimental studies and detailed calculations for microlite growth suggest that the magma may
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increase in the crystal load during ascent (Andrews & Befus, 2020; Befus & Andrews, 2018; Hammer &
Rutherford, 2002). However, for continuous decompression rates of 1–5 MPa hr−1, this effect has little influ-
ence on Equations 5–10. By inspection of Equation 5, it is apparent that increasing crystal fraction, 𝜗, at
constant dissolved water content, Xl, forces a change in the mass transfer term, Γ, in order to maintain mass
balance. As 𝜗 increases, the liquid portion of the magma becomes more oversaturated in water, resulting
in faster water exsolution from the magma. For details on the disequilibrium relationship governing the
exsolution of water from the liquid, see Equation 13 below. For the equation describing magma viscosity as
a function of crystal content, Equation 10, an increase in 𝜗 results in higher viscosity but does not signifi-
cantly alter the form of the equation as long as the crystal content does not approach the packing density
for crystals (i.e., 𝜗<𝜗p).

The viscosity of liquid, 𝜇l, is assumed to be variable and a function of dissolved water in the liquid portion
of the magma content according to

𝜇l(Xl) = 𝜇wf
l × 10−𝛾Xl , (11)

where 𝜇wf
l is water-free liquid viscosity. Equation 11 is a linearization of Hess and Dingwell (1996) appropri-

ate for magma with a dissolved water content ranging between 1% and 4%. To fit both the “strong” model of
Hess and Dingwell (1996) and the “weak” model of Shaw (1965), we allow a range of liquid viscosity where
𝛾 ∈ [0, 100] (Massol & Jaupart, 1999). For the case of 𝛾 = 50, the liquid viscosity changes by half of an order
of magnitude with each weight percent variation in water, which is equivalent to the model of Hess and
Dingwell (1996). The time required to obtain a numerical solution to the governing equations increases expo-
nentially with increasing 𝛾 because more strict time discretization is necessary to resolve increasingly large
viscosity contrasts in the magma (see Šrámek et al., 2010). Together, Equations 10 and 11 give a simplified
model for the viscosity of the magma

𝜇m =
(
𝜇wf

l × 10−𝛾Xl
)(

1 − 𝜗

𝜗p

)−b𝜗p

. (12)

The full and more complex relationship for magma viscosity is described by Hess and Dingwell (1996) (see
Giordano et al., 2008; Gonnermann & Manga, 2007; Massol & Jaupart, 1999). We elect this simple for-
mulation for analytical clarity. Our results later demonstrate that local changes in magma viscosity are of
secondary importance compared to degassing for the growth of porosity waves.

To close the system of equations, an expression for the mass transfer term, Γ, is required. We assume linear
disequilibrium so:

Γ =
𝜌m

tR

(
Xl − sPn

g

)
, (13)

where tR is the characteristic time scale for the kinetics of the reaction, s is the solubility constant for water in
silicic magma (typically s = 4.11×10−6 for silicic magma with units of P−n), and n is an exponent governing
the gas-pressure dependence of water solubility (typically n = 1∕2). We formulate Equation 13 after Kozono
and Koyaguchi (2010) where the equilibrium gas exsolution is fitted on the basis of the solubility curve of
water in silicic magma (Burnham & Davis, 1974). As kinetics become infinitely fast, tR → 0, the system is at
chemical equilibrium so Xl = sPn

g . We assume homogeneous bubble growth and explore a range of tR where
characteristic degassing proceeds on time scales of minutes to days. Such time scales are appropriate for
andesitic to rhyolitic magma at high temperature (Bagdassarov et al., 1996; Navon et al., 1998).

For permeable magma, we assume a Darcian drag coefficient

c𝑗 = cD =
𝜇g𝜙

2

k(𝜙)
, (14)

where 𝜇g is gas viscosity and k(𝜙) is the permeability of the magma as a function of gas fraction. We express
permeability via the relationship,

k(𝜙) = k0𝜙
2, (15)

JORDAN ET AL. 7 of 28
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where k0 is a reference permeability for vesicular magma (Klug & Cashman, 1996; Saar & Manga, 1999).
Thus, the Darcy drag coefficient becomes

cD =
𝜇g

k0
, (16)

which is assumed constant despite the gas being compressible. At low gas fraction, bubbles are not con-
nected, and the interaction between the gas and magma follows Stokes' law. In this case, bubbles interact
with the liquid portion of the magma via the Hadamard-Rybczynski equation in the limit where 𝜇g ≪𝜇l

c𝑗 = c(St,0) = 3
𝜇l

r2
b

𝜙, (17)

where rb is the characteristic radius of bubbles rising in the liquid (Batchelor & Batchelor, 2000; Michaut
et al., 2013; Rybczynski, 1911). If the number density of bubbles remains constant, bubbles are allowed to
grow due to gas decompression and water exsolving from the magma

rb = rc

(
𝜙

𝜙c

)1∕3

. (18)

Here, rc is the bubble radius at a characteristic gas fraction 𝜙c. The drag coefficient depends on gas fraction
following

cSt =
3𝜇l𝜙

1∕3(
rc∕𝜙

1∕3
c

)2 = c(St,0)𝜙
1∕3. (19)

2.3. Characteristic Scales and Dimensionless Equations

A characteristic length-scale commonly used in the study of deformable porous media is the “compaction
length” (Fowler, 1985; McKenzie, 1984)

𝛿𝑗,0 =

√

𝜇wf

m

c𝑗
, (20)

where

𝜇wf
m = 𝜇wf

l

(
1 − 𝜗

𝜗p

)−b𝜗p

. (21)

Although 𝛿j, 0 is constant, variations in magma viscosity may change the compaction length locally. The true
local compaction length is

𝛿𝑗 =
(√

𝜇m∕𝜇wf
m

)
𝛿𝑗,0. (22)

Because the compaction length, 𝛿j, 0, scales proportionally with c−1∕2
𝑗

, it may vary drastically depending
on the type of drag and the amount of dissolved water in the magma (Klug & Cashman, 1996; Michaut
et al., 2009; Saar & Manga, 1999).

The magma and gas velocities are scaled by the injection velocity of magma at the base of the conduit,  .
The characteristic advective time scale is,

ta = 𝛿𝑗,0∕ . (23)

The independent and dependent variables of the system are therefore written as,

z = 𝛿𝑗,0z′, wi = w′
i , t = tat′. (24)

Densities and magma viscosity are likewise recast as

𝜌i = 𝜌m𝜌
′
i , 𝜇m = 𝜇wf

m 𝜇′
m, (25)

where 𝜇′ = 10−𝛾Xm .

JORDAN ET AL. 8 of 28
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Substituting Equations 3, 24, and 25 into Equation 13 leads to the dimensionless mass transfer rate,

Γ′ = Da
(

Xl − 𝜌′ng

)
, (26)

where

 = sC2n
g 𝜌n

m. (27)

The ratio of the characteristic advective time scale to the exsolution time scale is called the Damköhler
number

Da =
ta

tR
. (28)

The variables given by Equations 24 and 25 are substituted into Equations 1–7 to obtain the dimensionless
governing equations which, omitting primes, are

𝜕(1 − 𝜙)
𝜕t

+ 𝜕

𝜕z
[
(1 − 𝜙)wm

]
= −Da

(
Xl − 𝜌n

g

)
, (29)

𝜕𝜙𝜌g

𝜕t
+ 𝜕

𝜕z
[
𝜙𝜌gwg

]
= Da

(
Xl − 𝜌n

g

)
, (30)

𝜕(1 − 𝜙)(1 − 𝜗)Xl

𝜕t
+ 𝜕

𝜕z
[
(1 − 𝜙)(1 − 𝜗)Xlwm

]
= −Da

(
Xl − 𝜌n

g

)
, (31)

−𝛽𝑗
𝜕𝜌g

𝜕z
− 𝜌g +

𝛼𝑗

𝑗(𝜙)
Δw = 0, (32)

𝛼𝑗
𝜕

𝜕z

[
𝜇m

(
1 − 𝜙2

𝜙

)
𝜕wm

𝜕z

]
− (1 − 𝜙)(1 − 𝜌g) −

𝛼𝑗

𝑗(𝜙)
Δw = 0. (33)

where

𝛼𝑗 =
c𝑗
𝜌mg

, (34a)

𝛽𝑗 =
C2

g

g𝛿𝑗,0
, (34b)

and

𝑗(𝜙) =
{

St(𝜙) = 𝜙2∕3

D(𝜙) = 𝜙
. (35)

The characteristic length scales may vary assuming a mixture of suspended bubbles rather than a permeable
magma; however, it only changes the expression of the drag coefficient cj. It is worth noting that changes in
the drag coefficient do not significantly affect the governing equations (Michaut et al., 2013) or the results
of following analysis presented in this manuscript. Scaling Equation 33, using Equations 18 and 19, results
in a reference compaction length that depends on characteristic bubble radius

𝛿(St,0) =
( 1

27

)1∕2
rc. (36)

By inspection of Equation 36, it is apparent that the reference compaction length may be vanishingly small
if the reference bubble radius associated with freshly nucleated tiny bubbles and may be on the order of
cm if rc is taken closer to the threshold wherein bubbles connect. If the characteristic length scale is the
latter case, for a range of liquid viscosities, 𝜇l = 106—109 Pa s, and gas viscosity, 𝜇g = 10−5 Pa s, the local
compaction length, 𝛿j, calculated in Equation 20 may vary from centimeters to tens of meters.

JORDAN ET AL. 9 of 28
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The first dimensionless number, 𝛼j, compares the characteristic magma ascent rate to the characteristic
segregation velocity of gas percolating through magma. In effect, 𝛼j determines the importance of com-
paction for expelling gas from the magma, as 𝛼j becomes large, gas segregation due to magma compaction
diminishes. The parameter 𝛽 j is a measure of gas compression due to hydrostatic pressure changes over a
characteristic compaction length, where small 𝛽 j occurs for highly compressible gas.

Although changes in the drag coefficient do not significantly affect the governing equations of the mixture,
the two dimensionless numbers are extremely sensitive to the drag coefficient and resultant compaction
length. With increasing drag between phases, 𝛼j increases, and thus, gas segregation decreases in impor-
tance. Similarly, with increased drag, the compaction length shortens which results in larger 𝛽 j, and the
importance of gas compressibility diminishes. In the case of Stokes' flow cj = cSt, with small bubbles such
that rb → 0, the compaction length becomes vanishingly small and 𝛽St →∞, making the gas effectively
incompressible. The dimensionless number 𝛼St calculated with a small characteristic bubble radius becomes
extremely large, signifying that gas segregation is very small. In such a regime, the magma and gas mixture
may be approximated as an incompressible, impermeable fluid with 𝛿St ≈ 0.

For permeable magma, where bubbles in the liquid phase connect, the drag coefficient, cj = cD, is lower
in comparison to the case appropriate for suspended bubbles (i.e., cj = cSt). The dimensionless number, 𝛼j
decreases for permeable magma indicating that gas segregation from the magma is significant. Furthermore,
the increase in compaction length associated with lower drag results in smaller 𝛽 j which indicates that gas
decompression upon the ascent of magma is significant.

If long period oscillations observed at volcanoes are in fact influenced by the selection of gas-rich poros-
ity waves in decompressing magma, gas segregation and significant gas expansion are required. Michaut
et al. (2013) demonstrate that such gas waves comprised of suspended bubbles may be able to grow on
the scale of several tens of meters once gas bubbles become very large (rc ∼ 1 cm). Such waves of gas bub-
bles in magma (and beer) have been previously described by a balance between the growth of bubbles and
hydrodynamic self-diffusion (see Manga, 1996; Watamura et al., 2019).

According to percolation theory, when bubble fraction of an unbounded fluid exceeds ∼30%, interconnect-
edness of the inviscid phase is pervasive and porous flow ensues (Sahimi, 1994). However, this does not
consider the presence of crystals and deformation of bubbles. Measurements for highly crystalline magma
from Soufrière Hills Volcano, Mount Saint Helens, USA and Medicine Lake, USA samples show a gradual
increase in permeability with increased vesicularity. The vesicle microstructure, bubble number density, and
the resultant porosity-permability relationships depend on the deformation and decompression history of
the magma. Bubble deformation by shearing and partial bubble collapse allows connectivity permeability
and open-system degassing of magma with vesicularity of less than 20% (Rust & Cashman, 2004).

Once gas bubbles connect, waves of individual gas bubbles promptly decay or are absorbed by longer wave-
length features due to the emergence of permeability and significant magma compaction. These longer
wavelength permeable gas waves could be the source of the main trend for low-frequency periodic spikes in
RSAM data at Pinatubo and Soufrière Hills Volcano (Figures 1 and 2). Michaut et al. (2013) demonstrated
that meter-scale waves of smaller, suspended bubbles (rc < 1 cm) would result in much higher frequency sig-
nals. Therefore, to explore the main trend of low-frequency periodic eruptive precursors at silicic volcanoes,
we focus on a model framework featuring Darcy drag as opposed to Stokes drag. Henceforth, the subscript j
is dropped from the drag coefficient and associated scales, so the presence of permeable magma and Darcy
drag are assumed unless specified otherwise.

2.4. Steady-State Solution to Dimensionless Equations

Steady-state solutions for Equations 29–33 are obtained numerically. We assume that the mixture has com-
pacted to an equilibrium gas fraction, 𝜙0, in the source magma chamber, and thus, on entering the conduit,
there is little initial compaction, and subsequent compaction or dilation is mostly in response to gas exso-
lution and expansion during ascent. Thus, the bottom boundary condition for gas velocity is determined by
assuming no compaction in Equation 33 and rearranging Δw to find

wg,0 = 1 +
𝜙0(1 − 𝜙0)(1 − 𝜌0)

𝛼
. (37)

JORDAN ET AL. 10 of 28
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Figure 3. Dimensionless steady-state solutions to Equations 29–33 for three Damköhler numbers and water-free
reference case similar to the results of Michaut et al. (2013). The characteristic magma ascent velocity is fixed at  =
0.02 m s−1 (Watts et al., 2002), but the exsolution rates are varied such that tR = 103 (Navy), tR = 104 (Orange) and tR =
105 s (light blue). Dotted lines in (a)–(c) show water-free solutions for gas fraction and gas density. In these
calculations, 𝜇wf

l = 109 Pa s, 𝜗 = 0.5, 𝜗p = 0.6, 𝜇g = 10−5 Pa s, k0 = 10−12 m2, and Cg = 685 m s−1. The gas fraction at the
base of the conduit is 𝜙0 = 0.1. The initial gas density is defined by 𝜌0 = 𝜌g(z = 0) = 0.08𝜌m. Lastly, the sensitivity of
melt to dissolved water is parameterized by 𝛾 = 100. With these parameters, the dimensionless numbers (other than Da
which is indicated) are 𝛼 = 8.15 and 𝛽 = 1.08 × 103. The volatile-free compaction length is 𝛿0 = 44.35 m. A 5-km
conduit (∼113𝛿0) is assumed.

In addition, we set 𝜙 = 𝜙0, 𝜌g = 𝜌0, and wm = 1, at the base of the domain. The change in magma velocity is
also found to be very small (Appendix C), and thus, for a second boundary condition on wm, we set 𝜕wm∕𝜕z =
0 at z = 0. Additionally, a bottom boundary condition is supplied for water dissolved in the melt at the base
of the conduit, so Xl = 𝜌

1∕2
0 .

We find steady-state solutions by initializing 𝜙 = 𝜙0, wm = 1, and wg = wg,0 throughout the col-
umn. We initialize the gas density and dissolved water profiles with 𝜌g = 𝜌0 exp(−bz∕𝜌0) and Xl =
𝜌

1∕2
0 exp

(
−bz∕

(
𝜌

1∕2
0

))
to ensure positive values. After setting the initial and boundary conditions at the

base of the conduit, we numerically integrate upward. At the top boundary, there is free outflow where both
the gas and magma pressure remain slightly elevated above atmospheric pressure. This is because we only
track magma evolution from the base of the column to the shallow subsurface, but not all the way to the sur-
face. After setting the required initial and boundary conditions, the steady-state solutions are found using a
finite volume method (see LeVeque, 2002).

2.5. Growth Rate of Magma Gas Porosity Waves

Michaut et al. (2013) show that porosity waves of specific wavelength are naturally selected by the compe-
tition between magma compaction and gas compressibility for a constant viscosity magma column without
volatile exchange between melt and gas. Gas wave selection involves a broad band of wave frequencies where
porosity wave amplitudes grow. Above a cut-off frequency, porosity wave amplitudes decay. Thus, the vol-
canic conduit acts as a low-pass filter for porosity waves. To explore the effect of degassing and variable
magma viscosity on porosity wave selection—or filtering of porosity waves—we present time-dependent
solutions to the governing Equations 29–33.

We perturb steady-state solutions by introducing boundary conditions where either oscillations in gas frac-
tion, 𝜙, or dissolved water in the melt, Xl, excite porosity waves. Oscillations are enforced at the bottom
boundary such that

B = B0

(
1 + A

n∑
𝑗=1

cos(2𝜋𝑓𝑗 t)

)
, (38a)

where B = 𝜙 or B = Xl, (38b)
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Figure 4. Comparison of end-member boundary conditions for the dimensionless time-dependent model described in Equation 38c. (a–e) Adjusted gas
fraction, 𝜑 = 𝜙−𝜙ss, gas density, 𝜌g, magma velocity, wm, water dissolved in melt, Xl, and melt viscosity, 𝜇l, for case when B = 𝜙. (f–j) The same quantities for
time-dependent model when B = Xl. In both simulations, material properties are equivalent to Figure 3, with the exception of the dependence of the viscosity
on dissolved water which is here 𝛾 = 50. In both models, the bottom boundary oscillates with the superposition of 10 sinusoidal perturbations, f = [0.0266,
0.0620, 0.1682, 0.2036, 0.2568, 0.2745, 0.4692, 0.5932, 0.7348, 0.8942], and equal amplitudes of A = 0.025. The gas fraction at the bottom boundary is 𝜙0 = 0.1
and 𝜌0 = 0.08 𝜌m. The volatile content at the bottom boundary oscillates around X0 = 0.0398, the Damköhler number is Da = 0.0221, and a 5-km magma
conduit is assumed in both simulations.

and B0 = 𝜙0 or B0 = X0 = 𝜌n
0 at z = 0. (38c)

Here, A is the amplitude, and f j is the frequency of the jth sinusoidal perturbation. Equations 32 and 33 are
solved with the boundary conditions wm = 1 and 𝜌g = 𝜌0 at z = 0 (Michaut et al., 2013), after which the
magma, gas, and volatile mass equations are updated using Equations 29–31.

If periodic oscillations at the base of the conduit are imposed on gas fraction 𝜙, then the volatile content is
held constant, Xl = 𝜌n

0 = X0 at z = 0. For the values of s = 4.11×10−6 and n = 1∕2, typically used for silicic
melts, setting the dimensionless gas density, 𝜌0 = 0.08 at z = 0, yields a dissolved water content of X0 =
3.98% in the melt at the base of the conduit (as in Figure 3). Likewise, if dissolved water content oscillates
around the equilibrium saturation value at the base, then 𝜙 = 𝜙0 at z = 0. To limit numerical diffusion
in the time-dependent solutions, the monotonized-central-difference flux limiter method (LeVeque, 2002)
is used for updating the conservation of mass equations. We compare these two boundary conditions to
explore how gas wave filtering is affected by the presence of water and ongoing exsolution in the melt. To
this end, time-dependent models (Figure 4) must be used to extract the growth rate of magma gas waves. We
employ wavelike perturbations to represent magma chamber heterogeneity (as discussed in section 2.1), so
we may exploit Fourier series to monitor the growth and decay of small porosity waves across a broad range
of preprescribed frequencies. The periodic, wavelike perturbations are well suited for comparison to linear
theory (Appendices A and B).

To calculate the growth rate of gas waves relative to the background steady state, we introduce an adjusted
gas fraction

𝜑 = 𝜙 − 𝜙ss, (39)

where 𝜙ss is the steady-state gas fraction (Figures 4c and 4g). Assuming wavelike perturbations, the adjusted
gas fraction may be represented as a Fourier series

𝜑(z, t) =
N∕2−1∑
𝑗=−N∕2

𝜑̂𝑗(z)ei2𝜋𝑓𝑗 t, (40)
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Figure 5. A discrete method for tracking wave growth. Panels (a) and (d) present the evolution of adjusted gas fraction, 𝜑, presented in Figure 4 on the time
interval [0,(tf −Δt)], where there are N time steps of size Δt. B indicates either oscillations in 𝜙 or Xl at the bottom boundary. In Panels (a) and (d), tf = 112.9
and Δt = 0.0113. The red dashed line labeled z = z̄ indicates the midpoint of the domain. Panels (b) and (e) track gas fraction at z = z̄ though time. Panels (c)
and (f) show the spectrum of adjusted gas fraction Π at z = z̄. Panels (a)–(c) correspond to boundary conditions in Equations 38c where B = 𝜙, whereas (d)–(f)
correspond to B = Xl. In both simulations, the bottom boundary oscillates with the superposition of ten sinusoidal perturbations as in Figure 4.

where 𝜑𝑗 is the discrete Fourier transform of 𝜑 at a given height, z, in time (Figures 5a, 5b, 5d, and 5e). We
sample the time-dependent model output on an interval [0, ((N − 1)×Δt)], where there are N time steps of
equal size Δt. The power spectrum of 𝜑 for the jth frequency is

Π𝑗(z) = 𝜑̂𝑗(z)𝜑̂∗
𝑗
(z), (41)

where 𝜑̂∗
𝑗

is the complex conjugate of 𝜑̂𝑗 . An example of Π at a given height, z = z̄, is plotted in Figures 5c
and 5f. The power spectrum, Πj, represents the portion of the signal at frequency f j. At a given depth, z = z̄,
a higher power, Πj, indicates that the signal is stronger at frequency f j, while a lower power indicates that
the signal is weaker. In the context of a series of superimposed gas waves, the power spectrum allows the
quantification of wave amplitudes as a function of their frequency.

The growth or decay with height in the conduit for gas waves at the jth frequency is given by

q𝑗(z) =
1

2Π𝑗

dΠ𝑗

dz
. (42)

WhenΠj is calculated at multiple depths, dΠj/dz may be approximated to obtain a numerical measure for the
instability of a gas wave, qj(z) (see Appendix A and Figures 6a and 6b). We calculate the root-mean-square
envelope for the oscillations at each qj(z) and take the mean of the upper and lower bounds of the envelope
to be the main trend in instability, which we refer to as q(z) hereafter.

3. Results
As noted in Equation 38c, we consider two separate oscillating boundary conditions to induce magma gas
waves. The methodology presented in section 2.5 and summarized in Figure 5 is used to compare the effect

JORDAN ET AL. 13 of 28
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Figure 6. Relationship between Π and q(z) in the conduit. (a) Demonstration of spectrum for gas fraction throughout
the magma column. The spectrum was generated using solutions for 𝜑 where Xl = Γ = 0 and B = 𝜙. In this case, the
dimensionless governing Equations 29–33 are equivalent to equations presented in Michaut et al. (2013). As in
Figure 4, the bottom boundary oscillates with the superposition of 10 sinusoidal perturbations with equal amplitudes of
A = 0.025. The gas fraction at the bottom boundary oscillates around 𝜙0 = 0.1 and density is fixed at 𝜌0 = 0.08𝜌m. Three
frequencies (f = 0.0620, 0.2568, 0.4692) are highlighted to illustrate the relationship between Π and q(z). (b) Calculated
instability of gas waves q(z). Solid lines show the mean trend of gas wave instability, q(z), throughout the magma
column. Dotted lines represent the variance in q(z), forming an envelope that brackets oscillations in q(z) about the
mean. For the case where f = 0.0620 (light blue), the envelope is narrower than the width of the curve representing
q(z). Low variance in gas wave instability is typical of waves produced by low-frequency perturbations.

of the boundary conditions and gas exsolution rates on gas waves ascending through the magma column.
First, we assume basal oscillations are only in gas fraction, 𝜙. Next, we explore basal oscillations in Xl. We
show that in either cases, the instability of gas waves is sensitive to the steady-state water content of the melt
in the magma column. In the case of B = Xl, the formation of gas waves is highly sensitive to the Damköhler
number. In either case, slow exsolution enhances the growth of low-frequency modes of gas waves relative
to high-frequency modes.

Consider a magma conduit where basal perturbations in gas fraction induce porosity waves. From
Equation 38c, B = 𝜙 at z = 0 similar to Michaut et al. (2013), although Xl ≠ 0 and the assumption of local
chemical equilibrium is relaxed. When magma enters the conduit bearing dissolved water, the amplification
or decay of the gas porosity waves across a broad range of frequencies is affected substantially compared to
the water-free model of Michaut et al. (2013).

When the exsolution of water from the melt to the gas phase is included in the conduit model, the sensitivity
of gas wave stability, that is, the frequency-dependent growth or decay of Π, is apparent. Generally, the
addition of dissolved water to the melt portion of the magma phase results in slower growth of porosity
waves when compared to the exsolution-free model presented in Figure 6. Using material properties from
Figure 3, the dissolved water content of melt at the base of the conduit is X0 = 3.98%. Using this value
for X0 but retaining the same time-dependent boundary condition used to generate the results of Figure 6,
the maximum power of long wavelength gas waves is roughly halved (Figures 7a–7c). Meanwhile, short
wavelength gas waves continue to decay rapidly, thereby flattening the overall trend for growth in Π. Small
perturbations in gas fraction from Equation 38c have a negligible effect in changing local dissolved water
content, Xl, and melt viscosity, 𝜇l, which remain close to their steady-state profiles (as in Figures 4a and 4b).

When the Damköhler number is decreased incrementally at constant X0, we observe a slight increase in
gas wave growth across all nondecaying modes. The tendency toward less wave growth occurs primarily
due to decreasing gas density gradients in the magma column. With large Damköhler number, the rapid
exsolution of water at the base of the conduit raises gas pressure. The smaller pressure drop over the length
of the conduit results in less overall gas expansion. Steady-state solutions show that fast exsolution (i.e., large
Da) suppresses gas density gradients more than slow exsolution, while water-free models display the largest
gas density gradient (Figure 3b). Although the changes in gas density gradient with Da shown in Figure 3b
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Figure 7. Demonstration of power spectrum, Π, for adjusted gas fraction, 𝜑, throughout the magma column as Damköhler number, Da, varies across three
orders of magnitude. As in Figures 4 and 5, the viscosity sensitivity parameter 𝛾 = 50. (a–c) The bottom boundary oscillates with the superposition of ten
sinusoidal perturbations in 𝜙 where 𝜙0 = 0.1 at z = 0 as in Figure 6. (d–f) In this suite of simulations, the water content of the melt oscillates around
X0 = 0.0398 where 𝜙0 = 0.1 in Equation 38c with B = Xl. Three small arrows in (d) indicate the abrupt jump in Π near z = 0 when Da is large. In Panels (e) and
(f), the exsolution of water is gradual and can be seen visualized by the smooth growth in Π with z. There are 10 sinusoidal perturbations of equal amplitude
with frequencies matching Figure 4. Red dotted lines in (d)–(f) indicate the height in the column where degassing approaches a constant rate (see section 4.2).
For convenience of comparison to Figures 6, the same three frequencies have been highlighted in light blue (f = 0.0620), orange (f = 0.2568), and gray
(f = 0.4692). However, the z-axis for Π is now doubled compared with Figures 6 because small oscillations in Xl result in larger porosity waves.

may appear small, they translate to large changes in gas pore pressure depending on the compressibility of
the gas (Pg = C2

g𝜌g). Due to the large drop in gas pore pressure, the moderately low-frequency modes that
grow considerably when Xl = 0 may not increase in amplitude substantially when Xl ≠ 0 as in Figure 7.
Regardless, very short wavelength (or high-frequency) perturbations decay because gas expansion cannot
compete with magma compaction.

Porosity wave instability is only weakly sensitive to changes in melt viscosity for small perturbations in gas
fraction. Increasing the parameter 𝛾 in Equation 11 increases the sensitivity of melt viscosity to dissolved
water, Xl. Simulations where melt viscosity remains constant despite variation in Xl (i.e., 𝛾 = 0) show qualita-
tively similar results to models where melt viscosity 𝜇l is affected substantially by local changes in dissolved
water. Increasing 𝛾 results in very slight changes in moderately long wavelength porosity waves; however,
these small changes do not recover the filtering effect demonstrated in Figure 6. In any case, the trend in gas
wave selection as proposed by Michaut et al. (2013) is damped by the inclusion of dissolved water in melt
when B = 𝜙.

We next allow magma at the base of the column to have oscillations in dissolved water content
(Figures 7d–7f). For this case, we assume that magma enters the conduit with a constant gas fraction 𝜙 = 𝜙0.
Oscillations at the base of the conduit proceed such that B = Xl in Equation 38c and that the background
water content of the melt is X0 = 𝜌

1∕2
0 = 3.98% at z = 0. Unlike results presented in Figures 7a–7c, oscil-

lations around the steady state induce substantial variations in melt viscosity, 𝜇l, (Figures 4a and 4b vs. 4e
and 4f) and thus local compaction length, 𝛿 (Equation 22). A key difference between conduit models where
B = Xl versus B = 𝜙 is that gas waves formed by degassing require significant exsolution over finite time
and space to grow within the conduit. Therefore, when B = Xl the Damköhler number has a much stronger
influence on the formation and growth selection of gas waves in the magma conduit than cases where B = 𝜙.

Degassing reduces the background gas pressure gradient in the conduit—thereby diminishing overall gas
wave instability. However, when basal oscillations in water content push the magma-gas mixture far from
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chemical equilibrium, gas waves form in the lower portion of the conduit from exsolution (e.g., Figure 4g).
Here, we show that the frequency bandwidth of gas porosity waves that grow in the conduit is highly
sensitive to Damköhler number.

Testing a range of exsolution rates reveals a new filtering effect separate from the gas wave selection mecha-
nism reported in Michaut et al. (2013). When the Damköhler number is small, sluggish exsolution favors the
growth of lower frequency perturbations which have sufficient time for the gas and melt to equilibrate. That
is, water must be able to degas and regas from the melt allowing it to contribute to growth in the gas fraction
via decompression expansion. The high-frequency modes of the volatile perturbation from Equation 38c
oscillate too quickly for the gas and melt to equilibrate. Therefore, high-frequency modes contribute little
to the gas fraction. The result is a well-defined trend where low-frequency porosity waves are accentuated
with decreasing Damköhler number (compare Figures 7c and 7f). On the contrary, with Damköhler num-
ber sufficiently large, higher frequency perturbations may abruptly form owing to rapid degassing near the
base of the conduit but are subsequently compacted away (Figure 7d).

Another key difference between models where B = Xl and B = 𝜙 is that the power spectra of adjusted gas
fraction, Π, start at zero for all models when B = Xl (because 𝜙 = 𝜙0 at bottom boundary z = 0) and increase
at a rate depending on the Damköhler number. For cases when the degassing time scale is long, higher fre-
quency gas waves may not significantly form. When the Damköhler number is high, rapid degassing allows
the formation of gas waves across a much broader band of frequencies (Figure 7d). However, the very short
wavelength gas waves cannot be sustained over long distances because gas expansion is overwhelmed by
magma compaction (e.g., Figures 7a–7d). In the suite of models presented in Figure 7, we find that changes
in local melt viscosity has secondary importance to the selection of gas waves as is also the case when B = 𝜙.
Therefore, for purpose of discussion, we proceed with 𝛾 = 50 and crystal fraction 𝜗 = 0.5 unless specified
otherwise.

4. Discussion
4.1. Comparison of Numerical Models to Linear Theory

In Michaut et al. (2013), a linearized dispersion relationship for magma gas porosity wave growth is pre-
sented. The full equations considered in Michaut et al. (2013) are identical to Equations 29–33 when Da→∞,
so Xl = 𝜌

1∕2
g and the transfer of volatile between phases is instantaneous. The model of Michaut et al. (2013)

only considers basal oscillations in gas fraction, so B = 𝜙. The linear stability analysis conducted by Michaut
et al. (2013) assumes zeroth order background states for 𝜙, 𝜌g, wg, and wm. These background states include
a constant gas fraction, 𝜙 = 𝜙0, and magma velocity, wm =  (see Appendix B for details).

The background gas density profile is imposed by the Darcy equation, (Equation 32), and equilibrated in
Equation 31 (for Xl = 𝜌

1∕2
g ) by the time variation of the gas density (see Michaut et al. 2013, supplemen-

tal information and Appendix B). While the choice of this background state has been criticized by Hyman
et al. (2019), our numerical results to the full nonlinear equations are in good agreement with the linear
solutions of Michaut et al. (2013) and confirm their relevance. Particularly, neglecting the gas density gra-
dient in the linear stability analysis by assuming a constant gas density of the background state (Hyman
et al., 2019) points to highly localized unstable porosity waves with wavelengths of only several compaction
lengths. Such waves should quickly decay by magma compaction as demonstrated by the results of the full
numerical solution. This further demonstrates the importance of maintaining a strong gas density gradient
to the generation and preferential selection of magma gas wave as a function of their wavelength.

The maximum instability max(q) of gas waves is compared to the stability analysis of Michaut et al. (2013),
where  is wave amplitude growth rate versus frequency (Figure 8). We compare the maximum instability
of the bottom 10%, 20%, 40%, and 80% of the domain to illustrate the increasing instability of gas waves with
increasing z. Instability of gas waves is enhanced with increasing z because gas expands more readily with
decreasing pressure. The stability analysis conducted by Michaut et al. (2013) assumes background states
that reflect the basal properties of the conduit. However, all relevant numerical solutions show significant
increases in gas fraction and magma velocity during ascent of magma. As expected, the maximum calculated
instability, max(q), most resembles the analytical amplitude growth rate, , near the base of the conduit
where 𝜙≈𝜙0 and wm ≈  .
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Figure 8. (a) Water-free comparison of maximum calculated instability max(q), to stability analysis of Michaut
et al. (2013), where  is wave amplitude growth rate versus frequency. Maximum calculated instability is shown over
four intervals to illustrate increasing instability with with dimensionless height, z, in the magma column. For example,
the range [z = 1, z = 0.1×H/𝛿0] is used for calculating the max(q) profile for “bottom 10%.” For a 5-km conduit and the
material properties of Figure 4, H ≈ 113𝛿0. The first compaction length is omitted from the interval used to calculate
instantaneous growth rate to avoid boundary effects. (b) Comparison of max(q) including exsolution of water.
Maximum growth is plotted above the inflection point on the steady-state profile for Xl (see section 4.2) and  when B
= 𝜙 and a basal water content of X0 = 𝜌

1∕2
0 = 0.0398 are assumed. For convenience of comparison to Figures 6 and 7,

the three frequencies 𝑓 = 0.0620, 𝑓 = 0.2568, and 𝑓 = 0.4692 have been highlighted in Panels (a) and (b).

4.2. Corner Frequency and Gas Wave Growth

The frequency at which max(q) or  = 0 is similar to a “corner frequency” that defines the cut-off for
a low-pass filter (i.e., which filters out modes with frequencies higher than the corner value). Above the
corner frequency, perturbations to the steady state are attenuated by magma compaction. Perturbations at
frequencies below the corner frequency are unstable and grow in amplitude as gas expands. For the case
of water-free melt, B = 𝜙 and X0 = 0 (Figure 8a), the corner frequency shifts slightly to the right, with
increasing z thereby admitting higher frequency gas waves at shallower depths.

For cases where Xl and X0 ≠ 0, some additional considerations are required. When dissolved water is present,
the magma-gas mixture may remain out of equilibrium during extraction. Depending on the Damköhler
number, Da, the magma-gas mixture will be at different stages of degassing for a given depth z. For con-
sistency, we compare max(q) above the curved portion on the steady-state profile for Xl (where 𝜕Xl/𝜕z
approaches a constant slope, as in the upper portions of Figure 3d). Although the amount of water dis-
solved in the melts is different depending on Da, in this region, the compositional and viscosity gradients
are roughly equal through the rest of the conduit and set by the power-law relationship between gas pres-
sure and dissolved water content (see Figures 3c and 3d). Using the material properties and characteristic
magma ascent rate from Figure 4 and the Damköhler numbers of Da = 2.21, Da = 0.221, and Da = 0.0221,
we take max(q) above the dimensionless heights of z = 0.6, z = 4.2, and z = 41.4 (denoted by red dotted
lines in Figures 7d–7f). Assuming a 5-km conduit and a characteristic compaction length of 𝛿0 = 44.4 m,
the height of the conduit is given by H = max(z) ≈ 113.

To test the sensitivity of the corner frequency and gas wave instability to dissolved water content, we first con-
sider the case where B = 𝜙 at z = 0 in Equation 38c. We calculate max(q) for each frequency excited above
the curved portion in the steady-state profile for Xl. Increasing Damköhler number demonstrates the sen-
sitivity of gas wave instability to dissolved water and characteristic exsolution rate (Figure 8b). Moderately
low-frequency modes are least stable and slightly higher frequency modes are admitted by the low-pass filter
than predicted by Michaut et al. (2013). With increasing Da, gas wave instability becomes more suppressed
across all modes. This generally flattens the pattern of max(q) when compared to the water-free simula-
tions (Figure 8a). The corner frequency is not strongly affected by Damköhler number although increasing
Da allows for a slightly less stringent low-pass filter (Figure 8b). However, for simulations when B = 𝜙, it
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Figure 9. (a) Comparison of maximum calculated instability, max(q), to stability analysis of Michaut et al. (2013). The
black line marked  is the wave amplitude growth versus frequency. Waves were excited by oscillating the dissolved
water content of melt around the saturated value given by X0 = 𝜌

1∕2
0 = 0.0398. This plot illustrates that the calculated

instability is sensitive to Damköhler number but not the amplitude, A, of perturbation in Equation 38c. The clustering
of calculated max(q) for all amplitudes plotted here suggests that the imposed porosity wave perturbations are
sufficiently small that they do not strongly excite nonlinear features of the governing equations. Therefore, the model
results presented here are appropriate for comparison to previous linear stability analysis. In Panel (a), 𝛾 = 50.
(b) Calculated instability max(q) as a function of crystal content 𝜗, where the packing volume fraction of crystals
𝜗p = 0.6. Waves were excited by the same manner as in Panel (a). Material properties of magma are the same as in
previous Figure 4 with the exception of 𝛾 = 25. Similarities between top curves in Panels (a) and (b) illustrate that wave
growth rate is insensitive to 𝛾 . The dimensional wavelength of each perturbation is the same across all simulations
which causes the shift in dimensionless frequency. This is because the characteristic compaction length, 𝛿0, decreases
with decreasing crystal content, 𝜗. The compaction lengths are 𝛿0 = 17.3 (red diamonds), 𝛿0 = 19.4 (black circles),
𝛿0 = 26.3 (green triangles), and 𝛿0 = 44.3 (blue squares) m, respectively. For the constant characteristic degassing time
scale tR = 27.7 hr, the corresponding Damköhler numbers are Da = 0.0086, Da = 0.0097, Da = 0.0132, and Da = 0.0221
in order with increasing 𝜗. The empty black circles show max(q) calculated with a much faster characteristic degassing
time scale tR = 16.7 min and 𝜗 = 0.3.

is apparent that gas wave instability is dampened at a range of exsolution rates and resultant Damköhler
numbers.

When oscillations in gas fraction are driven by changes in basal water content, (B = Xl in Equation 38c), we
show that the corner frequency and overall gas wave instability are quite sensitive to Damköhler number.
This sensitivity of gas wave instability can be attributed to the characteristic reaction time scale for two pri-
mary reasons. First, fast degassing (i.e., high Damköhler number) suppresses the gas density gradient, which
diminishes overall gas wave instability. Second, as exsolution time scales become slower, lower frequency
modes interact by exchanging water between magma and the gas phase more effectively than high-frequency
modes. Thus, we observe a far less stringent low-pass filter than predicted by Michaut et al. (2013) but
with the relative amplification of low-frequency modes (Figure 9). Continuous exsolution throughout the
conduit modifies the filter proposed by Michaut et al. (2013) so that gradual exsolution of gas from melt
bolsters high-frequency modes against magma compaction. Nevertheless, low-frequency modes are fed by
exsolution as well and experience significant expansion which results in much higher growth rates for long
wavelength porosity waves.

Importantly, the growth rate for gas waves is unaffected in our simulations by the amplitude of oscillation, A
in Equation 38c, for relevant values. This indicates that the oscillations imposed on the boundary for the full
numerical solutions are small enough to be compared with the linearized dispersion relationship described
in Appendix B. In the case where A = 0.025, with X0 = 3.98%, the superposition of 10 sinusoidal perturba-
tions would result in oscillations between ∼3 and 5 weight percent water dissolved in the melt. Significantly
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smaller oscillations in dissolved water content are capable of exciting a range of gas porosity waves where
low-frequency modes expand at rates much faster than their low-frequency counterparts (Figure 9).

4.3. Effect of Crystal Content on Gas Wave Growth

Variation of the crystal fraction, 𝜗, has two primary effects on the results we present in this study. First, the
compaction length (Equation 20) is reduced because the melt and crystal mixture is less viscous at lower
crystal fractions (Equation 21). The shift in compaction length does not have a major impact on porosity
wave growth alone. Second, at constant dissolved water content, the melt portion of the magma becomes
comparatively water rich with decreasing crystal fraction.

As crystal fraction decreases, the balance between the mass transfer term, Γ = Da(Xl − 𝜌n
g ), and the

left-hand side of the equation for conservation of mass of water, (Equation 31), results in faster degassing.
This further accentuates the tendency of water dissolved in the melt to reduce gas decompression across the
magma column and thus dampen oscillations. With increasing Damköhler number, simulations with low
magma crystal content show a shift in the corner frequency toward low frequencies, meaning the low-pass
filter for porosity waves becomes more strict (Figure 9b). However, the growth of porosity waves that do
pass through the filter is exceedingly small and similar for a wide range of frequencies. Therefore, a narrow
frequency range comparable to data from Figure 1 is unlikely to occur unless there is a significant crystal
fraction and degassing in the conduit proceeds slowly (Figure 9b).

The simulations in this manuscript treat the crystal fraction, 𝜗, as constant throughout the magma column
during ascent. A recent numerical model for decompression-induced crystallization of Pinatubo magma
(Befus & Andrews, 2018) suggests that magma decompressing at a rate of 3–4 MPa hr−1 result in ≪10% crys-
tallization by volume of plagioclase microlites. Although other phases such as amphibole and clinopyroxene
will crystallize, we consider their effect to be negligible for our model at the decompression rates examined
in this study. However, if significant crystallization was to occur, we expect it to enhance the growth of poros-
ity gas waves with low frequencies disproportionately. Figure 9b shows magma with 𝜗 = 0.125, 𝜗 = 0.3,
𝜗 = 0.4, and 𝜗 = 0.5. If magma was with initial crystal fraction of 𝜗 = 0.3 to gain ∼20% crystals by vol-
ume, the calculated growth rate quadruples for low-frequency modes that pass the filter. The growth rate
for moderately high-frequency modes that pass the filter only doubles, further biasing the power of the sig-
nal to longer wavelength features. As such, crystallization during degassing enhances gas wave growth, for
low-frequency perturbations especially in cases where Damköhler number is low. Nevertheless, degassed,
highly crystalline magma is more conducive to long period oscillations than crystal poor, water oversaturated
magma. This suggests that the mode of magma mixing and degassing within the chamber must produce a
crystal-rich magma to support growing porosity waves of magmatic gas.

4.4. Porosity Wave Ascent Time

For the majority of examples presented in this study (Figures 3–9), Damköhler numbers are calculated
assuming a characteristic magma velocity of = 0.02 m s−1, crystal fraction 𝜗 = 0.5 a reference compaction
length of 𝛿0 = 44.4 m, and a characteristic exsolution time scale, tR, that ranges from minutes to days. When
Da = 2.21, Da = 0.221, and Da = 0.0221, the characteristic exsolution time scale, tR, is 16.7 min, 2.67 hr, and
27.7 hr, respectively. Numerical simulations show that additional frequencies are not excited by the small
perturbations used to conduct this study (Figures 5 and 9) and that wg ≈wm due to the large drag between
phases (dimensionlessΔw≪ 1 in Equations 32 and 33). Therefore, both phases of the mixture travel together
with porosity wave frequencies locked in place although wave amplitudes may grow or decay. Using the
steady-state profiles for magma and gas velocity generated in Figure 3, we find that the travel time for a
parcel of the magma gas mixture to traverse the 5-km column is about 45 hr. With these considerations, we
explore scenarios that are the most and the least likely to produce long period oscillations (Figure 1) given
a combination of Damköhler number and perturbation type.

When reaction rates are very fast compared to the conduit residency time, the gas wave instability, max(q),
predicted by Michaut et al. (2013), is suppressed (Figures 8b and 9). For example, when Da∼ 1, equilibrium
where Xl = 𝜌n

g is reached quickly and the gas wave selection due to the competition between gas expansion
and magma compaction described by Michaut et al. (2013) ensues with two additional caveats: (1) Fast exso-
lution diminishes the gas density (and therefore gas pressure gradient) which lessens the gas wave instability,
and (2) moderately high-frequency modes near the predicted corner frequency are bolstered against magma
compaction by continued exsolution throughout the conduit. These new considerations act to minimize the
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mechanical filtering effect proposed in Michaut et al. (2013) by reducing the instability of low-frequency
modes and increasing the instability of moderately high-frequency modes. In particular, models including
exsolution where B = 𝜙 display less overall gas wave instability in conjunction with less filtering than their
water-free counterparts (Figures 8a and 8b).

In several models presented here, Da = 0.0221, which corresponds to a characteristic exsolution time scale
that is half of the residency time of the magma gas mixture in the conduit. With this slow characteristic
exsolution time scale, values of max(q) are systematically shifted upward indicating greater porosity wave
growth in the column for either type of boundary condition in Equation 38c. Furthermore, perturbations
in Xl result in extremely amplified growth of porosity waves at low frequency compared to high frequency.
Therefore, in a case where B = Xl, sluggish exsolution, or low Damköhler number, does not precisely act as
a low-pass filter for porosity waves as proposed by Michaut et al. (2013). However, the biased amplification
of low-frequency modes effectively concentrates the power of wavelike perturbations in long wavelength
porosity waves.

Oscillations form the wavelike perturbations at the bottom boundary where wm =  = 0.02 m s−1. After red-
imensionalizing frequency, the wavelength for the sinusoidal perturbations is used as a test case in this study,
𝜆 = ∕𝑓 (sections 2.5–4.2 and figures therein) rangees from 𝜆 = 1,667 m to 𝜆 = 49.5 m. The wavelength of
modes highlighted in light blue, orange, and gray in Figures 6–8 have wavelengths of 𝜆 = 741.2 m, 𝜆 = 172.4
m and 𝜆 = 94.3 m. Numerical simulations show that the residency time of a gas wave in a 5-km conduit is
about 45 hr. The average vertical velocity of the magma gas mixture in the column is then w̄ = 0.031 m s−1.
Thus, the average time between porosity wave peaks with wavelength 𝜆 arriving from depth to the shallow
conduit is t̄ = 𝜆∕w̄. For the superposition of 10 sinusoidal perturbations tested numerically in this study, the
average arrival frequency of waves ranges from t̄ ∼ 27 min to 15 hr.

Comparing the results of our numerical analysis to the observations of Mori et al. (1996), Voight et al. (1999),
and Wylie et al. (1999) (summarized in Figures 1a and 1b), we find that the amplification of porosity waves
as a mechanism for producing long period eruptive precursors at silicic volcanoes is most likely if the
waves are formed due to small perturbations in dissolved water content of the melt. Model results where
B = 𝜙 with X0 = 0.0398 show the filtering effect owing to magma compaction is minimized and the overall
gas instability is too little to produce the main trend of the long period oscillations observed at Pinnatubo
and Soufrière Hills. However, when B = Xl, we observe a significant amplification of porosity waves with
decreasing Damköhler number. When Da∼ 1, high-frequency modes are not admitted by the column but
the gas wave instability is small. When Da< 1, porosity waves with wavelengths corresponding to periodic
arrival times of ∼10 hr grow two to four times faster than those that arrive on hourly time scales (Figure 9).

4.5. Implications for Long Period Oscillations at Silicic Volcanoes and Their Magmatic Systems

In this manuscript, we present a conceptual model to examine the viability of porosity waves with com-
pressible gas as a potential mechanism for exciting long period volcanic oscillations. Our theoretical model
suggests that porosity waves with periods 10 hr or longer are amplified if the waves are excited by grad-
ual degassing during magma ascent. The mechanism for inducing long period oscillations examined in this
manuscript requires small temporal variation in magma water saturation at the base of the conduit. The
basal variation in the dissolved water content of magma reflects heterogeneity in composition or temperature
within the magma chamber. Therefore, the theoretical model implies that magma chamber heterogeneity
and mixing are conducive to conditions where porosity waves may arise with a distinct temporal pattern (as
observed in RSAM the data showin in Figure 1).

Recent modeling studies suggest that rapid mixing of magma may lead to long-lived magma chamber het-
erogeneity even without addition of new batches of magma (Garg et al., 2019). Additionally, petrological
evidence suggests that parts of the magma chamber were at much higher temperatures than the inferred
average at Soufrière Hills Volcano. Couch et al. (2001) invoke self-mixing in the form of Rayleigh-Bénard
convection to explain the apparent co-location of minerals that cannot coexist under equilibrium conditions.
Other petrological studies detail evidence for periodic magma heating and remobilization within the magma
chamber (Zellmer et al., 2003). Furthermore, the combination of magma heterogeneity and the tempera-
ture sensitivity for the diffusivity of water (Baker et al., 2005, and references therein) may result in uneven
degassing and variation in water saturation for magma exiting the magma chamber. Any combination of
the aforementioned mechanisms could account for the variation in dissolved water content in magma at the
base of our proposed model. The numerical results show that porosity wave filtering is largely unaffected
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by the amplitude of perturbations (Figure 9) and biased porosity wave growth is expected to arise from very
small basal variations in either gas fraction or volatile content of the magma.

The onset of long period oscillations leading up to elevated volcanic activity may indicate the heating,
remobilization, and mixing of magma. This could take the form of either self-mixing or magma chamber
replenishment. At Soufrière Hills, andesite phenocrysts that erupted between December 1995 and August
1997 have a range of textures and zonation patterns that suggest that nonuniform reheating of the magma
occurred directly before the onset of the major eruption (Murphy et al., 1998). The nonuniform reheating
is interpreted by Murphy et al. (1998) as remobilization of the resident magma which lead to self-mixing
and may have eventually triggered the eruption at Soufrière Hills. The onset of regular periodic precursors
may be a near real-time indicator that magma chamber mixing has begun. Initially, random heterogeneity
could result in an apparent pattern where magma chamber mixing signatures of selected wavelengths are
expressed at the surface due to the accentuation of moderately long porosity waves.

At Pinatubo in 1991, periodic oscillations were attributed to gas vesiculation following a climactic erup-
tion (Mori et al., 1996). Directly following the eruption the conduit was unimpeded allowing open system
degassing. As the vent cooled, waning effusive eruption continued, and seismic activity decayed in an
exponential fashion. Mori et al. (1996) hypothesize that conduit gradually began to seal itself. However,
this process was not uniform allowing small portions of the volcanic plumbing to become overpressured,
resulting in small explosions linked with the long period oscillations. Within our conceptual model, decom-
pressing magma with varying dissolved water and crystal content could cool enough and reach a threshold
where there is sufficient crystal content to support the growth of porosity waves. Once this threshold is
reached, small variations in water could result in porosity waves of preferred wavelength and account for
the regularity of the small explosions discussed by Mori et al. (1996). Further study would be required
to link potential heterogeneity in melt water content with the underlying magma chamber. Alternatively,
the cyclicity observed at Pinatubo in 1991 could be a consequence of transitioning from open-system
degassing—after explosion—to quasi-open system degassing—after reestablishment of a cohesive magma
column. At the very least, similar magma ascent rates at Pinatubo and Soufrière Hills (∼0.01–0.06 m s−1;
Cassidy et al., 2018), and the corresponding regular periodicity of 7–10 hr for elevated volcanic activity at
both volcanoes is curious and warrants future comparative study.

5. Summary and Conclusion
In this study, we constructed a theoretical model with the goal of understanding how volatile degassing and
local variations in magma viscosity within a volcanic conduit may affect long period oscillations, such as
those observed at Pinatubo and Soufrière Hills. To this end, we compare two end-member models where
very small oscillations induce magmatic gas porosity waves:

1. Oscillations are due to small changes in gas fraction entering the conduit.
2. Oscillations are due to small changes in water content of melt at the base of the conduit.

When gas waves are generated by small changes in gas fraction entering the conduit, we find that the addi-
tion of dissolved water in melt dampens gas wave expansion. This reduces the efficacy of the mechanical
gas wave selection model proposed by Michaut et al. (2013). Models additionally show that local viscos-
ity changes have only a small effect on wave stability. Despite our choice to use a simplified expression for
magma viscosity, (Equation 12), melt viscosity varies by more than two orders of magnitude in numerical
models. Model results with large spatial and temporal changes in magma viscosity reveal that maintain-
ing a large gas density gradient in the magma column is the most important factor for inducing gas wave
instability.

When waves are generated by small changes in melt water content entering the base of the conduit, we infer
a separate mechanism for selecting gas waves that can also contribute to the isolation of long period oscilla-
tions. Petrological observations suggest that the magma source beneath Soufrière Hills Volcano was reheated
or remixed at the time when long period oscillations began in 1997, thus providing a possible mechanism for
changes in melt water content (Murphy et al., 1998). Further study is required to make the same claim for
Pinatubo postclimactic eruption in 1991. The rate of degassing, described by the dimensionless Damköhler
number, affects wave growth throughout the column. When reaction rates are fast, Da∼ 1, high-frequency
modes are filtered away but gas wave instability is small. When Da< 1, porosity waves with wavelengths
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long enough to induce long period oscillations such as those observed at Pinatubo and Soufrière Hills grow
two to four times faster than higher frequency modes.

We conclude that gradual degassing in the volcanic conduit during ascent of magma is favorable for the pref-
erential growth of low-frequency magma gas waves. Slower degassing naturally interacts with the magma
column on longer wavelength scales, promoting the growth of lower frequency waves. The resulting pat-
tern of wave growth, biased toward the waves with arrival times of several hours or more at the surface, is
commensurate with the periodicity of cyclical degassing, dome-growth, and ground deformation observed
at Pinatubo and Soufrière Hills Volcano (Mori et al., 1996; Voight et al., 1999; Watson et al., 2000; Wylie
et al., 1999). Short time scale magma chamber mixing provides a viable mechanism for heterogeneity in
melt water content required to produce long wavelength magma gas porosity waves. The similarity of peri-
odicity at Pinatubo and Soufrière Hills Volcano hints that there is a common mechanistic source for the
phenomenon at both volcanoes. We demonstrate that degassed, crystal-rich magma is more conducive to
the growth of gas waves that may result in the periodic behavior and suggest that porosity waves induced
by gradual degassing are a viable candidate for that periodic behavior. Porosity waves are a ubiquitous fea-
ture in poroviscous materials and may be linked with cyclical episodes of elevated volcanic activity observed
elsewhere.

Appendix A: Discrete Growth of Magma Gas Waves
Consider a linear function, 𝜒(z, t), that varies with a spatial coordinate and time. A Fourier series for the
function may be written

𝜒(z, t) =
N∑
𝑗=1

𝜒̂𝑗(z) cos
(
𝜔𝑗 t − k𝑗z

)
, (A1)

where 𝜔j is the jth angular frequency of a sinusoidal perturbation prescribed at the boundary, z = 0, and the
angular wavenumber is given by kj. We assume the relation

𝜒𝑗 = e𝑗z, (A2)

where 𝑗 is the growth rate of the jth perturbation with the vertical coordinate z and  is a constant. We
define

A𝑗 =
1
2
𝜒̂𝑗(z)

(
cos(k𝑗z) − i sin(k𝑗z)

)
. (A3)

The power of the signal, 𝜒 , at the jth frequency is

𝑗 = A𝑗A∗
𝑗
= 1

4
𝜒̂2
𝑗
(z), (A4)

where A∗
𝑗

is the complex conjugate of Aj.

The growth rate across all excited frequencies are found by differentiating  along the spatial coordinate so

𝑗(z) =
1

2𝑗

(d𝑗

dz

)
. (A5)

Additionally, the phase shift and wave number of 𝜒(z, t) can be found using the imaginary and real parts
of Aj

S𝑗 = tan(k𝑗z) =
−Im(A𝑗)
Re(A𝑗)

, (A6)

and

k𝑗 =
1
z

tan−1
(−Im(A𝑗)

Re(A𝑗)

)
. (A7)
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Figure A1. Simple benchmark calculation for a periodic function of a single frequency 𝜒(z, t) = 𝜒1cos(𝜔t − kz) where
growth rate varies as a function of z. In this example, 𝜔 = 4𝜋 and k = 3𝜋. (a) Demonstration of evolution of 𝜒(z, t) over
N time samples in the interval t ∈ [0, (1−Δt)] for each of the nz grid points in a model domain. Black dashed line
shows the numerical calculation for signal shift. The shift of the signal is prescribed by wavenumber k and the angular
frequency 𝜔 at the bottom boundary. Note two full cycles in 𝜒 throughout the model domain indicating that linear
frequency, f = 2, is equal to two. (b) Black line: analytical growth rate derived from inserting 𝜒𝜔(z) into Equation A5.
Red dashed line: approximate growth rate calculated using the solution grid from (a).

To relate numerical model output to the linear growth rate, the model output is treated as a time series sam-
pled at nt evenly spaced time steps. A Fourier transform is used on 𝜒(z, t) to obtain 𝜒̂(z, 𝜔). The numerical
power of 𝜒 at a given depth is

Π𝑗(z, 𝜔𝑗) = 𝜒̂𝑗 𝜒̂
∗
𝑗
, (A8)

for the jth frequency of a sinusoidal perturbation prescribed at the boundary, z = 0. Equation A8 is the
numerical analogue to Equation A4. The power of the signal Π for each frequency is calculated at each
grid-block z, which results in nz power spectra for each frequency. The numerical growth or decay of the
signal, qj, is found by differencing Πj throughout the model grid to obtain an approximation for the gradient
of the power with depth. Once (d∕dz) is approximated using Π, numerical growth may be constructed
using q ≈ . The phase shift and wavenumber for a given frequency may also be obtained numerically by
using 𝜒̂𝑗 and its complex conjugate. Figure A1 shows a linear benchmark calculation demonstrating the
recovery of model growth rate for a single frequency.

Appendix B: Linearized Dispersion Relationship
We compare numerical solutions of Equations 29–33 with a dispersion relationship for simplified, linearized
governing equations. We use the dispersion relationship to obtain a growth rate for gas waves,, as a function
of frequency. For the linear stability analysis presented in section 4, we assume isoviscous, water-free magma
and a Darcian drag coefficient. Using the characteristic scales presented in section 2.3, the dimensionless
governing equations are

𝜕(1 − 𝜙)
𝜕t

+ 𝜕

𝜕z
[
(1 − 𝜙)wm

]
= 0, (B1)

𝜕𝜙𝜌g

𝜕t
+ 𝜕

𝜕z
[
𝜙𝜌gwg

]
= 0, (B2)

−𝛽
𝜕𝜌g

𝜕z
− 𝜌g +

𝛼

𝜙
Δw = 0, (B3)

𝛼
𝜕

𝜕z

[(
1 − 𝜙2

𝜙

)
𝜕wm

𝜕z

]
− (1 − 𝜙)(1 − 𝜌g) −

𝛼

𝜙
Δw = 0. (B4)
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where

𝛼 =
𝜇g

k0𝜌mg
, (B5a)

𝛽 =
C2

g

g𝛿0
, (B5b)

and

𝛿0 =

√
4
3
𝜇mk0

𝜇g
, (B6)

for  = 4∕3 (Table 1).

The zeroth order background state for Equations B1–B4 are given in Michaut et al. (2013) as

𝜙(0) = 𝜙0, (B7)

w(0)
m = 1, (B8)

𝜌(0)g = 𝜌0 +
𝜕𝜌

(0)
g

𝜕z
z +

𝜕𝜌
(0)
g

𝜕t
t, (B9)

w(0)
g = 1 +

𝜙0(1 − 𝜙0)(1 − 𝜌0)
𝛼

−
𝜙0(1 − 𝜙0)

𝛼

(
𝜕𝜌

(0)
g

𝜕z
z +

𝜕𝜌
(0)
g

𝜕t
t

)
. (B10)

For details describing the derivation of zeroth order equations, see Michaut et al. (2013) supplementary
materials. Next, we assume small wavelike perturbations in gas fraction, gas density along with magma and
gas velocity of the magma, so

𝜙 = 𝜙0 + 𝜖𝜙(1)ei(kz−𝜔t), (B11)

𝜌g = 𝜌(0)g + 𝜖𝜌(1)g ei(kz−𝜔t), (B12)

wg = w(0)
g + 𝜖w(1)

g ei(kz−𝜔t), (B13)

wm = 1 + 𝜖w(1)
m ei(kz−𝜔t). (B14)

Here, the superscript (1) indicates a perturbation to the governing equations, 𝜔 is the angular fre-
quency of the perturbation, k is the wave number of the perturbation, and the constant 𝜖 ≪ 1. Inserting
Equations B11–B14 and B7–B10 into the governing Equations B1–B4, we write expressions for the first-order
perturbations in 𝜖

(𝜔 − k)𝜙(1) + k(1 − 𝜙0)w(1)
m = 0, (B15)

𝜙0

[
2
𝜙0(1 − 𝜙0)(1 − 𝜙0 + 𝜙0𝜌0)

𝛼𝛽
+ i

(
k − 𝜔 +

k(1 − 2𝜌0)𝜙0(1 − 𝜙0)
𝛼

)]
𝜌(1)g

+i𝜌0

(
k − w +

k𝜙0(1 − 𝜙0)(1 − 𝜌0)
𝛼

)
𝜙(1) − 𝜙0

(
1 − 𝜙0 + 𝜙0𝜌0

𝛽
− i𝜌0k

)
w(1)

g = 0,
(B16)

(1 − 𝜌0)(1 − 𝜙0)𝜙(1) − 𝜙0(ik𝛽 + 𝜙0)𝜌(1)g + 𝛼(w(1)
m − w(1)

g ) = 0, (B17)

(1 − 𝜌0)(2𝜙0 − 1)𝜙(1) − 𝛼

[
(1 + k2(1 − 𝜙2

0))w
(1)
m − w(1)

g

]
= 0. (B18)

This linear system of equations may be written in matrix form, Mx = 0, where x = (𝜙(1), 𝜌
(1)
g ,w(1)

g ,w(1)
m ). The

characteristic polynomial of this system of linear equations leads to a dispersion relation for 𝜔 = 2𝜋𝑓 as a
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Figure B1. The two solutions to the dispersion relationship found by obtaining the characteristic polynomial of the
linear system of Equations B15–B18.

function of wavenumber k = 2𝜋∕𝜆 (where 𝜆 is linear wavelength and f is frequency). We provide a short
MATLAB script for symbolically solving this dispersion relationship (see Acknowledgements). The curve 
in Figures 8 and 9 is obtained from

𝑗 =
Im(𝜔𝑗)

Re(𝜔𝑗)∕k
. (B19)

The second degree dispersion relationship has two solutions (j∈ [1, 2]). However, we find that the first root
is dominant for frequencies where waves grow and plot solutions for 1 in section 4 and drop the subscript.
The lowest negative values at high frequency in Figures 8 and 9 are likely affected by 2 (Figure B1).

Appendix C: Boundary Conditions and Linearization of Steady-State Equations
at z = 0
The initial and boundary conditions for the numerical solutions are selected based on simplified, linearized
solutions to the governing equations. We assume that the source magma chamber beneath the bottom
boundary (i.e., z< 0) has not begun to degas and had time to compact to an equilibrium gas fraction, 𝜙0.
Upon entering the conduit (i.e., z≥ 0), compaction adjusts to changes in gas fraction caused by magma
degassing and gas expansion during ascent and decompression. Under these assumptions, it is natural to
assume that magma compaction is small (𝜕wm/𝜕z≈ 0) at the conduit inlet. Classical one-dimensional models
using similar theory for melt migration generally assume an arbitrary and hence unequilibrated fluid frac-
tion at the bottom boundary (see McKenzie, 1984; Ribe, 1985). In such a case, compaction occurs abruptly
after injection above z = 0, toward the equilibrium 𝜙, forming a compacting boundary layer, in which case
the assumption that 𝜕wm/𝜕z is very small would not be applicable.

To demonstrate that 𝜕wm/𝜕z≈ 0 near z = 0, we linearize the dimensionless governing equations. Following
Michaut et al. (2013), we assume that 𝜙0 ≪ 1 and  ≪ 1. We also assume that the initial dimensionless gas
density is much less than the magma 𝜌0 ≪ 1. We neglect the effect of crystal fraction and assume equilibrium
(Xl = 𝜌n

g ) for the steady-state solution near the base of the column. Additionally, we assume Darcian drag
and that the exponent governing the gas-pressure dependence of water solubility is n = 1∕2. The steady-state
solutions are assumed to be linear with the vertical coordinate, z, and thus take the form

𝜙 ≈ 𝜙0 + a(1 − 𝜙0)z, (C1)

𝜌g ≈ 𝜌0 + bz, (C2)

wm ≈ 1 + cz, (C3)

wg ≈
(

1 +
𝜙0(1 − 𝜙0)(1 − 𝜌0)

𝛼

)
(1 + dz), (C4)

JORDAN ET AL. 25 of 28

 21699356, 2020, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020JB

019755 by C
ochrane France, W

iley O
nline L

ibrary on [29/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth 10.1029/2020JB019755

where a, b, c, and d are constant coefficients (not to be confused with the Einstein or drag coefficients).
The leading factor in Equation C4 is the initial gas velocity, wg, 0, described by Equation 37 in section 2.4.
This quantity is obtained by assuming no compaction in Equation 33. At steady state, the dimensionless
governing equations, (Equations 29–32), are recast as

𝜕

𝜕z

[
(1 − 𝜙)

(
1 − 𝜌1∕2

g

)
wm

]
= 0, (C5)

𝜕

𝜕z
[
𝜙𝜌gwg + (1 − 𝜙)wm

]
= 0, (C6)

−𝜙𝛽
𝜕𝜌g

𝜕z
− 𝜙𝜌g + 𝛼Δw = 0. (C7)

Here, Equation C5 is obtained by taking the difference between Equations 29 and 31 and neglecting the
effects of crystal fraction (dropping the (1− 𝜗) factor). Equation C6 arises from the sum of Equations 29 and
30. Lastly, Equation C7 is Equation 32 assuming Darcian drag so that 𝑗(𝜙) = 𝜙 in Equation 35. Employing
Stokes drag, 𝑗(𝜙) = 𝜙2∕3, in Equation C7 makes separation between the magma and gas phases more
difficult but does not alter our assumption that compaction will be small near z = 0 for relevant model cases.

Equations C1–C4 are inserted into Equations C5–C7 yielding three equations that are zeroth order in z,

0 = c
(
1 − 𝜙0

) (
1 − 𝜌

1∕2
0

)
− a

(
1 − 𝜙0

) (
1 − 𝜌

1∕2
0

)
− b


(
1 − 𝜙0

)
2𝜌1∕2

0

, (C8)

0 = c(1 − 𝜙0) − a(1 − 𝜙0) +
(

a(1 − 𝜙0)𝜌0 + b𝜙0 + d𝜙0𝜌0
)(𝜙0

(
1 − 𝜙0

) (
1 − 𝜌0

)
𝛼

+ 1

)
, (C9)

0 = 𝜌0 +
(
1 − 𝜙0

) (
1 − 𝜌0

)
+ b𝛽, (C10)

and one equation that is first order in z associated with Equation C7, given by

0 = 𝛼

(
c − d

(
𝜙0

(
1 − 𝜙0

) (
1 − 𝜌0

)
𝛼

+ 1

))
− b𝜙0 − a𝜌0

(
1 − 𝜙0

)
− ab𝛽

(
1 − 𝜙0

)
. (C11)

Equations C8–C11 can be used to solve for the constant coefficients a, b, c, and d. We assume that the dimen-
sionless number comparing characteristic magma ascent rate to characteristic gas segregation is greater than
one, 𝛼 ≥ 1. Assuming small  that the density of gas is much less than magma and low initial gas fraction
(i.e., (1 − 𝜌

1∕2
0 ) ≈ 1, (1− 𝜌0)≈ 1, and (1−𝜙0)≈ 1), the coefficients are

a ≈
(

1
𝛽𝜌0

)(


2𝜌1∕2
0

+ 𝜙0

)
, (C12)

b ≈ − 1
𝛽
, (C13)

c ≈ a, (C14)

d ≈ a
(1 + 𝛼

𝛼

)
. (C15)

For the range of parameters relevant to this study (Table 1), the coefficients a, b, c, and d are small (∼10−3 or
less). In all numerical experiments explored in this manuscript, we set 𝜕wm∕𝜕z = 0 based on the observation
that c≪ 1.

Data Availability Statement
The MATLAB code for computing the results and generating all figures can be found at https://zenodo.org/
record/3910768#.XvaVpZNKg5s.
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