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ABSTRACT: Quantifying uncertainties is a key aspect of data assimilation systems since it has a

large impact on the quality of the forecasts and analyses. Sequential data assimilation algorithms,

such as the Ensemble Kalman Filter (EnKF), describe the model and observation errors as additive

Gaussian noises and use both inflation and localization to avoid filter degeneracy and compensate

for misspecifications. This introduces different stochastic parameters which need to be carefully

estimated in order to get a reliable estimate of the latent state of the system. A classical approach

to estimate unknown parameters in data assimilation consists in using state-augmentation, where

the unknown parameters are included in the latent space and are updated at each iteration of the

EnKF. However, it is well-known that this approach is not efficient to estimate stochastic parameters

because of the complex (non-Gaussian and non-linear) relationship between the observations and

the stochastic parameters which can not be handled by the EnKF. A natural alternative for non-

Gaussian and non-linear state-space models is to use a particle filter (PF), but this algorithm fails

to estimate high-dimensional systems due to the curse of dimensionality. The strengths of these

two methods are gathered in the proposed algorithm, where the PF first generates the particles that

estimate the stochastic parameters, then using the mean particle the EnKF generates the members

that estimate the geophysical variables. This generic method is first detailed for the estimation of

parameters related to the model or observation error and then for the joint estimation of inflation

and localization parameters. Numerical experiments are performed using the Lorenz-96 model to

compare our approach with state-of-the-art methods. The results show the ability of the new method

to retrieve the geophysical state and to estimate online time-dependent stochastic parameters. The

algorithm can be easily built from an existing EnKF with low additional cost and without further

running the dynamical model.
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1. Introduction34

Data assimilation consists in combining a dynamical model with observation data to retrieve35

the latent true state of a system. The dynamical model is generally based on equations with36

physical assumptions (see Carrassi et al. 2018), though data-driven approaches have gained a lot37

of research attention in recent years (see Lguensat et al. 2017). In both approaches the dynamical38

model is generally misspecified, generating an error called the model error. It may represent39

for example unknown or unresolved physical phenomena as in Guillot et al. (2022), unknown40

physical parameters (Smith et al. 2013), or calibration errors in the data driven approach. Also,41

the observations are often imperfect, because of measurement and representation errors (see Janjić42

et al. 2018), leading to observation errors. Quantifying the model and observation errors for data43

assimilation remains a difficult task as explained in Tandeo et al. (2020). These two sources of44

uncertainties are usually represented as additive Gaussian white noises whose covariance matrices45

Q (for the model error) and R (for the observation error) respectively depend on vectors of46

stochastic parameters θQ and θR which need to be calibrated. This estimation problem has been47

addressed by many authors and a recent review of the existing methods can be found in Tandeo48

et al. (2020).49

Instead of directly calibrating θQ and θR, we can focus on the covariance matrix of the forecasted50

members. Covariance inflation (see Anderson and Anderson 1999) consists in multiplying this51

covariance matrix by an inflation parameter to reproduce the effect of the model error on it. This52

strategy also allows to reduce the impact of the sampling error (Anderson 2012), which is due53

to the use of a too small ensemble size (generally for computational reasons), even in situations54

where the matrices Q and R are known. The inflation parameter is usually estimated online using55

the innovation statistics of Desroziers et al. (2005), as in Miyoshi et al. (2013) where the joint56

estimation of the inflation parameter and θR is discussed. The hierarchical Bayesian approaches57

of Anderson (2009) and El Gharamti (2018) allow to estimate an inflation parameter which varies58

in space and time but with a not negligible computational cost. Covariance inflation is generally59

combined with covariance localization (see Houtekamer and Mitchell 2001) to further mitigate the60

impact of the sampling error and avoid filter degeneracy. The covariance localization eliminates61

the long-range spurious correlations in the covariance matrix of the forecasted members which is62

generally rank-deficient. For that, a mask depending on a localization parameter is applied to this63
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covariance matrix. Usually a grid search is used to estimate the localization parameter but it is64

computationally expensive.65

The aim of this work is to develop a generic method for estimating a set of stochastic parameters66

related to the parametrization of Q𝑡 , R𝑡 , or covariance inflation and localization. The proposed67

methodology is online, meaning that the stochastic parameters are allowed to vary in time and are68

estimated adaptively. The need for considering time-dependent covariance matrices for the model69

and observation errors is discussed in Dee (1995). Our method is based on state augmentation70

which consists in augmenting the latent state with the unknown parameters and assuming that71

these latter follow a simple dynamical model (e.g., a random walk). Then a data assimilation72

algorithm is used to estimate simultaneously the geophysical variables and the parameters. This73

method is widely used in data assimilation since it is easy to implement and it was found to be74

efficient for the online estimation of dynamical parameters (see Anderson 2001). However it is not75

appropriate for the estimation of stochastic parameters when using the EnKF because this algorithm76

can not handle the complex (non-Gaussian and non-linear) relationship between the observations77

and the stochastic parameters (see DelSole and Yang 2010). In order to circumvent this issue,78

it has been proposed to combine the strengths of the EnKF, which is known to be efficient for79

high-dimensional geophysical systems and of the PF, which is suitable to handle non-linearities80

and non-Gaussianity in low-dimensional systems (Van Leeuwen 2009) but is prone to the curse of81

dimensionality (Snyder et al. 2008). Different combinations of these two algorithms have already82

been studied for the state estimation (Papadakis et al. 2010; Slivinski et al. 2015).83

In this paper, a new combination of the PF with the EnKF, called the PF-EnKF algorithm,84

is detailed for estimating time-dependent stochastic parameters of the data assimilation system.85

The EnKF is used for the state estimation whereas the PF is used for the stochastic parameters86

estimation. At each time step, a set of particles is first generated to represent the distribution of the87

unknown stochastic parameters and weighted using the likelihood of the observations. Then, one88

step of the EnKF is run to update the ensemble members using the weighted mean of the particles89

as a value for the stochastic parameters. The proposed approach shares similarities with existing90

methods (Frei and Künsch 2012; Stroud et al. 2018; Ait-El-Fquih and Hoteit 2020) where the91

EnKF is used for the state estimation and the PF is used for the stochastic parameters estimation.92

The methods of Frei and Künsch (2012) allow to estimate a static (i.e. constant in time and93
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space) θR and the method of Stroud et al. (2018) provides estimates of static θQ and θR. Our94

methodology can handle the time dependency of these parameters, with a lower computational95

cost than Algorithm 1 of Frei and Künsch (2012) and of Stroud et al. (2018) because only a single96

Kalman gain matrix is computed in our algorithm. The method of Ait-El-Fquih and Hoteit (2020)97

allows to estimate a static inflation parameter with an inverse-gamma prior distribution, whereas98

our approach deals with a time-varying inflation parameter. The main contribution of this work is99

to propose a generic method to estimate time-dependent stochastic parameters, including inflation100

and localization, which can be easily appended on an existing EnKF-based data assimilation system101

with low additional cost.102

The rest of the paper is organized as follows. The new method is developed in Section 2 for103

different case studies. Numerical results with the Lorenz-96 model are then discussed in Section104

3. Finally, concluding remarks and perspectives are given in Section 4.105

2. The new PF-EnKF method106

The proposed methodology is based on the following state-space model107

{
x𝑡 = 𝑀 (x𝑡−1) +η𝑡 with η𝑡 ∼ N(0,Q𝑡),

y𝑡 =Hx𝑡 +ε𝑡 with ε𝑡 ∼ N(0,R𝑡)

(1a)

(1b)

where 𝑡 ∈ {1, ...,𝑇} denotes the time, x𝑡 ∈ R𝑛 the latent state, y𝑡 ∈ R𝑝 the observations available at108

time 𝑡 and 𝑀 (·) the dynamical model. For the sake of simplicity, we consider a linear observation109

operator H , but the new method also works when this operator is non-linear. η𝑡 and ε𝑡 denote110

respectively the model and observation errors with covariance matrices Q𝑡 = Q(θQ,𝑡) and R𝑡 =111

R(θR,𝑡) depending on vectors of stochastic parameters θQ,𝑡 and θR,𝑡 .112

a. PF-EnKF for estimating the model or observation error113

In this section, we first assume that the vector of stochastic parameters θR,𝑡 related to the114

observation error is known and we discuss the online estimation of θQ,𝑡 related to the model error.115

The estimation of θR,𝑡 when θQ,𝑡 is known is similar and detailed in Appendix A.116

117

5



θQ,𝑡 is assumed to be a Markov process as it is usually done when using state-augmentation. In118

terms of conditional distributions, the state-space model can be written as119

𝑝(θQ,𝑡 |θQ,1:𝑡−1,x1:𝑡−1) ∼ 𝑝(θQ,𝑡 |θQ,𝑡−1),

𝑝(x𝑡 |x1:𝑡−1,θQ,1:𝑡) ∼ 𝜙(x𝑡 ;𝑀 (x𝑡−1),Q(θQ,𝑡)),

𝑝(y𝑡 |x1:𝑡 ,θQ,1:𝑡) ∼ 𝜙(y𝑡 ;Hx𝑡 ,R𝑡),

with 𝜙 the probability density function of the Gaussian distribution and 𝑝(θQ,𝑡 |θQ,𝑡−1) a transition120

kernel which describes the evolution of the stochastic parameters (e.g., a random walk).121

122

The goal is to estimate x𝑡 and θQ,𝑡 at each time 𝑡 knowing the observations y1:𝑡 = (y1, ...,y𝑡).123

This relies on124

𝑝(x𝑡 ,θQ,𝑡 |y1:𝑡) = 𝑝(x𝑡 |θQ,𝑡 ,y1:𝑡) 𝑝(θQ,𝑡 |y1:𝑡), (2)

where the conditional distribution 𝑝(x𝑡 |θQ,𝑡 ,y1:𝑡) is estimated using the EnKF and 𝑝(θQ,𝑡 |y1:𝑡)125

using the PF. The equations related to each filter are detailed below.126

EnKF for 𝑝(x𝑡 |θQ,𝑡 ,y1:𝑡):127

For the forecast step at time 𝑡, 𝑁𝑚𝑒𝑚𝑏 state estimates, called the forecasted members, are generated128

by applying the dynamical model to the analyzed members at time 𝑡 −1 denoted x𝑎,𝑖

𝑡−1 and adding129

a random perturbation depending on θQ,𝑡 to obtain for 𝑖 ∈ {1, ..., 𝑁𝑚𝑒𝑚𝑏}130

x
𝑓 ,𝑖
𝑡 (θQ,𝑡) = 𝑀 (x𝑎,𝑖

𝑡−1) +η
𝑖
𝑡 with η𝑖

𝑡 ∼ N(0,Q(θQ,𝑡)). (3)

Then the empirical mean and covariance matrix of the forecasted members are computed131

x
𝑓
𝑡 (θQ,𝑡) =

1
𝑁𝑚𝑒𝑚𝑏

𝑁𝑚𝑒𝑚𝑏∑︁
𝑖=1

x
𝑓 ,𝑖
𝑡 (θQ,𝑡), (4)

P
𝑓
𝑡 (θQ,𝑡) =

1
𝑁𝑚𝑒𝑚𝑏 −1

𝑁𝑚𝑒𝑚𝑏∑︁
𝑖=1

(
x

𝑓 ,𝑖
𝑡 (θQ,𝑡) −x

𝑓
𝑡 (θQ,𝑡)

) (
x

𝑓 ,𝑖
𝑡 (θQ,𝑡) −x

𝑓
𝑡 (θQ,𝑡)

)⊤
. (5)
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For the analysis step, each forecasted member is corrected using the available observation y𝑡 as132

in Burgers et al. (1998) to generate the analyzed members for 𝑖 ∈ {1, ..., 𝑁𝑚𝑒𝑚𝑏}133

x𝑎,𝑖
𝑡 (θQ,𝑡) = x

𝑓 ,𝑖
𝑡 (θQ,𝑡) +K𝑡 (θQ,𝑡)

(
y𝑡 +ε𝑖𝑡 −Hx

𝑓 ,𝑖
𝑡 (θQ,𝑡)

)
(6)

with134

K𝑡 (θQ,𝑡) = P
𝑓
𝑡 (θQ,𝑡)H⊤

(
HP

𝑓
𝑡 (θQ,𝑡)H⊤ +R𝑡

)−1
(7)

and135

ε𝑖𝑡 ∼ N(0,R𝑡). (8)

PF for 𝑝(θQ,𝑡 |y1:𝑡):136

According to Bayes’ theorem we have137

𝑝(θQ,𝑡 |y1:𝑡) ∝ 𝑝(θQ,𝑡 |y1:𝑡−1) 𝑝(y𝑡 |y1:𝑡−1,θQ,𝑡). (9)

Using a sequential importance resampling (SIR) scheme, the conditional distribution138

𝑝(θQ,𝑡 |y1:𝑡−1) is approximated by a discrete distribution139

𝑝(θQ,𝑡 |y1:𝑡−1) ≈
1
𝑁θ

𝑁θ∑︁
𝑗=1

𝛿
θ 𝑓 , 𝑗

Q,𝑡

(θQ,𝑡)

where 𝛿(·) denotes the Dirac distribution. The forecasted particles θ
𝑓 , 𝑗

Q,𝑡
, for 𝑗 ∈ {1, ..., 𝑁θ}, are140

generated from the conditional distribution 𝑝(θQ,𝑡 |θ𝑎, 𝑗

Q,𝑡−1) where θ𝑎, 𝑗

Q,𝑡−1 denotes the 𝑗-th analyzed141

particle at 𝑡 −1.142

143

The previous EnKF scheme allows to approximate the likelihood in Eq. (9) using144

𝑝(y𝑡 |y1:𝑡−1,θQ,𝑡) =
∫

𝑝(y𝑡 |x𝑡)𝑝(x𝑡 |y1:𝑡−1,θQ,𝑡)𝑑x𝑡 .
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Finally, based on Rubin (1988), Eq. (9) can be approximated by the discrete distribution145

𝑝(θQ,𝑡 |y1:𝑡) ≈
𝑁θ∑︁
𝑗=1

𝛾
𝑗
𝑡 𝛿θ 𝑓 , 𝑗

Q,𝑡

(θQ,𝑡) (10)

where for 𝑗 ∈ {1, ..., 𝑁θ}146

𝛾
𝑗
𝑡 =

𝜙(y𝑡 ;Hx
𝑓
𝑡 (θ

𝑓 , 𝑗

Q,𝑡
),HP

𝑓
𝑡 (θ

𝑓 , 𝑗

Q,𝑡
)H⊤ +R𝑡)∑𝑁θ

𝑘=1 𝜙(y𝑡 ;Hx
𝑓
𝑡 (θ

𝑓 ,𝑘

Q,𝑡
),HP

𝑓
𝑡 (θ

𝑓 ,𝑘

Q,𝑡
)H⊤ +R𝑡)

. (11)

PF-EnKF algorithm:147

Now following Eq. (2), the PF and EnKF need to be combined. There are a number of possible148

approaches to this, where a compromise between computational cost and accuracy must be found.149

In this work, a combination with low additional computational cost is favoured, meaning that the150

number of runs of the dynamical model and the number of analysis computations should not be151

increased compared to the usual EnKF.152

153

For the forecast step at time 𝑡, the previous members x𝑎,𝑖

𝑡−1 are propagated by the dynamical model154

to obtain the propagated members155

x
𝑝,𝑖
𝑡 = 𝑀 (x𝑎,𝑖

𝑡−1) for 𝑖 ∈ {1, ..., 𝑁𝑚𝑒𝑚𝑏},

with their empirical mean and covariance matrix156

x
𝑝
𝑡 =

1
𝑁𝑚𝑒𝑚𝑏

𝑁𝑚𝑒𝑚𝑏∑︁
𝑖=1

x
𝑝,𝑖
𝑡

P
𝑝
𝑡 =

1
𝑁𝑚𝑒𝑚𝑏 −1

𝑁𝑚𝑒𝑚𝑏∑︁
𝑖=1

(x𝑝,𝑖
𝑡 −x

𝑝
𝑡 ) (x

𝑝,𝑖
𝑡 −x

𝑝
𝑡 )⊤.

The PF is now performed to weight the forecasted particles θ
𝑓 , 𝑗

Q,𝑡
. To do this, Eq. (11) is157

used but instead of computing the empirical mean x
𝑓
𝑡 (θ

𝑓 , 𝑗

Q,𝑡
) and covariance matrix P

𝑓
𝑡 (θ

𝑓 , 𝑗

Q,𝑡
)158

of the forecasted members, we use the empirical mean x
𝑝
𝑡 and covariance matrix P

𝑝
𝑡 of the159

propagated members x
𝑝,𝑖
𝑡 with the theoretical mean 0 and covariance matrix Q(θ 𝑓 , 𝑗

Q,𝑡
) of the160
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random perturbations η𝑖
𝑡 to obtain as in Stroud et al. (2018)161

x
𝑓
𝑡 = x

𝑝
𝑡 , (12)

P
𝑓 , 𝑗
𝑡 = P

𝑝
𝑡 +Q(θ 𝑓 , 𝑗

Q,𝑡
) for 𝑗 ∈ {1, ..., 𝑁θ}. (13)

The weight of each forecasted particle θ
𝑓 , 𝑗

Q,𝑡
is thus given for 𝑗 ∈ {1, ..., 𝑁θ} by162

𝛾
𝑗
𝑡 =

𝜙(y𝑡 ;Hx
𝑓
𝑡 ,HP

𝑓 , 𝑗
𝑡 H⊤ +R𝑡)∑𝑁θ

𝑘=1 𝜙(y𝑡 ;Hx
𝑓
𝑡 ,HP

𝑓 ,𝑘
𝑡 H⊤ +R𝑡)

. (14)

The numerical experiments that we performed show that the estimates of the mean and163

covariance matrix of the forecasted members in Eqs. (12)-(13) improve the performance of the164

algorithm compared to using the empirical mean and covariance matrix of the forecasted members.165

Indeed, it permits to reduce the impact of the sampling error on the likelihood used to weight each166

particle, this allows to better identify the relevant particles.167

The forecasted particles θ
𝑓 , 𝑗

Q,𝑡
are then resampled using the discrete distribution in Eq. (10) with168

the weights from Eq. (14) to give the analyzed particles θ𝑎, 𝑗

Q,𝑡
for 𝑗 ∈ {1, ..., 𝑁θ}.169

170

Then Eqs. (3)-(8) of the EnKF are used to estimate the true state. A first strategy would171

consist in replacing the vector of unknown stochastic parameters θQ,𝑡 by each analyzed particle172

θ
𝑎, 𝑗

Q,𝑡
for 𝑗 ∈ {1, ..., 𝑁θ}, as it has been done by Stroud et al. (2018) or Frei and Künsch (2012)173

with their Algorithm 1 for R. However it leads to compute 𝑁θ Kalman gain matrices which is174

computationally not suitable for high-dimensional applications. Another strategy is to replace θQ,𝑡175

by the mean of the analyzed particles given by176

θ𝑎
Q,𝑡

=
1
𝑁θ

𝑁θ∑︁
𝑗=1

θ
𝑎, 𝑗

Q,𝑡
,

allowing to compute a single Kalman gain matrix as in Algorithm 2 of Frei and Künsch (2012) for177

R. This saves computational resources compared to the first strategy. The numerical experiments178

that we performed (not shown) indicate that both strategies give similar results.179
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particles at t-1

members at t-1

0

0

PF

particles at t

EnKF

members at t

mean particle

propagated members

0

dynamical 
model

observation at t

Fig. 1: Global scheme of the PF-EnKF cycle at time 𝑡. The PF is dedicated to the stochastic
parameters estimation whereas the EnKF provides the state estimation.

The EnKF is thus run for the mean particle θ𝑎
Q,𝑡

giving for 𝑖 ∈ {1, ..., 𝑁𝑚𝑒𝑚𝑏} the forecasted members180

x
𝑓 ,𝑖
𝑡 = x

𝑝,𝑖
𝑡 +η𝑖

𝑡 with η𝑖
𝑡 ∼ N(0,Q(θ𝑎

Q,𝑡
))

and the analyzed members181

x𝑎,𝑖
𝑡 = x

𝑓 ,𝑖
𝑡 +K𝑡 (y𝑡 +ε𝑖𝑡 −Hx

𝑓 ,𝑖
𝑡 ) with ε𝑖𝑡 ∼ N(0,R𝑡),

where182

K𝑡 = P
𝑓
𝑡 H

⊤(HP
𝑓
𝑡 H

⊤ +R𝑡)−1 with P
𝑓
𝑡 = P

𝑝
𝑡 +Q(θ𝑎

Q,𝑡
). (15)

The PF-EnKF algorithm for estimating the model error is detailed in Algorithm 1 and can be183

easily implemented from an existing EnKF with few extra computational cost. A cycle at time 𝑡 of184

our generic method is schematized in Figure 1.185

186
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Algorithm 1 PF-EnKF for estimating Q𝑡187

188

Require: Q(·), R𝑡 and θQ,0189

1: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do190

2: η𝑖
1 ∼ N(0,Q(θQ,0))191

3: x𝑎,𝑖

1 = x0 +η𝑖
1192

4: end for193

5: for 𝑗 = 1, . . . , 𝑁θ do194

6: θ
𝑎, 𝑗

Q,1 ∼ 𝑝(θQ,1 |θQ,0)195

7: end for196

8: for 𝑡 = 2, . . . ,𝑇 do197

9: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do198

10: x
𝑝,𝑖
𝑡 = 𝑀 (x𝑎,𝑖

𝑡−1)199

11: end for200

12: x
𝑝
𝑡 =

1
𝑁𝑚𝑒𝑚𝑏

∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 x
𝑝,𝑖
𝑡201

13: P
𝑝
𝑡 = 1

𝑁𝑚𝑒𝑚𝑏−1
∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 (x𝑝,𝑖
𝑡 −x

𝑝
𝑡 ) (x

𝑝,𝑖
𝑡 −x

𝑝
𝑡 )⊤202

14: for 𝑗 = 1, . . . , 𝑁θ do203

15: θ
𝑓 , 𝑗

Q,𝑡
∼ 𝑝(θQ,𝑡 |θ𝑎, 𝑗

Q,𝑡−1)204

16: P
𝑓 , 𝑗
𝑡 = P

𝑝
𝑡 +Q(θ 𝑓 , 𝑗

Q,𝑡
)205

17: end for206

18: for 𝑗 = 1, . . . , 𝑁θ do207

19: 𝛾
𝑗
𝑡 =

𝜙(y𝑡 ;Hx𝑝
𝑡 ,HP 𝑓 , 𝑗

𝑡 H⊤+R𝑡 )∑𝑁θ
𝑘=1 𝜙(y𝑡 ;Hx𝑝

𝑡 ,HP 𝑓 ,𝑘
𝑡 H⊤+R𝑡 )

208

20: end for209

21: resample the forecasted particles θ 𝑓 , 𝑗

Q,𝑡
using the weights 𝛾 𝑗

𝑡 to obtain the analyzed particles210

θ
𝑎, 𝑗

Q,𝑡
211

22: θ𝑎
Q,𝑡

= 1
𝑁θ

∑𝑁θ
𝑗=1θ

𝑎, 𝑗

Q,𝑡
212

23: P
𝑓
𝑡 = P

𝑝
𝑡 +Q(θ𝑎

Q,𝑡
)213

24: K𝑡 = P
𝑓
𝑡 H

⊤(HP
𝑓
𝑡 H

⊤ +R𝑡)−1
214

25: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do215

26: η𝑖
𝑡 ∼ N(0,Q(θ𝑎

Q,𝑡
))216
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27: x
𝑓 ,𝑖
𝑡 = x

𝑝,𝑖
𝑡 +η𝑖

𝑡217

28: ε𝑖𝑡 ∼ N(0,R𝑡)218

29: x𝑎,𝑖
𝑡 = x

𝑓 ,𝑖
𝑡 +K𝑡 (y𝑡 +ε𝑖𝑡 −Hx

𝑓 ,𝑖
𝑡 )219

30: end for220

31: end for221

b. PF-EnKF for inflation and localization222

In our approach the inflation and localization of the covariance matrix of the forecasted members223

P
𝑓
𝑡 are led jointly by the Schur product L(θL,𝑡) ◦P 𝑓

𝑡 which is the element-wise multiplication224

between L(θL,𝑡) and P
𝑓
𝑡 . θL,𝑡 = (𝜆L,𝑡 , 𝑙L,𝑡) is the couple of unknown stochastic parameters and225

L(·) is a 𝑛 by 𝑛 positive semi-definite matrix that represents the decay of correlations in the physical226

space. Each element of L(θL,𝑡) is computed using the correlation function of Gaspari and Cohn227

(1999), denoted GC(·), that depends on the localization parameter 𝑙L,𝑡 ≻ 0 and inflated by 𝜆L,𝑡 ≻ 0,228

so that for (𝑘, 𝑘′) ∈ {1, ..., 𝑛}2
229

L(θL,𝑡) [𝑘, 𝑘′] = 𝜆L,𝑡GC(𝑙L,𝑡) [𝑘, 𝑘′] .

The correlation function GC(·) is a polynomial approximation of a Gaussian density but with230

compact support whose radius is equal to 2𝑙L,𝑡 . A lower value of 𝑙L,𝑡 corresponds to a stronger231

localization. The goal is to estimate θL,𝑡 using the same methodology as in Section a. The resulting232

PF-EnKF algorithm jointly estimates time-dependent inflation and localization parameters and is233

detailed in Algorithm 2. To show the relevancy of using the likelihood as a criterion for the234

estimation of inflation and localization parameters, an illustrative example is given in Appendix B.235

Algorithm 2 PF-EnKF for inflation and localization236

237

Require: Q𝑡 ,R𝑡 , L(·) and θL,0238

1: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do239

2: η𝑖
1 ∼ N(0,Q1)240

3: x𝑎,𝑖

1 = x0 +η𝑖
1241

4: end for242

5: for 𝑗 = 1, . . . , 𝑁θ do243
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6: θ
𝑎, 𝑗

L,1 ∼ 𝑝(θL,1 |θL,0)244

7: end for245

8: for 𝑡 = 2, . . . ,𝑇 do246

9: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do247

10: η𝑖
𝑡 ∼ N(0,Q𝑡)248

11: x
𝑓 ,𝑖
𝑡 = 𝑀 (x𝑎,𝑖

𝑡−1) +η
𝑖
𝑡249

12: end for250

13: x
𝑓
𝑡 = 1

𝑁𝑚𝑒𝑚𝑏

∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 x
𝑓 ,𝑖
𝑡251

14: P
𝑓
𝑡 = 1

𝑁𝑚𝑒𝑚𝑏−1
∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 (x 𝑓 ,𝑖
𝑡 −x

𝑓
𝑡 ) (x

𝑓 ,𝑖
𝑡 −x

𝑓
𝑡 )⊤252

15: for 𝑗 = 1, . . . , 𝑁θ do253

16: θ
𝑓 , 𝑗

L,𝑡
∼ 𝑝(θL,𝑡 |θ𝑎, 𝑗

L,𝑡−1)254

17: P
𝑓 , 𝑗
𝑡 =L(θ 𝑓 , 𝑗

L,𝑡
) ◦P 𝑓

𝑡255

18: end for256

19: for 𝑗 = 1, . . . , 𝑁θ do257

20: 𝛾
𝑗
𝑡 =

𝜙(y𝑡 ;Hx 𝑓
𝑡 ,HP 𝑓 , 𝑗

𝑡 H⊤+R𝑡 )∑𝑁θ
𝑘=1 𝜙(y𝑡 ;Hx 𝑓

𝑡 ,HP 𝑓 ,𝑘
𝑡 H⊤+R𝑡 )

258

21: end for259

22: resample the forecasted particles θ 𝑓 , 𝑗

L,𝑡
using the weights 𝛾 𝑗

𝑡 to obtain the analyzed particles260

θ
𝑎, 𝑗

L,𝑡
261

23: θ𝑎
L,𝑡

= 1
𝑁θ

∑𝑁θ
𝑗=1θ

𝑎, 𝑗

L,𝑡
262

24: P
𝑓
𝑡 =L(θa

L,𝒕
) ◦P 𝑓

𝑡263

25: K𝑡 = P
𝑓
𝑡 H

⊤(HP
𝑓
𝑡 H

⊤ +R𝑡)−1
264

26: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do265

27: ε𝑖𝑡 ∼ N(0,R𝑡)266

28: x𝑎,𝑖
𝑡 = x

𝑓 ,𝑖
𝑡 +K𝑡 (y𝑡 +ε𝑖𝑡 −Hx

𝑓 ,𝑖
𝑡 )267

29: end for268

30: end for269

3. Numerical results270

The PF-EnKF is tested with the Lorenz-96 dynamical model for estimating Q𝑡 , R𝑡 and then271

both inflation and localization parameters. It is compared to the EnKF that uses the true Q𝑡 in the272

first case study, then with Algorithm 2 of Frei and Künsch (2012) for estimating R𝑡 and to the273
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combination of state-of-the-art inflation and localization methods in the third case study.274

275

The Lorenz-96 model (see Lorenz 1996) is a one-dimensional model, representing the evolution276

of a meteorological quantity in 𝑛 sectors of a latitude circle. It is defined for 𝑘 ∈ {1, ..., 𝑛 = 40} by277

the ordinary differential equation278

𝜕x𝑡,𝑘

𝜕𝑡
= (x𝑡,𝑘+1 −x𝑡,𝑘−2)x𝑡,𝑘−1 −x𝑡,𝑘 +𝐹

with periodic boundary conditions. The time step is 0.05 and the usual value 𝐹 = 8 is chosen to279

have a chaotic behavior.280

281

The true statex𝑡 is generated following Eq. (1a) for 𝑡 ∈ {1, ...,𝑇 = 500}with for (𝑘, 𝑘′) ∈ {1, ..., 𝑛}2
282

Q𝑡 [𝑘, 𝑘′] = 𝜆2
Q,𝑡

e
− 𝑑x (𝑘,𝑘′ )2

𝑙2
Q,𝑡 .

𝑑x(𝑘, 𝑘′) =min( |𝑘− 𝑘′|, 𝑛− |𝑘− 𝑘′|) is the distance between two grid points on the circle in the state283

space, 𝜆Q,𝑡 and 𝑙Q,𝑡 are respectively the variance and spatial scale parameters of Q𝑡 . The values284

on the diagonal of Q𝑡 are equal to 𝜆2
Q,𝑡

and 𝑙Q,𝑡 controls the speed of decrease of the correlation285

with the distance.286

The initial true state is x0 ∼ N(0,I). One grid point out of two is observed (𝑝 = 20) and the287

observation y𝑡 is generated following Eq. (1b) with for (𝑘, 𝑘′) ∈ {1, ..., 𝑝}2
288

R𝑡 [𝑘, 𝑘′] = 𝜆2
R,𝑡

e
− 𝑑y (𝑘,𝑘′ )2

𝑙2
R,𝑡 . (16)

𝑑y (𝑘, 𝑘′) = min( |𝑘 − 𝑘′|, 𝑝− |𝑘 − 𝑘′|) is the distance between two observed grid points on the circle289

in the observation space. The vectors of stochastic parameters of Q𝑡 and R𝑡 are respectively290

θQ,𝑡 = (𝜆Q,𝑡 , 𝑙Q,𝑡) and θR,𝑡 = (𝜆R,𝑡 , 𝑙R,𝑡).291
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Fig. 2: True spatio-temporal evolution of the system (on the left) with the partial and noisy
observation data (on the right).

a. Results for the estimation of the model error292

The aim is to retrieve x𝑡 and the parameters of Q𝑡 for 𝑡 ∈ {1, ...,𝑇}293

𝜆Q,𝑡 = 1+0.5sin
( 𝑡

10

)
,

𝑙Q,𝑡 =

√︂
3+2cos

( 𝑡

20

)
,

assuming that R𝑡 = 0.1I is known. The temporal evolution of x𝑡 and y𝑡 is shown in Figure 2.294

295

The PF-EnKF algorithm detailed in Section a is run with the following implementation. The296

number of members is 𝑁𝑚𝑒𝑚𝑏 = 100 and the number of particles is 𝑁θ = 100. At 𝑡 = 1, the members297

are initialized using a Gaussian distribution with mean x0 and covariance matrix Q(θQ,0) where298

θQ,0 = (0.5,0.5). The initial particles θ𝑎, 𝑗

Q,1 = (𝜆𝑎, 𝑗
Q,1, 𝑙

𝑎, 𝑗

Q,1) are simulated using independent uniform299

distributions on the intervals ]0,1]×]0,1] for 𝑗 ∈ {1, ..., 𝑁θ}. For 𝑡 ≥ 2, the forecasted particles are300

simulated using the random walk301

θ
𝑓 , 𝑗

Q,𝑡
= max(θ𝑎, 𝑗

Q,𝑡−1 + θ̃
𝑗

Q,𝑡
,θ𝑚𝑖𝑛)
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which is bounded by θ𝑚𝑖𝑛 = (10−4,10−4) to avoid negative values for the parameters. The additive302

Gaussian white noise θ̃ 𝑗

Q,𝑡
avoids the degeneracy problem of the PF when the particles concentrate303

on a single particle over time. The covariance matrix of θ̃ 𝑗

Q,𝑡
is304

C =
©­«
𝜎2
𝜆,Q

0

0 𝜎2
𝑙,Q

ª®¬
and depends on hyperparameters set to 𝜎𝜆,Q = 0.1 and 𝜎𝑙,Q = 0.1. Appendix C shows that our305

algorithm is not very sensitive to the choice of these hyperparameters.306

307

Figure 3 compares the temporal evolutions of the true stochastic parameters with the ones of the308

estimates obtained by the PF-EnKF. It indicates that our method is able to track the time-evolution309

of the true stochastic parameters, even if the initial parameter value is ill-chosen. The algorithm310

provides an accurate estimate for the variance parameter 𝜆Q,𝑡 , whereas the estimate of the spatial311

scale parameter 𝑙Q,𝑡 seems to be delayed in time compared with the true parameter evolution. It312

suggests that the likelihood is more sensitive to the value of 𝜆Q,𝑡 compared to 𝑙Q,𝑡 . This appears to313

be linked to the observation density, since the time delay is significantly reduced when the number314

of observed grid points is increased to 𝑝 = 40 instead of 𝑝 = 20 (see Figure 4).315

316

Focusing now on the state estimation, our algorithm is compared to the EnKF with true Q𝑡 . This317

latter uses the theoretical covariance matrix of the forecasted members P 𝑓
𝑡 = P

𝑝
𝑡 +Q𝑡 , instead of318

the empirical one, to reduce the impact of the sampling error as our algorithm within Eq. (15). The319

experiment is repeated 10 times with the same true states and observations for the two algorithms,320

only the stochastic parts of the EnKF and PF vary from a trial to another. Their global root mean321

square error (RMSE) and coverage probability are computed for each experiment. The global322

RMSE is given by323

1
𝑇

𝑇∑︁
𝑡=1

√√√
1

𝑛𝑁𝑚𝑒𝑚𝑏

𝑁𝑚𝑒𝑚𝑏∑︁
𝑖=1

(x𝑎,𝑖
𝑡 −x𝑡)⊤(x𝑎,𝑖

𝑡 −x𝑡).

The coverage probability is defined as the empirical probability to have x𝑡,𝑘 , with 𝑘 ∈ {1, ..., 𝑛},324

falling in the 95% confidence interval obtained by the algorithm. The global RMSE provides325
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Fig. 3: Estimation of the variance parameter 𝜆Q,𝑡 and spatial scale parameter 𝑙Q,𝑡 with the
PF-EnKF. For each panel, the 95% confidence interval is plotted using the quantiles of the
particle distribution.
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Fig. 4: Estimation of the spatial scale parameter 𝑙Q,𝑡 with the PF-EnKF when 𝑝 = 𝑛 (the state is
fully observed).

informations on the ensemble mean and the coverage probability on the ensemble spread. The326

results shown in Table 1 are quite similar for the two algorithms. As expected, the global RMSE327

of the PF-EnKF is larger than the one of the EnKF with true Q𝑡 , but the difference is small,328

indicating that the PF-EnKF is able to relevantly estimate both the state and stochastic parameters.329

The coverage probability of each algorithm is close to the optimal value 0.95, showing that they330
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Algorithm Global RMSE Coverage probability

PF-EnKF 1.19 ± 0.03 0.95 ± 0.01

EnKF with Q𝑡 1.09 ± 0.01 0.94 ± 0.01

Table 1: Comparison between the PF-EnKF with estimated Q𝑡 and the EnKF with true Q𝑡 . Each
result corresponds to the average over the 10 experiments ± the standard deviation.

provide a good estimation of the uncertainty on the reconstructed state. The standard deviations331

computed for the global RMSE and coverage probability of our algorithm show its stability. Note332

that the numerical experiments that we performed show that increasing the number of particles 𝑁θ333

does not lead to better results. The PF-EnKF is thus able to retrieve the true state, estimating Q𝑡334

with few extra computational cost compared to the EnKF with true Q𝑡 .335

b. Results for the estimation of the observation error336

We obtained similar results as in Section a when using the PF-EnKF algorithm detailed in337

Appendix A for estimating time-varying parameters of R𝑡 (results not shown). Here, to allow the338

comparison with Algorithm 2 of Frei and Künsch (2012), we consider static parameters of R𝑡 to339

retrieve for 𝑡 ∈ {1, ...,𝑇}340

𝜆R,𝑡 = 2,

𝑙R,𝑡 =
√

2.

Moreover, the number of observed grid points 𝑝 = 10 is lower than in Section a, in order to assess341

the efficiency of each algorithm when the observation density is low.342

343

The PF-EnKF algorithm detailed in Appendix A is run with the following implementation. At344

𝑡 = 1, for 𝑗 ∈ {1, ..., 𝑁θ}, the initial particles θ
𝑎, 𝑗

R,1 = (𝜆𝑎, 𝑗
R,1, 𝑙

𝑎, 𝑗

R,1) are simulated using independent345

uniform distributions on the intervals ]0,2𝜆R,0]×]0,2𝑙R,0] with θR,0 = (𝜆R,0, 𝑙R,0) = (0.05,0.05).346

For 𝑡 ≥ 2, the forecasted particles θ
𝑓 , 𝑗

R,𝑡
are simulated as in Section a using the bounded random347

walk for 𝑗 ∈ {1, ..., 𝑁θ}348

θ
𝑓 , 𝑗

R,𝑡
= max(θ𝑎, 𝑗

R,𝑡−1 + θ̃
𝑗

R,𝑡
,θ𝑚𝑖𝑛)
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Fig. 5: Estimation of the variance parameter 𝜆R,𝑡 and spatial scale parameter 𝑙R,𝑡 with the
PF-EnKF and Algorithm 2 of Frei and Künsch (2012). For each panel, the 95% confidence
interval of each algorithm is plotted.

with the additive noise θ̃
𝑗

R,𝑡
∼ N(0,0.0025I).349

350

The PF-EnKF is compared with Algorithm 2 of Frei and Künsch (2012) which uses kernel351

resampling with shrinkage for updating the particles. Both algorithms are run with 𝑁𝑚𝑒𝑚𝑏 = 100,352

𝑁θ = 100 and Q𝑡 = I . Their estimates for the parameters of R𝑡 are shown on Figure 5. The initial353

parameters’ values are close to 0 as a consequence of the small values chosen for θR,0. This leads to354

a poor estimation of θR,𝑡 in the first iterations of both algorithms. Then, after about 50 time steps,355

the PF-EnKF is able to correct this bad initial estimation and identify parameters’ values close to356

the true values. Algorithm 2 of Frei and Künsch (2012) is able to retrieve the variance parameter357

but with an important delay compared with the PF-EnKF. However, it is not able to retrieve the358

spatial scale parameter and provides estimates close to 0 even after 500 iterations. Figure 6 shows359

the results obtained when using more realistic values for θR,0, in this case Algorithm 2 of Frei360

and Künsch (2012) seems to perform as well as the PF-EnKF. This experiment highlights that361

our algorithm is less sensitive to the initialization and as a consequence may be more suitable for362

estimating the parameters of R𝑡 in an adaptive way.363

364
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Fig. 6: As in Figure 5 but with θR,0 = (2,1.5).

Algorithm Global RMSE Coverage probability

PF-EnKF with good initialization 4.68 ± 0.04 0.95 ± 0.01

PF-EnKF with bad initialization 4.69 ± 0.04 0.92 ± 0.01

Frei and Künsch with good initialization 4.70 ± 0.06 0.95 ± 0.01

Frei and Künsch with bad initialization 4.74 ± 0.06 0.25 ± 0.22

EnKF with R𝑡 4.68 ± 0.06 0.94 ± 0.01

Table 2: Comparison between the PF-EnKF, Algorithm 2 of Frei and Künsch (2012) and the
EnKF with true R𝑡 , for good and bad initializations. Each result corresponds to the average over
the 10 experiments ± the standard deviation.

Focusing now on the state estimation as in Section a, our algorithm is compared with Algorithm365

2 of Frei and Künsch (2012) and the EnKF with true R𝑡 . The PF-EnKF and Algorithm 2 of Frei366

and Künsch (2012) are run with a good initialization: θR,0 = (2,1.5), and with a bad initialization:367

θR,0 = (0.05,0.05). The global RMSE and coverage probability of each algorithm are shown in368

Table 2. When the initialization is good, the algorithms have similar results. However, when the369

initialization is bad, the global RMSE of Algorithm 2 of Frei and Künsch (2012) is slightly higher370

and its coverage probability is low because R𝑡 is most of the time underestimated (see Figure 5),371

whereas the results of the PF-EnKF remain close to the ones of the EnKF with true R𝑡 . Moreover,372

the standard deviations computed for the global RMSE and coverage probability of our algorithm373

show its stability. The PF-EnKF is thus able to retrieve the true state estimating R𝑡 more efficiently374

than Algorithm 2 of Frei and Künsch (2012), which is more sensitive to the inialization.375
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c. Results for the PF-EnKF with inflation and localization376

The PF-EnKF algorithm detailed in Section b is used with 𝑁θ = 100 and 𝑁𝑚𝑒𝑚𝑏 = 10 which is377

smaller than in Sections a and b to have an important sampling error to treat. To do this, we perform378

the simultaneous inflation and localization of P 𝑓
𝑡 with L(θL,𝑡) whose inflation parameter 𝜆L,𝑡 and379

localization parameter 𝑙L,𝑡 are estimated by the PF-EnKF. The error covariance matricesQ𝑡 = I and380

R𝑡 = I are assumed to be known. At 𝑡 = 1, for 𝑗 ∈ {1, ..., 𝑁θ}, the initial particles θ𝑎, 𝑗

L,1 = (𝜆𝑎, 𝑗
L,1, 𝑙

𝑎, 𝑗

L,1)381

are simulated using independent uniform distributions on the intervals ]0,2𝜆L,0]×]0,2𝑙L,0] with382

θL,0 = (𝜆L,0, 𝑙L,0) = (0.5,2.5). For 𝑡 ≥ 2, the forecasted particles θ 𝑓 , 𝑗

L,𝑡
are simulated as in Sections383

a and b using the bounded random walk for 𝑗 ∈ {1, ..., 𝑁θ}384

θ
𝑓 , 𝑗

L,𝑡
= max(θ𝑎, 𝑗

L,𝑡−1 + θ̃
𝑗

L,𝑡
,θ𝑚𝑖𝑛)

with the additive noise θ̃
𝑗

L,𝑡
∼ N(0,C) where385

C =
©­«

0.001 0

0 0.1
ª®¬ .

The goal is to retrievex𝑡 for 𝑡 ∈ {1, ...,𝑇} and to estimate the inflation and localization parameters.386

The PF-EnKF for inflation and localization is compared to the combination of Desroziers-based387

inflation and grid search for localization in the EnKF (which also uses 𝑁𝑚𝑒𝑚𝑏 = 10). More precisely,388

the time-varying inflation parameter 𝜆𝑡 is estimated using the innovation statistics of Desroziers389

et al. (2005) with a temporal smoothing to obtain for 𝑡 ≥ 2, 𝜆2 = 1 and 𝑣𝑚𝑖𝑛 = 10−4
390

𝜆𝑡+1 = max(𝜌𝜆̃𝑡 + (1− 𝜌)𝜆𝑡 , 𝑣𝑚𝑖𝑛)

with 𝜆̃𝑡 =
(y𝑡 −Hx

𝑓
𝑡 )⊤(y𝑡 −Hx

𝑓
𝑡 ) −Tr(R𝑡)

Tr(HP
𝑓
𝑡 H

⊤)
.

The smoothing parameter is set to 𝜌 = 0.05. For the localization, assuming that the localization391

parameter 𝑙 in GC(𝑙) is constant in time, a grid search is performed using the global RMSE on the392

true state, although such an approach is not possible in practical applications since the true state is393

unknown. The resulting estimate is hereafter referred to as ”optimal localization”.394

395
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Algorithm Global RMSE Coverage probability

PF-EnKF 2.26 ± 0.06 0.88 ± 0.01

Desroziers-based inflation and optimal localization 2.17 ± 0.04 0.87 ± 0.01

Table 3: Comparison between the PF-EnKF for inflation and localization and the combination of
the Desroziers-based inflation with the optimal localization when 𝑁𝑚𝑒𝑚𝑏 = 10.

In the first instance, both approaches are compared with respect to their ability to retrieve the396

true state by repeating 10 times the experiment with the same true states and observations (as397

for Sections a and b). The global RMSE and coverage probability shown in Table 3 are almost398

the same between the two algorithms. The localization has a significant effect on the global399

RMSE (by reducing the sampling error impact) and the inflation on the coverage probability400

(by adjusting the ensemble spread). The concurrent method, based on Desroziers inflation and401

optimal localization, is favoured in comparison with the PF-EnKF because it assumes that the402

true state is known for calibrating the localization parameter, whereas our algorithm only uses403

the observations. However, the PF-EnKF has a lower computational cost than the concurrent404

method because the grid search used for the localization parameter is very expensive. Moreover,405

good results were also obtained by our method with a lower computational cost when a smaller406

number of particles 𝑁θ = 10 was used. The standard deviations computed for the global RMSE407

and coverage probability of the PF-EnKF show, as for the concurrent method, that our algorithm408

is stable. The PF-EnKF with inflation and localization seems thus to efficiently retrieve the true409

state when a small ensemble size 𝑁𝑚𝑒𝑚𝑏 is used. This is also shown in Figure 7 where the estimate410

of the first state variable x𝑡,1 is close to the truth for both algorithms.411

412

In the second instance, the temporal evolutions of the estimates of the localization and inflation413

parameters are shown for both methods on Figure 8. For the inflation parameter, the estimate of414

the PF-EnKF is quite close to the Desroziers-based inflation. Note that the PF-EnKF can be seen415

as a likelihood-based method whereas the Desroziers-based inflation is a moment-based method416

as explained by Tandeo et al. (2020). For the localization parameter, the estimate of the PF-EnKF417

varies around the optimal value 𝑙 = 1 obtained by grid search.418

A sensitivity analysis is performed to further investigate the properties of the estimate of the419

localization parameter. Figure 9 shows the distribution of the values taken over time by the estimate420
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Fig. 7: Temporal evolution of the estimates of x𝑡,1 obtained with the PF-EnKF with inflation and
localization and the Desroziers-based inflation with optimal localization.

of the localization parameter of the PF-EnKF for different ensemble sizes 𝑁𝑚𝑒𝑚𝑏. These values are421

mostly close to the optimal localization and increase, as expected, when the ensemble size is larger.422

In the same manner but without inflation to better see the localization sensitivity, the left panel of423

Figure 10 shows that our localization parameter estimate depends on the number of observed grid424

points 𝑝, allowing to handle a time-dependent observation operator H𝑡 . The same experiment is425

then led with a time-varying covariance matrix R𝑡 and 𝑝 = 40. The right panel of Figure 10 shows426

that our localization parameter estimate also depends on the observation error. All these results427

are in accordance with the ones of Ying et al. (2018) who illustrated that the optimal value of the428

localization parameter notably depends on the ensemble size, the observation density (given by 𝑝)429

and the observation error.430

The PF-EnKF is thus able to relevantly estimate both time-dependent inflation and localization431

parameters.432

4. Conclusion and perspectives433

A new combination of the EnKF with the PF has been developed in this paper to simultaneously434

estimate the latent true state and time-dependent stochastic parameters of a data assimilation system.435

To achieve this, the PF generates the particles that estimate the vector of stochastic parameters,436

then the mean particle is used within the EnKF to generate the members that estimate the state.437
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Fig. 9: Comparison of the values of the estimate of the PF-EnKF localization parameter (blue
boxplot) with the optimal localization (red point) for different ensemble sizes 𝑁𝑚𝑒𝑚𝑏.

The generic PF-EnKF algorithm, easy to implement, has been detailed for estimating Q𝑡 , R𝑡 , or438

both time-dependent inflation and localization parameters. The numerical results have shown that439

our algorithm is able to stably retrieve the latent state and stochastic parameters related to Q𝑡 or440

R𝑡 with a reasonable computational cost. The experiments have also shown that the PF-EnKF441

provides good state estimates even when a small ensemble size is used, thanks to its ability to442
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Fig. 10: Temporal evolution of the estimate of the PF-EnKF localization parameter according to
the number of observed grid points 𝑝 (on the left) and according to R𝑡 (on the right).

estimate time-dependent inflation and localization parameters with a competitive computational443

cost compared to existing methods. Also, the localization parameter estimate obtained by our444

method has turned out to depend on the ensemble size, the observation density and the observation445

error.446

In a future work, the PF-EnKF could be used for estimating more complex parametric forms447

for Q𝑡 or R𝑡 , with a reasonable number of parameters to estimate (because of the curse of448

dimensionality). Moreover it may be applied to data-driven data assimilation, for instance when449

unresolved equations of the dynamical model are emulated using machine learning as in Brajard450

et al. (2021). Our algorithm could also be applied to more realistic settings. An intermediate step451

may consist in performing numerical experiments using an intermediate complexity atmospheric452

general circulation model such as SPEEDY (see Molteni 2003).453
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APPENDIX A456

PF-EnKF for estimating the observation error457
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The aim is to retrieve the true state x𝑡 and the vector of stochastic parameters θR,𝑡 related to458

the observation error, assuming that Q𝑡 is known. For this purpose, the same methodology as in459

Section a is applied for the observation error and detailed in Algorithm 3. The latter is different460

from Algorithm 2 of Frei and Künsch (2012) where the EnKF is used before the PF in the cycle.461

Moreover, their EnKF works with the estimate of R obtained at the previous cycle and their PF is462

based on a ratio of likelihoods.463

Algorithm 3 PF-EnKF for estimating R𝑡464

465

Require: Q𝑡 , R(·) and θR,0466

1: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do467

2: η𝑖
1 ∼ N(0,Q1)468

3: x𝑎,𝑖

1 = x0 +η𝑖
1469

4: end for470

5: for 𝑗 = 1, . . . , 𝑁θ do471

6: θ
𝑎, 𝑗

R,1 ∼ 𝑝(θR,1 |θR,0)472

7: end for473

8: for 𝑡 = 2, . . . ,𝑇 do474

9: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do475

10: x
𝑝,𝑖
𝑡 = 𝑀 (x𝑎,𝑖

𝑡−1)476

11: η𝑖
𝑡 ∼ N(0,Q𝑡)477

12: x
𝑓 ,𝑖
𝑡 = x

𝑝,𝑖
𝑡 +η𝑖

𝑡478

13: end for479

14: x
𝑝
𝑡 =

1
𝑁𝑚𝑒𝑚𝑏

∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 x
𝑝,𝑖
𝑡480

15: P
𝑝
𝑡 = 1

𝑁𝑚𝑒𝑚𝑏−1
∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 (x𝑝,𝑖
𝑡 −x

𝑝
𝑡 ) (x

𝑝,𝑖
𝑡 −x

𝑝
𝑡 )⊤481

16: P
𝑓
𝑡 = P

𝑝
𝑡 +Q𝑡482

17: for 𝑗 = 1, . . . , 𝑁θ do483

18: θ
𝑓 , 𝑗

R,𝑡
∼ 𝑝(θR,𝑡 |θ𝑎, 𝑗

R,𝑡−1)484

19: end for485

20: for 𝑗 = 1, . . . , 𝑁θ do486

21: 𝛾
𝑗
𝑡 =

𝜙(y𝑡 ;Hx𝑝
𝑡 ,HP 𝑓

𝑡 H
⊤+R(θ 𝑓 , 𝑗

R,𝑡
))∑𝑁θ

𝑘=1 𝜙(y𝑡 ;Hx𝑝
𝑡 ,HP 𝑓

𝑡 H
⊤+R(θ 𝑓 ,𝑘

R,𝑡
))

487
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22: end for488

23: resample the forecasted particles θ 𝑓 , 𝑗

R,𝑡
using the weights 𝛾 𝑗

𝑡 to obtain the analyzed particles489

θ
𝑎, 𝑗

R,𝑡
490

24: θ𝑎
R,𝑡

= 1
𝑁θ

∑𝑁θ
𝑗=1θ

𝑎, 𝑗

R,𝑡
491

25: K𝑡 = P
𝑓
𝑡 H

⊤
(
HP

𝑓
𝑡 H

⊤ +R(θ𝑎
R,𝑡

)
)−1

492

26: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do493

27: ε𝑖𝑡 ∼ N(0,R(θ𝑎
R,𝑡

))494

28: x𝑎,𝑖
𝑡 = x

𝑓 ,𝑖
𝑡 +K𝑡 (y𝑡 +ε𝑖𝑡 −Hx

𝑓 ,𝑖
𝑡 )495

29: end for496

30: end for497

APPENDIX B498

Likelihood as a criterion for the joint estimation of inflation and localization parameters:499

an illustrative example500

The stochastic parameters are estimated using the likelihood in Eq. (20) of Algorithm 2. To501

assess the relevance of using the likelihood as a criterion, a simple study is led by comparing the502

use of the likelihood to the use of the root mean square error (RMSE) for estimating both inflation503

and localization parameters. In this illustrative example the true state is supposed to be known in504

order to be able to compute the RMSE, although it is not the case for real applications.505

We focus on the following state-space model for 𝑡 ∈ {1, ...,𝑇 = 104}:506 {
x𝑡 ∼ N(0,P ),

y𝑡 ∼ N(Hx𝑡 ,R).

The true state x𝑡 is in R𝑛 and its 𝑛 = 20 components correspond to equally spaced grid points on a507

circle. It is a Gaussian white noise with covariance matrix for (𝑘, 𝑘′) ∈ {1, ..., 𝑛}2
508

P [𝑘, 𝑘′] = 𝛼 e−
𝑑 (𝑘,𝑘′ )

𝛽
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where 𝑑 (𝑘, 𝑘′) = min( |𝑘 − 𝑘′|, 𝑛− |𝑘 − 𝑘′|) is the distance between two grid points on the circle,509

𝛼 = 2 and 𝛽 = 5. One component of x𝑡 out of two is observed such as y𝑡 is in R10 and a Gaussian510

white noise with covariance matrix R = I is added to y𝑡 .511

In our experiment summarized in Algorithm 4, we consider that 𝛼 is unknown and P̂ is used512

instead of P to generate the members that estimate x𝑡 with for (𝑘, 𝑘′) ∈ {1, ..., 𝑛}2
513

P̂ [𝑘, 𝑘′] = e−
𝑑 (𝑘,𝑘′ )

𝛽 .

Covariance inflation is led to compensate the misspecification of P̂ . Moreover, the ensemble514

size 𝑁𝑚𝑒𝑚𝑏 = 20 is small, so covariance localization is used to reduce the sampling error impact.515

The covariance inflation and localization are practiced jointly following the strategy shown in516

Section b through L(θL,𝑡) ◦P 𝑓
𝑡 . At each time 𝑡 the same grids of possible values for the unknown517

stochastic parameters are used: {1,1.25, ...,3} for the inflation parameter 𝜆L,𝑡 and {2,3, ...,10}518

for the localization parameter 𝑙L,𝑡 . Then the log-likelihood and RMSE related to each couple of519

possible values θ
𝑗

L
are computed in Eqs. (11)-(12) of Algorithm 4 at every time 𝑡. Finally, for520

each couple θ
𝑗

L
, the temporal means of the log-likelihood and RMSE are computed, allowing to521

obtain Figure B1. The best couple that maximizes the likelihood is close to the best couple that522

minimizes the RMSE. The likelihood is able to identify similar optimal values for the localization523

and inflation parameters compared with the ones obtained using the RMSE, while it seems to be524

less sensitive to the parameters’ values. It is not surprising since it is based on partial and noisy525

observations, contrary to the RMSE that requires the true state. This suggests that the likelihood526

is a relevant criterion for estimating both inflation and localization parameters.527
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Algorithm 4 Estimation of the inflation and localization parameters using the likelihood and RMSE

Require: P̂ and R
1: for 𝑡 = 1, . . . ,𝑇 do
2: for 𝑖 = 1, . . . , 𝑁𝑚𝑒𝑚𝑏 do
3: x

𝑓 ,𝑖
𝑡 ∼ N(0, P̂ )

4: end for
5: x

𝑓
𝑡 = 1

𝑁𝑚𝑒𝑚𝑏

∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 x
𝑓 ,𝑖
𝑡

6: P
𝑓
𝑡 = 1

𝑁𝑚𝑒𝑚𝑏−1
∑𝑁𝑚𝑒𝑚𝑏

𝑖=1 (x 𝑓 ,𝑖
𝑡 −x

𝑓
𝑡 ) (x

𝑓 ,𝑖
𝑡 −x

𝑓
𝑡 )⊤

7: for 𝑗 = 1, . . . , 𝑁θ do
8: P

𝑓 , 𝑗
𝑡 =L(θ 𝑗

L
) ◦P 𝑓

𝑡

9: K
𝑗
𝑡 = P

𝑓 , 𝑗
𝑡 H⊤(HP

𝑓 , 𝑗
𝑡 H⊤ +R)−1

10: x
𝑎, 𝑗
𝑡 = x

𝑓
𝑡 +K

𝑗
𝑡 (y𝑡 −Hx

𝑓
𝑡 )

11: Likelihood 𝑗
𝑡 = log

(
𝜙(y𝑡 ;Hx

𝑓
𝑡 ,HP

𝑓 , 𝑗
𝑡 H⊤ +R)

)
12: RMSE 𝑗

𝑡 =

√︃
1
𝑛
(x𝑎, 𝑗

𝑡 −x𝑡)⊤(x𝑎, 𝑗
𝑡 −x𝑡)

13: end for
14: end for
15: for 𝑗 = 1, . . . , 𝑁θ do
16: Likelihood 𝑗 = 1

𝑇

∑𝑇
𝑡=1Likelihood 𝑗

𝑡

17: RMSE 𝑗 = 1
𝑇

∑𝑇
𝑡=1RMSE 𝑗

𝑡

18: end for
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Fig. B1: Comparison of the couples of parameters’ values (each represented by a pixel) using the
likelihood (on the left) and the RMSE (on the right). The best couple is identified by a red point
for each method.
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APPENDIX C528

RMSE sensitivity to the hyperparameters 𝜎𝜆,Q and 𝜎𝑙,Q of the PF-EnKF for estimating the529

model error530

The same experiment as in Section a (with the same true states and observations) is repeated531

for different values of 𝜎𝜆,Q first and 𝜎𝑙,Q then. For each hyperparameter value, the RMSE with532

respect to the true state is computed at every time 𝑡 and the distribution of these RMSE values is533

represented by a boxplot in Figure C1. This latter shows that the RMSE is not very sensitive to the534

values of the hyperparameters 𝜎𝜆,Q and 𝜎𝑙,Q.535
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Fig. C1: RMSE values over time of the PF-EnKF when Q𝑡 is estimated, for different values of
𝜎𝜆,Q (on the left) and 𝜎𝑙,Q (on the right).
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Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quarterly Journal576

of the Royal Meteorological Society, 144 (713), 1257–1278.577

33



Lguensat, R., P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, 2017: The analog data assimilation.578

Monthly Weather Review, 145 (10), 4093–4107.579

Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on predictability,580

Vol. 1.581

Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation-error correlations582

in data assimilation. Inverse Problems in Science and Engineering, 21 (3), 387–398.583

Molteni, F., 2003: Atmospheric simulations using a gcm with simplified physical parametrizations.584

i: Model climatology and variability in multi-decadal experiments. Climate Dynamics, 20.585
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