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Sequential Learning of the Pareto Front for Multi-objective Bandits

élise crepon1 Aurélien Garivier Wouter M. Koolen
ENS Lyon ENS Lyon CWI and Twente University

Abstract

We study the problem of sequential learn-
ing of the Pareto front in multi-objective
multi-armed bandits. An agent is faced with
K possible arms to pull. At each turn she
picks one, and receives a vector-valued reward.
When she thinks she has enough information
to identify the Pareto front of the different
arm means, she stops the game and gives an
answer. We are interested in designing algo-
rithms such that the answer given is correct
with probability at least 1 − δ. Our main
contribution is an efficient implementation of
an algorithm achieving the optimal sample
complexity when the risk δ is small. With K
arms in d dimensions p of which are in the
Pareto set, the algorithm runs in time O(Kpd)
per round.

1 INTRODUCTION

Stochastic multi-armed bandits have emerged as a fun-
damental framework for studying sequential learning.
In the classic setting of scalar rewards, the UCB al-
gorithm solves the regret minimization problem and
the Track-and-Stop algorithm solves the best arm iden-
tification problem. In this paper we are interested
in the extension to vector-valued rewards, which is
the arena for multi-criterion optimization. Here the
problem of identifying the best arm generalizes to
identifying the subset of arms with Pareto optimal
means [Auer et al., 2016]. We study this problem in
the fixed confidence setting. That is, the learner is
given a confidence parameter. She sequentially collects
noisy vector-valued rewards from a finite-armed ban-
dit. After having collected enough data, the learner
stops and outputs a subset of arms. The goal of the
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learner is to identify with high probability the correct
Pareto set. Our approach is based on instantiating the
Track-and-Stop framework [Garivier and Kaufmann,
2016] to the Pareto front identification problem so as
to obtain an algorithm with optimal sample complex-
ity 2. The Track-and-Stop framework has recently
seen tremendous success across pure exploration prob-
lems in bandits and RL. Examples include best arm
identification in Spectral [Kocák and Garivier, 2021],
Stratified [Russac et al., 2021], Lipschitz [Degenne
et al., 2019], Linear [Degenne et al., 2020, Jedra and
Proutiere, 2020], Dueling [Haddenhorst et al., 2021],
Contextual [Tirinzoni et al., 2020, Hao et al., 2020]
and Markov bandits [Moulos, 2019]. Other objectives
include Top-m identification [Chen et al., 2017b,Chen
et al., 2017a], MaxGap identification [Katariya et al.,
2019], Thresholding [Garivier et al., 2017], Monte Carlo
Tree Search [Garivier et al., 2016], optimal policy iden-
tification in MDPs [Al Marjani and Proutiere, 2021],
and minimizing Tail-Risk [Agrawal et al., 2021]. The
framework has also been instantiated to Pareto front
identification [Kone et al., 2023]. The Track-and-Stop
template is in some sense universal: the starting point
is an information-theoretic, instance-dependent sam-
ple complexity lower bound of min-max form (see our
Proposition 1 below). The learning algorithm is de-
signed to match this lower bound by solving (an esti-
mate of) that min-max problem. For that, in turn, it
suffices to calculate a certain gradient [Degenne et al.,
2019]. Yet here the details become problem-specific,
in the sense that the tractability of this gradient com-
putation varies across problems. Some identification
objectives have closed-form solutions, some have effi-
cient special-purpose optimizers, some can leverage a
reduction to generic convex optimization, and for oth-
ers nothing much is known. An overarching method-
ology remains elusive, and as such it is important to
extend our toolbox by solving particular hard cases,
of which Pareto front identification is a prime exam-
ple. Our contribution is, at its core, an efficient imple-

1preferred capitalization
2This can be either asymptotic optimality as in the

original [Garivier and Kaufmann, 2016], or some later finite
confidence refinement [Degenne et al., 2019].
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mentation 3 of the gradient computation required for
executing Track-and-Stop for Pareto front identifica-
tion. With that problem-specific computational kernel
implemented, the general scheme instantiates and we
obtain an instance-optimal fixed confidence learner.
Our combinatorial and algorithmic innovations reduce
the run-time in p from the naive exponential O(Kdp+1)
to polynomial O(Kpd) per round. This is a reasonable
computation cost for instances with a large number of
arms and a small number of objectives.

We conclude here by mentioning extensions and alter-
native versions. [Kone et al., 2023] study approximate
Pareto front identification. Skyline identification is a
special case of Pareto front identification [Cheu et al.,
2018]. Multi-objective optimization is also studied from
a regret minimization perspective. Achieving a vector-
valued expected reward not too far from the Pareto
front (in some distance metric) is studied, both in
stochastic and adversarial bandits [Busa-Fekete et al.,
2017, Xu and Klabjan, 2023]. [Zuluaga et al., 2013]
motivates the relevance of studying multi-ojective opti-
mization.

1.1 Setting

We use the setting of multi-objective multi-armed ban-
dits, which is the following: given K independent prob-
ability distributions on Rd, ν = (νk)k∈[K] ∈ V , with

respective means µ = (µj
k)k∈[K],j∈[d], at every time

step t ∈ N an agent gets to pick an arm At ∈ [K] and
receives an independent reward Xt ∈ Rd drawn from
νAt

. The objective here is not to maximize cumulative
reward over time but to identify as fast as possible (un-
der a correctness constraint) the best performing arms.
However, since we are in a multi-objective setting, we
have no way of identifying a single best performing arm
as we could do in a single objective framework: an arm
might perform really well on one objective j ∈ [d] but
get poor results on another one, or an arm could rank
averagely but on all the objectives. We have no way of
discriminating one against the other.

For that reason, we are interested in identifying all
the Pareto optimal arms. To be Pareto optimal, an
arm must not be dominated by another one which
means having its performance on all of the objectives
be poorer than a single other arm. An arm which would
have another one dominating it, is one about which
we are sure that it has a better counter part, whereas
an arm which as no one dominating it is optimal since
we have no way of comparing how different objective

3The source code used to run all ex-
periments included in the paper is avail-
able at https://github.com/elise-crepon/
sequential-pareto-learning-experiments.

compare with each other. We are then interested in
identifying all of the Pareto optimal arms as fast as
possible. Letting Ft = σ(X1, · · · , Xt) be the sigma-
field generated by the observations up to time t. A
strategy is then defined by a sampling rule (At)t where
At ∈ [K] is Ft−1 measurable, a stopping rule τ , which
is a stopping time with respect to (Ft)t, and an answer
rule Pτ ⊆ [K] that is Fτ -measurable, which is the set
of arm indices the learner assumes to be the Pareto
set.

Given a risk δ > 0, we call a strategy δ-PAC if it
ensures that the answers it gives at the end of its runs
are correct with a confidence δ, i.e. P(Pτ is wrong) ≤
δ. This family of problem is called pure exploration
and has already been well studied, in particular in
the case where a single answer is correct which is our
case. We apply the results from the literature to our
specific problem. Also notice that while our setting is
mainly focused on multi-objective, it includes the single-
objective framework within the special case d = 1.
This well-studied case of best-arm identification will
serve as a reference throughout the paper, some of the
difficulties that we present having their (degenerated)
equivalent in dimension 1.

1.2 Pareto optimality

To formalize the definition of the Pareto set, we in-
troduce the following binary relation. An arm with
distribution ν on Rd and mean µ ∈ Rd is said to be
dominated by an arm ν′ with mean µ′, which we denote
by ν ⪯ ν′ (or equivalently µ ⪯ µ′) iff ∀j ∈ [d], µj ≤ µ′

j .
This means that ν′ performs better than ν on all the
d different objectives. For a specific µ, we create a
partial order between the indices of the arms given
by k0 ⪯µ k1 ⇐⇒ µk0

⪯ µk1
. This comparison is

a partial order but is not connected, hence within a
finite set it may have multiple maxima. We call these
maxima the (strict) Pareto set and we denote it by
p(µ) ≜ max⪯µ

[K] = argmax⪯,k∈[K] µk. The Pareto
set is defined as the indices of the points rather than
the points directly because while our leaner has ac-
cess to the indices, it doesn’t have access to the points
directly.

In this paper, we give an algorithm based on Track-
and-Stop to identify the Pareto set of multi-variate
Gaussians. We provide a careful analysis of its com-
plexity. We also tackle the special case of dimension
two and give an improved complexity in this case. In
the first section of this paper, we give a formal defini-
tion of Pareto optimality. In Section 2, we recall the
Track-and-Stop framework and motivate why it applies
to our problem. In Section 3, we detail our algorithm
and analyze its complexity.

https://github.com/elise-crepon/sequential-pareto-learning-experiments
https://github.com/elise-crepon/sequential-pareto-learning-experiments
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2 LOWER BOUND ON THE
SAMPLE COMPLEXITY AND
ALGORITHM

This section uses the results of [Garivier and Kaufmann,
2016] to derive a lower bound on the sample complexity
and to find an efficient algorithm to solve our problem.

We use the formalism of active sequential hypotheses
learning. We let M be a set of K arms bandit models
andH = {Hi | i ∈ [n]} a finite set of disjoint hypotheses
(which is a partition of M). We introduce h : M →
H which is the function that associates to any ν ∈
M the only Hi that contains ν. We are interested
in algorithms that can identify the hypothesis that
contains ν. The sampling, stopping and answer rules
defined in the introduction still holds only the final
answer given is Hτ the hypothesis the learner assumes
the models they are interacting with is in. In this
context, a δ-PAC strategy is any strategy that can
ensure that Pν(ν ∈ Hτ )(= Pν(h(ν) = Hτ )) ≤ δ for all
ν ∈M .

We denote by Alt(ν) ≜ {ν′ ∈M |h(ν′) ̸= h(ν)} = h(ν)
the subset of our model space M which contains all the
models that have a different answer than the one of ν.
This set of models is important because for a player to
make a mistake they need to confuse the model they
get samples from with a model in Alt(ν). Hence for any
algorithm to stop, it needs to get enough information
to distinguish the current model from all models in
Alt(ν) with risk at most δ.

[Garivier and Kaufmann, 2016] introduce the following
lower bound for the number of samples needed for
active sequential hypotheses testing with a unique valid
hypothesis in the bandit framework.

Proposition 1 (Sample complexity lower bound).
Given a set of models M , a finite set of disjoint hy-
potheses H = (Hi)i∈[n] which is a partition of M and a
risk parameter δ > 0, any δ-PAC strategy is such that
for every ν ∈M :

Eν(τδ) ≥ kl(δ, 1− δ) · T ∗(ν) ,

where

T ∗(ν)−1 ≜ sup
w∈△K

inf
λ∈Alt(ν)

∑
k∈[K]

wk KL(νk, λk) .

Our task of Pareto set identification is an instance
of this problem: our hypotheses are for each subset
of arms [K] the set of models for which this set is
the Pareto set. For a given model, the only correct
hypothesis is the one associated with its Pareto set and
the models in Alt(ν) are such that their Pareto set is
not the same as that of ν.

Alt(ν) ≜ {ν′ ∈ V | p(ν′) ̸= p(ν)} . (1)

As noted in the same paper, this lower bound hints us
toward an efficient sampling rule. If we were to know
ν, then the maximizer w∗ of the optimization problem
T ∗(ν) gives us the fastest sampling rule that is able
to make the difference between ν and the models in
Alt(ν). However, we don’t know ν upfront. The Track-
and-Stop algorithm proposes to solve the optimization
problem with estimates of the model and to correct for
possible bias with some forced exploration. The algo-
rithm also comes with a stopping and recommendation
rule that we import from the literature.

However, using this algorithm requires us to be able to
solve the optimization problem behind T ∗(ν). For best
arm identification, [Garivier and Kaufmann, 2016] pro-
pose a clever yet special-purpose algorithm. However,
that approach does not work for Pareto set identifica-
tion making the problem much harder. Since, for

Dw(ν, λ) ≜
∑

k∈[K]

wk KL(νk, λk) ,

the function w ∈ △K 7→ infλ∈Alt(ν) Dw(ν, λ) is concave
with respect to w, we can learn it using gradient ascent.
Moreover, as we are refining our estimates at each time
step, we can do an online gradient ascent and do only
one step of the gradient ascent per time step. In order
to perform gradient ascent, we need to be able to solve
and find the minimizer of

min Dw(ν, λ) .
w.r.t. λ ∈ Alt(ν)

(2)

However, the computation of the minimal transporta-
tion cost from ν to a λ ∈ Alt(ν) that changes the
Pareto set is not a convex function and requires a
specific solving procedure. Because it carries more
geometric intuition, we tackle here the case of Gaus-
sian random variables with identity covariance (i.e. the
objectives are independent from one another). Hence,
our models are fully parametrized by their means µ,
which we use as a stand-in for ν when talking about
them. Our main contribution is to propose an effi-
cient algorithm to solve this optimization problem in
the case of Gaussian random variables. We provide a
general analysis for higher dimensions and refine it for
the case of dimension two. Under these assumptions,
the w-weighted transportation cost Dw between two
models equals:

Dw(µ, λ) ≜
∑

k∈[K]

wk

2
||µk − λk||2 . (3)

Though we will focus only on solving this specific op-
timization problem for the rest of the paper without
delving in the inner workings of the Track-and-Stop
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algorithm, we give here a few details on how we in-
stantiate it. Once we obtain a gradient in w from
solving (2) at a specific w, we do a single step of the
Hedge algorithm using the gradient-norm-adaptive tun-
ing. Both taking a single optimization step and this
specific gradient ascent algorithm are detailed in the
literature. See [Degenne et al., 2019,Degenne et al.,
2020,Wang et al., 2021] for references.

3 MINIMIZING THE
TRANSPORTATION COST

We give in this section a general procedure to compute
the minimal transportation cost between µ and a λ
that changes the Pareto front. We show that the com-
putation of this cost can be split in two sub-procedures
that are independent from each other. We analyze the
complexity of each of these algorithms.

Theorem 1 (Algorithmic complexity of the minimal
transportation cost). The minimal transportation cost
(2) to change the Pareto front of our multi-variate
Gaussians model (3) and its minimizer can be computed
in

O

((
K(p+ d) + d3p

)(p+ d− 1

d− 1

))
,

where p is the number of Pareto optimal points in our
model.

We introduce the following lemma, with proof in Ap-
pendix A, to help us find the solution to (2) by splitting
Alt as defined in (1) in subpieces on which the opti-
mization will be more easily done.

Lemma 1 (Splitting the domain). Let µ, λ ∈ RKd

p(µ) ̸= p(λ) ⇐⇒ ∃{k0, k1} ⊆ p(µ) : k0 ⪯λ k1

∨ ∃k0 /∈ p(µ)∀k ∈ p(µ) : k0 ⪯̸λ k .

In words, for λ to have a different Pareto set than µ
it is necessary and sufficient that either a point from
the Pareto set of µ is dominated in λ by another point
from the Pareto set of µ, or that a point that is on the
Pareto set of µ is no longer dominated in λ by any of the
points from the Pareto set of µ. Splitting the problem
this way allows us to design efficient procedures to find
the minimum transportation cost from µ to a λ that
changes its Pareto set.

Given µ ∈ RKd, we define

Altrm : {k0, k1} ⊆ p(µ) 7→ {λ ∈ RKd | k0 ⪯λ k1} and
Altadd : k0 /∈ p(µ) 7→ {λ ∈ RKd

, | ∀k ∈ p(µ) k0 ⪯̸λ k} .

Lemma 1 allows us to say that Altadd(k0) for all
k0 /∈ p(µ) and Altrm(k0, k1) for all {k0, k1} ⊆ p(µ)
provide a covering of Alt(µ). We can thus solve the

minimization independently for each of them and then
take the minimal value of these as our minimal trans-
portation cost:

Alt(µ) =

 ⋃
{k0,k1}⊆p(µ)

Altrm(k0, k1)


∪

 ⋃
k0 /∈p(µ)

Altadd(k0)

 .

(4)

We will now refer to the first case as removing a point
from the Pareto set and to the second one as adding a
point on the Pareto set, but we want to emphasize that
the first case won’t necessary yield the smallest cost
to remove the given point from the Pareto set and the
second one will not necessarily add the focused point
to the Pareto set.

3.1 Removing a point from the Pareto set

In this section we prove the following lemma:

Lemma 2 (Cost of removing a point from the Pareto
set). Given {k0, k1} ⊆ p(µ), the minimal transporta-
tion cost for

min Dw(µ, λ)
w.r.t. λ ∈ Altrm(k0, k1)

(5)

is
1

2

wk0wk1

wk0
+ wk1

∑
j∈[d]

(
max{0, µj

k0
− µj

k1
}
)2

.

This cost and the associated minimizer can be computed
in O(d) and then the algorithmic complexity for all
Altrm is O(p2d).

Proof. Let {k0, k1} ⊆ p(µ), we are interested in com-
puting the smallest transportation cost from µ to λ
such that in λ the point k1 now dominates k0. Mov-
ing any other point than k0 and k1 in λ doesn’t affect
whether k1 dominates k0, hence this is superfluous and
would only cost us more, so we can restrict our analysis
to λ that only moves k0 and k1. Now, let J be the set
of dimensions alongside which µj

k0
≥ µj

k1
. Since our

transportation cost is separable alongside each dimen-
sion, then moving our points alongside any other axis
that the ones in J would not help create the domina-
tion and would bear some extraneous cost. As such
we can restrict ourselves to λ that only move k0 and
k1 alongside J . Using again that the transportation
cost separability, we can split our analysis along the
different axis independently. Now, the cost of inverting
µj
k0

and µj
k1

for j ∈ J is a known problem from best
arm identification. We compute the value here but it
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is possible to see [Garivier and Kaufmann, 2016] for a
reference. So our optimization problem boils down to

inf
xλ≤yλ

wx
1

2
(xµ − xλ)

2 + wy
1

2
(yµ − yλ)

2 .

The inf will be reached at a point where xλ = yλ ≜ s.
Taking the derivative in s of the cost function, we
get wx(s − xµ) + wy(s − yµ) which is null at s∗ ≜
wxxµ+wy+yµ

wx+wy
yielding the following minimum trans-

portation cost 1
2

wxwy

wx+wy
(xµ−yµ)2. Now summing along-

side the axis of J yields

1

2

wk0
wk1

wk0 + wk1

∑
j∈[d]

(µj
k0
− µj

k1
)2+

where (·)2+ : u 7→ (max{0, u})2 stands for the squared
positive part.

Computing the cost of shadowing a point by another
and conversely is then done in O(d) operations, which
we need to do for each pair of points in the Pareto set
leading us to a computation cost of O(p2d) for removing
a point. We highlight the difference between K and p
as for large values of K, p might be significantly lower
than K.

We present in Appendix D a speed-up for the dimension
two from time O(p2) to time O(p), and we discuss why
this speed-up is not possible in higher dimensions d > 2.

3.2 Adding a point to the Pareto set

The cost of adding a point to the Pareto set doesn’t
have a closed expression as was the case for removing
a point. It is a more tedious procedure, which shows
in the final algorithmic complexity.

Lemma 3 (Cost of adding a point to the Pareto set).
Consider the minimum transportation cost to add any
point to the Pareto set

min Dw(µ, λ) .

w.r.t. λ ∈
⋃

k0 /∈p(µ) Altadd(k0)
(6)

The value and minimizer can be computed in time

O

((
K(p+ d) + d3p

)(p+ d− 1

d− 1

))
.

To prove this lemma, we start by looking at how, given
a target location λ0 for a point k0 /∈ p(µ), points
from the Pareto set should move to ensure that they
are no longer dominating λ0. We then provide an
algorithm to range over all the different possible ways
points from the Pareto set can move. Then, given a
way the points from the Pareto set move, we compute

the minimal transportation cost and the associated
minimizer coherent with this way of moving points
from the Pareto set.

Let k0 /∈ p(µ). We want to find a λ such that in λ,
all points from p(µ) are no longer dominating k0 as
outlined before. For ease of notation, we use 0 as a
stand-in for k0 in our subscripts.

We study for now a weaker version of our problem, see
Figure 1. Given a point λ0 to which we will transport
µ0, what is the minimal cost to move the points from
p(µ) to break their domination of k0. This question
is independent for all points in the Pareto set as they
are not interacting with each others costs, so we can
treat them one by one. For a given point k of the
Pareto set, we are only interested in making one of its
coordinates below the corresponding entry of λ0. Now,
either moving µ0 to λ0 already pushed µk outside of
the upper orthant of k0 or we need to get it outside
of the way. In the first case, the transportation cost
is zero, in the other one, as our transportation cost is
separable alongside every dimension, we only need to
find the dimension alongside which the transportation
cost is the smallest i.e. wk

2 minj(µ
j
k−λj

0)
2. We can put

the two expressions together as wk

2 minj∈[d](µ
j
k − λj

0)
2
+

where (·)2+ is the square of the positive part which is
a convex, non-decreasing and differentiable function.
Putting all of the points back together, we get that
given λ0, the minimal transportation cost to move
everyone from p(µ) outside of its top right orthant is

gk0
(λ0) ≜

w0

2
||µ0 − λ0||2 +

∑
k∈p(µ)

wk

2
min
j∈[d]

(µj
k − λj

0)
2
+.

Finding the smallest transportation cost is then equiva-
lent to finding the minimal value of g which we now set
out to do. First, it is possible to move all of the minj
out to the start of the function giving us gk0(λ0) =

min
φ:p(µ)→[d]

gk0,φ(λ0) where gk0,φ has the same expression

as gk0
but with minj µ

j
k −λj

0 replaced by µ
φ(k)
k −λ

φ(k)
0 .

Hence infλ0∈Rd gk0
(λ0) = minφ infλ∈Rd gk0,φ(λ0). The

gk0,φ are differentiable strictly convex functions, which
makes them quite easy to minimize.

The idea is now to range over all different φ : p(µ)→ [d],
to compute the minimizer of gk0,φ and to take the
minimum over all of those. However following this
procedure would lead to a computation cost in Ω(dp)
which is exponential in the number of arms in the
Pareto set and thus would for most use case represent
to high of a computation cost to reasonably use the
algorithm. Our main insight and the key to tractability
is that it is not necessary to consider all elements in
[d]p(µ). Instead, it turns out that we need only look at a
subset (which depends on the bandit µ) of size O(pd−1)
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μ₀
λ₀

μ₁=λ₁

λ₃

μ₂

μ₃

λ₂

Figure 1: The original model is drawn in turquoise
(circle). We start by moving the point 0 to a new
location. Then we move the points that are still in
its all-positive orthant outside of it with respect to
the dimension where the move is the shortest (brown
stars).

polynomial in the number of arms. To understand
why, let λ0 and let φ : p(µ) → [d], the mapping from
k ∈ p(µ) to argminj µ

j
k − λj

0. The set S(φ) of λ0 that
yield the same φ map is given by the following linear
system

∀k ∈ p(µ),∀j ∈ [d], µ
φ(k)
k − λ

φ(k)
0 ≤ µj

k − λj
0 .

For all k0 /∈ p(µ), λ0 ∈ S(φ), we know that ∀φ′ : [p]→
[d], gk0,φ(λ0) ≤ gk0,φ′(λ0). Given a φ, S(φ) is called
the cell associated with φ. However, while for any point
λ0 there is a cell S(φ) that contains it, the converse is
not the case and a cell associated with a φ might well
be empty. A cell is empty if

∀λ0, ∃φ′ : gk0,φ′(λ0) < gk0,φ(λ0) .

A φ map associated with a non-empty cell is called
valid. Ranging over the φ with an empty cell is useless,
thus, we can restrict our minφ to valid φ.

We highlight the fact that while S(φ) is the subset of
Rd is the set of points where gk0,φ is lower than all
other gk0,φ′ , the minimizer in λ0 of gk0,φ might not
leave with S(φ). However, this is not a cue to consider
the constrained problem where λ0 is restricted to live
in S(φ) as studying the unconstrained problem would
still yield the correct overall minimizer.

Also, note that S(φ) doesn’t depend on k0 neither
through µk0 or wk0 but only on λ0 as such a cell being
empty or not doesn’t depend on the point that we

might be currently considering. Hence, we can start
by enumerating all non-empty cells and then for each
of them we compute the minimizer of gk0,φ for every
different k0 ∈ p(µ), which avoids us enumerating K
different times the non-empty cells. We thus introduce

gφ = min
k0 /∈p(µ)

gk0,φ and g = min
φ:S(φ)̸=∅

gφ

and we get that

inf
λ0∈Rd

g(λ0) = min
φ:S(φ)̸=∅

min
k0 /∈p(µ)

inf
λ0∈Rd

gk0,φ(λ0) .

In the next section, we give an algorithm to find non-
empty cells and we provide an analysis on the number of
them and the algorithmic complexity of our algorithm
to range over non-empty cells.

3.2.1 Constructing cells

Using the observations from the previous section, to
know if a cell is empty or not, we could just range over
all possible φ : p(µ)→ d and when one of them has a
non-empty S(φ) we compute the minimizer of gφ. Let
U ⊆ V ⊆ p(µ) and φr : U → [d] and φ : V → [d]. First,
we provide a new altered definition for S(φ) which is
still compatible with the first one, but which now works
with maps with a restricted domain:

S(φ) =

{
λ0 ∈ Rd

∣∣∣∣∣∀k ∈ dom(φ),∀j ∈ [d],

µ
φ(k)
k − λ

φ(k)
0 ≤ µj

k − λj
0

}
.

We know assume that φ|U = φr, we have that S(φ) ⊆
S(φr) as we only further constrain the set of equations
that defines S(φr) to construct S(φ). This leads to
some important results for us as if φr is not valid then
so is φ. This prompts us to think of the different φ as
leaves of tree for which internal nodes are restricted φ
maps.

More formally, given an order on the points from the
Pareto set {ki|i ∈ [p]} = p(µ), the root of our tree
is the empty map, φ : ∅ → [d]. It has d possible
children φ : k1 ∈ {k1} 7→ j for all j ∈ [d]. For any
of these children φ1 ∈ [d]{k1}, they themselves have
d possible children given by φ2|{k1} = φ1 and the

different possible value for φ2(k2). We continue this
process until all the points are exhausted and the leafs
of this tree are the element of [d][p].

Given this construction and the observation made pre-
viously that S is decreasing along the branches of this
tree, we propose a recursive backtracking algorithm to
enumerate non-empty cells. We start from the root and
operate a depth-first search algorithm. When visiting
any internal node, we check whether S(φ) is empty or
not. If it is not empty, we go on with our search until
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we hit a leaf yielding a non-empty φ map. Otherwise,
we know that any leaves below it will be associated
with an empty cell, as such there is no use in visiting
this subtree at all and we can backtrack one level up
and continue our search in a different subtree.

(1,2)

(2,1)

k=1

k=2 k=2

j=1

j=1

j=2

j=2 j=2j=1

CELL CELL CELL

Figure 2: An example of cell construction in 2d with
three valid cells and an empty one

Example. Let µ1 = (1, 2) and µ2 = (2, 1). The root of
our tree is the point µ1 and we try to move it alongside
dimension 1 by walking the leftmost edge from the
root. There, we check that our linear system still
admits solutions

µ1
1 − λ1

0 ≤ µ2
1 − λ2

0 ⇒ λ2
0 − λ1

0 ≤ µ2
1 − µ1

1 = 1

which it does so we can go on. Now, we add the
second point alongside the first coordinate which adds
λ2
0 − λ1

0 ≤ µ2
2 − µ1

2 = −1 to our set of equations, which
still admits a solution. Since this was the last point,
this means that φ : 1; 2 7→ 1 was a non-empty cell
and we can go on. We now backtrack to try and add
the second point alongside the second coordinate. This
adds λ1

0−λ2
0 ≤ µ1

2−µ2
2 = 1 to our set of linear equations.

This gives us −1 ≤ λ2
0−λ1

0 ≤ 1 which admits a solution
and thus we found a new non-empty cell. We now
backtrack all the way to our root resetting our list of
inequalities and we add the first point alongside the
second coordinate (λ1

0−λ2
0 ≤ µ1

1−µ2
1 = −1). But then

when we want to add the second point alongside the
first coordinate, we end up with the infeasible system
λ1
0 − λ2

0 ≤ −1 ∧ λ1
0 − λ2

0 ≥ 1. We can thus discard that
sub-tree and backtrack one step. Here the tree has
a small depth meaning we are not discarding much,
but for a bigger tree it could lead to removing a lot of
possible empty cells from our exploration. After that,
we continue try to add the second point alongside its
second coordinate which leads to a new cell. So in this
example, there are four possible φ of which three are a
non-empty cell.

Moreover, if we consider the d possible children of a
node φr (we assume that the mapping of k ∈ p(µ) is

decided at this point in the tree, and we label φj the
children), the cell of each φj can be obtained by adding
constraints to φr. If we denote by

Cj ≜
{
λ ∈ Rd

∣∣∣∀j′ ∈ [d], µj
k − λj ≤ µj′

k − λj′
}

,

then S(φj) = S(φr) ∩ Cj . But, since the Cj provide a
tesselation of Rd (a tesselation being a set of closed sets
whose union is Rd and whose interiors are disjoints; it
is a partition of the space up to the boundaries of the
parts), the (S(φj))j∈[d] are themselves a tesselation of
S(φr). When iterating this result, we get that, first a
valid internal node will have a valid internal child and
thus a valid internal leaf within its subtree, and that
all (valid) leafs provide a tesselation of Rd (this is true
for any maximal anti-chain of nodes within the tree)
since the root has a cell spanning over all of Rd. This
will be useful later for bounding the number of valid
nodes within the intersection.

The following lemma is proved in Appendix B.

Lemma 4. Checking whether any node φr ∈ [d]r is
valid, i.e. whether its cell S(φr) is non-empty, can be
done in time O(r + d3). Moreover, by sharing compu-
tation we can check each of the d extensions to φr+1

in time O(d2) each.

In Appendix C we prove the following upper bound for
the number of non-empty cells:

Lemma 5. The number of cells is bounded by
(
p+d−1
d−1

)
where p is the number of points from the Pareto set.

3.2.2 Finding the optimum within a cell

We now assume that we reached a leaf of our tree and
thus found a valid φ map and we set out to minimize
gk0,φ for each different k0. This means that we fixed
the direction in which each point from the Pareto set
will move and given this, we want to find the smallest
transportation cost to add the point k0 to the Pareto
set. We recall that gk0,φ has the following expression:

gk0,φ(λ0) ≜
w0

2
||µ0−λ0||2+

∑
k∈p(µ)

wk

2

(
µ
φ(k)
k − λ

φ(k)
0

)2

+
.

Since the (φ−1(j))j∈[d] partitions [K], this function can
be rewritten as a sum of d different function (hj)j∈[d]

such that hj only depends on λj
0.

hj : λ
j
0 ∈ R 7→ w0

2
(µj

0−λj
0)

2 +
∑

k∈φ−∞(|)

wk

2
(µj

k−λj
0)

2
+.

Thus minimizing each hj independently is equivalent
to minimizing gk0,φ. Moreover, each hj is a strongly

differentiable function thus it is minimized at λ∗j
0 which
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is such that h′
j(λ

∗j
0 ) = 0. For the rest of this section, we

will assume that φ−1(j) = [pj ] and that µj
1 ≤ · · · ≤ µj

pj
.

We label for k ∈ [pj ], xk = µj
k and x0 = −∞, xpj+1 =

+∞. For k ∈ {0, · · · , pj + 1}, for x ∈ [xk, xk+1],

h′
j(x) = w0(x− µj

0) +

pj∑
i=k+1

wi(x− µj
i ) .

As the function admits a unique minimizer, there is
only one k ∈ {0, · · · , pj} such that

xk ≤
w0µ

j
0 +

∑pj

i=k+1 wiµ
j
i

w0 +
∑pj

i=k+1 wi

≤ xk+1 .

The function hj is minimized at this point and finding
this k is done by dynamic programming with O(pj)
operations. This is faster than trying a binary search
approach as this would require O(pj log pj) operations.
As we need to compute the minimizer of hj for each
j, the computational complexity to add a point to
the Pareto set is of order O(p+ d). This needs to be
done for all non-Pareto optimal points, for a total of
O(K(p+ d)) operations.

We now come back to the assumption we made that
the µj

k are sorted and filtered with respect to φ−1(j).
Doing this for each k0 within each cell would incur a
multiplicative cost of O(p+ pj log pj). However sorting
can be performed prior to building our tree by sorting
(µj

k)k∈p(µ) for each j. This has a cost of O(dp log p)
which is negligible when compared to the rest of our
algorithm. Within a cell we can then filter the sorted
array to only get (µj

k)k∈φ−1(j) sorted in O(p). As this
sequence is common for all points k0 that we might
want to add in a cell this doesn’t incur a cost every
time we would like to add a point to the Pareto front,
but just once per cell. This means that for one cell,
the complexity to compute the cost to add each point
to the Pareto set is O(pd + K(p + d)) which is just
O(K(p+ d)). Pulling from Lemma 5 our upper bound
on the number of cells, we get that this operation is
done at most

(
p+d−1
d−1

)
times, and building the tree

yields a final cost of

O

((
K(p+ d) + pd3

)(p+ d− 1

d− 1

))
as we had set out to prove in Theorem 1.

As most of the settings we aim to tackle can have a
large number of arms but only a few dimensions, this
algorithmic complexity boils down to O(Kd3pd).

We present in Appendix D a speed-up for the dimension
two from time O(Kp2) to time O(Kp+ p log p).

4 EXPERIMENTS

We check the performance of our algorithm against the
real-world scenario proposed by [Kone et al., 2023]. We
revisit one of their experiment which is based on the
study by [Munro et al., 2021] about immunogenicity of
a Covid vaccine third dose (see the reference for details
on the dataset). The setting is a bandit model ν of
K = 20 Gaussian arms in dimension d = 3 representing
three different immunogenicity responses. There are
p(ν) = 2 Pareto optimal arms that we need to iden-
tify. The means of the arms and the variance of each
immunogenicity trait can be found in Appendix E.

For this instance, the instance-dependent factor in the
sample complexity lower bound is T ∗(ν) = 2103.78.
The associated optimal weights are included in Ap-
pendix E.

We use a risk of δ = 0.1 and tested the sample complex-
ity average over 2000 runs of the algorithm. Our aver-
age sample complexity is 17909. This is significantly
lower than the 39000 sample complexity from 0-APE-
20 which is the one corresponding to our setting. We

use the stylized exploration rate β(t, δ) = ln
(

ln(1+t)
δ

)
as our threshold for the stopping statistic. This is
standard in experiments, and though less rigorous than
the choice made in [Kone et al., 2023], it is still overly
prudent: though the risk parameter δ is set to 0.1, the
real risk is much smaller as we obtained no identifi-
cation mistake over the 2000 runs. This conservative
behaviour of pure exploration algorithms has been fre-
quently reported. To speed up the running time of
our algorithm, we throttle the number of minimum
transportation cost computations. While we perform a
gradient ascent step for every sample, we only update
the gradient every ten samples and we check the stop-
ping statistic every 25 samples. The experiment took
5 hours to run on 16 (of 20) cores of a dual Intel(R)
Xeon(R) CPU E5-2630 v4 machine.

In Figure 3, we show the empirical distribution of the
stopping time of our algorithm. We highlight that
there is a significative difference between Eθ(τθ) and
log

(
1
δ

)
T ∗(θ), whereas we could have expected them to

be closer to each other. Several factors contribute to
this gap. We chose a too large value of δ to exhibit the
expected asymptotic behaviour. The analysis shows the
presence of a second-order term that is not neglictible
on such experiments. It is all the more significant that
we chose not to update the gradient at every round but
only every few rounds.

This experiment is representative of a real edge of
Track-and-Stop in terms of sample complexity. This
advantage can be theoretically understood by com-
paring the complexity bounds when δ goes to 0. For
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Figure 3: Empirical distribution of the number of sam-
ples used to identify the two Pareto optimal points

example, in the scenario when one arm dominates a
large number of other identical arms, Track-and-Stop
can be proved to be more data efficient by a factor
almost 2.

We also ran experiments on random instances to evalu-
ate the computation time of the minimization solver
and its dependency on d and p. The random instances
on which we ran our algorithm consisted of p points
sampled from the all-positive quadrant of a d dimension
sphere (as such they are all easily part of the Pareto
set) and an additional point at 0. We only ran the
minimzation solver of our algorithm on these points
and estimated the time it took for each pair of (p, d)
on 100 samples. The result of this experiment is rep-
resented in Figure 4. In the Figure, we can see that
given a fixed d there is a linear dependency between
the log of the time taken and the log of the number
of point on the Pareto set. The slope of each line is
proportional to d. This matches the theorical result
obtained in Theorem 1 as for a given d and K = p+ 1
the complexity of our solver should be O(pd+1).

5 CONCLUSION

We tackled the problem of Pareto front identification in
a Gaussian multi-armed bandit. To this end, we studied
efficient implementation of the core oracle required by
the Track-and-Stop framework, namely the gradient of
the information-theoretic lower bound. To solve the
associated non-convex optimization problem, we split
the domain in convex parts, discussed enumerating the
parts and solving the convex problem on the parts in
closed form.

For future work we are interested in relaxing the as-
sumptions. In particular, we aim to study the prob-
lem under dependent coordinates, with Gaussians of
unknown variances, in other exponential families, in
non-parametric classes, and in the approximate ϵ > 0

4 8 16 32 64
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e 
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d = 5

Figure 4: Time to solve the minimization problem on
a random point cloud with p Pareto points in dim. d

case. It would be interesting, challenging and reward-
ing to pin down the computational complexity of the
transportation problem (2), already in the spherical
Gaussian case. Can one find and exploit additional
structure in the problem to solve it in time at most
a fixed and dimension independent degree polynomial
in the number of arms K? Or can one prove a lower
bound matching Theorem 1?
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A Proof of Lemma 1: Splitting the domain

Proof of Lemma 1. =⇒ ) We assume p(µ) ̸= p(λ). Then either p(µ)\p(λ) or p(λ)\p(µ) is not empty. We assume
the first for now. And we let k0 ∈ p(µ)\p(λ). Since k0 /∈ p(λ), then its set of dominators in λ is not empty. If any
of its dominators in λ belongs to p(µ), then we have found k0, k1 ∈ p(µ) such that k0 ⪯λ k1. Otherwise let k′0
from k0’s set of dominators in λ since it is not empty. We know that k′0 does not belong to p(µ) and since all of
its dominators in λ is included in k0’s one (by transitivity), then none of its dominators belongs to p(µ). Thus,
we found k′0 /∈ p(µ) such that it is not dominated in λ by any point from p(µ).

We now assume that p(λ)\p(µ) is not empty. Then there exists k0 ∈ p(λ) such that k0 /∈ p(µ). Let k0 be such an
index and since it belongs in p(λ) no one dominates it and in particular points from p(µ).

⇐=) We first assume that there exists k0, k1 ∈ p(µ) such that k0 ⪯λ k1. Let k0, k1 such indices. Since k0 ⪯λ k1
then k0 /∈ p(λ). Hence p(µ) ̸= p(λ).

We now assume that there exists k0 /∈ p(µ) such that no points in p(µ) dominates it in λ. Let k0 such an index.
Either k0 is now on the Pareto set and we are done or there exists a point k from the Pareto set of λ that
dominates it. But then this point is not within p(µ) (because no points in from p(µ) dominates k0 in λ) and is in
p(λ). Hence p(µ) ̸= p(λ).

B Proof of Lemma 4: An efficient algorithm for our linear system of equations

To check whether our system of equations admits a solution, we could invoke a linear programming solver to get
an answer. Here we leverage the particular structure of our set of inequalities to decide feasibility more efficiently.
First note that any of the inequalities that we might add to our system is of the form λj2

0 − λj1
0 ≤ µj2

k − µj1
k . Thus

our system of inequalities might be viewed as a sequence of upper bounds for differences of coordinates of λ0. To
check whether this system admits a solution we introduce a directed multi-graph G with nodes labeled by the
j ∈ [d]. For each constraint of the form λj2

0 − λj1
0 ≤ µj2

k − µj1
k we add an edge going from j1 to j2 which has value

µj2
k − µj1

k . We use a multi-graph representation because it has a one to one mapping with our system of equation.

We recall a well-known [Erickson, 2019] equivalence between the existence of a solution for a set of equations that
can be encoded thusly.

Lemma 6. Let G = (V,E) be a finite directed graph where E ⊆ V V R. The system

λ ∈ Rd s.t. ∀(i, j, v) ∈ E : λi − λj ≤ v

has a solution iff G has no negative cycle.

Proof. We assume that G contains a negative cycle j0 →v1 · · · →vn jn = j0. Then, we know that for all i ∈ [n]
the equation λji − λji−1

≤ vi is present in our linear system. Summing these inequalities gives us

0 = λjn − λj0 =
∑
i∈[d]

λji − λji−1
≤

∑
i∈[d]

vi < 0 .

Hence our system does not admit solutions.

Now we assume that the graph doesn’t contains a negative cycle and we introduce a source point s which we
connect to every vertex of G with an edge of length 0. This updated graph still doesn’t contain negative cycles
because no new cycles have been created. Thus we can define δ : j ∈ [d]→ R the function that gives the length of
the shortest path from s to j. We claim that setting λj

0 to δ(j) respects every inequality and thus is a solution to
our linear system of equations. This is due to the fact that for every edge j1 →v j2 the triangular inequality gives
us that δ(j2) ≤ δ(j1) + v.

As such, we could, at each internal node of our tree, create the graph associated with the set of equations
encountered so far and check the presence of negative cycles. If there are any we backtrack, otherwise we go on.
If we do that, to check for presence of negative cycle we don’t have a much better choice than the Bellman-Ford
algorithm [Schrijver, 2003] because of the presence of negative edges. This would yield a algorithmic complexity
of O(V E) which in our case more often than not would look like d3. We can reduce that to a d2 by noting that
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when we make our choice of (k, j) when going down the tree, the graph at the parent and the child node only
differ by a few edges, the one stemming from node j. Thus if we already know the shortest path in the original
graph (which is assumed to not contain negative cycles), we can leverage that knowledge to speed up our negative
cycle detection at the child node, which we state in the next lemma.

Lemma 7. Let G = (V,E) a directed weighted graph with no negative cycles and such that v : V V → R is the
length of the shortest path between every pair of points. Let {ux}x∈V some new edges between 0 and x such that
G′ = (V,E ∩ {ux}x∈V ). Negative cycle detection and updated shortest paths can be performed in time O(d2).

Proof. If the graph G′ now contains a negative cycle, it is going through an updated edge as G doesn’t contain a
negative cycle. By induction the minimal value of a cycle going from and back to 0 without visiting any other
nodes more than once is minx̸=0 ux + s(x, 0) where s(x, y) is the length of the shortest simple path (a path that
never goes twice through the same vertex) from x to y in G′. But that simple path from x to 0 don’t go through
any updated edge, hence s(x, 0) = v(x, 0). Thus if all ux + v(x, 0) ≥ 0 there is no negative cycle in our updated
graph and if any u(x) + v(x, 0) is negative, we found a negative cycle. This can be checked in O(d).

We now assume that there is no negative cycle in G′ and set out to compute s(x, y) for all x, y ∈ V . First as
stated earlier, paths that go to 0 haven’t changed cost as they cannot go through any of the updated edges. We
now update edges going from 0 and claim that s(0, x) = minB where B = {yuy + v(y, x) | y ∈ V } ∪ {v(0, x)}.

First, we show that s(0, x) ∈ B. Let p = 0→e1 y∗ → · · · → x, then either e1 is an edge that was present in G and
thus s(0, x) = v(0, x) or e1 was not and then it has weight uy∗ . We call l the length of the path x→ · · · → y∗ in
G′. Since the path p is the shortest between 0 and x and that there is no negative cycle, the part of p between y∗

and x doesn’t go through 0 and as such any new edges. Since it is the shortest path between y∗ and x and it
stays in common part of G and G′, we get that l = v(y, x). Hence the length of this path is uy∗ + v(y∗, x).

The shortest path between 0 and x in G is still a path in G′ thus s(0, x) ≤ v(0, x). Now for all y ∈ V , either
the shortest path from y to x in G′ doesn’t goes though 0 or it goes through it. In the first case, the path
0 → y → · · · → x in G′ has value uy + v(y, x) and since it is the length of a path from 0 to x, we know that
s(0, x) ≤ u(y) + v(y, x). In the second case, we know that the shortest path from y to x in G′ goes exactly once
through 0 (otherwise there would be a negative cycle), and using the optimality of subpath, we know that the part
of the path from y to x after going through 0 is the shortest path between 0 and x, thus the next point visited
is y∗ and this part of the path has length s(0, x), which is such that s(0, x) ≤ v(0, x). Similarly since the part
between y and 0 is the shortest path between these points in G′ and that it doesn’t go through an edge stemming
from 0, we know that it has length v(y, 0) giving us the final length from this path to be u(y) + v(y, 0) + s(0, x).
Since there is no negative cycles we know that u(y) + v(y, 0) ≥ 0. Since all path from y to x in G are still path in
G’ we have that v(y, 0) + s(0, x) = s(y, x) ≤ v(y, x). This gives us that

s(0, x) ≤ u(y) + v(y, 0) + s(0, x) ≤ u(y) + v(y, x) .

Hence for all b ∈ B, b ≥ s(0, x) and s(0, x) ∈ B, which give us that s(0, x) = minB. Hence all shortest path from
0 to other nodes can be updated in O(d2).

To conclude, we only need to update all distances going neither from nor to 0. We claim that for x and y which
are not 0, s(x, y) = min{v(x, y)s(x, 0) + s(0, y)}. First, we highlight that s(x, 0) + s(0, y) is the length of the
shortest path from x to y going through 0 in G′ and that v(x, y) is the length of the shortest path from x to
y in G which is still present in G′. Thus both of them are path length in G′ from x to y and we just need to
show that either of them has an optimal length. The shortest path from x to y in G′ either goes through an
edge stemming from 0 or it doesn’t. In the first case, it has value v(x, y) otherwise it has value s(x, 0) + s(0, y).
Hence s(x, y) = min{v(x, y); s(x, 0) + s(0, y)}. All these distances can be updated in O(d2) which concludes our
proof.

C Proof of Lemma 5: Counting cells

As stated earlier, the number of possible φ maps is dp but of these, quite a lot don’t lead to a cell. To better
estimate the complexity of our algorithm, we would like, with p and d known, to give a tighter estimate of the
number of cells. In this section, we start by showing for small dimensions how to derive explicitly the number of
cells. Then we provide an upper bound for arbitrary dimension.
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Dimension 1: Though it might feel a bit dull, we will start by tackling the case of best arm identification. As
there is only one dimension to choose from, the number of cells is exactly one.

For higher dimensions, we first start by noting that cells are invariant to translation by the all-ones vector, as
adding the same offset to λj

0 in every dimension will not change the comparison between the µj
k − λj

0 for different
j. Thus, even though cells live in Rd, they can be reduced to the orthogonal space of the all-ones vector which
has dimension d− 1.

In dimension 2, the direction toward which a point µk should go are given by whether λ0 is above or below the
diagonal line stemming from µk. In the reduced space this is equivalent to being right or left of the projected µk.
As such there is p+ 1 different cells: one to the right of every point, one to the left of the rightmost point and
one to the right of all the other points and so on until all points are on the left.

In dimension 3, all points shatter the space (original and reduced) in three distinct parts: one where the distance
to the first, second or third dimension is the smallest. In the reduced space, they are delimited by three lines
stemming from the projected point and going to infinity. Using this representation (shown in Figure 5, it is
possible to use Euler’s formula to count the number of different cells. To do so, we will count the number of cells
iteratively by adding the µk one by one. We start with no points, which means we have 1 cell, 0 edges and 0
vertices. When we add the k + 1th point, for all the previously added points, one of its edge will cross one of the
previously added edges adding 1 point and 2 edges per point. This makes the total number of edges and vertices
added by adding a new point be 3 + 2k for the edges and 1 + k. Using Euler’s formula, we get that the number of
added cells is given by 3 + 2k − (k + 1) = k + 2. Hence the number of cells for k points in the Pareto set is

1 +

k∑
i=1

(i− 1) + 2 =
k(k + 1)

2
. (7)

2
1

(a) Initial setting with two points.

3

2
1

(b) An additional third point is added,
adding a vertex and three edges.

3

2
1

(c) For every previously added point,
one of the added edges intersects with
an old edge adding one vertex and
two edges.

Figure 5: Example of a point being added in dimension 3

Proof of Lemma 5. To show this lemma, we reuse our graph representation from the previous section. For a
specific (j1, j2), the list of edges going from j1 to j2 in our multi graph G is given by {µj2

k − µj1
k | k ∈ φ−∞(|)}

and for a specific node k such that j1 = φ(k) an edge is created between j1 and every other j2 ̸= j1 ∈ [d] with
value µj2

k − µj1
k .

First, let v(φ) =
(
Card(φ−1(j))

)
j∈[d]

. We want to show that for a specific value of v(φ), there is at most one

possible φ which leads to a valid cell. To do that, we show that for φ,φ′ such that v(φ) = v(φ′), there exists a
particular permutation π such that φ′ = φ ◦ π. Then we show that if there were no negative cycles in G, the
multi-graph associated with φ, then the transformation of G to G′ after having applied the permutation creates a
negative cycle. We conclude by saying that the cardinality of the image of v is

(
p+d−1
d−1

)
.
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Let φ,φ′ such that v(φ) = v(φ′) but φ ̸= φ′. For each j ∈ [d] we let πj : φ
′−1(j)→ φ−1(j) be a bijection between

its domain and its image (there exists one since they have the same cardinal v(φ)j = v(φ′)j). We now define
π : k ∈ p(µ)→ πφ′(k)(k). Let k0, k1 such that π(k0) = π(k1), since the φ−1(j) we know that there exists a unique
j such that π(k0) ∈ φ−1(j), thus k0, k1 ∈ φ′−1(j) and πj(k0) = πj(k1) but since πj is a bijection between φ′−1(j)
and φ−1(j) we get that k0 = k1. Hence π is injective. And since π’s domain and image has the same cardinal, it
is bijective. Now, for all k ∈ p(µ) with j = φ′(k), π(k) ∈ φ−1(j) hence φ ◦ π(k) = j = φ′(k). Thus, for all φ,φ′

such that v(φ) = v(φ′) there exists a permutation π such that φ′ = φ ◦ π.

We now decompose π in disjoints cycles. If a cycle c = (k1, · · · , kn) is such that φ(k1) = · · · = φ(kn) then this
cycle can be omitted from the permutation and it would yield the same φ′. If all cycles were to be removed this
way, we would end up with φ = φ′ ◦ Id = φ′, thus we can conclude that at least one cycle as to be such that
Card (φ{k1, · · · , kn}) > 1. We now restrict ourselves to π with only such cycles as other can be safely deleted
without changing the resulting φ′. We now focus on a cycle c = (k1, · · · , kn) such that there exists x < y ∈ [n]
such that φ(kx) = φ(ky) and we prove that there exists two cycles cx, cy by which c can be replaced in π which
yields the same φ′. Since φ(kx) = φ(ky) then φ ◦ π = φ ◦ (kxky) ◦ π, and (kxky) ◦ π is permutation that has the
same cycle than π except for c which has been split in two disjoints cycles (they are disjoint from each other and
from cycles in π which are not c): cx = (kx, · · · , ky−1) and cy = (ky, · · · , kx−1). Thus π and (kxky) ◦ π yield the
same φ′, and we can restrict ourselves to permutation such that all φ(ki) are distinct within each different cycle.

We let π be such a permutation and we introduce G, the multi-graph associated with φ and G′ the one for
φ′ = φ ◦ π. We now assume that φ is a valid map and we will restrict the rest of our study on the changes
operated on G by a specific cycle c = (ki)i∈[n]. Let i ∈ [n], j1 = φ(ki) and j2 = φ′(ki) = φ(ki+1). Since j1 ̸= j2,

we know that there exists an edge in G between j1 and j2 of value vi ≜ µj2
ki
−µj1

ki
, respectively in G′ we know that

there is an edge between j2 and j1 of value µj1
ki
− µj2

ki
= −vi. As φ is assumed to be a valid map, the cycle from G

φ(k1)→v1 · · · →vn−1
φ(kn)→vn φ(k1)

is not negative. As such, the cycle from G′ given by

φ′(kn)←−v1 φ′(k1)←−v2 · · · ←−vn φ′(kn)

is a negative cycle. Thus there is at most one valid map for every point of the image of v.

The image of v is the set of vectors of length d whose entries are natural numbers that sum to p. It is a well-known
result that this set has cardinality

(
p+d−1
d−1

)
, which concludes the proof.

We believe that this bound is in fact the exact cell count (as seen for dimensions up to 3, cf Eq.7 and by simulations
for p, d up to 11) but we settle for this upper bound in the analysis of the complexity. What this tells us is that
the number of leaves within the tree is at most

(
p+d−1
d−1

)
. Using the observation that if an internal node is not

empty there always exists a non-empty leaf below it, we know that the number of valid internal nodes at a given
depth is bounded by

(
p+d−1
d−1

)
. Thus, the number of non-empty internal nodes is bounded by p

(
p+d−1
d−1

)
. Each

of these non-empty internal nodes may have at most d children which can be non-empty or empty internal or
non-empty or empty leaves. As we run our cell elimination procedure for each child of each non-empty internal
node, we run our procedure at most dp

(
p+d−1
d−1

)
times. Since this procedure has complexity d2 we end up with a

complexity of d3p
(
p+d−1
d−1

)
to construct our tree.

D Speed-up for Dimension 2

In this section we present a speed-up in run time available for dimension d = 2. The transportation cost
computations both for removing a point from the front and for adding a point to the front are presented next.

D.1 Removing a point

We present an update of Lemma 2 for dimension 2. Here, we can leverage the geometry of our problem to
disregard most of the pairs (k0, k1). Let’s assume that we are considering the pair (k0, k2) and that there exists
an arm k1 in the Pareto set between k0 and k2 (i.e. µ1

k0
≥ µ1

k1
≥ µ1

k2
and µ2

k0
≤ µ2

k1
≤ µ2

k2
). Now the inf reached

at λ1
k0

= λ1
k2

will be either above or below µ1
k1
. If it is reached below then µ1

k1
= λ1

k1
≥ λ1

k0
which means the cost



Sequential Learning of the Pareto Front for Multi-objective Bandits

of shadowing k0 with k2 is higher than the cost of shadowing k0 with k1 and if it is above then µ1
k1

= λ1
k1
≤ λ1

k2

which means the cost of shadowing k0 with k2 is higher than the cost of shadowing k1 with k2. Hence by ordering
the Pareto set, we can restrict ourselves to only look at adjacent points within the Pareto set as these will yield
the smallest transportation cost. This means that the number of pair that we need to examine is just O(p) giving
us the reduced computation cost O(p) for removing a point.

However, this technique doesn’t scale well with higher dimensions. Given three points (k0, k1, k2), a similar result
can be obtained if there exists ja such that µja

k0
≥ µja

k2
≥ µja

k1
and for all j ̸= ja, µ

j
k0
≤ µj

k2
≤ µj

k1
. In this setting

the minimizer λ of the transportation cost to shadow k0 by k1 is such that either λja
k0
≤ µja

k2
and then λk0

⪯ µk2

or λja
k1
(= λja

k0
) ≥ µja

k2
and then µk2

⪯ λk1
. As previously, we found that computing the value for the pair k0, k1

was unnecessary because either the pair (k0, k2) or (k2, k1) would have yielded a smaller value. But this was
done in a pretty constrained way, removing the constraint that there is at most one direction alongside which
µj
k0
≥ µj

k1
won’t lead to any results. To see that, let ja, jb such that ∀j ∈ {ja, jb}, µj

k0
≥ µj

k2
≥ µj

k1
, then we

might end up with λja
k0
≤ µja

k2
and λjb

k0
≥ µjb

k2
, leading to no claim of the shape λk0 ⪯ µk2 or µk2 ⪯ λk1 .

D.2 Adding a point

Here we present an update of Lemma 3 for dimension 2. Again, the geometry of the Pareto front allows us to
speed up the computation of the minimal transportation cost to add a point to the Pareto set.

We recall the definition of the function gk0 which, given a new location λ0 for the point µk0 (labeled µ0 for ease
of notation) gives the smallest transportation cost to add this point to the Pareto set while moving it to the new
location.

gk0(λ0) =
w0

2
||µ0 − λ0||2 +

∑
k∈p(µ)

wk

2
min
j∈[d]

(
µj
k − λj

0

)2

+
.

And given a map φ : p(µ)→ [d], we also recall the function

gk0,φ(λ0) =
w0

2
||µ0 − λ0||2 +

∑
k∈p(µ)

wk

2

(
µ
φ(k)
k − λ

φ(k)
0

)2

+
.

The functions gk0
and gk0,φ are equal on a set S(φ) which consists of the solutions of the following linear system:

λ0 ∈ Rd st. ∀k ∈ p(µ), ∀j ∈ [d], µ
φ(k)
k − λ

φ(k)
0 ≤ µj

k − λj
0

and outside of this set, gk0
≤ gk0,φ. We highlight here that for any λ0 ∈ S(φ), the line generated by λ0 + t1

is included in S(φ) where 1 consists of the all-one vector. Hence the geometry of cells can be reduced to the
orthogonal space to R1. Thus from now on, we will decompose λ0 in an s part which lives in Rd−1 and a t part
which lives in R, such that λ0 = Ms+ t1, where M is a dd− 1 matrix such that its columns are all orthogonal to
each others and to 1, and of norm 1. We apply the analogous decomposition to µ0 and (µk)k∈p(µ) leading to
s0, t0 and (sk, tk)k∈p(µ) and we redefine the functions gk0 and gk0,φ accordingly:

gk0,φ(s, t) =
w0

2

(
||s0 − s||2 + d(t0 − t)2

)
+

∑
k∈p(µ)

wk

2

(
(M(sk − s))φ(k) + tk − t

)2

+
.

For a given s and φ, we are interested in finding the t that minimizes gk0,φ(s, t). We label t∗φ(s) and gk0,φ(s)
(resp. t∗(s) and gk0(s) for the minimizer and the minimal value of gk0(s, t) with respect to t).

Now that we introduced this reparametriaztion of the problem, we want to show that the function t∗(s) is
piecewise linear and that in dimension d = 2 it is possible to enumerate its pieces and minimize gk0

with a lower
complexity than before.

In dimension 2, the constraints on matrix M leaves us only two choice: either
[
− 1√

2
1√
2

]
or

[
1√
2
− 1√

2

]
. We

can pick either without loss of generality. We settle for
[

1√
2
− 1√

2

]
. We assume for the rest of this section that

s1 ≤ · · · ≤ sk
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It is also possible to enumerate the valid φ maps in dimension 2. There are p + 1 different cells given by:
(−∞, s1], [s1, s2], · · · , [sp−1, sp], [sp,+∞). And the φ map associated with the lth cell of this list is

φ : k ∈ p(µ) 7→

{
2 if k < l

1 otherwise
.

This is due to the fact that M(sk − s) = 1√
2
(sk − s)

[
1 −1

]
. So when s ≤ sk, M2(sk − s) ≤ M1(sk − s) and

M1(sk − s) ≤M2(sk − s) when s ≥ sk.

We let tk,φ : s 7→Mφ(k)(sk − s)) + tk. It is a linear function of s.

Lemma 8. The function tk(·) such that ∀φ, ∀x ∈ S(φ), tk(s) = tk,φ(s) is well-defined and piecewise linear of
slope 1√

2
before sk and − 1√

2
after.

Proof. Since the S(φ) provide a tesselation of the space, we only need to check that given two maps φ1 and φ2,
the value at the intersection of their cell boundaries is equal. The only points at which cells have a non empty
intersect are the sk’s. These cells are associated with the map φ1 that maps every index stricly below k to 2
and the other ones to 1 and φ2 the one that maps every index below or equal to k to 2 and the other ones to 1.
But tk,φ1

(sk) = tk = tk,φ2
(sk), hence tk(·) is well defined and on each of the S(φ) it is linear thus it is piecewise

linear. Moreover, using the cells described earlier, we have that for s < sk (resp. s > sk), the φ map associated
with the cell in which s lives maps k to 2 (resp. 1), thus tk(·) is linear on s ≤ sk (resp. s ≥ sk) with slope 1√

2

(resp. − 1√
2
).

The Figure 6 gives an example of a construction of t∗ and the tk(·). The red dashed line represent here each
individual tk(·) where we can easily see the increasing part up to sk followed by a decreasing part.

Lemma 9. t∗φ and t∗ are well-defined and piecewise linear.

Proof. gk0,φ is differentiable hence, t∗φ is such that
∂gk0,φ

∂t (s, t∗φ(s)) = 0. The partial derivative of gk0,φ with
respect to its second argument is

∂gk0,φ

∂t
(s, t) = dw0(t− t0) +

∑
k∈p(µ)

wk(t− tk,φ(s))−

Since gk0,φ(s, ·) is strongly convex it admits exactly one minimizer, thus, there exists t∗φ(s) such that t∗φ(s) is the

minimizer of gk0,φ. However, the negative part in the sum makes it so we cannot solve easily for
∂gk0,φ

∂t (s, t∗φ(s)) = 0.

But, since gk0,φ is convex, t∗φ is continuous and then K(s) ≜ 1{t∗φ(·) ≤ tk,φ(·)} is piecewise constant and only
jumps when t∗φ meets one of the tk,φ. Thus, if we know K(s) and t∗φ(s) is different from all the tk,φ(s) we can
differentiate t∗φ in s giving us the following expression:

∂t∗φ
∂s

(s) = −
∑

k∈K(s) wkMφ(k)

dw0 +
∑

k∈K(s) wk

which is constant while K(s) stays the same, meaning that t∗φ(s) is actually piecewise linear. Also its slope is

always in (− 1√
2
, 1√

2
).

t∗ is equal to t∗φ on S(φ) meaning that t∗ is also piecewise linear and witth slopes in (− 1√
2
, 1√

2
). This means that

t∗ will only meet tk(·) twice, once in its ascending part and once in its descending part at which point its slope
changes. The only other points at which the slope changes are the boundaries of cell, meaning at the sk’s.

• Let s ≤ sk such that t∗(s) = tk(s), then K(s+) = K(s−) ⊎ {k}

• Let s = sk,
∂t∗

∂s (s
+) = ∂t∗

∂s (s
−)− 2√

2
· wk

dw0+
∑

k∈K(s) wk

• Let s ≥ sk such that t∗(s) = tk(s), then K(s+) = K(s−)\{k}
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Moreover, because the (sk, tk) are Pareto points, t∗ will meet the ascending part in ascending order, the sk in
ascending order and the descending part in ascending order.

Also, at −∞, t∗(s) = 0 and it has null derivative. Using that and the rules above, we can track t∗(s) in an
efficient way. An example is provided in Figure 6.

s1 s2 s3
0

1

2

3
t1, t2, t3
t *

Figure 6: Example of t∗ tracking

We can also compute the minimizer and the minimal value of gk0
(s, t∗(s)) on a linear part of t∗(s) by differentiating

gk0,φ(s, t) in s with K(s) held constant. This gives rise to an algorithm which has complexity of order p log p
where you need p log p operations to sort the Pareto front and then with complexity p you can range over the
s-space keeping track of some sums and of t∗ and computing the minimal value of gk0(s, t

∗(s)) along with its
minimizer. This reduces the run-time cost of the transport cost computation for adding a point from p2 to p log p
and for any point to Kp+ p log p as the sorting cost can be dampened.

Moreover, while running Track-and-Stop, only a single point is ever updated between two subsequent minimal
transportation cost computations meaning that the sort can be updated in linear time.

D.3 Experiments

We made some experiments to highlight the gain from using the improved algorithm for 2d rather than the
generic one. For that, we picked p points forming a Pareto set in a 1010 square and we added a unique non
Pareto optimal point at 0 in our point cloud. Then we measured the time used by each algorithm to compute
the minimum transportation cost against a random vector of weights. We repeated the operation a thousand
times for each tested p. We then reported t2 the average time taken by the improved algorithm for an iteration,
tn the average time taken by the generic algorithm for an iteration and r the ratio between tn and t2. These
experiments were done on a single core of an Intel(R) Core(TM) i5-6300U CPU.

Table 1: Comparison between the improved and generic algorithm

p t2 (s) tn (s) r
2 7.33× 10−4 1.01× 10−3 1.38
4 1.05× 10−3 1.97× 10−3 1.88
8 1.69× 10−3 4.47× 10−3 2.65
16 3.00× 10−3 1.25× 10−2 4.17
32 5.68× 10−3 3.47× 10−2 6.11
64 1.02× 10−2 1.16× 10−1 11.4

128 2.25× 10−2 4.48× 10−1 19.9
256 4.91× 10−2 1.77 36.0
512 8.77× 10−2 7.66 87.3
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E Experiments

In this Appendix, we give additional details about the experiments we ran. The first round of experiments was
based on resampling real life data from the study [Munro et al., 2021]. We report in Table 2 and 3, the value
from the study that we used to generate the data. Moreover the last column of Table 2 gives the optimal weight
associated with each arm obtained by solving the optimization problem of Proposition 1. Lines written in a bold
font correspond to the Pareto optimal arms and the underlined entry highlights a non-Pareto optimal arm that
needs a lot of samples.

Table 2: Means and optimal weights of the different arms

Dose 1/Dose 2 Dose 3 (booster) Anti-spike IgG NT.50 cellular response w∗

Prime BNT/BNT

ChAd 9.5 6.86 4.56 0.0077
NVX 9.29 6.64 4.04 0.0016

NVX Half 9.05 6.41 3.56 0.0007
BNT 10.21 7.49 4.43 0.023

BNT Half 10.05 7.2 4.36 0.0048
VLA 8.34 5.67 3.51 0.00066

VLA Half 8.22 5.46 3.64 0.00079
Ad26 9.75 7.21 4.71 0.018
m1273 10.43 7.61 4.72 0.14
CVn 8.94 6.19 3.84 0.0011

Prime ChAd/ChAd

ChAd 7.81 5.26 3.97 0.0014
NVX 8.85 6.59 4.73 0.021

NVX Half 8.44 6.15 4.59 0.0089
BNT 9.93 7.39 4.75 0.025

BNT Half 8.71 7.2 4.91 0.35
VLA 7.51 5.31 3.96 0.0014

VLA Half 7.27 4.99 4.02 0.0015
Ad26 8.62 6.33 4.66 0.013
m1273 10.35 7.77 5.0 0.38
CVn 8.29 5.92 3.87 0.0012

Table 3: Pooled variance for each immunogenicity trait

Anti-spike IgG NT.50 cellular response
Variance 0.70 0.83 1.54
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