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Data-driven control of a weakly-instrumented
excavator with deep learning

N. Hoffmann, M. Cohen, L. Roullier, M. Preda, T. Zaharia

Abstract—This paper presents a data-driven approach for
controlling a weakly-instrumented excavator within a Virtual
Reality (VR) supervision environment. We address challenges
related to non-linear dynamics and limited sensor data by
focusing on arm movement control using both traditional and
advanced strategies, including Proportional-Integral-Derivative
(PID) controllers, Model Predictive Control (MPC), and Deep
Reinforcement Learning (DRL). Our results demonstrate the
effectiveness of these methods in achieving precise control despite
non-linearities and limited instrumentation, contributing to the
broader field of intelligent machine control.

Index Terms—Robotics, Digital twin, Weak instrumentation

I. INTRODUCTION

Controlling heavy machinery, such as excavators, is
challenging due to complex dynamics and non-linear
behavior, particularly when limited sensor data is available.
The excavator arm, with its three hydraulically coupled joints,
exemplifies these difficulties. Recent advances in Virtual
Reality (VR) and Digital Twins, as shown in our previous
work [Hof+22; Sau+23], offer new possibilities for remote
supervision, enhancing spatial awareness and providing
immersive operator experiences.

This paper tackles the problem of controlling a weakly-
instrumented excavator arm within a Virtual Reality (VR)-
based supervision environment. We evaluate and compare a
range of control methods, from traditional approaches like
Proportional Integral Derivative (PID) controllers, including
enhancements with Look-Up Table (LUT) and inverse mod-
els, to more advanced techniques such as Model Predictive
Control (MPC) and Deep Reinforcement Learning (DRL).
Our approach seeks to balance simplicity, robustness, and
computational efficiency, effectively managing the non-linear
dynamics and limited sensing capabilities of the excavator arm.

An excavator, as shown in Figure 1, consists of a hydraulic
manipulator mounted on a mobile base. This study concen-
trates on the control of the excavator arm, which presents
significant challenges due to its complex structure. The arm
comprises three geometrically coupled hydraulic joints (com-
monly referred to as the boom, stick, and bucket) that are
powered by a shared hydraulic pump. This configuration
introduces substantial non-linearities, making precise control
particularly difficult for human operators.

A. Problem formulation

We define the state of the excavator arm at time t, denoted
as xt, as the vector of angular positions θt = (αt, βt, γt) and
velocities θ̇t = (α̇t, β̇t, γ̇t):

Fig. 1. Side-view of an excavator with articular coordinates θ = (α, β, γ)
and operational coordinates X = (x, y).

xt = (θt, θ̇t) (1)

The control input at time t, denoted as ut, corresponds to
the normalized joystick commands issued to the joints:

ut = [uboom
t , ustick

t , ubucket
t ], ut ∈ [−1, 1]3 (2)

An estimation of the state, denoted as x̂t, is derived
from the sensor measurements, yt, provided by Inertial
Measurement Unit (IMU) sensors mounted on the machine.
This state estimation process involves a combination of
low-pass filtering to mitigate sensor noise and numerical
differentiation to estimate the angular velocities.

The objective is to compute control commands to drive the
excavator arm to achieve the desired angular velocities, θ̇dt , as
requested by a supervisor in a virtual reality VR environment.
We implement the control strategy using a speed controller, as
illustrated in Figure 2.

Fig. 2. Control diagram for achieving desired joint velocities based on VR
inputs and sensor data.



B. Related work

1) Supervision tools: Various interfaces and technologies
have been explored for earthworks supervision tools, yielding
promising results [LH22]. These technologies include
augmented reality [HWS18], 2D interfaces [Oki+19], digital
twins [You+23], and advanced environment reconstructions
[ZZD20]. Among these, we selected VR for its immersive
experience and enhanced spatial awareness. By integrating
VR with a digital twin, we aim to provide supervisors with
a precise representation of the work environment and refined
control capabilities.

2) Model-free control: The PID controller remains the most
widely used control strategy in industry due to its simplicity
and effectiveness. It generates the control command ut based
on the error signal et and the proportional, integral, and
derivative gains Kp, Ki, and Kd, respectively:

ut = Kpet +Ki

∫
etdt+Kd

det
dt

(3)

Beyond linear systems, PID controllers can be enhanced
through methods such as neural network tuning [MN19] or
combined with an inverse model to compute the necessary
commands for achieving desired joint speeds in an excavator
arm [Lee+22]. However, the latter approach often requires
extensive instrumentation to measure hydraulic cylinder pres-
sures, which can be impractical when only joint positions
are accessible. Alternatively, a PID controller can be coupled
with a LUT (see Figure 3) to approximate the inverse model
[Jud+19]. This straightforward method effectively mitigates
hydraulic dead-zones but becomes less accurate as the system
moves away from the neutral point around which the LUT
linearizes the dynamics.

Fig. 3. Look-up table of the boom

3) System identification: While model-free control methods
are easier to implement, they lack the predictive capabilities
that make model-based approaches more effective. A forward

model is essential for predicting the future motion of the
excavator based on its current state and input commands:

xt+1 = f(xt, ut) (4)

White-box models, such as mathematical and multi-body
models, have proven effective for controlling excavators but
require significant expertise, frequent updates, and are specific
to each machine [Mat+17]. To address these limitations, data-
driven black-box models learn directly from input-output
data, eliminating the need for explicit physical modeling
[HW13]. For example, Multi-Layer Perceptron (MLP) has
been used to estimate machine consumption and productivity
from telematics data [JLO17; Kas+21].

The Non-linear Auto-Regressive with eXogenous inputs
(NARX) formulation enables models to capture temporal
features by predicting outputs based on a stack of the n past
actions and m past states of the system [Hun+92; NP90]:

x̂t = f(ut−1, . . . , ut−n, xt−1, . . . , xt−m) (5)

NARX models with MLP backbones have been effectively
used to model excavator arm dynamics and to train position
and speed controllers [EH22; EH20; Lee+22]. However, these
methods often rely on data such as cylinder pressures or motor
RPMs, necessitating costly sensors and increased maintenance,
especially when equipping large fleets. Additionally, the finite
input stack length limits the ability of the network to capture
information beyond the specified time window.

Recurrent Neural Network (RNN), such as Long Short-
Term Memory (LSTM) networks [HS97], offer an alternative
by more effectively capturing temporal dependencies. Unlike
NARX MLPs, which stack inputs over time, LSTMs maintain
a hidden state that allows them to model complex temporal
dependencies without a fixed time horizon. For instance,
LSTMs have been used to model the activity of a Komatsu
PC220LC excavator with 99.78% accuracy using only a few
cellphone sensors and a Convolutional LSTM (Conv-LSTM)
network [Mah+22].

4) Model predictive control: MPC optimizes a sequence of
control commands over a finite horizon H by minimizing a
cost function. At each time step, the first command from the
optimized sequence is applied, and the optimization process
is repeated:

U∗
t = u∗

t , . . . , u
∗
t+H = argmin

Ut

J(xt, Ut) (6)

The cost function J(xt, Ut) evaluates the desirability of the
predicted trajectory starting from state xt and following the
input sequence Ut:

J(xt, Ut) = φ(xt+H+1) +

t+H∑
τ=t

L(xτ , uτ ) (7)

This approach requires a dynamic model to simulate system
trajectories in response to input sequences. Typically, this



model is a white-box mathematical model—a set of differ-
entiable equations derived from a physical analysis of the
system, which can be locally linearized for faster optimization.
However, when using a neural network model that is difficult
to linearize, a sampling-based MPC method can be employed
[How+22], where the model serves as a simulator to compute
trajectory rollouts. This approach has been validated in simu-
lations using a model that accounts for the impact of internal
and external forces on the system state [Jin+24].

5) Deep reinforcement learning: DRL combines
Reinforcement Learning (RL) and Deep Learning (DL)
to train neural networks through interactions without the
need for labeled data. The problem is modeled as a Markov
Decision Process (MDP), defined by the tuple (S,A, P,R, γ),
where S is the set of states, A is the set of actions, P (s′ | s, a)
is the transition probability from state s to state s′ when
action a is taken, R(s, a) is the reward function, and γ is the
discount factor. The goal is to find a policy π : S → A that
maximizes the expected cumulative discounted reward:

G = Eπ

[ ∞∑
t=0

γtR(st, at)

]
(8)

Several studies have applied DRL techniques to control
robotic arms and excavators, both in real-world and simulated
environments, for tasks ranging from free-space manipulation
to digging operations (see Table I). For instance, [Par+14;
Par+17] developed online position controllers using Echo State
Network (ESN), adjusting dynamically to system changes and
demonstrating improved tracking on a real 21-ton excavator
over traditional PD control. [Kur+20] combined multibody
simulation with RL to train a PPO-CMA agent for efficient
hopper filling, achieving high bucket loads in simulation.
[Egl+22] created a compliant RL controller adaptable to
various soil conditions, successfully tested on a real 12-ton
excavator with high bucket fill ratios across different soil hard-
ness levels. [SA21] learned a low-dimensional, causal linear
model of excavator data using simulation with AgxTerrain.
[LH22] introduced a physics-inspired data-driven model inver-
sion method, enabling a 38-ton excavator to dig accurately and
quickly with minimal tracking error. [ISR23] developed an RL
position controller using Proximal Policy Optimization (PPO)
in simulation, achieving low position tracking errors using
only proprioceptive inputs. Lastly, [JYZ23] used imitation
learning to teach an excavator to penetrate heterogeneous
terrain without jamming, demonstrating improved performance
over the training dataset on a real robotic arm equipped with
a custom bucket.

C. Contributions

This work focuses on enhancing supervision capabilities
for operators in the earthwork industry by evaluating and
comparing control strategies, including PID, MPC, and DRL.
Our approach is distinguished by two key aspects: the use of
real machine data, avoiding reliance on simulators, and the

Task

Device
Simulation Robot Arm Excavator

Free-Space [Hod18] [EH20; EH22]

Digging [Par+14; Kur+20] [JYZ23] [Par+17; Egl+22]
[Ran23] [LH22]

TABLE I
DRL PUBLICATIONS SORTED BY TASK AND DEVICE.

emphasis on minimally instrumented, cost-effective machines.
Furthermore, we focus on general methods that extend beyond
excavators. Our findings demonstrate that DRL provides strong
performance while maintaining a minimal computational load
during operation.

D. Plan

The rest of this paper is structured as follows: Section II
details the system identification and modeling techniques used
to capture the excavator’s dynamics. Section III discusses the
design of PID, MPC and DRL speed controllers. Section IV
provides a comprehensive evaluation of the proposed methods,
and Section V concludes with a discussion of the findings and
potential future work.

II. SYSTEM IDENTIFICATION AND MODELING

Building on our previous work [Hof+24], we collected
approximately one million transition samples (θt, ut, θt+1)
from 20 trajectories, each 5 minutes long, recorded at 100
Hz using a weakly instrumented CAT 323 excavator. To ensure
dense sampling across the joint space, we oscillated the boom,
stick, and bucket out of phase using a manually tuned PID
controller (see Figure 4).

Fig. 4. Target joint positions oscillating out-of-phase to densely sample the
joint space.

We evaluated MLP and LSTM networks, both with and
without input stacking, to predict state variations ∆θt =
θt+1−θt. The stacked-input LSTM architecture demonstrated
the best performance, achieving the lowest validation loss and
closely tracking the ground truth in free-run simulations over
extended periods, as illustrated in Figure 5.



Fig. 5. Free-run simulation of the stacked-input LSTM over a 60-second
trajectory.

A. Identification for control

Up to this point, our system modeling focused on max-
imizing prediction accuracy, as measured by the prediction
loss in free-run simulations. However, this objective diverges
from our primary goal of improving velocity control for the
excavator operator. To address this, we trained an alternative,
faster model that predicts 0.1 seconds into the future instead of
0.01 seconds, allowing for quicker inference over time. This
faster model enables the controller to simulate more alternative
control inputs within the same computational budget, enhanc-
ing performance as long as the model remains accurate.

Another approach, proposed by [Lee+22], involves using
an inverse kinematic model to predict the control inputs
required to achieve a desired velocity at a given position. The
core idea is to employ a neural network to model the non-
linear relationship between joint velocities and control inputs.
While the original publication developed a sophisticated model
incorporating force sensors, we adapt this method to a weakly
instrumented setting (without force sensors) and we rely solely
on the input-output data available from the neural network.
We model this inverse relationship by redefining the state and
actions as follows:

xinv
t = (αt+1, βt+1, γt+1, u

boom
t , ustick

t , ubucket
t ) (9)

uinv
t = (α̇t+1, β̇t+1, γ̇t+1) (10)

The time offset in the velocities and positions maintains the
causal relationship from inputs to motion, ensuring that the
predicted control inputs are based on currently known states
and affect future motions.

III. CONTROLLER DESIGN

This section details the environments used for training and
validating our controllers, followed by the description of the
PID, MPC, and DRL controllers. The performances of each
controller are evaluated and analyzed at the end of this section.

A. Training and validation environments
We use the model derived in the previous section to simulate

and evaluate various speed controllers presented in this section.
As shown in Figure 6, we emulate the desired speed trajectory
specified by the supervisor by following operational position
trajectories, denoted as Xd

t .

Fig. 6. Control strategy to train and validate speed controllers.

The desired operational position trajectories differ when
training and validating the controllers:

• Training Phase: During training, the controller is tasked
with reaching positions uniformly sampled in free space
within uniformly sampled time intervals. The path be-
tween the current position of the arm and its target is
a straight line. The operational position trajectory, Xd

t ,
progresses along this path at varying speeds, occasionally
moving very quickly and other times more slowly.

• Validation Phase: Validation involves following prede-
fined operational trajectories of interest, Xd

t , such as
moving in a circle or scooping the ground to fill the
bucket (see Figure 7) at different velocities.

Fig. 7. Circular and scooping validation paths.

To compute the desired joint velocities, we use a propor-
tional (P) position controller in combination with the inverse
Jacobian matrix:

θ̇dt = Jpinv(Xd
t −Xt) (11)

This method ensures that our controller is trained on a wide
range of trajectories that the supervisor might consider and
rigorously evaluates the controllers on the trajectories that are
of primary interest.



B. PID controller design

As a baseline, we implemented a PID controller, even
though our system exhibits significant non-linearities. We
tuned the PID parameters (Kp, Ki, and Kd) using the
Tree-structured Parzen Estimator (TPE) algorithm [Wat23],
aiming to optimize a Pareto front that balances speed and
precision. Figure 8 presents this Pareto front, along with the
most promising PID controllers, under the label ”PID,” and
compares them to other controllers.

Building on the state of the art, we further enhanced the
PID controller by integrating it with a LUT (Look-Up Table)
to linearize the system around its midpoint. In accordance with
the approach described in [Lee+22], we also combined the PID
controller with an inverse model of the environment, which
calculates the commands required to achieve a desired speed.
These two methods are also compared in Figure 8 under the
labels ”PID+LUT” and ”PID+INV”.

C. Model predictive control design

Our first model-based control method is sampling-based
Model Predictive Control (MPC). Unlike other MPC methods
that require a differentiable model of the system dynamics,
the sampling-based approach only requires the capability to
simulate the forward dynamics of the system. In this study,
our objective is to minimize the Mean Squared Error (MSE)
over the entire trajectory:

J(xt, Ut) =

H∑
t=0

||θ̇dt − θ̇t||2 (12)

Neural network models offer generality but have slower
inference rates. We do not use the high-fidelity plant model
in the MPC, but another model trained to predict farther
in time, making it effectively faster, see section II-A. This
faster internal model allows the MPC to simulate a few
dozens trajectories each time-step, depending on the choice
of hyperparameters presented in Table II. We also accelerate
the optimization step by parameterizing the input trajectory
using either constant functions, steps, or splines.

We optimize the hyperparameters with TPE and evaluate our
most promising MPC controllers in Figure 8, labeled ”MPC
CST,” ”MPC STEP,” and ”MPC SPLINE”.

Hyper-parameter Range
Horizon [0.1, 0.5]

Parametrization [Constant, Step, Spline]
TABLE II

HYPER-PARAMETERS OF THE MPC CONTROLLERS.

D. Deep reinforcement learning design

Inspired by the approach in [EH22], we employ a DRL
agent to control the excavator arm. The agent is trained in
simulated environments and its performances are evaluated
in our separate validation setting. The agent computes the

next control commands from the current joint positions
and velocities, desired joint velocities, and previous control
commands, as show in Table III.

Agent Inputs (12)
Joint positions (3) θt = (αt, βt, γt)

Joint velocities (3) θ̇t = (α̇t, β̇t, γ̇t)

Target joint velocities (3) θ̇dt = (α̇d
t , β̇

d
t , γ̇

d
t )

Previous control commands (3) ut−1 = (uboom
t−1 , u

stick
t−1, u

bucket
t−1 )

Agent Outputs (3)
Control commands (3) ut = (uboom

t , ustick
t , ubucket

t )
TABLE III

INPUTS AND OUTPUTS OF THE DRL CONTROLLER.

1) Reward definition: We define the reward function as a
weighted sum of several terms, each designed to guide the
agent toward desired objectives while mitigating undesirable
behaviors:

rt = λ1 · rθ̇t + λ2 · rut + λ3 · r∆u
t + λ4 · rsafet (13)

where the individual terms are defined as follows:
• Tracking error penalty: rθ̇t = −||θ̇dt − θ̇t||2

This term penalizes deviations from the desired joint
velocities, encouraging accurate tracking.

• Control amplitude penalty: rut = −||ut||2
This term penalizes large control inputs to limit command
amplitudes and reduce energy consumption.

• Control variation penalty: r∆u
t = −||ut − ut−1||2

This term penalizes abrupt changes in control commands,
promoting smoother operation.

• Hydraulics safety penalty:

rsafet = −||vt||2 , where vit =

{
ui
t, if ui

t · θ̇it < 0,

0, otherwise,
for each joint i. This term penalizes control inputs that
oppose the current joint velocities. While this strategy
can improve tracking performance by decelerating joints
more rapidly, it places excessive stress on the hydraulic
components and can lead to mechanical damage.

After manual tuning and analysis of the results, we
assigned the following weights to the reward terms: λ1 = 1.0,
λ2 = 0.05, λ3 = 0.05 and λ4 = 0.1.

2) Hyperparameter optimization: We optimize the hyper-
parameters of PPO presented Table IV, with TPE and compare
the performance of our most promising DRL controllers in
Figure 8, labeled as ”DRL”.

E. Results

Our objective is to maximize the speed of the bucket while
minimizing the tracking error. To evaluate the performance of
the controllers, we define two key metrics:



Hyperparameter Search Range
Policy network depth 1 to 6
Policy network width 8 to 512
Value network depth 1 to 6
Value network width 8 to 512
Learning rate 3× 10−5 to 3× 10−3

Batch size 4 to 4096
Number of steps per update 4 to 256

TABLE IV
HYPERPARAMETERS OF THE PPO ALGORITHM OPTIMIZED USING TPE.

• Average tracking error

Xe, avg :=
1

N

N∑
t=1

||Xd
t −Xt||2 (14)

• Average bucket speed

|Ẋ|avg :=
1

N

N∑
t=1

|Ẋt| (15)

We evaluate all controllers presented in the previous
sections, in the validation environment. Figure 8 illustrates
the Pareto fronts and the most promising controllers.

1) Analysis of PID Controllers: We observe that the
Proportional-Integral-Derivative (PID) controllers perform
competitively, especially those utilizing Look-Up Table
(LUT) linearization. The PID with inverse model (PID+INV)
approach exhibited poor performance due to the inadequacy
of the inverse model when trained as-is. In contrast, the
original publication [Lee+22] proposing this method achieved
impressive results (3cm of error at 66cm/s) by developing
a detailed inverse model specific to their excavator and
employing force sensors. Our study aims to maintain
an approach that is applicable as-is to any minimally
instrumented machine.

2) Analysis of MPC Controllers: The Model Predictive
Control (MPC) approaches perform comparably to the PID
controllers but are highly sensitive to the parameterization
of the control signal. This sensitivity arises from the slow
inference speed of our model, which limits the number
of samples available for online optimization. Among the
MPC methods, those using splines perform the best, as they
strike a balance between input richness and a manageable
optimization space.

3) Analysis of DRL Controllers: The Deep Reinforcement
Learning (DRL) controllers outperform all other approaches
except for the MPC with splines at specific velocities.
They can achieve very high speeds exceeding 2m/s while
maintaining a tracking error of approximately 60cm,
depending on the requirements. Unlike MPC approaches,
DRL controllers do not require intensive online computations,
as they offload the computational burden to the offline training
phase.

IV. DISCUSSION AND CONCLUSION

This study evaluates the effectiveness of data-driven
control strategies for weakly-instrumented excavators, in a
task critical for VR supervision environments. By leveraging
real machine data and focusing on generalizable, cost-effective
methods, we have shown that control strategies such as PID,
MPC, and especially DRL can provide good speed control
performance of earthwork machinery without imposing a
heavy computational load during operation.

This work demonstrates the applicability of data-driven
control techniques to assist earthwork operators. Our find-
ings suggest several promising directions for future work.
First, deploying these methods in real-world, uncontrolled
environments will enable us to further test their robustness
and adaptability under varying conditions. Second, a more
thorough investigation of the reality gap under different exter-
nal conditions, such as various soil types and terrains, would
be necessary before considering widespread deployment. We
would like to work on stronger safety guarantees and exam-
ine how the various control strategies perform in hazardous
situations, including system failures or sensor malfunctions.
Finally, the trade-off between MPC prediction capabilities and
its computational demands could be further optimized.
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