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Modeling weakly-instrumented excavator arm
dynamics with stacked-input LSTM

Nicolas Hoffmann1,2 , Max Cohen1, Marius Preda1 , and Titus Zaharia1

1 Télécom SudParis, France
2 Heracles Robotics, France

Abstract. The application of machine learning for modeling complex
dynamic systems, such as excavators, is gaining momentum as it of-
fers flexibility beyond traditional mathematical models. Recent advances
leverage neural networks to create data-driven models that can handle
the non-linear and intricate dynamics of real machinery. However, these
models often depend on expensive sensors and controlled environments.
This study presents a cost-effective approach to modeling the dynamics
of a weakly-instrumented 25-ton CAT 323 excavator arm using stacked-
input Long Short-Term Memory (LSTM) networks. We evaluate the per-
formance of Multi-Layer Perceptron (MLP) and LSTM architectures,
both with and without input stacking, to accurately simulate excava-
tor arm motion. Our results show that combining LSTM with stacked
inputs significantly improves the model’s predictive capabilities, chal-
lenging the notion that LSTM and input stacking are redundant. These
findings highlight the potential of data-driven neural network models to
provide accurate and efficient solutions for dynamics modeling in com-
plex, real-world settings, paving the way for advanced AI-based strategies
in the earthworks and construction industries.

Keywords: Robotics · System identification · Weak instrumentation ·
Construction 4.0 · Excavator dynamics modelling · Deep learning · MLP
and LSTM neural networks

1 Introduction

1.1 Excavator Modelling

The application of machine learning and AI in modeling complex dynamic sys-
tems, such as hydraulic excavators, has gained significant attention in recent
years. Traditional methods for dynamic modeling often rely on physical models
or simplified assumptions, which are limited to specific use-cases and controlled
environments. These approaches require significant expertise and can involve
expensive modifications, making them less adaptable for diverse real-world ap-
plications.

The dynamics of an excavator arm are inherently non-linear and complex
due to coupled hydraulic joints and shared pumps. Accurately modeling these
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dynamics is crucial for various applications, including control, simulation, and
optimization. Data-driven approaches, particularly using deep learning models,
offer a promising alternative by learning directly from input-output data rather
than requiring detailed physical modeling.

Most current AI-based approaches, such as Non-linear Model-Based Control
(NMBC), depend on accurate and fast dynamic models to operate effectively,
especially for simulating diverse trajectories or predicting long-term behavior
in real-time [15]. Fast simulation speeds are essential not only for training con-
trollers offline but also for real-time applications where the simulator must be
run online [7].

In this study, we use a weakly instrumented 25-ton CAT 323 excavator, a
commonly used model in the earthworks industry. Our focus is on data-driven
dynamic modeling using neural networks to capture the complexities of exca-
vator arm movements in real operational environments. By leveraging low-cost
sensors and real-world data, we aim to develop robust models that generalize well
across different scenarios without relying on costly instrumentation or controlled
settings.

1.2 Problem Formulation

We define the state of the excavator arm at time t as a vector of articular
positions and velocities:

xt := (α, β, γ, α̇, β̇, γ̇) (1)

where α, β, γ are the angular positions of the boom, stick, bucket measured
relative to the horizontal plane, assuming the excavator is on level ground, and
α̇, β̇, γ̇ are the angular velocities of the boom, stick, and bucket. The action at
time t, ut, represents joystick commands normalized within [−1, 1]:

ut = [uboom
t , ustick

t , ubucket
t ], ut ∈ [−1, 1]3 (2)

We want to predict the next state xt+1 from the current state xt and action ut:

xt+1 = f(xt, ut) (3)

This involves simulating a trajectory by auto-regressively predicting each state,
which is challenging due to the accumulation of prediction errors over time. We
adopt a data-driven approach using neural networks trained on data collected
from the physical machine.

1.3 Related work

Modeling the dynamics of hydraulic excavators using mathematical models or
multi-body models, called white box models, has been successful and extensively
applied to excavator control [15]. However, such methods require specific skills
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and considerable expert knowledge to explicitly construct a physical model of
the system, with all the related parameters involved. In addition, they need to
be regularly maintained for heavy-duty machines like excavators, whose dynam-
ics change with the age and degree of utilization. Finally, a white box model
is dedicated to a singular system and needs to be crafted again for each new
machine.

To overcome such constraints, the data-driven black box models learn solely
from input-output data [8]. As representative of this family of approaches, let
us first mention the Multi-Layer Perceptron (MLP) techniques, which have been
successfully employed to estimate machine consumption [9] and to evaluate ma-
chine productivity using Original Equipment Manufacturer (OEM) telematics
data [10].

The Non-linear Auto-Regressive with eXogenous inputs (NARX) formulation
enables the model to compute temporal features by predicting outputs based on
a stack of the n past actions and m past states of the system [16]:

x̂t = f(ut−1, . . . , ut−n, xt−1, . . . , xt−m) (4)

A NARX model can be trained by minimizing its prediction error over a
transition or a batch of transitions. This approach, known as Series-Parallel
(Fig. 1), is theoretically robust and allows for faster training. In contrast, Parallel
training minimizes the prediction error over an entire free-run simulation. By
feeding the predicted next state back into the input of the network, parallel
training ensures that the model is trained on the actual task on which it is
intended to perform. Our experimental results bellow show that both training
methods are valuable.

Fig. 1: Series-Parallel (a) and Parallel (b) training of a NARX.

NARX with MLP backbones have been effectively used to model the dy-
namics of excavator arms and to train position and speed controllers [4, 5, 12].
However, such approaches depend on measurements such as cylinder pressure
or motor RPM, necessitating the installation and maintenance of expensive sen-
sors, particularly when deployed across a fleet of machines. Additionally, the
finite length of the input stack imposes a constraint on the network, limiting its
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ability to capture information beyond the specified time window.

Recurrent Neural Network (RNN), such as Long Short-Term Memory (LSTM)
networks [6], offer an alternative to NARX for capturing temporal features. Un-
like NARX, which stacks the network inputs over time, LSTM maintain a hidden
state throughout time, allowing them to handle complex temporal dependencies
more effectively and without a fixed time horizon. For example, LSTM have
been used to model the activity of a Komatsu PC220LC excavator with 99.78%
accuracy using only a few cellphone sensors and a Convolutional LSTM (Conv-
LSTM) network [14].

The review of the state of the art highlights the successful application of
neural networks for modeling various aspects of an excavator. To incorporate
temporal features into these models, researchers either stack inputs over time
using MLP or switch entirely to LSTM architectures. The prevailing assumption
is that LSTM, with their inherent ability to manage temporal dependencies,
render the practice of stacking inputs redundant.

1.4 Contribution

This study evaluates and compares the performances of MLP and LSTM ar-
chitectures in modeling the dynamics of a weakly-instrumented excavator arm,
focusing on the influence of input stacking. Our results demonstrate that combin-
ing LSTM with stacked inputs significantly enhances the modeling capabilities
of the network. Our approach challenges the common assumption that LSTM
networks and input stacking are redundant in their ability to capture temporal
features, resulting in a both accurate and cost-effective model.

2 Dataset creation

2.1 State measure

We collected data from a weakly instrumented CAT323 excavator by measuring
the arm’s articular positions (α, β, γ) using Inertial Measurement Unit (IMU)
sensors installed by the OEM. The positions were low-pass filtered to remove
vibrations, and velocities were estimated via numerical differentiation followed
by another low-pass filter.

To ensure real-time applicability, we avoided non-causal filters, resulting in
a delay of about 30 ms for position measurements and 50 ms for velocities. The
excavator is termed "weakly" instrumented since our state formulation is limited
to articular coordinates, unlike other methods requiring additional, expensive
sensors for cylinder pressure, forces, engine RPM, or temperature [5, 12].
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2.2 Data collection

We recorded the excavator moving only in the air by excavating in front of the
machine and positioning it on leveled ground, to make sure that we model the
dynamics of the arm of our excavator, without ground interaction effects. We
also aimed to sample the entire articular space densely. The boom, stick, and
bucket were oscillated between their angular limits, with oscillation periods in-
dependently sampled between 4 and 60 seconds. A manually tuned Proportional
Integral Derivative (PID) [1] controller was used to follow these trajectories,
computing actions ut based on position error et, its derivative, and integral:

ut = Kpet +Ki

∑
et +Kdėt (5)

To improve the dataset, we also recorded data with immobile articulations at var-
ious positions, ensuring the model learns that articulations without commands
remain stationary. We achieved this by imposing zero commands for 10-second
intervals every 10 seconds on randomly selected articulations.

We collected 20 trajectories in total, each about 5 minutes long and recorded
at 100 Hz, yielding around one million transitions. We segmented the trajectories
into non-overlapping 500-step windows (5 seconds each) and split them split into
training (80%) and validation (20%) sets. States and actions were normalized to
[−1, 1] for neural network processing.

3 Network Architectures

We have retained the state of the art, both MLP and LSTM architectures, each
in stacked and not stacked variants, as illustrated in Fig. 2:

1. A MLP network that inputs a concatenation of the current state and action
and outputs the next state.

2. A Stack MLP network that adds previous states and actions to its input to
provide temporal features.

3. A LSTM network that only inputs the current state and action but propa-
gates a hidden state through time.

4. A Stack LSTM network that stacks the inputs and propagates a hidden
state.

We parameterize all network architectures by the number of hidden layers
and the size of each hidden layer, as detailed in Tab. 1, and use the networks to
compute the following state. For instance, in the series-parallel setting:

x̂t = NN(ut−1, . . . , ut−n, xt−1, . . . , xt−m) (6)

And in the parallel setting:

x̂t = NN(ut−1, . . . , ut−n, x̂t−1, . . . , x̂t−m) (7)
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Fig. 2: The four network architectures adopted in our study. (a) MLP predicts the
next state from the previous state and action. (b) LSTM passes a hidden state through
time. (c) 2-stack MLP concatenates the 2 last states and actions. (d) 2-Stack LSTM
also passes the hidden state.

4 Training

We train our networks to minimize the prediction Mean Squared Error (MSE)
over a batch of training windows with the Adam optimizer [11]. To allow the
hidden state sufficient time to initialize, the first 20 predictions of each window
are excluded from the loss calculation. All training sessions are conducted on an
NVIDIA GeForce GTX 1080 Ti GPU, with each session lasting up to 6 hours.
We use early stopping to prevent over-fitting.

We have experimented with varying proportions of parallel and series-parallel
training by introducing a new hyper-parameter that represents the fraction of the
training window allocated to series-parallel training. Training always begins in
series-parallel and switches to parallel at the specified point within the window.
However, validation and test performances are measured almost exclusively in
free-runs, with 96% parallel: we provide the ground truth to each model for the
first 20 steps (4%) of each window to allow for proper initialization of the hidden
state.

We also experimented with predicting only the variation between the current
state and the next state to stationarize the distribution [13]. In the series-parallel
setting, this approach is implemented as follows:

x̂t = x̂t−1 +NN(ut−1, . . . , ut−n, x̂t−1, . . . , x̂t−m) (8)

We parameterize the input stack of a network by the size of the stack, i.e. how
many inputs are concatenated, and the interval between time-steps. For example,
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a stack of size 3 and interval 5 would contain [st−1, at−1, st−6, at−6, st−11, at−11].
This sparse stacking method enables the network to capture dependencies from
the distant past while maintaining a manageable input size.

Table 1: Hyper-parameters and their optimization ranges.

Hyper-parameter Range

N
et

w
or

k # Hidden layers 1 to 8
Hidden layers size 16 to 2048

Stack size 1 to 15
Stack interval 1 to 10

T
ra

in
in

g Learning rate 10−5 to 10−1

Dropout rate 0 to 0.75
Batch size 8 to 512

Predict variation True or false
Series-Parallel %age 0% to 100%

5 Experimental results

We have optimized all hyper-parameters listed in Tab. 1 using the Tree-structured
Parzen Estimator (TPE) optimization method [2]. The objective is to minimize
the validation loss achieved during training while maximizing the inference speed
of the network. We applied this optimization process to each of the four network
architectures shown in Fig. 2 by changing the backbone and adapting the stack
size and stack interval ranges. We trained hundreds of networks per architecture:
1136 MLP, 740 Stack MLP, 490 LSTM and 408 Stack LSTM.

This multi-architecture, multi-objective optimization yields one Pareto front
of training runs per network architecture, highlighting the networks that out-
perform others in terms of lower validation loss, faster inference speed, or both,
as illustrated in Fig. 3.

5.1 Prediction objective quality

The obtained results reveal a clear hierarchy between network architectures:
Stack LSTM networks perform the best, followed by LSTM networks, with Stack
MLP and MLP networks showing progressively lower performances. The differ-
ences in terms of Pareto fronts are highly significant, especially given the auto-
regressive nature of the regression task considered, which is susceptible to lead
to an accumulation of prediction errors over time.

Table 2 compares the best prediction quality among all trainings shown in
Fig. 3 as measured by the validation MSE. The reported MSE values confirm
here again the superiority of LSTM-based approaches.
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Fig. 3: Hyper-parameter optimization of the four network architectures. Each dot rep-
resents one training, the Pareto front is highlighted for all architectures.

Table 2: Lowest validation loss obtained by network architecture.

Architecture Lowest validation loss
MLP 5.69e-4

Stack MLP 3.55e-4
LSTM 2.29e-4

Stack LSTM 1.76e-4

5.2 Prediction speed

The inference speed values presented in Fig. 3 (between 1500 and 2500 inferences
per second for most networks), do not reveal a significant difference between net-
work architectures. While the best Stack LSTM networks are slower than most
MLP or Stack MLP networks, this is due to the number of layers rather than the
stacking or LSTM components themselves. Evidence of this is that at a given
inference speed, such as where MLP performs best, there are also LSTM or Stack
networks with comparable or superior prediction performance. Stack LSTM net-
works scale better with larger networks but are not intrinsically slower.
Due to the lack of significant difference in inference speed we choose the best
predicting network, i.e., the one with the lowest validation loss, for further anal-
ysis.

5.3 Best hyper-parameters

Table 3 details the hyper-parameters of the best predicting network for each
architecture. We can drive the following conclusions:

– MLP-based networks do not seem to benefit from additional or larger hid-
den layers, unlike LSTM-based networks. Our results closely corroborate the
work of [4], which used a Stack MLP with 3 hidden layers and 128 nodes per
layer.
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– All networks converged toward predicting the state variation instead of the
state itself, a behavior that we observed early in the training process.

– The input stacks for the Stack MLP are about half a second, and for the Stack
LSTM, about a quarter second, indicating that older information does not
help predict future motion. The Stack MLP requires a longer input window
than the Stack LSTM, aligning with the intuition that LSTM networks can
compute temporal features internally.

Table 3: Best hyper-parameters found for each network architecture.

Hyper-parameter MLP Stack MLP LSTM Stack LSTM

N
et

w
or

k # Hidden layers 3 3 6 4
Hidden layers size 115 116 189 545

Stack size 1 12 1 5
Stack interval 1 6 1 5

T
ra

in
in

g Learning rate 4.2e-3 8.87e-3 1.3e-3 1.65e-3
Dropout rate 2.9e-3 1.35e-2 2.49e-1 3.8e-2
Batch size 25 16 17 21

Predict variation True True True True
Series-Parallel %age 68% 50% 51% 50%

5.4 Free-run experiment

We conducted a free-run experiment using a human-operated, real-life trajectory,
significantly different from the oscillating trajectories of our training dataset.
Starting from a stationary position, which allowed us to initialize the hidden
states with 20 identical static states, the operator moved the excavator arms for
one minute. After initialization, we fed the actions of the operator actions into
our networks and compared the predicted positions to the ground truth mea-
surements from the actual machine. The results are presented in Fig. 4.

In this free-run, MLP-based networks quickly rotated the arm upward, likely
due to a slight positive bias accumulating over time. In contrast, LSTM-based
networks closely followed the ground truth, demonstrating their ability to ac-
curately simulate novel trajectories and generalize beyond the training data.
Although the impact of input stacking with the LSTM network is not appar-
ent in this test, Tab. 2 shows that adding stacked inputs to an LSTM network
reduces its validation loss by 23%. This provides a trade-off between predictive
quality and implementation simplicity. Figure 5 illustrates the ability of the best
stacked LSTM to closely follow the ground truth for 60 seconds.
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(a) Initial position (b) After 2 seconds

(c) After 10 seconds (d) After 13.5 seconds

Fig. 4: Free-run simulation of the best network from each architecture over 1,350
predictions (13.5 seconds). All simulations begin from the same initial position (a). The
MLP (red) and Stack MLP (yellow) networks quickly accumulate errors and overlap
near the upper limit (b), constrained by the machine’s mechanical stops (c). In contrast,
the LSTM (purple) and Stack LSTM (blue) networks closely follow the operator’s
ground truth trajectory (green), with minimal drift (c, d).

6 Discussion

The goal of this work was to evaluate the effectiveness of MLP and LSTM net-
works in modeling the dynamics of a weakly-instrumented excavator arm, both
with and without input stacking. Our results indicate that LSTM models can ef-
fectively simulate machine dynamics and consistently outperform MLP networks,
with input stacking further enhancing LSTM performance. This challenges the
assumption that LSTM and input stacking are redundant for capturing tempo-
ral features.
We suggest two reasons for this outcome: (1) While LSTM networks handle
long-term dependencies, their performance decreases over longer timescales. In-
put stacking, however, provides temporal features from any chosen time frame,
making it adaptable to different sampling rates, unlike LSTM. (2) Input stacking
may offer additional temporal features for LSTM to process, improving perfor-
mance.

We trained networks to predict state variations rather than states, improving
free-run performance for oscillating trajectories. However, this may not work well
for abrupt trajectories involving sharp vibrations or stops at mechanical limits.
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Fig. 5: 60 seconds free-run of the best stack LSTM network.

The poor free-run performance of our MLP networks, unlike results reported
in [4], could be due to: (1) our lack of specific data like oil temperature and engine
RPM; (2) the complexity or difference of our free-run trajectory; (3) different
machine types—our 25-ton versus their 12-ton excavator; or (4) unoptimized
hyper-parameters.

7 Future work

Future work includes using the simulator for control purposes via model pre-
dictive control, reinforcement learning-based training, or inverse model compu-
tation. The proposed approach is suitable for online and offline simulation of
various earthwork machines, facilitating cost-effective control strategies without
additional investments, because most machines already have basic articulation
sensors.

Promising directions also involve enhancing model adaptation to abrupt tra-
jectories, comparing them with filtering-based techniques, and developing data-
driven soil interaction models. Current models rely on hand-crafted simulations
for ground interactions [3]. Modeling ground interactions is challenging due to
the variability in ground properties and shapes, which could be better addressed
with stochastic models. Advancements in these areas could reduce simulator
costs and enhance the realism and effectiveness of autonomous systems.
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