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Differentiable Simulation of Soft Robots with Frictional Contacts

Etienne Ménager1, Louis Montaut1,2, Quentin Le Lidec1 and Justin Carpentier1

Abstract— In recent years, soft robotics simulators have
evolved to offer various functionalities, including the simu-
lation of different material types (e.g., elastic, hyper-elastic)
and actuation methods (e.g., pneumatic, cable-driven, servo-
motor). These simulators also provide tools for various tasks,
such as calibration, design, and control. However, efficiently
and accurately computing derivatives within these simulators
remains a challenge, particularly in the presence of physical
contact interactions. Incorporating these derivatives can, for
instance, significantly improve the convergence speed of control
methods like reinforcement learning and trajectory optimiza-
tion, enable gradient-based techniques for design, or facilitate
end-to-end machine-learning approaches for model reduction.
This paper addresses these challenges by introducing a unified
method for computing the derivatives of mechanical equations
within the finite element method framework, including contact
interactions modeled as a nonlinear complementarity problem.
The proposed approach handles both collision and friction
phases, accounts for their nonsmooth dynamics, and leverages
the sparsity introduced by mesh-based models. Its effectiveness
is demonstrated through several examples of controlling and
calibrating soft systems.

Keywords: Soft-robotic Simulation, Differentiable
physics, Differentiable optimization, Nonsmooth dynamics.

I. INTRODUCTION

Soft robotics is a research field that offers unprecedented
flexibility, adaptability, and safety in various applications
ranging from medical devices to search and rescue opera-
tions [1]. Compared to traditional rigid robots, soft robots
can deform and adapt to their environment, mimicking the
capabilities of biological organisms. However, the design and
control of soft robots present significant challenges due to
their complex dynamics and interactions with the environ-
ment [2]. Physics-based simulation of soft robots provides a
powerful tool to address these challenges [3], offering a safe,
fast, and cost-effective approach to test designs and control
strategies.

Soft robots simulation involves three key elements: colli-
sion detection, resolving contact forces based on physical
laws, and computing the robot’s response to these forces
and actuation inputs. For simulations to be effective, they
must accurately capture the robot’s behavior and its inter-
actions with the environment, including nonsmooth collision
detection and resolution. This requires mechanical models
capable of handling various types of actuation, geometry,
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behavior laws, and realistic contact interactions. Addition-
ally, simulators can leverage model-derived information,
such as derivatives. Using derivatives information in soft
robotics simulation could improve the efficiency of control
methods like reinforcement learning and trajectory optimiza-
tion through first-order information, support gradient-based
design techniques, or enable end-to-end machine learning
approaches in soft robotics.

Over the past few years, several open-source soft robot
simulators have been developed within the community, of-
fering subsets of these features. Beam-based simulators, such
as SoroSim [4] and Elastica [5], have been used for control
tasks but are limited to simulating slender structures. For
more general geometries, 3D Finite Element Method (FEM)
simulators like SOFA [6] and Sorotoki [7] allow simulating
a wide range of material models and actuation types for
control and design tasks. However, none of these simulators
support full differentiation of the simulation pipeline, and
their contact models are often simplified, typically relying
on the Signorini law or linearized friction cones. Some
simulators do offer full pipeline differentiation. For example,
DiffTachi [8], ChainQueen [9], and SoMoGym [10] use the
Material Point Method to simulate soft robots and provide
a differentiable programming environment that allows for
gradient-based strategy learning. However, these simulators
cover only a limited range of soft robots and simplified
contact equations. Self-collisions are modeled using mo-
mentum transfer between neighboring soft body particles,
while collisions between soft bodies and rigid body obstacles
are treated as boundary conditions. Position-based methods
typically handle collision detection. DiffPD [11] offers a
fully differentiable FEM simulation of soft robots but uses a
linearized contact model. More recently, differentiable simu-
lation for pneumatic actuation has been implemented within
the FEM simulation framework [12]. This simulator focuses
on optimizing pneumatic actuation designs, and contact
modeling is performed using incremental potential contact
methods [13], which rely on unsigned distance functions and
barrier methods but do not solve the full nonlinear comple-
mentarity problem (NCP) involved in contact modeling.

Despite the progress made in differentiable simulations
for soft robotics, no solution fully captures the nonsmooth
interactions between soft robots and their environments, par-
ticularly regarding collision detection and frictional contact
dynamics. In this paper, we introduce a feature-complete
differentiable simulation pipeline that accounts for soft robot
FEM modeling, NCP-based contact formulation, and varia-
tion of contact geometries, leveraging and extending recent
works in the field of differentiable simulation of poly-



articulated rigid robots [14], [15]. In particular, we show how
to differentiate the continuum mechanics equations and apply
implicit differentiation to compute the NCP gradient for
frictional contact problems in soft systems. Additionally, we
extend differentiable collision detection, initially developed
for rigid robots, to handle deformable objects. We illustrate
the effectiveness of these methods through several examples,
including the identification of mechanical parameters and the
solution of inverse dynamics, both with and without contact.
To facilitate further research and ensure reproducibility, the
code is publicly available.

The paper is organized as follows. In Sec. II, we provide
an overview of soft robotics simulation, covering FEM mod-
eling and contact interactions. Sec. III presents the core con-
tribution of this paper, where we detail how the gradients of
the FEM modeling, collision detection, and contact forces are
combined to achieve end-to-end differentiability. In Sec. IV,
we leverage our differentiable physics simulator to tackle
various optimization and control problems, both with and
without contact, using different soft systems, including a
deformable beam, a Trunk robot, soft Fingers, and a soft
Gripper. Finally, Sec. V discusses the limitations of this work
and outlines potential future directions.

II. BACKGROUND

In FEM simulation, a soft robotic system is typically
discretized and represented by a mesh composed of volu-
metric elements. This discretization serves as the foundation
of the simulation, enabling a detailed representation of both
the robot’s internal mechanics and its interactions with the
surrounding environment. In this section, we first recall the
FEM modelling of the robot. We then discuss the contact
interactions, constitutive laws, and actuation methods em-
ployed for simulation.

A. FEM modelling in soft robotics

The mechanical behaviour of soft robots is described using
a continuum mechanics equation, for which there are no
analytical solutions in the general case. Non-linear FEM is
one of the numerical methods used to compute a converging
approximate solution. Using an implicit time integration
scheme and a first-order linearisation of the internal forces,
the equation of dynamics is written:

A(xi, p) = M + hD(xi, p) + h2K(xi, p)

b(xi, vi, p) = −h2K(xi, p)vi + h(P − fi(xi, p)) (1)

A(xi, p)dv = b(xi, vi, p) + hHa(xi)
Tλa + hHc(xi)

Tλc,

where (xi, vi) are the position and velocity of the nodes of
the mesh, p are material parameters, A is the impedance
matrix, M the mass matrix, D = αM + βK is the damping
matrix defined using Rayleigh damping, K is the stiffness
matrix, dv = vf − vi the difference between final speed and
initial speed, P the external forces, fi the internal forces,
HT

a λa the actuation forces, HT
c λc the contact forces and h

the time step. The dependence of quantities on xi, vi, and p
is highlighted.

This system of equations is solved in two stages. First, the
free configuration of the robot is computed by solving the
linear system of Eq. (1), using a sparse linear solver. This is
the state of the robot when the contact forces are zero. This
configuration is then corrected using the value of the contact
forces λc, which are calculated as a solution to the associated
NCP (see Sec. II-B). The positions of the mesh points are
then updated using the semi-explicit scheme xf = xi+hvf .

B. Interactions with the external environment

In soft robotics, interactions with the environment that do
not involve actuation are primarily achieved through contact.
Resolving these contacts involves two key steps: first, colli-
sion detection, which identifies the contact points and contact
normal, enabling the construction of the contact Jacobian Hc;
and second, collision resolution, which calculates the contact
forces, denoted as λc.
Collision detection. This phase determines the contact in-
formation between two colliding geometries. For a given
pair of bodies, a collision detection algorithm computes a
contact point and a contact normal, representing the direction
separating the bodies with minimal displacement. In this
article, we utilize a collision detection algorithm based on
the GJK method [16]. The matrix Hc, which defines the
directions of the contact forces, is populated with contact
frames c. Each frame is centered at the contact point, with
its z-axis aligned along the contact normal.
Collision resolution. Contact modelling involves various
complementary physical principles [17]. First, the so-called
Signorini condition provides a complementarity constraint
0 ≤ λc,N ⊥ σc,N ≥ 0, where σc is the velocity of the
contact points and N stands for the normal component of
the vector. The Signorini condition ensures that the normal
force is repulsive, the bodies do not interpenetrate, and the
power injected by normal contact forces is null. Secondly, the
maximum dissipation principle combined with the frictional
Coulomb law ∥λc,T ∥ ≤ µλc,N of friction µ, states that the
tangential component of the contact forces λc,T maximizes
the power dissipated by the contact. These principles are
equivalent to an NCP:

Kµ ∋ λc ⊥ σc + Γµ(σc) ∈ K∗
µ (2)

σc = Gλc + g

where G is the Delassus matrix that gives the admittance
matrix A−1 projected on the contacts and enables to map
contact forces to contact points velocities, g is the free
velocity of the contact points when λc = 0, Kµ is a second-
order cone with aperture angle atan(µ), K∗

µ is the dual
cone of Kµ, and Γµ(σc) = [0, 0, µ∥σc,T ∥] is the De Saxcé
correction enforcing the Signorini condition [18], [19], [17].
This NCP can be solved to find the value of λc using different
optimization methods, like Projected Gauss-Seidel methods
(PGS) [19], [17] or the Alternating Direction Method of
Multipliers (ADMM) [19], [20].



C. Soft Robot’s internal mechanics

The internal mechanical behaviour of soft robots is mod-
elled using two key elements. First, the internal forces fi of
the soft robot are derived from the constitutive laws. To form
the linearized system (1), the derivatives of these internal
forces, K = ∂f

∂x and D = ∂f
∂v , are calculated. Second,

actuators control the system’s deformation by applying a
force λa. The effects of this actuation are modelled in the
Jacobian of the actuation, denoted as Ha.
Constitutive laws. Constitutive laws define the relationship
between stress, strain, and other material properties. In this
paper, we consider one elastic and two hyper-elastic consti-
tutive laws: co-rotational elasticity, Saint-Venant-Kirchhoff,
and Neo-Hookean. They are often described using a strain
energy density function Ψ, that can be computed using me-
chanical quantities such as the deformation gradient F , the
Green-Lagrangian strain tensor E, and/or the right Cauchy-
Green tensor C, evaluated in each volumetric element of
the discretization. These energies are used to calculate the
internal forces and the stiffness matrix, using spatial discreti-
sation, the Nanson’s formula and the internal virtual work.
A comprehensive overview of these constitutive laws and
associated computations is given in [21]. For tetrahedron
discretization, the final expression of the internal forces is
given by:

fe,i = FeSe · ∇Ni (3)

where e stands for the eth tetrahedron in the mesh, i the
ith node of the tetrahedron, Se = 2∂Ψ

∂C the second Piola-
Kirchhoff stress tensor, and ∇Ni the derivative of the shape
function in the global reference.
Actuation modelling. The actuators are modelled using
the Jacobian matrix Ha, which links the force λa to the
position and speed of the nodes in the mesh. The matrix Ha

corresponds to the direction of the actuation constraint [22].
In this paper, we consider three kinds of actuation: cable
actuation for which Ha is filled with the direction of the
cable; pneumatic actuation for which Ha is filled with the
oriented area of the surface of the corresponding cavity; and
servomotors for which Ha is filled with 1 in the direction of
the servomotor actuation.

III. DIFFERENTIABLE SOFT-ROBOTICS SIMULATION
WITH CONTACT NCP

This section details the core contribution of this paper,
namely a differentiable soft robotics simulator that combines
differentiable collision detection for deformable body, differ-
entiable contact resolution and differentiable FEM modelling
of soft robot. We develop these three points in the remainder
of this section. We notably extend the work presented in [15]
and [14] tailored for rigid poly-articulated systems (e.g.,
humanoids, manipulators, etc.) to the context of soft robotics.

In the following, let θ be the differentiation variable, which
is any subset of the inputs {xi, vi, λa} or physical parameters
p like the Young Modulus of the material and λ∗

c the solution
of the NCP problem (Eq. 2).

A. Collision detection derivatives

The collision detection stage depends on the position of
the tetrahedron in the mesh, and thus of the position xi.
This can be highlighted by explicitly stating the dependency
Hc(xi). When θ depends on the position, the terms ∂θH

T
c

and ∂θHc are non-null. Calculating these terms means differ-
entiating the collision detection stage. The general idea of the
derivation of the collision detection is as follows, and uses
the various properties of the collision detection algorithm.

Let T1 and T2 be two colliding tetrahedra. Let
D = {p1 − p2 : p1 ∈ T1, p2 ∈ T2} be the Minkowski differ-
ence between T1 and T2. The GJK algorithm solves the
detection collision problem as a min-norm-point optimization
problem:

min
x∈D

1

2
∥x∥2 (4)

by calculating a sequence of support functions
∂σTi(d) = argminx∈Ti x

T d in the direction d = ∇∥x∥2
for each tetrahedron. Importantly, each support
function depends on the position of the points
composing the tetrahedron. This is expressed by
∂σTi

(d) = argmin(dTxi1, d
Txi2, d

Txi3, d
Txi4), where

xij are the vertices of the tetrahedron. The solution x∗ of
the optimization problem (4) is the separator vector of the
smallest norm. This vector characterizes the collision in
terms of normal and contact points. We refer to [16] for
more details.

The implicit function theorem can be used to calculate
the derivatives of the separator vector with respect to the
position of the points on the tetrahedron. By definition, x∗

is the solution of the equation:

f(x∗, T1, T2) = x∗ + ∂σT1
(x∗)− ∂σT2

(x∗) ∋ 0. (5)

From the 1st-order Taylor expansion of f , one can relate the
sensitivity of the optimal solution x∗ to the relative position
of the tetrahedron Ti:

∂f

∂x∗ δx
∗ +

∂f

∂Ti
δTi = 0, (6)

leading to the following relation:

∂f

∂x∗
∂x∗

∂Ti
= − ∂f

∂Ti
. (7)

When several collision points exist between the different
shapes, the variation of the normal contact direction can lead
to a reduction of the support set to one point. In this config-
uration, the Hessian of the support function is uninformative
and sometimes ill-defined. To get an idea of the variation of
f , it is possible to use a randomized smoothing technique
with limited computational overhead [14]. In the case of a
tetrahedron, using a Gumble distribution [14] leads to a close
form of the argmin operator. This provides an estimate of
the derivative of f with respect to x∗ and Ti, and thus an
expression for the derivative of collision detection by solving
the complete system.



B. NCP derivatives using implicit differentiation

Calculating ∂θλ
∗
c means differentiating the collision res-

olution stage. Computing the value of ∂λ∗
c

∂θ is challeng-
ing, as λ∗

c is the non-smooth solution of the equation
NCP(G, g) = NCP(λ∗

c , xi, vi, λa, p) = 0. In addition, con-
tact can switch between three distinct modes, namely break-
ing contact, sticking contact, and sliding contact. As pro-
posed in [15], the implicit function theorem can be used to
compute ∂λ∗

c

∂θ by deriving the optimality conditions of the
problem, assuming that the contact mode is fixed. We have
not yet considered the case of computing derivatives at the
boundary between two contact modes. This remains an open
issue for the robotics community.

In the case of contact forces, the derivatives can be written
as the solution of a linear system:

ĀX = −B̄

(
∂G

∂θ
λ∗
c +

∂g

∂θ

)
, (8)

where Ā and B̄ are two matrices construct with G, σc and λc,
according to the mode of the contact points (see [15] for
more details). Using the fact that Gλ∗

c + g = σc = Hcvf
is the contact points’ velocity, the derivative ∂G

∂θ λ
∗
c + ∂g

∂θ
corresponds to the derivative of the contact point velocity
with λc = λ∗

c constant. Finally, this derivative can be written:

∂G

∂θ
λ∗
c +

∂g

∂θ
= Hc

∂vf
∂θ

∣∣∣
λc=λ∗

c

+
∂Hc · vf

∂θ

∣∣∣
λc=λ∗

c

(9)

The first term is the solution of Eq. 10 with the contact force
taken constant. The second term involves the derivative of
the contact Jacobian, as computed in the previous section.
Finally, the derivatives ∂λ∗

c

∂θ are obtained by solving Eq. 8
using a QR decomposition of Ā.

C. Chaining FEM model derivatives and contact derivatives

Starting from Eq. 1, we can write the final velocity as
a combination of the free velocity vfree

f = vi + A−1b,
actuation correction δa = hA−1HT

a λa and contact correction
δc = hA−1HT

c λ
∗
c . The goal is to compute the Jacobian ∂vf

∂θ ,
as the derivatives of xf can be written ∂xf

∂θ = ∂xi

∂θ + h
∂vf

∂θ .
Differentiating vf leads to:

∂vf
∂θ

=
∂vfree

f

∂θ
+

∂δa
∂θ

+
∂δc
∂θ

, (10)

where all terms can be expanded using the chain rules.

The derivatives
∂vfree

f

∂θ and ∂δa
∂θ can be obtained using FEM

modelling (Eq. 1), as all elements (A, b, K, D) can be
expressed with the internal forces (Eq. 3) and its derivatives
and the computation of the Jacobian matrix Ha (Sec. II-
C). FEM modelling shows that the Ha and K matrices are
always multiplied by vectors. This means that it is not useful
to calculate ∂θHa or ∂θH (higher order tensor) but ∂Ha·V

∂θ

and ∂K·V
∂θ where V is any vector. Considering tetrahedron

elements with 4 nodes [P1, P2, P3, P4], the computation of
the derivatives for a tetrahedron can be expressed as a matrix
in Rnv×12 where nv is the dimension of the initial vector.

The global derivative is a combination of the derivatives cal-
culated at the level of each tetrahedron, arranged according
to the nodes contained in the tetrahedron.

The derivative ∂δc
∂θ is the sum of three elements:

h
∂A−1 · (HT

c λ
∗
c)

∂θ
+ hA−1 ∂H

T
c · λ∗

c

∂θ
+ hA−1HT

c

∂λ∗
c

∂θ
(11)

The value of Hc and λ∗
c are computed using collision

detection algorithm and collision resolution algorithm. The
first term can be computed using the derivative of K as
explained in the previous paragrapher, and the fact that
∂θA

−1 = −A−1∂θAA−1, resulting from AA−1 = Id. The
second term involves the derivative of the Jacobian Hc

(collision detection), discussed in section III-A. The third
term involves the derivative of λ∗

c (collision resolution),
discussed in section III-B.

IV. EXPERIMENTS

In this section, we apply our approach to address optimiza-
tion and control tasks across various soft systems. We begin
by using simple toy examples to validate the computation
of derivatives. Next, we describe several soft systems along
with their corresponding tasks. Finally, we present results for
both contact and non-contact scenarios.
Implementation details. The FEM modelling of the soft
systems and actuation are based on modified model devel-
oped in SOFA framework [6] [21]. The analytical deriva-
tives are computed in Python, with future developments in
C++ for efficiency. The collision detection is realized using
HPP-FCL [23] for efficient collision detection. The contact
resolution is achieved using ADMM-based approach [20]
with sparse linear backend leveraging. The code associated
with this paper will be released as open-source. All the
experiments are performed on a single core of an Apple M3
CPU.

Fig. 1. Toy examples developed to test the calculation of derivatives.
(1) Multi-contact and multi-material. (2) Actuation, constrained motion,
and rigidification. (3) Collision detection and optimization of contact point
positions.

A. Verification of analytical derivatives

To validate the derivative calculations introduced in the
previous section, we present a series of toy examples,



Fig. 2. Simulated deformable systems considered in this work. (1) Deformable beam with contact. (2) Deformable beam without contact. (3) Trunk robot.
(4) The robot pianist, composed of three identical Finger robots. (5) Soft Gripper.

some of which are illustrated in Fig. 1. When the finite-
difference method is applicable — i.e., when no switching
occurs between contact modes, as it is possible with position
derivatives — the derivatives are compared against the finite-
difference method. The results show a maximum error on the
order of 10−4, which is within expected bounds. This method
is used to numerically verify derivatives with respect to xi,
vi, λa and p, in scenarios involving multiple objects and
constitutive laws (Fig. 1.1), as well as in cases with additional
constraints such as rigidification (where some degrees of
freedom are treated as rigid), projective constraints (where
some degrees of freedom are fixed), or actuation (Fig. 1.2).
These tests are conducted both with and without contacts.
In cases where the finite-difference method is not valid for
derivative evaluation, the computed gradients are used to
perform specific optimization tasks. For example, collision
detection differentiation is tested by optimizing the position
of a point on a tetrahedron to become the point of contact
(Fig. 1.3). These various examples help to verify the accuracy
and behaviour of the computed gradients.

B. Soft-systems and associated tasks

We proposed to illustrate our approach with five different
systems, presented in Fig. 2:

1) The deformable beam consists of a deformable body
that bends under its own weight. In the contact scenario
(see Fig 2.1), the beam rests on two supports. In the
non-contact scenario (see Fig. 2.2), the beam is at-
tached at one end. These examples are used to identify
the mechanical parameters of the system through an

optimization method applicable in both contact and
non-contact situations.

2) The Trunk robot [24] (see Fig. 2.3) is a soft robot
composed of a flexible body made out of silicone and
actuated by 8 cables fixed all along the robot. This
robot is used for inverse dynamics tasks.

3) The pianist robot (see Fig. 2.4) is composed of three
identical soft Finger robots. Each Finger robot is made
up of three segments connected by accordion-shaped
joints and actuated by 2 cables, as proposed in [25].
The robot fingers interact with piano keys, which
can tilt according to the effort exerted on them. This
robot is used for inverse dynamics tasks with contact
handling.

4) The Soft Gripper (see Fig. 2.3) is composed of two
deformable Fingers and one object to be grasped.
Each deformable finger is made up of flexible filament
and is actuated by a servomotor. These Fingers are
presented in [26] and are designed to interact with the
environment through self-contact and external contact.
This robot is used in an optimisation task involving
both actuation and contact forces.

C. Identification of material properties with the deformable
beam

In this experiment, we assume that the state of a beam
subjected to gravity is known after 0.3 seconds, i.e.,
xt=0.3(E

∗, µ∗) with E Young’s modulus, µ Poisson’s ratio,
and ∗ stands for the required parameter value. We therefore




 : Target : Optimization history with different starting point

: Distance to the goal for different target : Target : z-coordinate of the effector for different target

Fig. 3. Optimization of the Young Modulus of the beam to achieve a target position for the mesh nodes. Young’s modulus is expressed in MPa, distance
in mm. Only the useful parts of the graphs are retained.


 : Target : Optimization history with different starting point

: Distance to the goal for different target : Target : z-coordinate of the effector for different target

Fig. 4. Evolution of the distance to the target for control tasks using the Trunk robot and the Finger robot. For the Trunk robot, the current position is
compared to the final position, as the target may lie outside the robot’s workspace. Distances are measured in mm.

define the objective to be minimised as:

min
p

1

2
∥xt=0.3(p)− xt=0.3(E

∗, µ∗)∥2, (12)

where p ∈ {E,µ} is the parameter to be optimized (the other
one being fixed at its optimum value). This problem is solved
using the Levenberg-Marquardt algorithm [27] with heuristic
scheduling on the method’s damping parameter λLM . This
method uses the value of the Jacobian J = ∂x

∂p ∈ R3n

according to:

pk+1 = pk+
1

λLM (1 + JTJ)
JT (x(pk)−x(E∗, µ∗)), (13)

where n is the number of nodes in the mesh, and k is the
index of the iterative process. Note that we have removed the
notation t = 0.3 for better readability. In the case of contact
scenario, the Jacobian matrix J = ∂x

∂p takes into account
contact information through the correction term:

∂(A−1HT
c λc)

∂p
=

∂A−1 · (HT
c λc)

∂p
+A−1HT

c

∂λc

∂p
. (14)

The results are shown in Fig. 3 for Young Modulus
identification. Similar results can be obtained for Poisson
ratio identification. We can see from these figures that the
gradient information relating to the mechanical parameters of

the materials can be used to identify the model parameters,
even if there are contacts between the beam and some
obstacles. It should be noted that in the case of contacts,
some initializations are not suitable, such as the one where
contacts are broken. In this case, many local minimums exist,
and the algorithm may not find the solution.

D. Control tasks with soft robots

Inverse dynamics. The Trunk robot and the Finger robot
can be controlled by minimising the distance between the
end-effector of the robot and a goal to be reached. At one
time step, this distance depends on the position of the nodes,
corrected by the effect of the actuation. This leads to the
formulation:

min
∆λa

1

2
∥Xe(x+∆x, λa +∆λa)−Xgoal∥2 (15)

where Xe is the position of the end-effector and Xgoal the
position of the goal. Writing the first-order expansion of
Xe,f = Xe(x+∆x, λa +∆λa) we have:

Xe,f = Xe(x, λa) +
∂Xe

∂x
∆x+

∂Xe

∂λa
∆λa (16)

By integrating this expression into Eq. (15) and adding
actuation limits to take account of the robot’s physical



limitations, we obtain a QP problem that can be solved with
a suitable solver. In this paper, we use ProxQP [28]. ∆x is
calculated with respect to the free movement of the robot.
In the case of the Finger robot, only the vertical direction is
controlled. The different results for both robots are shown in
Fig. 4.

In the case of the Trunk robot, the formulation with
gradients leads to the same formulation as the one proposed
in the reference articles on soft robotics control using QP
approaches [24]. The system is over-actuated, leading to an
oscillation of the end-effector position. It is usually possible
to reduce this oscillation by adding corrective terms into
the cost function (on the system energy or the actuation
magnitude) or by setting a low-pass filter on the actuation
force update. In the case of the Finger robot, the derivative
with respect to λa accounts for contact information, requiring
the applied force to be greater in order to counterbalance the
contact force. The results show that gradient information with
respect to position and actuation can be used to control soft
robots.
Control of contact forces. In the case of the gripper, we
can define an objective based on two terms: one to close the
gripper and one to limit the contact forces. As the system
is symmetrical with respect to the origin, we can write this
problem for one finger and apply the result to both. As for
the previous section, this problem can be written as a QP,
where the objective is written:

min
∆λa

α∥Xe∥2 + β∥λc,nodes∥2, (17)

with (α, β) are weight to choose the importance of both
terms, Xe is the position of the effector and λc,nodes stands
for the contact force applied on the nodes of the finger
surface. Maximal and minimal actuation are set, to fit robot’s
capability and force minimal motion. Results are shown in
Tab. I and compared to the heuristic where constant maximal
actuation force is applied to grasp the object.

∥Xe∥ (cm) ∥λc,nodes∥ (cN)
Heuristic 1.18 0.43
Optimized 1.20 0.03

TABLE I
VALUE OF THE TWO COMPONENTS INVOLVED IN THE LOSS FOR THE

GRIPPER CONTROL AFTER 70 ITERATIONS. THE TOTAL LOSS IS

CALCULATED AS THE WEIGHTED SUM OF THESE TWO TERMS.

As shown in this table, the proposed heuristic applies a
constant maximum actuation force to the robot, reducing the
distance from the origin. However, this comes at the cost of
increased contact force, resulting in a larger loss. In contrast,
the proposed control method does not achieve the same
reduction in distance from the origin but effectively limits the
contact forces on the robot’s surface. In the optimized control
strategy, the process begins by clamping the object. Once
the two terms - distance from the origin and contact force
- become equally important, the gripper gradually loosens

its grasp, significantly reducing the contact forces while
maintaining the distance to the origin.

V. DISCUSSIONS AND CONCLUSION

This paper introduces an end-to-end differentiable physics
pipeline for soft robotics simulation based on the resolution
and the implicit differentiation of an NCP for contacts. The
simulator leverages state-of-the-art FEM simulation methods
to consider several types of constitutive laws, actuation,
and geometry. In addition, the definition of contact as an
NCP ensures accurate simulation of interactions, which is
necessary to prevent unphysical simulation artifacts. This
simulator is illustrated with various deformable systems,
including cable or servomotor actuation, various geometries,
and scenarios with or without contact. Nonetheless, the
simulator is designed to be generic and is not limited to
these examples.

The limitations of this approach are inherent to solving
continuous media mechanics equations using FEM methods.
These mathematical systems can be high-dimensional and
resource-intensive to solve. Additionally, more advanced
optimization algorithms for control or identification tasks
could be explored. For instance, the presence of contact can
lead to local minima. First-order Reinforcement Learning
methods could be leveraged to explore the solution space
and overcome these local minima efficiently. However, this
simulator is a foundation for developing new algorithms
in soft robotics. For instance, it could be used to leverage
simulation gradients to accelerate the discovery of complex
robot movements in contact, to calculate reduced models
using learning methods, or to propose calibration techniques
based on computer vision networks.

Another drawback is that gradients with respect to position
cannot be tested using finite differences due to the non-
smooth nature of the contact problem. Despite this, the cal-
culated gradients provide valuable information for problem-
solving. Finally, the proposed differentiable simulation of an
unrelaxed physics model is a crucial step toward reducing the
Sim2Real gap [29]. Future work should exploit this feature
to develop new algorithms that facilitate the transfer between
simulation and physical prototypes.

In future work, we plan to provide an open-source C++
implementation of the proposed approach, either by extend-
ing Pinocchio [30], [31] to support soft robots or extending
SOFA [6] to transform it as a fully differentiable simulator.
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