
HAL Id: hal-04915965
https://hal.science/hal-04915965v1

Preprint submitted on 28 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The moving contact line problem for the 2D nonlinear
shallow water equations

Tatsuo Iguchi, David Lannes

To cite this version:
Tatsuo Iguchi, David Lannes. The moving contact line problem for the 2D nonlinear shallow water
equations. 2025. �hal-04915965�

https://hal.science/hal-04915965v1
https://hal.archives-ouvertes.fr


THE MOVING CONTACT LINE PROBLEM FOR THE 2D NONLINEAR

SHALLOW WATER EQUATIONS WITH A PARTIALLY IMMERSED

OBSTACLE

TATSUO IGUCHI AND DAVID LANNES

Abstract. We consider the initial value problem for a nonlinear shallow water model in hori-
zontal dimension d = 2 and in the presence of a fixed partially immersed solid body on the water
surface. We assume that the bottom of the solid body is the graph of a smooth function and
part of it is in contact with the water. As a result, we have a contact line where the solid body,
the water, and the air meet. In our setting of the problem, the projection of the contact line on
the horizontal plane moves freely due to the motion of the water surface even if the solid body
is fixed. This wave-structure interaction problem reduces to an initial boundary value problem
for the nonlinear shallow water equations in an exterior domain with a free boundary, which
is the projection of the contact line. The objective of this paper is to derive a priori energy
estimates locally in time for solutions at the quasilinear regularity threshold under assumptions
that the initial flow is irrotational and subcritical and that the initial water surface is transver-
sal to the bottom of the solid body at the contact line. The key ingredients of the proof are
the weak dissipativity of the system, the introduction of second order Alinhac good unknowns
associated with a regularizing diffeomorphism, and a new type of hidden boundary regularity
for the nonlinear shallow water equations. This last point is crucial to control the regularity of
the contact line; it is obtained by combining the use of the characteristic fields related to the
eigenvalues of the boundary matrix together with Rellich type identities.

MSC: 35L04, 74F10
Keywords: Wave-structure interactions; nonlinear hyperbolic initial boundary value problems;
moving contact lines.

1. Introduction

1.1. General setting. Interactions between waves and partially immersed structures are cen-
tral to study boat navigation and marine renewable energies such as floating offshore wind
turbines or wave energy convertors. Pontoons, offshore platforms, and sea-ice are other exam-
ples for which wave-structure interactions are important. Engineers use essentially two kinds of
approaches to assess this problem.

The first one consists in describing such interactions with CFD methods. Numerical computa-
tions in this context turn out to be much more complex than in other fields, such as aeronautics,
where the CFD method is standard. As explained in [35], this is due to the fact that one has
to deal with highly separated flows with high Reynolds number near the hull, that there are
large scale differences between the hull and mooring systems, and that one has to deal with an
open ocean environment with non-Gaussian stochastic wave fields. For these reasons, the cost
of a CFD project has been estimated to be comparable to physical model tests with prototypes.
CFD is therefore only used for very specific purposes and for projects with a high technology
readiness.

The second tool used by engineers to describe wave-structure interactions is much simpler.
Nonlinearities, viscosity, and vorticity are neglected in the equations, while all these effects
are taken into account in the CFD approach, which is based on the Navier–Stokes equations.
The resulting mathematical model was proposed by F. John [33, 34] and consists in the linear
Bernoulli equations cast in the linearized fluid domain; we refer to [40] for a recent mathematical
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analysis of this problem where the main difficulty comes from the singularities in the fluid
domain: corners or wedges at the intersection between the surface of the water and the boundary
of the object. For freely floating objects, Cummins [16] derived a set of six integro-differential
equations that describe the motion of the object in its six degrees of freedom; this equation is
used in the commercial softwares for wave structure interactions, such as Wamit. As opposed
to CFD computations, numerical simulations based on this linear approximation are extremely
fast; they can for instance be used to model the behavior of an entire wave farm. The price to
pay is that they miss important physical phenomenons such as the impact of nonlinear effects;
the predictions based on this approximation are therefore of poor quality in the presence of large
amplitude waves, which are common in shallow water.

For these reasons, a third approach was proposed in [37]. Like John’s model, it neglects vis-
cosity and vorticity, but the linear approximation is replaced by an approximation of a different
nature. It consists in replacing the equations governing the motion of the fluid by a reduced
shallow water asymptotic model such as the nonlinear shallow water equations or the Boussi-
nesq equations. Such approximations no longer depend on the vertical variable and are therefore
much easier to compute numerically than the original free surface Euler equations, while keeping
the nonlinear effets. They are commonly used to describe waves in coastal environments where
the shallowness assumption under which they are derived is satisfied.

In [37], a method was proposed to extend such shallow water models in the presence of a
partially immersed object. The idea is to treat the presence of the object as a constraint on the
surface elevation of the fluid; the pressure exerted by the fluid on the object is then understood
as the Lagrange multiplier associated with this constraint; see Section 1.2 below. We therefore
have to deal with a partially congested flow; such flows also arise in biology [48], collective
dynamics [19, 44], and other contexts. The pressure term is sometimes approximated by a
pseudo-compressible relaxation for numerical simulations [21, 22]; this latter approach is often
referred to as soft congestion [47], as opposed to hard congestion models where such a relaxation
is not performed [4, 17, 18].

A general feature for the hard congestion models arising for wave-structure interactions is
that they can be reformulated as an initial boundary value problem for the wave model under
consideration. This initial boundary value problem is cast in the so-called exterior region: the
projection on the horizontal plane of the surface of the water which is contact with the air.
When the object has vertical sidewalls, this exterior region does not depend on time, but it does
otherwise because the projection of the contact line varies with time; see Figure 1. One then
has to deal with a free boundary problem.

In horizontal dimension d = 1 and the case of the nonlinear shallow water equations to de-
scribe the waves, the problem can be solved when the sidewalls of the object are fixed because
the equations are hyperbolic and the boundary conditions are strictly dissipative; such a con-
figuration has been considered in [11] to model a particular type of wave energy convertor, the
oscillating water column, and in [50] to simulate a wave generator. When the sidewalls are not
vertical, the problem becomes a free boundary problem and was solved theoretically in [30] and
numerically in [26]. The difficulty is that the dynamics of the contact points is not kinematic,
namely, they do not move at the velocity of the fluid, but obeys a more singular evolution
equation. Still in dimension d = 1 one can use Boussinesq type models instead of the nonlinear
shallow water equations; such models are interesting because they do not neglect the disper-
sive effects. For an object with vertical sidewalls, the corresponding wave-structure interaction
problem has been treated in [12, 6, 7]. The difficulty is that contrary to hyperbolic systems,
there is no general theory for initial boundary value problems for nonlinear dispersive systems;
in the case of small dispersion, phenomenons such as dispersive boundary layers must also be
taken into account [12]. The case of a free boundary, that is, of non-vertical walls is open. Let
us also mention [41] where a viscous perturbation of the 1d nonlinear shallow water equations
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is considered and [24, 25] where the dynamics of the contact points in a container with vertical
sidewalls is fully solved for the 2D Navier–Stokes equations with surface tension.

In horizontal dimension d = 2, radially symmetric configurations for both the object and the
waves have been considered in [9, 10] in the case of vertical sidewalls. The general non-radial case
was then considered for a fixed object with vertical sidewalls in [31]. Compared with the 1D case
considered in [30], the difficulty here is that the boundary conditions are not strictly dissipative
nor can be brought back to that case using Kreiss symmetrizers [42, 45, 8, 5]. Also, the boundary
is not non-characteristic, a situation in which a loss of derivative is likely to occur in the energy
estimates [23, 49, 43, 14]. The approach proposed in [31] to bypass these obstructions was
to introduce a new notion of weak dissipativity which ensures the well-posedness of the initial
boundary value problem, and to show that the wave-structure problem under consideration is
weakly dissipative in this sense.

The goal of this paper is to address the free boundary case, that is, the case where the
sidewalls of the object are not vertical, so that the unknown contact line moves; see Figure
1. The presence of the free boundary induces several difficulties. Firstly, the domain must be
fixed by using a diffeomorphism. The resulting system is hyperbolic but its coefficients depend
on the diffeomorphism, whose regularity is related to the regularity of the free boundary. The
introduction of the so-called Alinhac good unknowns [2] yields several cancellations that avoid
derivative losses in many free boundary problems such as the stability of shocks for compressible
gases [42, 45] or the water waves equations [36, 29, 1]. In the configuration considered here, this
is not enough to avoid derivative losses in the elliptic equation that one has to solve in the interior
region; we introduce therefore a second order Alinhac good unknown that yields cancellations
at subprincipal order. In this set of variables the resulting system has the weakly dissipative
structure described in [31]. However, this structure is not sufficient to control the evolution
of the free boundary. Contrary to related free boundary problems like the shoreline problem
[39, 20, 46] or the vacuum problem for the compressible Euler equations [15, 32, 28], the dynamic
of the contact line is not kinematic. This means that it does not move at the normal velocity of
the fluid, in particular, it cannot be fixed by working in Lagrangian coordinates. The contact
line dynamic is also one derivative more singular than the dynamics of shocks for compressible
gases, inasmuch as it depends on the trace at the boundary of first order derivatives of the
solution rather than on the trace of the solution itself. It turns out that in order to control the
evolution of the free boundary, a control of part of the trace of the solution to the hyperbolic
system is needed. Such a control would be provided if the boundary conditions where strictly
dissipative, but it does not follow from the weakly dissipative structure. By a precise analysis of
the characteristic fields and using Rellich type identities we however manage to get the desired
trace estimate. We are then able to obtain a priori estimates at the quasilinear regularity
threshold.

1.2. Problem setting. We consider waves propagating in shallow water in horizontal dimension
d = 2 and in the presence of a fixed partially immersed solid body on the water surface. Denoting
by x = (x1, x2) ∈ R

2 and z ∈ R the horizontal and vertical coordinates, we assume that the
bottom of the water is flat and located at z = −H0, that the surface of the water is represented
at time t by the graph of a function Z(t, ·), and that the bottom of the solid body is represented
by the graph of a smooth given function Zw. The horizontal plane R

2 is decomposed at time t
as R2 = I(t) ∪ E(t) ∪ Γ (t), where I(t) is the projection of the wetted part of the solid body on
the horizontal plane, E(t) is the projection of the part of the water surface which is in contact
with the air, and Γ (t) is the projection of the contact line, so that Γ (t) = ∂I(t) = ∂E(t). We
call I(t) and E(t) the interior and exterior regions, respectively. We assume also that Γ (t) is a
positively oriented Jordan curve. The configuration under study is described in Figure 1.

Let V (t, x) be the vertically averaged horizontal velocity and P (t, x) denote the pressure on
the water surface. In this paper, we adopt the shallow water model proposed in [37], so that the
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Figure 1. Waves interacting with a fixed solid body

motion of the water is governed by the nonlinear shallow water equations

(1)

{
∂tZ +∇ · (HV ) = 0,

∂tV + (V · ∇)V + g∇Z = −1
ρ∇P ,

whereH = H0+Z is the depth of the water, g is the acceleration of gravity, and ρ is the constant
density of the water per unit volume. We assume that the constants H0, g, and ρ are positive.
Throughout the paper, we denote by (Zi, Vi, P i) the restriction of (Z, V, P ) to the interior region
I(t), while we keep the same notation to denote the restriction of (Z, V, P ) to the exterior region
E(t). This would cause no confusion. Similar notation will be used in the following.

In the exterior region, we assume that the pressure is continuous on the water surface so that
we impose the constraint P = Patm in E(t), where Patm is the atmospheric pressure assumed to
be constant. Then, the nonlinear shallow water equations (1) reduce to

(2)

{
∂tZ +∇ · (HV ) = 0 in E(t), t > 0,

∂tV + (V · ∇)V + g∇Z = 0 in E(t), t > 0.

In the interior region, the water is in contact with the solid body so that we must have the
constraint Zi = Zw in I(t), where Zw is independent of time t. Therefore, the nonlinear shallow
water equations (1) reduce to

(3)

{
∇ · (HiVi) = 0 in I(t), t > 0,

∂tVi + (Vi · ∇)Vi + g∇Zi = −1
ρ∇P i in I(t), t > 0.

As matching conditions at the contact line, it is natural to impose the continuity of the unknowns
(Z, V, P ) in our setting of the problem so that

(4) Z = Zi, V = Vi, P i = Patm on Γ (t), t > 0.

This system of equations (2)–(4) is the shallow water model that we are going to investigate in
this paper. Here, we emphasize that in this problem the projection Γ (t) of the contact line is
also an unknown quantity so that this is a free boundary problem. In this paper we consider
the case where the water surface is transversal to the bottom of the solid body. This situation
can be expressed by

(5) |N · ∇Z −N · ∇Zi| ≥ c0 on Γ (t), t > 0,

with a positive constant c0, where N is the unit outward normal vector to Γ (t) pointing from
I(t) to E(t). Under this transversality condition, the continuity of the water surface at the
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contact line determines the curve Γ (t) from Z and Zi. Therefore, the matching conditions (4)
include an equation to determine the unknown curve Γ (t).

This wave-structure interaction problem in the case of horizontal dimension d = 1 has been
analyzed in [30] and the well-posedness of its initial value problem was proved at the quasilinear
regularity threshold under assumptions that the initial flow is subcritical and that the transver-
sality condition at the contact points is satisfied. Our main objective is to extend this result
into the case of horizontal dimension d = 2. Toward this goal, in this paper we will derive a
priori energy estimates for solutions to (2)–(4) under the additional irrotational conditions

(6)

{
∇⊥ · V = 0 in E(t), t > 0,

∇⊥ · Vi = 0 in I(t), t > 0.

As we will see in Section 2, these irrotational conditions are consistent with the problem (2)–(4)
in the sense that if these conditions are initially satisfied at t = 0, then regular solutions of
(2)–(4) satisfy (6) for all time t as long as they exist.

1.3. Coordinate transformation. To parameterize the unknown curve Γ (t), we will use
normal-tangential coordinates related to a reference curve Γ , which is a positively oriented Jor-
dan curve of C∞-class and may be a smooth approximation of the initial curve Γ (0). We denote
by I the interior domain enclosed by the curve Γ and put E = R

2 \ (I ∪Γ ), which is the exterior
domain. Suppose that Γ is parametrized by the arc length s as x = x(s) for 0 ≤ s < L, where L
is the length of the curve Γ . As usual, we can regard x(s) as a function of s ∈ TL ≃ R/(LZ). The
normal-tangential coordinates (r, s) ∈ (−r0, r0)×TL is defined in a tubular neighborhood UΓ of

Γ by the relation x = x(s) + rn(s), where n(s) = −x′(s)⊥ is the unit outward normal vector to
Γ at the point x(s) and pointing from I to E . We denote by N the unit outward normal vector
to Γ , that is, N(x(s)) = n(s). We assume that the initial curve Γ (0) is a graph in the normal
direction, that is, it is parameterized in the normal-tangential coordinates as r = γ(0, s). Then,
we see that the unknown curve Γ (t) can also be a graph in the normal direction as r = γ(t, s)
at least locally in time. In fact, by the transversality condition (5) we can apply the implicit
function theorem to ensure that the equation Z(t, x(s) + rn(s)) = Zi(x(s) + rn(s)) for r can
be solved uniquely in a neighborhood of (t, r) = (0, γ(0, s)). The solution r is nothing but the
function γ(t, s), which is also an unknown function. We will use this parametrization for the
unknown curve Γ (t) throughout this paper.

As usual in the analysis of free boundary problems, we transform the free boundary problem
(2)–(6) into a problem in time independent domains by using a diffeomorphism ϕ(t, ·) : R2 → R

2,
which should have the properties that ϕ(t, ·)|E : E → E(t), ϕ(t, ·)|I : I → I(t), and ϕ(t, ·)|Γ : Γ →
Γ (t) are all diffeomorphisms and that it does not change the orientation. Such a diffeomorphism
can be constructed from the unknown function γ(t, ·). By using this diffeomorphism, we can
transform the free boundary problem (2)–(6) into a problem in time independent domains. This
kind of coordinate transformations in analyses of free boundary problems was first employed
in [27] for the Stefan problem and is called the Hanzawa transformation. Nowadays, such a
transformation is widely used for free boundary problems arising in fluid mechanics.

For a function F = F (t, x) we denote f = F ◦ ϕ, that is, f(t, y) = F (t, ϕ(t, y)). We also use
the notation

(7) ∇ϕf = (∇F ) ◦ ϕ, ∂ϕj f = (∂jF ) ◦ ϕ, ∂ϕt f = (∂tF ) ◦ ϕ.
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We see easily that ∇ϕ and ∂ϕt commute, that is, ∂ϕj ∂
ϕ
t = ∂ϕt ∂

ϕ
j for j = 1, 2. Then, the free

boundary problem (2)–(6) is transformed equivalently into

(8)





∂ϕt ζ +∇ϕ · (hv) = 0 in (0, T )× E ,
∂ϕt v + (v · ∇ϕ)v + g∇ϕζ = 0 in (0, T )× E ,
(∇ϕ)⊥ · v = 0 in (0, T )× E ,

(9)





∇ϕ · (hivi) = 0 in (0, T ) × I,
∂ϕt vi + (vi · ∇ϕ)vi + g∇ϕζi = −1

ρ∇pi in (0, T ) × I,
(∇ϕ)⊥ · vi = 0 in (0, T ) × I,

and

(10) ζ = ζi, v = vi, p
i
= Patm on (0, T ) × Γ ,

where ζ = Z ◦ϕ, ζi = Zi ◦ϕ, ζw = Zw ◦ϕ, and so on, and the constraint ζi = ζw is also supposed.
Although there are infinitely many possible choices for the diffeomorphism ϕ(t, ·), we will fix
the choice; in particular, the diffeomorphism with which we work is regularizing to avoid the
loss of half a derivative when taking its trace at the boundary. The precise construction of this
diffeomorphism from the function γ(t, ·) will be given in Section 5.2. For later use, we introduce
the R

2-valued functions w and wi defined in (0, T ) × E and (0, T )× I, respectively, by
(11) w = v − ∂tϕ, wi = vi − ∂tϕ,

which represent, roughly speaking, the horizontal velocity of the water related to the motion of
the curve Γ (t); if we work with the diffeomorphism ϕ constructed in Section 5.2, which coincides
with the identity mapping outside a tubular neighborhood UΓ of Γ , then we have also w = v
and wi = vi outside UΓ .

1.4. Main result. To state our main result in this paper, we introduce norms of several function
spaces. We denote by Lp(E), Lp(I), and Lp(TL) with 1 ≤ p ≤ ∞, the standard Lebesgue spaces
on E , I, and TL, respectively. Double bars are used to denote norms on the two-dimensional
domains E or I and simple bars on the one-dimensional torus TL, for instance,

‖u‖L2(Ω) =

(∫

Ω
|u(x)|2dx

)1/2

, |g|L2(TL) =

(∫

TL

|f(s)|2ds
)1/2

with Ω = E or I. We define Lp Sobolev spaces of order m ∈ N as

Wm,p(Ω) = {u ∈ Lp(Ω) | ∂α1
1 ∂α2

2 u ∈ Lp(Ω), α1 + α2 ≤ m} (Ω = E or I)
endowed with its canonical norm ‖ · ‖Wm,p(Ω), where ∂j = ∂xj (j = 1, 2). We put Hm(Ω) =

Wm,2(Ω). We define also the fractional order Sobolev spaces of order s on TL endowed with its
canonical norm | · |Hs(TL), which is defined through Fourier series. Recalling that x(·) : TL → R

2

is a smooth parameterization of Γ , we classically say that u ∈ Hs(Γ ) if and only if u◦x ∈ Hs(TL)
with its canonical norm.

For functions u depending also on time t, we use the norms

‖u(t)‖m,e =

m∑

j=0

‖∂jt u(t)‖Hm−j (E), ‖u(t)‖m,i =

m∑

j=0

‖∂jt u(t)‖Hm−j (I),

and

|u(t)|m =

m∑

j=0

|∂jt u(t)|Hm−j (Γ ).
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Using these norms, for a regular solution u = (ζ, vT)T, vi, pi, and γ for the shallow water model

(8)–(10), we define an energy function Em(t) of order m ∈ N by

Em(t) =
∑

|α|=m

(
‖(∂αu− (∂αϕ · ∇ϕ)u)(t)‖L2(E) + ‖(∂αvi − (∂αϕ · ∇ϕ)vi)(t)‖L2(I)

)

+ ‖u(t)‖m−1,e + ‖vi(t)‖m−1,i,

where ∂ = (∂t, ∂) = (∂t, ∂1, ∂2) and ∂α = ∂α0
t ∂α1

1 ∂α2
2 with a multi-index α = (α0, α1, α2). Here,

we note that ∂αu− (∂αϕ · ∇ϕ)u with |α| = m correspond to Alinhac’s good unknowns for the
m-th order derivatives of u.

As for the given function Zw, which represents the bottom of the solid body, we impose the
following assumption.

Assumption 1. There exist positive constants c0 and M0, a non-negative integer m, and an

open set I0 in R
2 such that the followings hold.

(i) I(0) ⊂ I0 and Zw ∈ Cm+1(I0).
(ii) Hw(x) = H0 + Zw(x) ≥ c0 for x ∈ I0.

(iii) ‖Zw‖Wm+1,∞(I0)
≤M0.

The following theorem is our main result in this paper, which gives a priori estimates locally
in time for any regular solution to the nonlinear shallow water model (8)–(10) at the quasilinear
regularity threshold under assumptions that the initial flow is irrotational and subcritical and
that the initial water surface is transversal to the bottom of the solid body at the contact line.
We recall that the diffeomorphism ϕ that appears in (8)–(10) is constructed from γ as in Section
5.2 and that r0 is the width of the tubular neighborhood UΓ of Γ in which normal-tangential
coordinates are defined.

Theorem 1. Let m ≥ 3 be an integer and c0,M0, η0, η
in
0 positive constants satisfying ηin0 < η0 <

1. Then, there exist a sufficiently small positive time T and a large constant C such that under

Assumption 1 for any regular solution u = (ζ, vT)T, vi, pi, and γ to (8)–(10), satisfying initially

the conditions

(12)





infx∈E(gh(0, x) − |w(0, x)|2) ≥ 2c0,

infx∈Γ |N · (∇ζ −∇ζi)(0, x)| ≥ 2c0,

|γ(0)|L∞(TL) ≤ ηin0 r0,

Em(0) + |γ(0)|m−1 ≤M0,

we have the following a priori bounds

(13)





inf(t,x)∈(0,T )×E (gh(t, x) − |w(t, x)|2) ≥ c0,

inf(t,x)∈(0,T )×Γ |N · (∇ζ −∇ζi)(t, x)| ≥ c0,

sup0<t<T |γ(t)|L∞(TL) ≤ η0r0,

sup0<t<T (Em(t) + |γ(t)|m−1) +
∫ T
0 |γ(t)|2mdt ≤ C,

where w is defined by (11).

Remark 1. i. The first conditions in (12) and (13) represent that the flow is subcritical

relative to the motion of the curve Γ (t), the second ones represent that the water surface is

transversal to the bottom of the solid body at the contact line, and the third ones ensure that the

curve Γ (t) is in the tubular neighborhood UΓ , in which the normal-tangential coordinates (r, s)
are defined.

ii. By definition, we have w(0, x) = v(0, x)−(∂tϕ)(0, x), where (∂tϕ)(0, ·) is determined from

(∂tγ)(0, ·), which is the initial velocity of the curve Γ (0) and can be written explicitly in terms
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of the initial data u(0, ·), γ(0, ·), and Zw. For more details, we refer to Remark 12 in Section

6.6.

iii. The m-th order derivatives of γ do not have the continuity in time but have only the

square integrability. This situation is the same as in the one-dimensional case analyzed in [30].

1.5. Organization of this article. In Section 2, we present basic properties of the shallow
water model (2)–(4). We show that the total energy, that is, the sum of the kinetic and potential
energies is conserved. Then, we analyze the vorticity of the flow and show that if the initial
vorticity is identically zero, then it continues to zero for all time as long as the regular solution
exists. We also present two equivalent reformulations of the problem. In both reformulations,
we eliminate the pressure P i from the equations. In the first reformulation, we introduce single
valued velocity potentials both in the interior and in the exterior regions. By using the Dirichlet-
to-Neumann map in the interior region, we can reformulate the problem as a free boundary
problem for the nonlinear shallow water equations in the exterior region with nonlocal boundary
conditions. These boundary conditions consist of two scalar equations; one of them is used to
determine the unknown free boundary and the other one is essentially used as the boundary
condition to the exterior problem. In the second reformulation, contrary to the first one, we use
the velocity potential only in the interior region. The reformulated problem can be viewed as
a transmission problem: the nonlinear shallow water equations in the exterior region and the
second order elliptic equation in the interior region together with two scalar matching conditions:
the continuity of the depth of water and of the normal component of the velocity. We prove
in Proposition 1 that the continuity of the tangential component of the velocity across the free
boundary is automatically satisfied if the velocity is initially continuous on the whole plane. In
this paper, we follow the spirit of this second reformulation.

In Section 3, we derive and study a linearization of the shallow water model (8)–(10), which
is equivalent to (31)–(32) and to (33)–(35) as we will see in Section 2. Both formulations of the
problem are cast on time independent domains by using the diffeomorphism ϕ(t, ·), which in-
cludes all the information of the unknown free boundary. We first derive the linearized equations.
Thanks to the introduction of good unknowns, the linearized equations have a nice structure
and the equation for the variation of the diffeomorphism is completely decoupled from the other
equations. The linearized problem has a similar structure to the shallow water model in the
presence of a fixed partially immersed object with vertical sidewalls analyzed in [31]. In partic-
ular, the boundary condition is weakly dissipative so that we can derive a basic energy estimate
for the linearized problem by modifying slightly the calculations in [31]. However, in view of the
application to the nonlinear problem, we have to pay much more attention to the dependence on
the coefficients and the source terms than in [31]; indeed, these terms involve derivatives of the
diffeomorphism ϕ whose regularity is limited and slaved to the regularity of the free boundary.

In Section 4, we continue to consider the linearized problem derived in Section 3. Contrary to
the case in horizontal dimension d = 1 analyzed in [30], the boundary conditions are not strictly
dissipative but only weakly dissipative in the sense [31], so that we do not have enough control of
the boundary integrals by the general theory. Here, we derive an additional boundary regularity
estimate for the linearized problem by taking the best advantage of the structure of the boundary
conditions. More precisely, we evaluate the square integral in space-time on the boundary for
the good unknown related to the surface elevation. Such an estimate is crucial to control the
free boundary and therefore the diffeomorphism ϕ(t, ·), and to obtain an a priori estimate for
the nonlinear problem. Since the boundary conditions are weakly dissipative, the boundary
integral of some quantity could be controlled, but it is not enough to obtain a control of the
desired boundary integral. To compensate this, we first introduce characteristic fields related to
eigenvalues of the boundary matrix, derive equations for them, and calculate a corresponding
energy function. However, the boundary term in the energy estimate does not have good sign as
it is. We furthermore use Rellich type identities for the solution in the interior domain, which
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give some relations for the boundary integrals. Combining the resulting boundary integrals, we
establish the desired additional boundary regularity estimate.

In Section 5, we first explain the details on the normal-tangential coordinates (r, s) in a tubular
neighborhood of the reference curve Γ , and then construct the regularizing diffeomorphism ϕ(t, ·)
from the unknown function γ(t, ·). Here, it is assumed that the unknown curve Γ (t), which is
the projection of the contact line on the horizontal plane, is a graph in the normal direction as
r = γ(t, s) for s ∈ TL. We also derive Lp-estimates for the derivatives of the diffeomorphism ϕ
in terms of norms of γ.

In Section 6, we first introduce good unknowns for the m-th order derivatives of the solution.
We use the normal-tangential coordinates to calculate the derivatives near the boundary Γ , while
we use the standard coordinates away from the boundary. Therefore, we need to introduce good
unknowns both near the boundary and away from the boundary by using a partition of unity.
The good unknowns for the velocities and the surface elevation may be defined in the same way
as those of the linearized problem. However, if we adopt such a definition to the good unknowns
for derivatives of the velocity potential in the interior domain, then remainder terms cannot be
regarded as lower order terms, so that the a priori estimates for the nonlinear problem would
exhibit a derivative loss. To bypass this difficulty, we introduce second order good unknowns
that include subprincipal terms to compensate these remaining singular terms. We then derive
equations for the good unknowns in the exterior and the interior domains near the boundary
and away from the boundary, respectively, and boundary conditions for them. Such equations
have essentially the same form as those in the linearized problem considered in Sections 3 and 4.
We also derive equations for the derivatives of γ, particularly, we obtain an evolution equation
for γ.

In Section 7, we prove Theorem 1. We first introduce another two energy functions in addition
to Em(t). It turns out that these three energy functions are all equivalent. We then apply the
basic energy estimate and the additional boundary regularity estimate established in Sections 3
and 4 to the equations for the good unknowns derived in Section 6. Through detailed calculations
for the lower order terms and analysis for the transversality condition in the critical case m = 3,
we complete the proof of Theorem 1.
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2. Basic properties of the shallow water model

We study in this section some properties of the wave-structure interaction model (8)–(10) and
propose some reformulations that are convenient for the mathematical analysis. Conservation
of energy is first proved in Section 2.1; we then show in Section 2.2 that the total enstrophy
is conserved, from which we deduce that the flow remains irrotational if the initial velocity is
irrotational. Using velocity potentials in the exterior and interior domains, a first equivalent
formulation of the wave-structure interaction problem is proposed in Section 2.3; in Section 2.4 a
second reformulation is derived, that does not need the use of a velocity potential in the exterior
domain. Finally, using the regularizing diffeomorphism, these two formulations are recast in
Section 2.5 as initial boundary value problems on a time independent domain.

2.1. Conservation of energy. As in the case of the shallow water model with a fixed solid
body with vertical sidewalls considered in [31], the conservation of the total energy is equivalent
to the conservation of the mechanical energy, which is the sum of the kinetic and the potential
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energies of the water, denoted by Efluid(t) at time t. The mechanical energy Efluid(t) is the sum
of the mechanical energies of the water below the water surface and below the fixed solid body

Efluid(t) =

∫

E(t)
e(t, ·) +

∫

I(t)
ei(t, ·),

where the densities of the energies are given by e = 1
2ρH|V |2+ 1

2ρgZ
2 and ei =

1
2ρHi|Vi|2+ 1

2ρgZ
2
i .

Contrary to the case with vertical sidewalls, the interior and exterior regions depend on time
t. Therefore, we use the diffeomorphism ϕ(t, ·) introduced in Section 1.3 to calculate the time
derivative of the energy. Let Z, V, Zi, Vi, P i, and Γ (t) be a regular solution to (2)–(4). Then, by
the Reynolds transport theorem we have

d

dt
Efluid =

∫

E(t)
∂te+

∫

I(t)
∂tei −

∫

Γ (t)
(e− ei)(∂tϕ ◦ ϕ−1) ·N,

where (∂tϕ◦ϕ−1) ·N represents the deformation speed of the curve Γ (t) in the normal direction.
By the nonlinear shallow water equations (2) and (3), we have

{
∂te+∇ · F = 0 in E(t), t > 0,

∂tei +∇ · Fi = 0 in I(t), t > 0,

where F and Fi are the energy fluxes in the exterior and interior regions, respectively, and given
by F = ρ(gZ + 1

2 |V |2)HV and F = (P i − Patm + ρ(gZi +
1
2 |Vi|2))HiVi. Therefore, we obtain

d

dt
Efluid =

∫

Γ (t)
(F− Fi − (e− ei)(∂tϕ ◦ ϕ−1)) ·N

= 0,

where we used the matching conditions (4). Therefore, we have the conservation of the total
energy for the shallow water model (2)–(4).

2.2. Analysis of the vorticity. Let Z, V, Vi, P i, and Γ (t) be a regular solution to (2)–(4) and
define the vorticity Ω and Ωi in E(t) and I(t) by

Ω = ∇⊥ · V, Ωi = ∇⊥ · Vi,

respectively. We will check that the irrotationality is conserved in the time evolution by (2)–(4),
that is, if Ω(0, ·) = 0 in E(0) and Ωi(0, ·) = 0 in I(0), then Ω(t, ·) = 0 in E(t) and Ωi(t, ·) = 0 in
I(t) for all time t, as long as the solution exists. We follow the calculation given in [31, Section
2.4] with a slight modification caused by the time evolution of the curve Γ (t). We use again the
diffeomorphism ϕ(t, ·) introduced in Section 1.3. It follows from (2) and (3) that

{
∂t
(
Ω2

H

)
+∇ ·

(
Ω2

H V
)
= 0 in E(t), t > 0,

∂t
(Ω2

i
Hi

)
+∇ ·

(Ω2
i

Hi
Vi
)
= 0 in I(t), t > 0.

Therefore, by the Reynolds transport theorem and the matching conditions (4) we have

d

dt

(∫

E(t)

Ω2

H
+

∫

I(t)

Ω2
i

Hi

)
=

∫

Γ (t)

(
Ω2

H
V − Ω2

i

Hi
Vi −

(
Ω2

H
− Ω2

i

Hi

)
(∂tϕ ◦ ϕ−1)

)
·N(14)

=

∫

Γ (t)

1

H
(Ω + Ωi)(Ω − Ωi)(V − (∂tϕ ◦ ϕ−1)) ·N.
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Differentiating the identity V (t, ϕ(t, ·)) = Vi(t, ϕ(t, ·)) on Γ with respect to t and taking the
inner product of the resulting equations with the tangential vector N⊥, we see that on Γ (t)

N⊥ · (∂tV − ∂tVi) = −N⊥ ·
(
((∂tϕ ◦ ϕ−1) · ∇)V − ((∂tϕ ◦ ϕ−1) · ∇)Vi

)

= −(∂tϕ ◦ ϕ−1) ·
(
(N⊥ · ∇)V − (N⊥ · ∇)Vi

)
− (Ω −Ωi)(∂tϕ ◦ ϕ−1) ·N

= −(Ω− Ωi)(∂tϕ ◦ ϕ−1) ·N,
where we used the identity

(15) F · (G · ∇)V = G · (F · ∇)V + (F ·G⊥)∇⊥ · V
and the matching conditions (4). On the other hand, the second equations in (2) and (3) can
be written in the form{

∂tV +ΩV ⊥ +∇(12 |V |2 + gZ) = 0 in E(t), t > 0,

∂tVi +ΩiV
⊥
i +∇(12 |Vi|2 + gZi +

1
ρ(P i − Patm)) = 0 in I(t), t > 0.

This together with the matching conditions (4) implies N⊥ · (∂tV − ∂tVi) = −(Ω−Ωi)N · V on
Γ (t). Therefore, we have

(Ω− Ωi)(V − ∂tϕ ◦ ϕ−1) ·N = 0 on Γ (t), t > 0.

Plugging this into (14) we obtain finally that the total enstrophy is conserved, namely,

d

dt

(∫

E(t)

Ω2

H
+

∫

I(t)

Ω2
i

Hi

)
= 0,

which yields easily the desired conservation of the irrotationality under the positivity of the
depth of the water.

Alternatively, we have also

d

dt

(∫

E(t)
Ω2 +

∫

I(t)
Ω2
i

)
= −

∫

E(t)
(∇ · V )Ω2 −

∫

I(t)
(∇ · Vi)Ω2

i ,

which together with Gronwall’s inequality implies the desired conservation of the irrotationality.

2.3. An equivalent formulation I. Let Z, V, Vi, P i, and Γ (t) be a regular solution to (2)–(4)
satisfying the irrotational conditions (6). Since the interior region I(t) is simply connected, the
irrotational condition ensures the existence of a single valued potential Φi of the velocity Vi,
that is, Vi = ∇Φi. Although the exterior domain E(t) is not simply connected, by the matching
conditions (4) we have

∫
Γ (t)N

⊥ · V =
∫
Γ (t)N

⊥ · ∇Φi = 0, so that the irrotational condition

ensures also the existence of a single valued potential Φ of the velocity V . Then, by adding
appropriate functions of time t to Φ and Φi, the nonlinear shallow water equations (2) and (3)
can be transformed equivalently as

(16)

{
∂tZ +∇ · (H∇Φ) = 0 in E(t), t > 0,

∂tΦ+ 1
2 |∇Φ|2 + gZ = 0 in E(t), t > 0,

and

(17)

{
∇ · (Hi∇Φi) = 0 in I(t), t > 0,

∂tΦi +
1
2 |∇Φi|2 + gZi = −1

ρ(P i − Patm) in I(t), t > 0.

It follows from the second equations in (16) and (17) together with the matching conditions (4)
that ∂tΦ = ∂tΦi on Γ (t), so that ∂t(Φ|Γ(t)

) = ∂t(Φi|Γ(t)
). By the matching conditions (4), we

have also N⊥ · ∇Φ = N⊥ · ∇Φi on Γ (t), where N⊥ · ∇ is a tangential derivative on the curve
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Γ (t). Therefore, by adding an appropriate constant to Φ or Φi, we see that Φ and Φi coincide
on Γ (t), and denote by Ψi their common value;

(18) Ψi(t, ·) := (Φ)|Γ(t)
= (Φi)|Γ(t)

for t > 0.

In view of this, we introduce the Dirichlet-to-Neumann (DN) map ΛΓ (t) associated with the
elliptic equation ∇ · (Hw∇Φi) = 0 in the interior region I(t) by
(19) ΛΓ (t)Ψi := (N · (Hw∇Φi))|Γ(t)

,

where Φi is a unique solution to the boundary value problem

(20)

{
∇ · (Hw∇Φi) = 0 in I(t),
Φi = Ψi on ∂I(t).

We note that the DN map ΛΓ (t) is symmetric and non-negative in L2(Γ (t)), and depends on
the unknown curve Γ (t). Then, (2)–(6) is transformed equivalently to (16) under the boundary
conditions

(21) Z = Zw, N · (H∇Φ) = ΛΓ (t)Ψi on ∂E(t), t > 0,

where Ψi is the trace of Φ on Γ (t). In fact, once we obtain a solution (Γ (t), Z,Φ) of (16) and
(21), then the other quantities can be recovered easily as follows. We recover Φi as a unique
solution of the boundary value problem (20) with Ψi = Φ|Γ(t)

. Then, the second boundary

condition in (21) implies N · ∇Φ = N · ∇Φi on Γ (t), so that ∇Φ = ∇Φi on Γ (t). Using this and
the second equation in (16), we have ∂tΦi +

1
2 |∇Φi|2 + gZi = 0 on Γ (t). In view of the second

equation in (17), we define

(22) P i = Patm − ρ(∂tΦi +
1
2 |∇Φi|2 + gZi),

which satisfies P i = Patm on Γ (t). Finally, putting V = ∇Φ and Vi = ∇Φi, we see that
Z, V, Vi, P i and Γ (t) satisfy (2)–(6).

2.4. An equivalent formulation II. We can reformulate the problem in a different way with-
out using the velocity potential Φ in the exterior region similar to the reformulation used in
[31, Section 5.1] in the case with vertical sidewalls. More precisely, we show here that we can
reduce the problem to a free boundary problem for the shallow water equations in the exterior
domain with boundary conditions that are nonlocal in space and in time. By the second equa-
tion in (17) and the matching conditions (4), we have ∂tΦi +

1
2 |V |2 + gZ = 0 on Γ (t). Using a

parametrization x = X(t, s) for s ∈ TL of the curve Γ (t), we can define the functions Ψi,t(t, ·)
and VΓ on Γ (t) as

Ψi,t(t,X(t, s)) := ∂t
[
Ψi(t,X(t, s))

]
and VΓ (t,X(t, s)) = ∂tX(t, s) for s ∈ TL, t > 0,

where we recall that Ψi denotes the common value of Φi and Φ on Γ (t). In particular, using
also the matching conditions (4), we get ∂tΦi = Ψi,t − VΓ · V on Γ (t), so that the relation
Ψi,t − VΓ · V + 1

2 |V |2 + gZ = 0 holds on Γ (t). Therefore, the problem reduces to

(23)





∂tZ +∇ · (HV ) = 0 in E(t), t > 0,

∂tV +∇(12 |V |2 + gZ) = 0 in E(t), t > 0,

∇⊥ · V = 0 in E(t), t > 0,

under the boundary conditions

(24) Z = Zi, (HN · V ) = ΛΓ (t)Ψi on Γ (t), t > 0,

with the DN map ΛΓ (t) as defined in (19)–(20), and coupled with

(25) Ψi,t − VΓ · V + 1
2 |V |2 + gZ = 0 on Γ (t), t > 0.
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Remark 2. The quantity Ψi,t − VΓ · V is equal to the trace of ∂tΦi on Γ (t) and is therefore

intrinsically defined; however, both Ψi,t and VΓ depend on the chosen parametrization for Γ (t);
in particular, any reparametrization of Γ (t) changes the tangential component of VΓ . The fact

that the tangential velocity of the boundary depends on the chosen parametrization is standard

in the analysis of free boundary problems where the choice of an appropriate parametrization can

be important [3, 13].

The following proposition ensures the equivalence between (2)–(6) and (23)–(25) under ap-
propriate conditions on the initial data.

Proposition 1. Let Z, V,Ψi, and Γ (t) be a smooth solution of (23)–(25), and define Vi = ∇Φi

with Φi given by (20). If V (0, ·) = Vi(0, ·) on Γ (0), then we have V (t, ·) = Vi(t, ·) on Γ (t) for all

t. Particularly, by defining P i by (22) we see that Z, V, Vi, P i, and Γ (t) satisfy (2)–(6).

Proof. Let x = X(t, s) for s ∈ TL ≃ R/(LZ) be a parametrization of the curve Γ (t). It is
sufficient to show that N⊥ · V = N⊥ · Vi on Γ (t), which is equivalent to (∂sX) · (V ◦ X) =
(∂sX) · (Vi ◦X). We put

F (t, s) = (∂sX(t, s)) · (V − Vi)(t,X(t, s)).

Then, we see that

∂tF = (∂t∂sX) · ((V − Vi) ◦X) + (∂sX) · {(∂tV − ∂tVi) ◦X + (((∂tX) · ∇)(V − Vi)) ◦X}.
Here, it follows from the second equation in (23) and the relation Vi = ∇Φi that

(∂sX) · {(∂tV − ∂tVi) ◦X} = −(∂sX) · {∇(12 |V |2 + gZ + ∂tΦi) ◦X}
= −∂s{(∂tΦi +

1
2 |V |2 + gZ) ◦X}.

Since ∂tΦi = Ψi,t + VΓ · Vi on Γ (t), we deduce from (25) that (∂tΦi +
1
2 |V |2 + gZ) ◦ X =

∂tX · (V − Vi) ◦X, so that

(∂sX) · {(∂tV − ∂tVi) ◦X} = −∂s{∂tX · (V − Vi) ◦X}.
In view of the identity (15), we see that

(∂sX) · {(((∂tX) · ∇)(V − Vi)) ◦X} = (∂tX) · {(((∂sX) · ∇)(V − Vi)) ◦X}
= (∂tX) · ∂s((V − Vi) ◦X).

Therefore, we obtain ∂tF = 0; since F (0, ·) = 0 by assumption, this implies F (t, ·) = 0 for all
t. �

2.5. Fixing the boundary. We have reformulated the wave-structure interaction model (2)–(4)
under the irrotational condition (6) into two different ways; (16) and (21) in the first formula-
tion, and (23)–(25) in the second formulation. We proceed to transform these free boundary
problems into problems cast on a fixed domain. In order to do so, we use the diffeomorphism
ϕ(t, ·) introduced in Section 1.3. We recall the definition (7) of the differential operators ∇ϕ

and ∂ϕt . By the definition, we have

(26) ∇ϕf = ((∂ϕ)−1)T∇f =
1

J

(
∂2ϕ2 −∂1ϕ2

−∂2ϕ1 ∂1ϕ1

)
∇f,

where we used the notation

∂ϕ =

(
∂1ϕ1 ∂2ϕ1

∂1ϕ2 ∂2ϕ2

)
, J = det(∂ϕ).

We also have the relation

(27) ∂ϕt f = ∂tf − (∂tϕ) · ∇ϕf.
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Let N = (N1, N2)
T be the unit outward normal vector to Γ = ∂I. In view of (26) we introduce

a notation

(28) Nϕ = J((∂ϕ)−1)TN =

(
∂2ϕ2 −∂1ϕ2

−∂2ϕ1 ∂1ϕ1

)
N.

Then, we have Nϕ = −((N⊥ · ∇)ϕ)⊥, which implies that Nϕ ◦ϕ−1 is an outward normal vector
to Γ (t) = ∂I(t). Then, denoting φi = Φi ◦ ϕ and ψi = Ψi ◦ ϕ, the boundary value problem (20)
is transformed into

(29)

{
∇ · (Ai∇φi) = 0 in I,
φi = ψi on ∂I,

where the coefficient matrix A = A(ϕ) is defined by

Ai = Jhw(∂ϕ)
−1((∂ϕ)−1)T =

hw
J

(
∂2ϕ2 −∂2ϕ1

−∂1ϕ2 ∂1ϕ1

)(
∂2ϕ2 −∂1ϕ2

−∂2ϕ1 ∂1ϕ1

)
.

The corresponding DN map is defined by

(30) Λϕψi = (N ·Ai∇φi)|Γ = Nϕ · (hw∇ϕφi)|Γ ,

which is also symmetric and non-negative in L2(Γ ).

2.5.1. In the case of the formulation I. By using the diffeomorphism ϕ(t, ·) introduced in Section
1.3, we see that the free boundary problem (16) and (21) in the first reformulation is transformed
into

(31)

{
∂ϕt ζ +∇ϕ · (h∇ϕφ) = 0 in (0, T ) × E ,
∂ϕt φ+ 1

2 |∇ϕφ|2 + gζ = 0 in (0, T ) × E ,
under the boundary conditions

(32) ζ = ζi, Nϕ · (h∇ϕφ) = Λϕφ on (0, T ) × ∂E ,
with the DN map Λϕ given by (30).

2.5.2. In the case of the formulation II. Similarly, we see that the free boundary problem (23)–
(25) in the second reformulation is transformed into

(33)





∂ϕt ζ +∇ϕ · (hv) = 0 in (0, T ) × E ,
∂ϕt v +∇ϕ(12 |v|2 + gζ) = 0 in (0, T ) × E ,
(∇ϕ)⊥ · v = 0 in (0, T ) × E ,

under the boundary conditions

(34) ζ = ζi, Nϕ · (hv) = Λϕψi on (0, T ) × Γ ,

where ψi is found by solving the following equation

(35) ∂tψi − ∂tϕ · v + 1
2 |v|

2 + gζ = 0 on (0, T )× Γ .

3. Energy estimate of a linearized problem

In this section we consider the problem (33)–(35), where the unknowns are ζ, v, vi, φi, and
the diffeomorphism ϕ. We recall that ζi is given by ζi = ζw = Zw ◦ ϕ with a given function
Zw. We first derive linearized equations. To this end, we use an abstract linearization operator
denoted with a dot; one can typically think of it as a tangential or time derivative. In the
derivation, we need to introduce so-called Alinhac’s good unknowns to exclude a derivative loss
caused by the dependence on the diffeomorphism ϕ in the problem (33)–(35). Then, we derive
an energy estimate for the linearized problem. It turns out that the boundary conditions are
weakly dissipative in the sense [31].
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3.1. Derivation of a linearized problem. We consider here ζ, v, ψi, and ϕ a solution to (33)–
(35) satisfying v(0, ·) = vi(0, ·) on Γ , where we defined vi = ∇φi with φi given by (29). Using
Proposition 1, one can replace the boundary conditions (34) by ζ = ζi and v = vi on (0, T )×Γ .
This is what we do in this section for the derivation of the linearized equations.

3.1.1. Linearization rules and vectorial identities. For an unknown function f , we denote the
variation in the linearization by ḟ . Then, we have

(36)





(∇ϕ · f)˙= ∇ϕ · ḟ − ((∂ϕϕ̇)T∇ϕ) · f ,
(∇ϕf)˙= ∇ϕḟ − (∂ϕϕ̇)T∇ϕf,

(∂ϕt f)˙= ∂ϕt ḟ − (∂ϕt ϕ̇) · ∇ϕf,

where for v = (v1, v2)
T we use the notation

∂ϕv =

(
∂ϕ1 v1 ∂ϕ2 v1
∂ϕ1 v2 ∂ϕ2 v2

)
.

Now, we introduce the good unknown f̌ associated with a function f by

(37) f̌ = ḟ − ϕ̇ · ∇ϕf.

Then, we have the commutation rules (∇ϕ · f )̌ = ∇ϕ · f̌ , (∇ϕf )̌ = ∇ϕf̌ , and (∂ϕt f )̌ = ∂ϕt f̌ , or
equivalently,

(38)





(∇ϕ · f)˙= ∇ϕ · f̌ + (ϕ̇ · ∇ϕ)(∇ϕ · f),
(∇ϕf)˙= ∇ϕf̌ + (ϕ̇ · ∇ϕ)∇ϕf,

(∂ϕt f)˙= ∂ϕt f̌ + (ϕ̇ · ∇ϕ)∂ϕt f.

We will also use several vectorial identities in the computations of this section. By the identity
(15), for any R

2-valued functions f and g we have

(39) f · (g · ∇ϕ)v = g · (f · ∇ϕ)v + (f · g⊥)(∇ϕ)⊥ · v.

We note also the identities

(40)

{
∇ϕ(f · g) = (∂ϕf)Tg + (∂ϕg)Tf,

(∂ϕf)Tg = (g · ∇ϕ)f − ((∇ϕ)⊥ · f)g⊥.

3.1.2. Linearization of the equation in the exterior domain E. According to the linearization
rules of the previous subsection, the linearized equations of (33) have the form, in terms of the
good unknowns, 




∂ϕt ζ̌ +∇ϕ · (hv̌ + vζ̌) = 0 in (0, T )× E ,
∂ϕt v̌ +∇ϕ(v · v̌ + gζ̌) = 0 in (0, T )× E ,
(∇ϕ)⊥ · v̌ = 0 in (0, T )× E .

Recalling that w = v − ∂tϕ and using (40), these equations are equivalent to

(41)





∂tζ̌ +∇ϕ · (hv̌ + wζ̌) = −ζ̌(∇ϕ · ∂tϕ) in (0, T )× E ,
∂tv̌ +∇ϕ(w · v̌ + gζ̌) = −(v̌ · ∇ϕ)∂tϕ+ ((∇ϕ)⊥ · ∂tϕ)v̌⊥ in (0, T )× E ,
(∇ϕ)⊥ · v̌ = 0 in (0, T )× E ,

where we used the last equation to derive the second equation in (41). We can regard the
right-hand sides of these equations as lower order terms.
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3.1.3. Linearization of the equation in the interior domain I. We recall that vi = ∇ϕφi where
φi solves (29), so that ∇ϕ · (hivi) = 0. Using the above linearization rules, this directly implies
that

(42)

{
∇ϕ · (hiv̌i + ζ̌ivi) = 0 in (0, T ) × I,
v̌i = ∇ϕφ̌i in (0, T ) × I.

3.1.4. Linearization of the boundary condition ζ = ζi. Linearizing the boundary condition ζ = ζi
on Γ , we have ζ̇ = ζ̇i, or equivalently,

ζ̌ − ζ̌i = ϕ̇ · ∇ϕ(ζi − ζ) on (0, T ) × Γ .

Since (Nϕ)⊥ · ∇ϕ = N⊥ · ∇ is a tangential derivative on Γ , this linearized boundary condition
can be written as

(43) ζ̌ = ζ̌i −
Nϕ · ∇ϕ(ζ − ζi)

|Nϕ|2 Nϕ · ϕ̇ on (0, T ) × Γ .

In this paper we are considering the case where the transversality condition (5) is satisfied. In
terms of the transformed variables, this situation is equivalent to |Nϕ · ∇ϕ(ζ − ζi)| ≥ c0 > 0 on
(0, T ) × Γ . Therefore, (43) yields

(44) Nϕ · ϕ̇ = − |Nϕ|2
Nϕ · ∇ϕ(ζ − ζi)

(ζ̌ − ζ̌i) on (0, T )× Γ .

This is the equation that determines essentially the variation of the unknown curve Γ (t).

3.1.5. Linearization of the boundary condition v = vi. Proceeding as for (43), the linearization
of the boundary condition v = vi yields

v̌ = v̌i −
(Nϕ · ∇ϕ)(v − vi)

|Nϕ|2 Nϕ · ϕ̇ on (0, T )× Γ .

Plugging (44) into this identity to eliminate ϕ̇, we obtain

(45) v̌ = v̌i +
(Nϕ · ∇ϕ)(v − vi)

(Nϕ · ∇ϕ)(ζ − ζi)
(ζ̌ − ζ̌i).

On the other hand, it follows from the first equations in (33), and the fact that ∂ϕt ζi = 0 and
∇ϕ · (hivi) = 0, that

{
∂tζ + w · ∇ϕζ + h∇ϕ · v = 0 in (0, T )× E ,
∂tζi + wi · ∇ϕζi + hi∇ϕ · vi = 0 in (0, T )× I,

where w and wi are defined by (11). Now, taking the trace of these equations on Γ and using
the matching conditions (ζ, v) = (ζi, vi) on Γ , we obtain w ·∇ϕ(ζ− ζi)+h∇ϕ · (v− vi) = 0 on Γ ,
which is equivalent to (Nϕ ·w)Nϕ ·∇ϕ(ζ − ζi)+hNϕ · (Nϕ · ∇ϕ)(v− vi) = 0 on Γ . We also note
that (Nϕ)⊥ · (Nϕ · ∇ϕ)(v− vi) = Nϕ · ((Nϕ)⊥ · ∇ϕ)(v− vi) = 0. Therefore, (45) is equivalent to

(46)

{
Nϕ · (hv̌ + wζ̌) = Nϕ · (hiv̌i + wiζ̌i) on (0, T )× Γ ,

(Nϕ)⊥ · v̌ = (Nϕ)⊥ · v̌i on (0, T )× Γ ;

the term wiζ̌i in the right-hand side of the first equation can be viewed as a lower order term.
We note that these conditions are decoupled from the variation of the diffeomorphism ϕ̇.
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3.1.6. Linearization of the evolution equation for ψi. Finally, we linearize (35). In view of v = vi
on Γ , we have ∂ϕt φi = ∂tφi − (∂tϕ) · v and φ̌i = φ̇i − ϕ̇ · v on Γ . We note also that the equation
(35) for ψi can be written as ∂ϕt φi +

1
2 |v|2 + gζ = 0. Therefore, we see that on Γ

(∂ϕt φi +
1
2 |v|

2 + gζ)˙= ∂tφ̇i − (∂tϕ̇) · v + w · v̇ + gζ̇

= ∂tφ̌i + w · v̌ + gζ̌ + ϕ̇ · (∂tv + g∇ϕζ) + w · (ϕ̇ · ∇ϕ)v.

Using the identity (39) we notice that

ϕ̇ · (∂tv + g∇ϕζ) + w · (ϕ̇ · ∇ϕ)v = ϕ̇ · (∂tv + (w · ∇ϕ)v + g∇ϕζ − ((∇ϕ)⊥ · v)w⊥)

= ϕ̇ · (∂ϕt v +∇ϕ(12 |v|
2 + gζ) + ((∇ϕ)⊥ · v)(∂tϕ)⊥)

= 0,

where we used the last two equations in (33). Denoting by ψ̌i the trace of φ̌i on Γ , we obtain

(47) ∂tψ̌i + w · v̌ + gζ̌ = 0 on (0, T ) × Γ .

3.1.7. The linearized system in general form. Gathering the above results, we obtain the lin-
earized system associated with (33)–(35). We shall actually deal with a slightly more general
version that include various perturbations, and that will allow us to handle commutator terms
in the high-order energy estimates in Section 7. More precisely, the linearized equations for the
unknowns ζ̌ , v̌, and ψ̌i that we are looking for consist of the linearized irrotational shallow water
equations

(48)





∂tζ̌ +∇ϕ · (hv̌ + wζ̌) = f1 in (0, T ) × E ,
∂tv̌ +∇ϕ(w · v̌ + gζ̌) = f2 in (0, T ) × E ,
(∇ϕ)⊥ · v̌ = f3 in (0, T ) × E ,

under the boundary conditions

(49)

{
Nϕ · (hv̌ + wζ̌) = Nϕ · (hiv̌i + fi,4) on (0, T )× Γ ,

(Nϕ)⊥ · (hv̌) = (Nϕ)⊥ · (hiv̌i) on (0, T )× Γ ,

where v̌i is given in terms of ψ̌i by

(50)





∇ϕ · (hiv̌i + fi,2) = fi,1 in (0, T ) × I,
v̌i = ∇ϕφ̌i + fi,3 in (0, T ) × I,
φ̌i = ψ̌i on (0, T )× Γ ,

while ψ̌i solves

(51) ∂tψ̌i + w · v̌ + gζ̌ = fi,5 on (0, T )× Γ ,

and where f1, f2, f3 are given functions in (0, T )×E , whereas fi,1, . . . , fi,5 are given functions in
(0, T ) × I. In addition, the evolution of the curve Γ (t) is governed by

(52) Nϕ · ϕ̇ =
|Nϕ|2

Nϕ · ∇ϕ(ζ − ζi)
(ζ̌ − ζ̌i) on (0, T )× Γ .

Remark 3. If fi,1 = 0 and fi,2 = fi,3 = fi,4 = 0, then the first boundary condition in (49) can

be written as

Nϕ · (hv̌ + wζ̌) = Λϕψ̌i on (0, T ) × Γ ,

so that the first equation in (49) can be seen as a perturbation of this boundary condition by

lower order terms. This perturbation consists in replacing the elliptic problem (29) for φ̌i by
(50).



18 TATSUO IGUCHI AND DAVID LANNES

3.2. Energy estimate. We proceed in this section to derive an energy estimate for solutions
ζ̌, v̌, ψ̌i to the linearized equations (48)–(51). We consider throughout this section that the
diffeomorphism ϕ is given, and therefore do not consider the evolution equation (52). We note
that the first two equations in (48) for the unknowns ǔ = (ζ̌ , v̌T)T can be written in a matrix
form as

(53) ∂tǔ+ ∂ϕ1 (G1Σ(u)ǔ) + ∂ϕ2 (G2Σ(u)ǔ) = f,

where G1, G2, and Σ(u) with u = (h,wT)T are 3× 3 symmetric matrices given by

Gj =

(
0 eTj
ej 02×2

)
, Σ(u) =

(
g wT

w hId2×2

)

for j = 1, 2 with the standard basis ej in R
2 and f = (f1, f

T
2 )

T. We note that the matrix Σ(u) is
positive definite if and only if gh−|w|2 > 0, that is, the flow is subcritical related to the motion
of the curve Γ (t). Throughout this paper, we assume this condition. Under the subcritical
condition of the flow, (53) forms a symmetrizable hyperbolic system, with symmetrizer Σ(u);
the density of the corresponding energy function is therefore given by ǔ ·Σ(u)ǔ, and one readily
checks that the energy conservation law

(54) ∂t(J(
1
2 ǔ · Σ(u)ǔ)) + J∇ϕ · ((gζ̌ + w · v̌)(hv̌ + wζ̌)) = Fe,1 in (0, T ) × E .

holds with

Fe,1 =
1
2 ǔ · ∂t(JΣ(u))ǔ+ f · Σ(u)ǔ.

In view of this, we assume the following conditions on the coefficients h,w, hi and the diffeomor-
phism ϕ.

Assumption 2. There exit positive constants c0,M0,M1, and T such that h,w, hi, and ϕ satisfy

the following properties:

(i) gh(t, x)− |w(t, x)|2 ≥ c0 and h(t, x) ≤M0 for (t, x) ∈ [0, T ]× E.
(ii) c0 ≤ hi(t, x) ≤M0 for (t, x) ∈ [0, T ] × I.
(iii) J(t, x) = det(∂ϕ(t, x)) ≥ c0 and |∂ϕ(t, x)| ≤M0 for (t, x) ∈ [0, T ]× R

2.

(iv) ‖∂(h,w)‖L1(0,T ;L∞(E)) + ‖∂hi‖L1(0,T ;L∞(I)) + ‖∂∂ϕ‖L1(0,T ;L∞(R2)) ≤M1.

Remark 4. If we work in the space Hm with m ≥ 4 for the nonlinear problem (33)–(35), we may

replace the above condition (iv) with a standard and stronger assumption ‖∂(h,w)‖L∞((0,T )×E)+
‖∂hi‖L∞((0,T )×I) + ‖∂∂ϕ‖L∞((0,T )×R2) ≤ M1. However, in the critical case m = 3 at the quasi-

linear regularity threshold, the assumption ‖∂∂ϕ‖L∞((0,T )×R2) ≤M1 cannot be acceptable for the

nonlinear problem due to the lack of enough regularity of the contact line.

Noting that by the relation J∇ϕ · f = ∇ · (J(∂ϕ)−1f), we have

(55)

∫

E
J∇ϕ · f = −

∫

Γ

Nϕ · f,
∫

I
J∇ϕ · fi =

∫

Γ

Nϕ · fi,

so that one can integrate (54) in space and time to obtain the energy identity

1
2

(
ǔ,Σ(u)ǔ

)
L2(E)(t) =

1
2

(
ǔ,Σ(u)ǔ

)
L2(E)(0) +

∫ t

0
(Fe,1,Σ(u)ǔ)L2(E)(56)

+

∫ t

0

∫

Γ

(gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌),

where (·, ·)L2(E) stands for the standard L2(E) scalar product. Now, under Assumption 2,

(ǔ,Σ(u)ǔ)
1/2
L2(E) is equivalent to ‖ · ‖L2(E), so that one could deduce from the above identity

a control of
(
ǔ,Σ(u)ǔ

)
L2(E) by a Gronwall type argument if the last term were not present. The
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control of this boundary integral is the central point in the analysis of hyperbolic initial bound-
ary value problems. The general idea is that an energy estimate is possible if this boundary
integral is non-positive, up to terms that depend only on the data of the problem. When the
boundary conditions have such a property, they are called dissipative. There actually exist var-
ious notions of dissipativity that focus on the sign properties of the integrand of the boundary
integral, that is, in the present situation, of (gζ̌+w · v̌)Nϕ · (hv̌+wζ̌). As discussed in [31], none
of them applies here. For this reason, the notion of weak dissipativity was proposed in [31]; as
opposed to the other notions of dissipativity, it deals with the positivity of the double integral in
space and time of the boundary term, rather than on the integrand. The following proposition
gives a basic energy estimate for solutions to the linearized problem (48)–(51); the key point of
the proof is to show that the boundary conditions (49)–(51) are weakly dissipative in the sense
discussed above, and under the subcriticality of the flow.

Proposition 2. Under Assumption 2, there exists a positive constant C0 = C(c0,M0) such that

any regular solution ǔ = (ζ̌ , v̌), ψ̌i to (48)–(51) satisfies, with φ̌i and v̌i given by (50),

‖ǔ(t)‖2L2(E) + ‖v̌i(t)‖2L2(I) ≤ C0e
C0M1

{
‖ǔ(0)‖2L2(E) + ‖(v̌i, fi,2, fi,3, fi,4)(0)‖2L2(I)

+

(∫ t

0

(
‖(f1, f2)(t′)‖L2(E) + ‖∂(fi,2, fi,3, fi,4, fi,5)(t′)‖L2(I)

)
dt′
)2

+

∫ t

0
‖(∂tφ̌i, fi,5)(t′)‖L2(I)‖fi,1(t′)‖L2(I)dt

′}

for any t ∈ [0, T ].

Remark 5. i. In the proof of this proposition, we do not use the last equation in (48) nor the

second boundary condition in (49). These will be used in the next section to derive an additional

boundary regularity.

ii. The norm for (f1, f2) and ∂(fi,2, fi,3, fi,4, fi,5) in the energy estimate is L1 with respect

to time. This is important for application to the nonlinear problem. In fact, if we replace the

L1-norm with L2-norm, then a difficulty would arise.

iii. In the case fi,1 6= 0, there is a term ‖∂tφ̌i‖L2(I) in the right-hand side of the above energy

estimate. However, in the applications to the nonlinear problem, this term does not cause any

difficulties, because the order of derivatives of ∂tφ̌i is the same as that of v̌i. See also Remark

11 in Section 6.3.

Proof of Proposition 2. Let ǔ = (ζ̌ , v̌), ψ̌i be a regular solution to (48)–(51), and let φ̌i and v̌i be
given by (50). For the sake of clarity, let us first prove the proposition in the case where fi,j = 0
for 1 ≤ j ≤ 5 in order to make the mechanism for weak dissipativity more apparent. Under such
an assumption, one can use the boundary condition (49) to write the boundary integral in (56)
as

(57)

∫

Γ

(gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌) = −
∫

Γ

∂tψ̌iN
ϕ · (hiv̌i).

In order to control the right-hand side, let us remark that

∂t(
1
2Jhi|v̌i|

2) = 1
2∂t(Jhi)|v̌i|

2 + Jhiv̌i · ∂tv̌i
= 1

2∂t(Jhi)|v̌i|
2 + Jhiv̌i · ∇ϕ∂tφ̌i + Jhiv̌i · [∂t,∇ϕ]φ̌i,

where we used the second equation in (50) to derive the second equality. Using now the first
equation in (50) as well as the observation that [∂t,∇ϕ] = −(∂ϕ∂tϕ)

T∇ϕ, we deduce that

(58) ∂t(J(
1
2hi|v̌i|2) + J∇ϕ · ((−∂tφ̌i)hiv̌i) = Fi,1 in (0, T )× I

with
Fi,1 =

1
2(∂t(Jhi))|v̌i|

2 − J(hiv̌i) · (∂ϕ∂tϕ)Tv̌i.
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Integrating this conservation law over I, and using the fact that φ̌i = ψ̌i on Γ , yields

d

dt

∫

I
1
2Jhi|v̌i|

2 −
∫

Γ

∂tψ̌iN
ϕ · (hiv̌i) =

∫

I
Fi,1.

Plugging this into (57) and integrating it in time, we see that the boundary term in (56) satisfies
∫ t

0

∫

Γ

(gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌) = −
(∫

I
hi|v̌i|2

)
(t) +

(∫

I
hi|v̌i|2

)
(0) +

∫ t

0

∫

I
Fi,1;

it is therefore non-positive, up to terms that depend only on the data of the problem and lower
order terms. This is the weak dissipative property that allows us to derive the energy estimate
of the proposition.

We now derive the energy estimate of the proposition with full details and without assuming
that fi,j = 0 for 1 ≤ j ≤ 5. In the above argument, that is, without these terms, a key point
was that the boundary integral obtained when integrating (54) over E corresponds exactly to
the boundary integral obtained when integrating (58) over I, thanks to the boundary conditions
(49)–(51). Since now fi,4 may differ from fi,2 on Γ , this is no longer the case. However, by using
a standard smooth extension operator which maps a function defined in the interior domain I
into that in the whole space R

2, we can construct a function f4 defined in (0, T )× E satisfying

(59)

{
f4 = fi,2 − fi,4 on (0, T )× Γ ,

‖∂jt f4(t)‖Hk(E) . ‖∂jt (fi,2 − fi,4)(t)‖Hk(I) for t ∈ [0, T ], j, k = 0, 1.

Then, the first boundary condition in (49) can be written as

(60) Nϕ · (hv̌ +wζ̌ + f4) = Nϕ · (hiv̌i + fi,2) on (0, T ) × Γ

and we can also modify the conservation laws (54) and (58) by adding lower order terms, so
that (60) can be used to match the boundary contributions. More precisely, by (48) and (50),
we have{

∂t(J(
1
2 ǔ · Σ(u)ǔ+ v̌ · f4)) + J∇ϕ · ((gζ̌ + w · v̌)(hv̌ + wζ̌ + f4)) = Fe,1 in (0, T )× E ,

∂t(J(
1
2hi|v̌i|2 + v̌i · fi,2)) + J∇ϕ · ((fi,5 − ∂tφ̌i)(hiv̌i + fi,2)) = Fi,1 in (0, T )× I,

where Fe,1 and Fi,1 are collections of lower order terms and given by

Fe,1 =
1
2 ǔ · (∂t(JΣ(u)))ǔ + v̌ · ∂t(Jf4) + JΣ(u)ǔ ·

( f1+∇ϕ·f4
f2

)
+ Jf2 · f4,

Fi,1 =
1
2(∂t(Jhi))|v̌i|

2 + v̌i · ∂t(Jfi,2) + J(fi,5 − ∂tφ̌i)fi,1

+ J(hiv̌i + fi,2)) · (∇ϕfi,5 + ∂tfi,3 + (∂ϕ∂tϕ)
T(fi,3 − v̌i)),

and we compensated the densities of the energy by adding the terms Jv̌ ·f4 and Jv̌i ·fi,2 to control

boundary terms. Here, in the calculation of Fi,1 we used the identity [∂t,∇ϕ] = −(∂ϕ∂tϕ)
T∇ϕ.

In view of these equations, we define an energy function E (t) = Ee(t) + Ei(t) by

Ee(t) =

∫

E
{J(12 ǔ · Σ(u)ǔ+ v̌ · f4) + λ0|f4|2},

Ei(t) =

∫

I
{J(12hi|v̌i|

2 + v̌i · fi,2) + λ0(|fi,2|2 + |fi,3|2)},

where λ0 is a large positive constant depending on c0 andM0 such that the energy function E (t)
is equivalent to

E(t) = ‖(ǔ, f4)(t)‖2L2(E) + ‖(v̌i, fi,2, fi,3)(t)‖2L2(E).

Such a choice of λ0 is possible thanks to Assumption 2 (i)–(iii). By the relation (55) we obtain

(61)

{
d
dtEe(t) =

∫
Γ
(gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌ + f4) +

∫
E Fe,2,

d
dtEi(t) = −

∫
Γ
(fi,5 − ∂tφ̌i)N

ϕ · (hiv̌i + fi,2) +
∫
I Fi,2,
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where Fe,2 = Fe,1 + 2λ0f4 · ∂tf4 and Fi,2 = Fi,1 +2λ0(fi,2 · ∂tfi,2 + fi,3 · ∂tfi,3). Adding these two

identities we obtain d
dtE (t) =

∫
E Fe,2 +

∫
I Fi,2, because the boundary terms are cancelled due

to the boundary conditions (51) and (60). Let a(t) be a non-negative function, which will be

determined later, and put A(t) =
∫ t
0 a(t

′)dt′. Then, we have

d

dt
{E (t)e−A(t)}+ a(t)E (t)e−A(t) =

(∫

E
Fe,2 +

∫

I
Fi,2

)
e−A(t),

so that

sup
0≤t′≤t

E(t′)e−A(t′) +

∫ t

0
a(t′)E(t′)e−A(t′)dt′ . E(0) +

∫ t

0

(∫

E
|Fe,2|+

∫

I
|Fi,2|

)
e−A(t′)dt′.

We can easily evaluate the term
∫
E |Fe,2| and

∫
I |Fi,2| and obtain

∫

E
|Fe,2|+

∫

I
|Fi,2| . N (t)E(t) +

√
E(t)F1(t) + F2(t),

where

N (t) = ‖∂tu(t)‖L∞(E) + ‖∂thi(t)‖L∞(I) + ‖∂t∂ϕ(t)‖L∞(R2),

F1(t) = ‖(f1, f2)(t)‖L2(E) + ‖∂(fi,2, fi,3, fi,4, fi,5)(t)‖L2(I),

F2(t) = ‖(∂tφ̌i, fi,5)‖L2(I)‖fi,1‖L2(I).

Now, we choose the function a(t) as a(t) = C0N (t) with a sufficiently large positive constant
C0 depending on c0 and M0. Then, the term related to N (t)E(t) in the right-hand side can be

absorbed in the left-hand side. As for the term related to
√
E(t)F1(t), we see that

∫ t

0

√
E(t′)F1(t

′)e−A(t′)dt′ ≤
(

sup
0≤t′≤t

E(t′)e−A(t′)

)1/2 ∫ t

0
F1(t

′)e−
1
2
A(t′)dt′

≤ ǫ sup
0≤t′≤t

E(t′)e−A(t′) +
1

4ǫ

(∫ t

0
F1(t

′)e−
1
2
A(t′)dt′

)2

for any ǫ > 0. By choosing ǫ sufficiently small, then the first term in the right-hand side of the
above equation can also be absorbed in the left-hand side. Therefore, we obtain

E(t) . eA(t)
{
E(0) +

(∫ t

0
F1(t

′)e−
1
2
A(t′)dt′

)2

+

∫ t

0
F2(t

′)e−A(t′)dt′
}
.

Moreover, thanks to Assumption 2 (iv), we have 0 ≤ A(t) ≤ C0M1. These estimates together
with (59) to evaluate f4 give the desired energy estimate. �

4. Additional boundary regularity for the linearized problem

In this section, we continue to consider the linearized problem (48)–(51). In view of (52),
which is essentially the equation for the variation of the unknown curve Γ (t), we see easily the
importance of obtaining a boundary regularity for ζ̌ on Γ . Contrary to the case in horizontal
dimension d = 1 analyzed in [30], in the case d = 2 the boundary conditions (49)–(51) are
not strictly dissipative but only weakly dissipative in the sense of [31]. As a result, one cannot

control the boundary integral
∫ T
0 |ǔ(t)|2L2(Γ )dt in terms of the natural energy function E(t) used

in the previous section by the general theory such as the trace theorem or more sharper estimate

in [51]. Nevertheless, one can actually control the component
∫ T
0 |ζ̌(t)|2L2(Γ )dt by taking a better

advantage of the structure of the boundary conditions (49) and obtain the following proposition.
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Proposition 3. Under Assumption 2, there exists a positive constant C0 = C(c0,M0) such that

any regular solution ǔ = (ζ̌ , v̌), v̌i, φ̌i to (48)–(50) satisfies
∫ t

0
|ζ̌(t′)|2L2(Γ )dt

′ ≤ C0

{
(1 + t+M1) sup

0≤t′≤t

(
‖ǔ(t′)‖2L2(E) + ‖(v̌i, fi,2, fi,4)(t′)‖2L2(I)

)

+

(∫ t

0

(
‖(f1, f2, f3)(t′)‖L2(E) + ‖(fi,1,∂(fi,2, fi,3, fi,4))(t′)‖L2(I)

)
dt′
)2}

for any t ∈ [0, T ].

Remark 6. In the proof of this proposition, we do not use the evolution equation (51) for ψ̌i,

which was used to derive the basic energy estimate in Proposition 2.

By this proposition together with the energy estimate in Proposition 2, we can control the
boundary integral |ζ̌|L2((0,T )×Γ ). Such an additional boundary regularity estimate is crucial to
control the unknown curve Γ (t) in the nonlinear problem. In the rest of this section, we will
prove this Proposition 3 by using characteristic fields related to eigenvalues of the boundary
matrix for the exterior problem (48) together with Rellich type identities for solutions to the
interior problem (50). For the sake of clarity, the main ideas of the proof are first explained on
a simple toy model.

4.1. The trace estimate for a toy model. We prove here the new trace estimate of Proposi-
tion 3 on a much simpler model, in order to better expose the main ideas. The toy model consists
in taking w = 0, h = hi = h0, fj = 0 (1 ≤ j ≤ 3), fi,2 = fi,4 = 0, and ϕ = Id in (48)–(49);
moreover, we consider a simpler geometry in which E = R

2
+ = R+ × R and I = R

2
− = R− × R,

so that Γ = {x1 = 0}. The toy model we consider in this section is therefore

(62)





∂tζ̌ + h0∇ · v̌ = 0 in (0, T )× R
2
+,

∂tv̌ + g∇ζ̌ = 0 in (0, T )× R
2
+,

∇⊥ · v̌ = 0 in (0, T )× R
2
+,

under the boundary condition

(63) v̌ = v̌i on (0, T ) × {x1 = 0},
where v̌i solves

(64)

{
∇ · v̌i = gi,1 in (0, T ) × R

2
−,

∇⊥ · v̌i = gi,2 in (0, T ) × R
2
−.

Here, gi,1 and gi,2 are given functions. The equivalent of Proposition 3 for this toy model is
stated in the proposition below.

Proposition 4. Any regular solution (ζ̌ , v̌, v̌i) to (62)–(64) satisfies
∫ t

0
|ζ̌(t′)|2L2({x1=0})dt

′ ≤ C
{
(1 + t) sup

0≤t′≤t

(
‖(ζ̌ , v̌)(t′)‖2L2(R2

+) + ‖v̌i(t′)‖2L2(R2
−
)

)

+

(∫ t

0
‖(gi,1, gi,2)(t′)‖L2(R2

−
)dt

′
)2}

for any t ∈ [0, T ].

Proof. Step 1. Characteristic fields. The boundary matrix for the hyperbolic system in (62)

is given by

(
0 h0e

T
1

ge1 O

)
, whose eigenvalues are 0,±

√
gh0. Denoting v̌ = (v̌1, v̌2)

T, we put



THE MOVING CONTACT LINE PROBLEM FOR THE 2D NONLINEAR SHALLOW WATER EQUATIONS 23

α̌ =
√
gh0ζ̌ + h0v̌1 and β̌ = h0v̌2, which are the characteristic fields of the boundary matrix

related to the eigenvalues
√
gh0 and 0, respectively. Then, we see readily that
{
∂tα̌+

√
gh0∂1α̌+

√
gh0∂2v̌2 = 0,

∂tβ̌ + gh0∂2ζ = 0,

so that 1
2∂t(α̌

2 + β̌2) + 1
2

√
gh0∂1(α̌

2 − β̌2) + gh20∂2(ζ̌ v̌2) = 0. Therefore, introducing Ẽe(t) =
1
2

∫
R2
+
(α̌2 + β̌2), we deduce that

d

dt
Ẽe(t)−

∫

{x1=0}
1
2

√
gh0(α̌

2 − β̌2) = 0.

Step 2. Boundary integrals. Denoting Ee(t) =
1
2

∫
R2
+
(gζ̌2+h0|v̌|2), the standard energy estimate

for the hyperbolic system in (62) yields

d

dt
Ee(t)−

∫

{x1=0}
gh0ζ̌ v̌1 = 0.

Remarking further that

1
2

√
gh0(α̌

2 − β̌2) = 1
2(gh0)

3/2ζ̌2 + 1
2

√
gh0
(
(h0v̌1)

2 − (h0v̌2)
2
)
+ gh0ζ̌ v̌1,

we have

1
2(gh0)

3/2

∫

{x1=0}
ζ̌2 =

d

dt

(
Ẽe(t)− Ee(t)

)
+ 1

2

√
gh0h

2
0

∫

{x1=0}

(
v̌22 − v̌21

)
.

Step 3. Rellich type identity. Using the boundary condition (63) and Green’s identity, we can
rewrite the last boundary integral as

∫

{x1=0}

(
v̌22 − v̌21

)
=

∫

{x1=0}

(
v̌2i,2 − v̌2i,1

)

=

∫

R2
−

∇ ·
[(
v̌2i,2 − v̌2i,1

)
e1 − 2v̌i,1v̌i,2e2

]
.

Here, one see easily that 1
2∇·

[(
v̌2i,2− v̌2i,1

)
e1−2v̌i,1v̌i,2e2

]
= −(∇· v̌i)v̌i,1+(∇⊥ · v̌i)v̌i,2. Therefore,

by (64) we get

1
2

√
gh0h

2
0

∫

{x1=0}

(
v̌22 − v̌21

)
=

∫

R2
−

Gi

with Gi =
√
gh0h

2
0(−gi,1v̌i,1 + gi,2v̌i,2

)
.

Step 4 Conclusion. Integrating the identity obtained in Step 2 and using the Rellich type
identity obtained in Step 3, we get

1
2(gh0)

3/2

∫ t

0
|ζ̌(t′)|2L2({x1=0})dt

′ ≤ Ẽe(t) + Ee(0) +

∫ t

0
‖Gi(t

′)‖L1(R2
−
)dt

′,

from which the estimate of the proposition follows directly. �

4.2. Characteristic fields. This section corresponds to Step 1 of the proof of Proposition 4
for the original system (48). The difference is that one has to handle the non trivial background
(h, v) and the lower order terms, to track the dependance on the diffeomorphism ϕ, and to take
into account the influence of the curvature of the boundary Γ . By (48), we have

(65)

{
∂tζ̌ + w · ∇ϕζ̌ + h∇ϕ · v̌ = f1 −∇ϕh · v̌ − (∇ϕ · w)ζ̌ in (0, T )× E ,
∂tv̌ + (w · ∇ϕ)v̌ + g∇ϕζ̌ = f2 + f3w

⊥ − (∂ϕw)Tv̌ in (0, T )× E .
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Here, we used the last equation in (48) to derive the second equation. The corresponding
boundary matrix is given by J−1|Nϕ|M , where

M =

(
nϕ · w h(nϕ)T

gnϕ (nϕ · w)Id2×2

)

with nϕ = Nϕ

|Nϕ| . The eigenvalues of this matrixM are ±λ± = nϕ ·w±
√
gh and λ0 = nϕ ·w, and

related characteristic fields are
√
ghζ̌±h(nϕ · v̌) and h(nϕ)⊥ · v̌, respectively. We note that under

Assumption 2 (i) it holds that λ+ ≥ λ− & 1. It is natural to expect that these characteristic
fields would be useful, so that we introduce the following quantities: we first extend the unit
outward normal vector N to a vector field in C∞

0 (R2) and take a cut-off function χb ∈ C∞
0 (R2)

such that χb = 1 near the boundary Γ and |N | ≥ 1
2 on suppχb. Using this extended vector

field N , we can extend naturally Nϕ = J((∂ϕ)−1)TN to a vector field in the whole space R
2;

see (28). We note that under Assumption 2 (iii) it holds that |Nϕ| & 1 on suppχb so that χbn
ϕ

is defined as a vector field in the whole space R
2. As in the previous section, we use again the

function f4 defined in (0, T )× E satisfying (59). Then, we introduce new quantities α̌ and β̌ by

(66)

{
α̌ = χb(

√
ghζ̌ + nϕ · (hv̌ + f4)),

β̌ = χb(n
ϕ)⊥ · (hv̌),

where we compensated the characteristic field α̌ by adding the term nϕ · f4 in order to make the
following calculations simpler.

Remark 7. In the above definition of α̌, we used a characteristic field related to the eigenvalue

λ+. Instead of this, we may use a characteristic field related to the eigenvalue λ−. Even if we

use both of them, one cannot obtain any further estimates.

It follows from (65) that
{
(∂t + w · ∇ϕ)α̌+∇ϕ · (χb(

√
ghhv̌ + ghζ̌nϕ)) = g1,

(∂t + w · ∇ϕ)β̌ +∇ϕ · (χbghζ̌(n
ϕ)⊥) = g2,

where

g1 = ((∂t + w · ∇ϕ)(χb

√
gh))ζ̌ + ((∂t + w · ∇ϕ)(χbhn

ϕ)) · v̌
+ (∂t + w · ∇ϕ)(χbn

ϕ · f4) +∇ϕ(χb

√
ghh) · v̌ + (∇ϕ · (χbghn

ϕ))ζ̌

+ χb{
√
gh(f1 −∇ϕh · v̌ − (∇ϕ · w)ζ̌) + hnϕ · (f2 + f3w

⊥ − (∂ϕw)Tv̌)},
g2 = ((∂t + w · ∇ϕ)(χbh(n

ϕ)⊥)) · v̌ + ((∇ϕ · (χbgh(n
ϕ)⊥))ζ̌

+ χbh(n
ϕ)⊥ · (f2 + f3w

⊥ − (∂ϕw)Tv̌).

These equations imply that

(67)

{
1
2∂t(α̌

2) +∇ϕ · (12 α̌2w) + α̌∇ϕ · (χb(
√
ghhv̌ + ghζ̌nϕ)) = α̌g1 +

1
2 (∇ϕ · w)α̌2,

1
2∂t(β̌

2) +∇ϕ · (12 β̌2w) + β̌∇ϕ · (χbghζ̌(n
ϕ)⊥) = β̌g2 +

1
2 (∇ϕ · w)β̌2.

Here, we see that

α̌∇ϕ · (χb(
√
ghhv̌ + ghζ̌nϕ)) + β̌∇ϕ · (χbgh(n

ϕ)⊥ζ̌)

= α̌∇ϕ · (
√
gh((α̌ − χbn

ϕ · f4)nϕ + β̌(nϕ)⊥)) + β̌∇ϕ · (
√
gh(α̌− χbn

ϕ · (hv̌ + f4))(n
ϕ)⊥)

= ∇ϕ · (
√
gh(12 α̌

2nϕ + α̌β̌(nϕ)⊥))− β̌χb

√
ghhnϕ · ((nϕ)⊥ · ∇ϕ)v̌ +G1,
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where

G1 =
1
2(∇

ϕ · (
√
ghnϕ))α̌2 + (∇ϕ · (

√
gh(nϕ)⊥))α̌β̌ − (∇ϕ · (χb

√
ghhnϕ ⊗ (nϕ)⊥))β̌v̌

− α̌∇ϕ · (
√
ghχb(n

ϕ · f4)nϕ)− β̌∇ϕ · (
√
ghχb(n

ϕ · f4)(nϕ)⊥).
Moreover, by the identity (39) together with the last equation in (48) we have

−β̌χb

√
ghhnϕ · ((nϕ)⊥ · ∇ϕ)v̌ = −∇ϕ(12

√
ghβ̌2nϕ) +G2,

where

G2 =
1
2(∇

ϕ · (
√
ghnϕ))β̌2 + β̌{χb

√
ghhf3 +

√
gh((nϕ · ∇ϕ)(χbh(n

ϕ)⊥)) · v̌}.
Therefore, we obtain

α̌∇ϕ · (χb(
√
ghhv̌ + ghζ̌nϕ)) + β̌∇ϕ · (χbgh(n

ϕ)⊥ζ̌)(68)

= ∇ϕ · (
√
gh(12(α̌

2 − β̌2)nϕ + α̌β̌(nϕ)⊥)) +G1 +G2.

Furthermore, we have

(69) 1
2w(α̌

2 + β̌2) +
√
gh(12 (α̌

2 − β̌2)nϕ + α̌β̌(nϕ)⊥) = 1
2(λ+α̌

2 − λ−β̌
2)nϕ + µ̌(nϕ)⊥,

where {
λ± =

√
gh± nϕ · w,

µ̌ = 1
2 ((n

ϕ)⊥ · w)(α̌2 + β̌2) +
√
ghα̌β̌.

Adding two equations in (67) and using (68) and (69), we obtain

(70) ∂t(
1
2aJ(α̌

2 + β̌2)) + J∇ϕ · (a(12 (λ+α̌
2 − λ−β̌

2)nϕ + µ̌(nϕ)⊥)) = G3,

where a is an arbitrary function which will be determined later by (73) and

G3 = aJ(α̌g1 + β̌g2 − (G1 +G2)) +
1
2(∂t(aJ) + aJ(∇ϕ · w))(α̌2 + β̌2)

+ J∇ϕa · (12 (λ+α̌
2 − λ−β̌

2)nϕ + µ̌(nϕ)⊥).

In view of this, we define another energy function Ẽe(t) by

(71) Ẽe(t) =
1

2

∫

E
aJ(α̌2 + β̌2),

which can be controlled by the energy function E(t) defined in the previous section. Then, by
(70) we have

(72)
d

dt
Ẽe(t)−

1

2

∫

Γ

a|Nϕ|(λ+α̌2 − λ−β̌
2) =

∫

E
G3.

4.3. Boundary integrals. This section corresponds to Step 2 of the proof of Proposition
4. Integrating the identity (72) with respect to time t, we see that the boundary integral∫ t
0

(∫
Γ
a|Nϕ|(λ+α̌2 − λ−β̌2)

)
dt′ can be controlled by E(t). On the other hand, by the first

identity in (61) the boundary integral
∫ t
0

(∫
Γ
(gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌ + f4)

)
dt′ has also been

controlled by E(t). Now, we proceed to relate these two boundary integrals to another one,

which is equivalent to
∫ t
0

(∫
Γ
ζ̌2
)
dt′.

By the definition (66) of the characteristic field α̌ and β̌, on the boundary Γ we have α̌ =
λ−ζ̌ + nϕ · (hv̌ + wζ̌ + f4), so that

1
2a|N

ϕ|(λ+α̌2 − λ−β̌
2) = a|Nϕ|{1

2λ+λ
2
−ζ̌

2 + λ+λ−ζ̌n
ϕ · (hv̌ + wζ̌ + f4)

+ 1
2λ+(n

ϕ · (hv̌ + wζ̌ + f4))
2 − 1

2λ−((n
ϕ)⊥ · (hv̌))2}.
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Similarly, on Γ we also have

(gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌ + f4)

= |Nϕ|
h {λ+λ−ζ̌nϕ · (hv̌ + wζ̌ + f4) +

1
2(λ+ − λ−)(n

ϕ · (hv̌ + wζ̌ + f4))
2

+
(
((nϕ)⊥ · w)((nϕ)⊥ · (hv̌))− (nϕ · w)(nϕ · f4)

)
nϕ · (hv̌ + wζ̌ + f4)}.

In view of these identities, we define the function a used in the definition (71) of the energy

function Ẽe(t) by

(73) a =
1

h

in order to equalize the coefficients of the term ζ̌nϕ · (hv̌ + wζ̌ + f4) in the right-hand sides of
the above two identities. In other words, we can cancel out this term from the two boundary
integrals. In the following, we fix the function a by (73). Then, by the above two identities
together with the boundary conditions (49) and (60) we have

1
2a|N

ϕ|(λ+α̌2 − λ−β̌
2)− (gζ̌ + w · v̌)Nϕ · (hv̌ + wζ̌ + f4)

= |Nϕ|
h

{
1
2λ+λ

2
−ζ̌

2 + 1
2λ−

(
(nϕ · (hiv̌i + fi,2))

2 − ((nϕ)⊥ · (hiv̌i))2
)

−
(
((nϕ)⊥ · w)((nϕ)⊥ · (hiv̌i))− (nϕ · w)(nϕ · f4)

)
(nϕ · (hiv̌i + fi,2))

}

= |Nϕ|
h

{
1
2λ+λ

2
−ζ̌

2 + 1
2λ−

(
(nϕ · (hiv̌i + fi,2))

2 − ((nϕ)⊥ · (hiv̌i + fi,2))
2
)

− ((nϕ)⊥ · w)((nϕ)⊥ · (hiv̌i + fi,2))(n
ϕ · (hiv̌i + fi,2))

+ λ−((n
ϕ)⊥ · fi,2)((nϕ)⊥ · (hiv̌i + fi,2))− 1

2λ−((n
ϕ)⊥ · fi,2)2

+
(
w · fi,2 − (nϕ · w)(nϕ · fi,4)

)
(nϕ · (hiv̌i + fi,2))

}

on Γ , where we used the first condition in (59). Therefore, we obtain

(74)

∫

Γ

λ+λ
2
−|Nϕ|
2h

ζ̌2 =
d

dt
(Ẽe(t)− Ee(t)) +

∫

E
(Fe,2 −G3) + I1(t) + I2(t) + I3(t),

where

I1(t) =

∫

Γ

λ−|Nϕ|
2h

(
((nϕ)⊥ · (hiv̌i + fi,2))

2 − (nϕ · (hiv̌i + fi,2))
2
)
,

I2(t) =

∫

Γ

|Nϕ|
h

((nϕ)⊥ · w)((nϕ)⊥ · (hiv̌i + fi,2))(n
ϕ · (hiv̌i + fi,2)),

I3(t) = −
∫

Γ

|Nϕ|
h

{
λ−((n

ϕ)⊥ · fi,2)((nϕ)⊥ · (hiv̌i + fi,2))− 1
2λ−((n

ϕ)⊥ · fi,2)2

+
(
w · fi,2 − (nϕ · w)(nϕ · fi,4)

)
(nϕ · (hiv̌i + fi,2))

}
.

4.4. Rellich type identities. This section corresponds to Step 3 of the proof of Proposition 4.
We proceed to evaluate the above boundary integrals I1(t), I2(t), and I3(t). In view of the second
equation in (50), nϕ · v̌i and (nϕ)⊥ · v̌i are, roughly speaking, normal and tangential derivatives
of φ̌i, which satisfies a second order elliptic equation in the interior domain I. Rellich type
identities give some relations of boundary integrals for such derivatives. We first prepare the
following identity. The important point here is that the derivative on q in the right-hand side
only appear through a dependence on ∇ϕ · q and (∇ϕ)⊥ · q.
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Lemma 1. For any R
2-valued functions f and q, we have

∇ϕ ·
{(

(f · q)2 − (f⊥ · q)2
)
f + 2(f · q)(f⊥ · q)f⊥

}

= (∇ϕ · f)
(
(f · q)2 − (f⊥ · q)2

)
+ 2(∇ϕ · f⊥)(f · q)(f⊥ · q)

+ 2|f |2
{(

(q · ∇ϕ)f + (q⊥ · ∇ϕ)f⊥
)
· q + (f · q)∇ϕ · q − (f⊥ · q)(∇ϕ)⊥ · q

}
.

Proof. By a direct calculation, we have

∇ϕ ·
{(

(f · q)2 − (f⊥ · q)2
)
f + 2(f · q)(f⊥ · q)f⊥

}

= (∇ϕ · f)
(
(f · q)2 − (f⊥ · q)2

)
+ 2(∇ϕ · f⊥)(f · q)(f⊥ · q)

+ 2
{
(f · q)

(
(f · ∇ϕ)f + (f⊥ · ∇ϕ)f⊥

)
+ (f⊥ · q)

(
(f⊥ · ∇ϕ)f − (f · ∇ϕ)f⊥

)}
· q

+ 2(f · q)
(
f · (f · ∇ϕ)q + f⊥ · (f⊥ · ∇ϕ)q

)
+ 2(f⊥ · q)

(
f · (f⊥ · ∇ϕ)q − f⊥ · (f · ∇ϕ)q

)
.

Here, as for the second line in the right-hand side we see that

(f · q)
(
(f · ∇ϕ)f + (f⊥ · ∇ϕ)f⊥

)
+ (f⊥ · q)

(
(f⊥ · ∇ϕ)f − (f · ∇ϕ)f⊥

)

=
(
(f · q)(f · ∇ϕ) + (f⊥ · q)(f⊥ · ∇ϕ)

)
f +

(
(f⊥ · q⊥)(f⊥ · ∇ϕ) + (f · q⊥)(f · ∇ϕ)

)
f⊥

= |f |2
(
(q · ∇ϕ)f + (q⊥ · ∇ϕ)f⊥

)
.

As for the third line, we use the identity (39) with g = f⊥ and that obtained by replacing ∇ϕ

with (∇ϕ)⊥ to obtain

{
f · (f · ∇ϕ)q + f⊥ · (f⊥ · ∇ϕ)q = |f |2∇ϕ · q,
f · (f⊥ · ∇ϕ)q − f⊥ · (f · ∇ϕ)q = −|f |2(∇ϕ)⊥ · q.

Therefore, we obtain the desired identity. �

Now, we transform the boundary integrals Ij(t) into integrals over the interior domain I,
which can be controlled by the energy function E(t) by using the identity in Lemma 1. To this
end, we need to extend the functions h and w defined in the exterior domain E smoothly to
those in the whole space R

2. By using a standard smooth extension operator, we can construct
functions hi,∗ and wi defined in (0, T ) × I satisfying

(75)





hi,∗ = h, wi = w on (0, T ) × Γ ,

infx∈I hi,∗(t, x) & infx∈E h(t, x) for t ∈ [0, T ],

‖∂jt hi,∗(t)‖W k,∞(I) . ‖∂jt h(t)‖W k,∞(E) for t ∈ [0, T ], j, k = 0, 1,

‖∂jtwi(t)‖W k,∞(I) . ‖∂jtw(t)‖W k,∞(E) for t ∈ [0, T ], j, k = 0, 1.

Accordingly, we can extend λ± smoothly by

λi,± = χb(
√
ghi,∗ ± nϕ · wi).

Then, we have the following lemma.
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Lemma 2. It holds that Ij(t) =
∫
I JGi,j for j = 1, 2, 3, where

Gi,1 =
(
∇ϕ ·

(
χb

λi,−

2hi,∗
nϕ
))

(((nϕ)⊥ · q̌i)2 − (nϕ · q̌i)2)

−
(
∇ϕ ·

(
χb

λi,−

hi,∗
(nϕ)⊥

))
((nϕ)⊥ · q̌i)(nϕ · q̌i)

− χb
λi,−

hi,∗

{(
(q̌i · ∇ϕ)nϕ + (q̌⊥i · ∇ϕ)(nϕ)⊥

)
· q̌i + (nϕ · q̌i)fi,1

− ((nϕ)⊥ · q̌i)((∇ϕhi)
⊥ · v̌i + hi(∇ϕ)⊥ · fi,3 + (∇ϕ)⊥ · fi,2)

}
,

Gi,2 =
(
∇ϕ ·

(
χb

(nϕ)⊥·wi

hi,∗
nϕ
))

((nϕ)⊥ · q̌i)(nϕ · q̌i)

+
(
∇ϕ ·

(
χb

(nϕ)⊥·wi

2hi,∗
(nϕ)⊥

))
(((nϕ)⊥ · q̌i)2 − (nϕ · q̌i)2)

+ χb
(nϕ)⊥·wi

hi,∗

{(
(q̌i · ∇ϕ)(nϕ)⊥ − (q̌⊥i · ∇ϕ)(nϕ)

)
· q̌i + (nϕ · q̌i)fi,1

+ ((nϕ)⊥ · q̌i)((∇ϕhi)
⊥ · v̌i + hi(∇ϕ)⊥ · fi,3 + (∇ϕ)⊥ · fi,2)

}
,

Gi,3 =
(
∇ϕ
(
χb

λi,−

hi,∗
(nϕ)⊥ · fi,2

))⊥
· (q̌i − 1

2fi,2)

+
(
∇ϕ
(
χb

1
hi,∗

(
wi · fi,2 − (nϕ · wi)(n

ϕ · fi,4)
)))

· q̌i
+ χb

1
hi,∗

{
λi,−((n

ϕ)⊥ · fi,2)
(
(∇ϕhi)

⊥ · v̌i + hi(∇ϕ)⊥ · fi,3 + 1
2 (∇ϕ)⊥ · fi,2

)

+
(
wi · fi,2 − (nϕ · wi)(n

ϕ · fi,4)
)
fi,1
}

with q̌i = hiv̌i + fi,2.

Proof. In view of (55), for any function fi and gi defined in I we have
∫

Γ

|Nϕ|fi =
∫

Γ

Nϕ · (finϕ + gi(n
ϕ)⊥)

=

∫

I
J∇ϕ ·

(
χb(fin

ϕ + gi(n
ϕ)⊥)

)
.

Therefore, we can choose Gi,1 as

Gi,1 = ∇ϕ ·
(
χb

λi,−

2hi,∗

{(
((nϕ)⊥ · q̌i)2 − (nϕ · q̌i)2

)
nϕ − 2(nϕ · q̌i)((nϕ)⊥ · q̌i)(nϕ)⊥

})
.

Here, we apply Lemma 1 with f = nϕ and q = q̌i. Moreover, by (50) we have

(76)

{
∇ϕ · q̌i = fi,1,

(∇ϕ)⊥ · q̌i = (∇ϕhi)
⊥ · v̌i + hi(∇ϕ)⊥ · fi,3 + (∇ϕ)⊥ · fi,2.

Hence, we obtain the expression of Gi,1 in the lemma.
Similarly, we can choose Gi,2 as

Gi,2 = ∇ϕ ·
(
χb

(nϕ)⊥·wi

2hi,∗

{
2((nϕ)⊥ · q̌i)(nϕ · q̌i)nϕ +

(
((nϕ)⊥ · q̌i)2 − (nϕ · q̌i)2

)
(nϕ)⊥

})
,

which together with Lemma 1 with f = (nϕ)⊥ and q = q̌i and (76) yields the expression of Gi,2

in the lemma.
Finally, it is straightforward to calculate Gi,3. In fact, we rewrite I3(t) as

I3(t) =

∫

Γ

{
(Nϕ)⊥ ·

(
λi,−

hi,∗
((nϕ)⊥ · fi,2)(q̌i − 1

2fi,2)
)

+Nϕ ·
(

1
hi,∗

(
wi · fi,2 − (nϕ · wi)(n

ϕ · fi,4)
)
q̌i

)}
.
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Therefore, we can choose Gi,3 as

Gi,3 = (∇ϕ)⊥ ·
(
λi,−

hi,∗
((nϕ)⊥ · fi,2)(q̌i − 1

2fi,2)
)
+∇ϕ ·

(
1

hi,∗

(
wi · fi,2 − (nϕ · wi)(n

ϕ · fi,4)
)
q̌i

)
,

which together with (76) yields the expression of Gi,3 in the lemma. �

4.5. Completion of the additional regularity estimate. It follows from (74) together with
Lemma 2 that∫ t

0
|ζ̌(t′)|2L2(Γ )dt

′ . Ẽe(t) + Ee(0) +

∫ t

0

(
‖(Fe, G3)(t

′)‖L1(E) + ‖(Gi,1, Gi,2, Gi,3)(t
′)‖L1(I)

)
dt′.

Here, under Assumption 2 we see that




Ẽe(t) + Ee(t) . ‖(ǔ, f4)(t)‖2L2(E),

|(Fe, G3)| . (1 + |∂(h,w, ∂ϕ)|)|(ǔ, f4)|2 + |(ǔ, f4)||(f1, f2, f3,∂f4)|,∑3
j=1 |Gi,j | . (1 + |∂(hi, hi,∗, wi, ∂ϕ)|)|(v̌i, fi,2, fi,4)|2

+ |(v̌i, fi,2, fi,4)||(fi,1, ∂(fi,2, fi,3, fi,4))|.
These estimates together with those in (59) and (75) imply the desired one. �

5. Construction of a regularizing diffeomorphism

In this section, we construct the diffeomorphism ϕ(t, ·) from the unknown function γ(t, ·) as
was mentioned in Section 1.3. In order to close the estimates for the solutions to the nonlinear
problem, it is important to use a regularizing diffeomorphism, whose regularity index is 1

2 larger
than that of γ. Let Γ be a positively oriented Jordan curve of C∞-class and suppose that Γ is
parameterized by the arc length s as x = x(s) = (x1(s), x2(s))

T for s ∈ TL. Then, it holds that
|x′(s)| ≡ 1 and that n(s) = −x′(s)⊥, where n is the unit outward normal vector to Γ pointing
from I to E . We also have x′′(s) = κ(s)x′(s)⊥, where κ(s) is the scalar curvature of the curve
Γ at x(s).

5.1. Normal-tangential coordinate system. For r0 > 0, we define a map θ : (−r0, r0)×TL ∋
(r, s) 7→ θ(r, s) ∈ R

2 by

(77) θ(r, s) = x(s) + rn(s) =

(
x1(s) + rx′2(s)
x2(s)− rx′1(s)

)
,

and a tubular neighborhood UΓ of Γ by

UΓ = {x = θ(r, s) ∈ R
2 | (r, s) ∈ (−r0, r0)× TL}.

Then, the Jacobian determinant of the map θ(r, s) is given by det
(∂θ(r,s)

∂(r,s)

)
= 1+rκ(s). Therefore,

if we take r0 > 0 so small that r0|κ|L∞(TL) < 1, then the map θ : (−r0, r0)× TL → UΓ is a C∞-
diffeomorphism. In the following, we fix such a constant r0 > 0 so that UΓ is also fixed. Each
point of the neighborhood UΓ can therefore be uniquely determined by its normal-tangential
coordinates (r, s). Associated with these normal-tangential coordinate system, we can define
normal and tangential derivatives of functions f defined in the tubular neighborhood UΓ by

(78) (dnorf) ◦ θ = ∂r(f ◦ θ), (dtanf) ◦ θ = ∂s(f ◦ θ).
Then, we have

(79) dnor = N · ∇, dtan = T · ∇,
where T ◦ θ = (1 + rκ(s))x′(s) and N ◦ θ = (−x′(s))⊥. We note that dnor and dtan commute
with each other. Conversely, we have a decomposition

(80) ∇ = Ndnor +
1

|T |2Tdtan.
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Now, we impose the following assumptions on the unknown curve Γ (t).

Assumption 3. In the normal-tangential coordinate system (r, s), the curve Γ (t) is parameter-

ized as a graph in the form Γ (t) : r = γ(t, s) for s ∈ TL. Moreover, there exist positive constants

δ0,M0, and T and real number m0 >
1
2 such that γ satisfies the following properties:

(i) |γ(t, s)| ≤ r0
(1+δ0)2

for (t, s) ∈ [0, T ]× TL.

(ii) |∂sγ(t, ·)|Hm0 (TL) ≤ 2M0 for t ∈ [0, T ].

5.2. Choice of a regularizing diffeomorphism. Under this Assumption 3, we are going to
construct the diffeomorphism ϕ(t, ·). We first extend the function γ(t, s) on [0, T ] × TL to a
function γext(t, r, s) on [0, T ] × R × TL, which should satisfies γext|r=0 = γ. We choose such
an extension by γext(t, r, s) = (χ(εr〈D〉)γ(t, ·))(s) with a small parameter ε > 0 which will be
defined below, where χ ∈ C∞

0 (R) is a cut-off function satisfying suppχ ⊂ (−1, 1), 0 ≤ χ(r) ≤ 1,

χ(r) = 1 for |r| ≪ 1, and |χ′(r)| ≤ 1 + δ0, and 〈D〉 = (1 − ∂2s )
1/2. We define a scalar function

R(t, r, s) by

R(t, r, s) = r + γext(t, r, s)χ
(

r
r0

)
.

By Assumption 3 we see that

∂rR(t, r, s) = 1 +
γ(t, s)

r0
χ′( r

r0

)
+
γext(t, r, s)− γ(t, s)

r0
χ′( r

r0

)
+ (∂rγ

ext)(t, r, s)χ
(

r
r0

)

≥ δ0
1 + δ0

− εC(m0)(1 + δ0)M0,

where C(m0) is a positive constant depending only onm0. Therefore, if we take ε > 0 sufficiently

small, then we have ∂rR(t, r, s) ≥ δ0
2(1+δ0)

, so that R(t, ·, s) : R → R is a diffeomorphism for each

(t, s). In the following, we fix the parameter ε > 0 in this way. We note also that R(t, ·, s) :
(−r0, r0) → (−r0, r0) is a diffeomorphism. In order to construct a regularizing diffeomorphism,

we use this diffeomorphism R to modify the map θ by θ̃(t, ·) : (−r0, r0)× TL → UΓ with

(81) θ̃(t, r, s) = x(s) +R(t, r, s)n(s).

Then, we see that

det

(
∂θ̃(t, r, s)

∂(r, s)

)
= (∂rR(t, r, s))(1 +R(t, r, s)κ(s))

≥ δ0
2(1 + δ0)

(1− r0|κ|L∞(TL)) > 0,

so that θ̃(t, ·) : (−r0, r0)×TL → UΓ is a diffeomorphism, and we also have θ̃(t, r, s) = θ(r, s) for

|r| ≃ r0. Now, we define the diffeomorphism ϕ(t, ·) : R2 → R
2 by

(82) ϕ(t, y) =

{
θ̃(t, θ−1(y)) for y ∈ UΓ ,

y for y /∈ UΓ .

We can easily check that this diffeomorphism ϕ(t, ·) satisfies the desired properties, that is,
ϕ(t, ·)|E : E → E(t), ϕ(t, ·)|I : I → I(t), and ϕ(t, ·)|Γ : Γ → Γ (t) are all diffeomorphisms and
that it does not change the orientation. Throughout this paper, we use this diffeomorphism.

This diffeomorphism is decomposed as ϕ(t, y) = y + ϕ̃(t, y) with

ϕ̃(t, θ(r, s)) = γext(t, r, s)χ
(

r
r0

)
n(s).

We proceed to evaluate this perturbation term ϕ̃ in terms of γ. Here, we recall the norm
|γ(t, ·)|m for a non-negative integer m, which was introduced in Section 1.4. The fact that the
diffeomorphism ϕ(t, ·) is regularizing allows us to control m-th order derivatives of ϕ(t, ·) not
only in L2(R2) but also in L4(R2) by |γ(t, ·)|m.
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Lemma 3. For any multi-index α = (α0, α1, α2) satisfying |α| = m and any p ∈ [4,∞], we have

(i) ‖∂αϕ̃(t, ·)‖L2∩L4(R2) + |∂αϕ̃(t, ·)|L2(Γ ) ≤ C|γ(t, ·)|m;

(ii) ‖∂αϕ̃(t, ·)‖Lp(R2) ≤ C|γ(t, ·)|1/2+2/p
m |γ(t, ·)|1/2−2/p

m+1 ;

(iii) ‖∂αϕ̃(t, ·)‖L2(R2) ≤ C|γ(t, ·)|1/2m−1|γ(t, ·)|
1/2
m if α1 + α2 ≥ 1;

where ∂α = ∂α0
t ∂α1

1 ∂α2
2 and C > 0 is a constant depending on r0 and ε.

Proof. It is well-known that the extension γext(t, ·) of γ(t, ·) gains 1
2 -regularity in the sense

that it maps L2(TL) into H1/2(R × TL) continuously. This fact together with the embed-

ding H1/2(R × TL) →֒ L4(R × TL) implies ‖∂jt γext(t, ·)‖W k,4(R2) . |∂jt γ(t, ·)|Hk(TL)
. Using

this, we obtain the estimate for ‖∂αϕ̃(t, ·)‖L2∩L4(R2) in (i). On the other hand, evaluation
for |∂αϕ̃(t, ·)|L2(Γ ) in (i) is straightforward. By the Gagliardo–Nirenberg interpolation inequal-

ity ‖f‖Lp(R2) . ‖f‖1/2+2/p
L4(R2)

‖∇f‖1/2−2/p
L4(R2)

, the estimate in (ii) follows from (i). As for (iii), we

note that α can be decomposed as α = α′ + α′′ with α′ = (0, 1, 0) or (0, 0, 1). Therefore, by the

Gagliardo–Nirenberg interpolation inequality ‖∇f‖L2(R2) . ‖∇f‖1/2
L4(R2)

‖f‖1/2
L4(R2)

, we see that

‖∂αϕ̃(t)‖L2(R2) . ‖∇∂α′′

ϕ̃(t)‖1/2
L4(R2)

‖∂α′′

ϕ̃(t)‖1/2
L4(R2)

. |γ(t)|1/2m |γ(t)|1/2m−1,

where we used (i). This shows (iii). �

6. Good unknowns and their equations

In this section, we consider the nonlinear shallow water model (33)–(35) for the unknowns
ζ, v and ψi, and the diffeomorphism ϕ, which was constructed from the unknown curve Γ (t) by
(82). We first introduce in Section 6.1 the good unknowns associated with the highest order
derivatives of order m of ζ, v, and ψi, as well as for φi and vi = ∇ϕφi, with φi given by (29); we
insist on the fact that the good unknowns associated with φi are of second order, in the sense
that they contain subprincipal terms. In Section 6.2 we derive the equations satisfied by the
good unknowns in the exterior region E near the boundary, and therefore in normal-tangential
coordinates. When only time and tangential derivatives are involved, the procedure is similar to
the linearization performed in Section 3.1, but one has to keep track of additional source terms
due to the fact that high order derivatives are not exactly linearization operators. When normal
derivatives are involved, despite the fact that the problem is partially characteristic, we manage
to express them in terms of quantities that contain only time and tangential derivatives. In
Section 6.3, the equations for the good unknowns are derived near the boundary, but this time
in the interior region I. Since the equations satisfied by φi is of second order, it is crucial to
use here the second order Alinhac good unknowns. In Section 6.4 we proceed to apply time and
tangential derivatives to the boundary conditions on Γ and to rewrite the resulting equations in
terms of the good unknowns. Using the Cartesian coordinates, equations for the good unknowns
far from the boundary are derived in Section 6.5. Finally, we derive in Section 6.6 equations for
the highest order derivatives of the parametrization γ of the free boundary Γ (t); see Assumption
3.

6.1. Definition of good unknowns and differentiation rules. In Section 3.1, we provided
derivation rules that allowed us to write the linearization of the equations (33)–(35) in a con-
venient way. We showed that for an unknown function f , we could associate its variation in
the linearization, denoted by ḟ , but also a good unknown f̌ = ḟ − ϕ̇ · ∇ϕf . The key observa-
tion was (38), that expressed the fact that we have the commutation rules (∇ϕ · f )̌ = ∇ϕ · f̌ ,
(∇ϕf )̌ = ∇ϕf̌ , and (∂ϕt f )̌ = ∂ϕt f̌ . In this section, instead of linearizing the equations, we want
to derive the system deduced from (33)–(35) after multiple differentiation in space and time.
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We first introduce in Section 6.1.1 the associated good unknowns and then derive some useful
differentiation rules in Section 6.1.2.

6.1.1. Definition of the good unknowns. Since it is natural to use the normal and the tangential
derivatives dnor and dtan defined by (78) instead of the Cartesian derivatives ∂1 and ∂2 near the
boundary Γ , we are led to introduce the following notations. For a multi-index α = (α0, α1, α2) =
(αI , α2), we write

∂α = ∂α0
t ∂α1

1 ∂α2
2 , dα = ∂α0

t d
α1
tand

α2
nor, and d

αI

‖ = ∂α0
t d

α1
tan.

Note that if α1 = α2 = 0, then ∂α = dα = d
αI

‖ = ∂α0
t . Inspired by the considerations of Section

3.1, we also define

∂̌αf = ∂αf − ∂αϕ · ∇ϕf, ďαf = dαf − dαϕ · ∇ϕf, and ď
αI

‖ f = d
αI

‖ f − d
αI

‖ ϕ · ∇ϕf.

Let u = (ζ, vT)T, ψi, and ϕ be a solution of (33)–(35), and let vi = ∇ϕφi, with φi solving the
elliptic system (29). We now introduce the good unknowns associated with these quantities.

If α = (j, 0, 0), which means that we only differentiate in time, then we define

ǔ(α) = ∂̌αu and v̌
(α)
i = ∂̌αvi.

As for the good unknown for ∂jt φi, we need to compensate a lower order correction to the
standard definition of good unknowns due to technical reasons; see Remark 11 below. Here, for
α = (j, 0, 0) we adopt the following definition

φ̌
(α)
i = ∂jt φi − (∂jtϕ) · ∇ϕφi − j(∂j−1

t ϕ) · ∂t∇ϕφi

= ∂jt φi − (∂jtϕ) · vi − j(∂j−1
t ϕ) · ∂tvi.

If α = (α0, α1, α2), with α1 + α2 ≥ 1, that is, if the derivatives include spatial ones, then
we need to separate the good unknowns into those supported near the boundary and far from
boundary. Let χb ∈ C∞

0 (R2) be a cut-off function such that χb = 1 near the boundary Γ and
that its support is in the tubular neighborhood UΓ of the reference curve Γ defined in Section
5.1. We also introduce other cut-off functions χe, χi ∈ C∞(R2) such that their supports are in
E and I, respectively, and that χb + χe + χi ≡ 1 holds.

• Near the boundary Γ , the good unknowns are then defined by

ǔ(α) = χbď
αu and v̌

(α)
i = χbď

αvi;

as for φi, as in the case of time derivatives, we need to compensate lower order corrections
and define the good unknown by

φ̌
(α)
i = χb{dαφi −

∑

β≤α,|β|≥|α|−1

(
α

β

)
(dβϕ) · dα−βvi}.

Moreover, if the derivatives do not include normal ones, then we write ǔ(αI ) = ǔ(αI ,0),

v̌
(αI )
i = v̌

(αI ,0)
i , and φ̌

(αI )
i = φ̌

(αI ,0)
i for αI = (α0, α1). We also denote by ψ̌

(αI )
i the trace

of φ̌
(αI )
i in Γ , so that

ψ̌
(αI )
i = d

αI

‖ ψi −
∑

βI≤αI ,|βI |≥|αI |−1

(
αI

βI

)
(dβ‖ϕ) · d

α−β
‖ vi.

• Far from the boundary Γ , the good unknowns are defined by using the standard Carte-
sian derivatives as

ǔ(α)r = χe∂̌
αu and v̌

(α)
i,r = χi∂̌

αvi,
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and

φ̌
(α)
i,r = χi{∂αφi −

∑

β≤α,|β|≥|α|−1

(
α

β

)
(∂βϕ) · ∂α−βvi}.

6.1.2. Differentiation rules. The difference here with Section 3.1 is that ∂̌α or ďα are linearization
operators only up to lower order terms. Because of this, the commutation relations (38) only
hold up to lower order terms. More precisely, we have

(83)





dα(∇ϕf) = ∇ϕďαf + ((dαϕ) · ∇ϕ)∇ϕf + C1(dα, ∂ϕ)f,

dα(∇ϕ · v) = ∇ϕ · ďαv + ((dαϕ) · ∇ϕ)(∇ϕ · v) + C1(dα, ∂ϕ) · v,
dα(∂ϕt f) = ∂ϕt ď

αf + ((dαϕ) · ∇ϕ)∂ϕt f + C2(dα, ∂tϕ)f − (∂tϕ) · C1(dα, ∂ϕ)f,

where the differential operators C1(dα, ∂ϕ) and C2(dα, ∂tϕ) are defined as

(84)

{
C1(dα, ∂ϕ)f = ([dα,∇ϕ] + (∂ϕdαϕ)T∇ϕ)f,

C2(dα, ∂tϕ)f = −∑j=1,2[d
α; ∂tϕj , ∂

ϕ
j f ].

Remark 8. If |α| = m ≥ 1, then C1(dα, ∂ϕ)f and C2(dα, ∂tϕ)f include derivatives of f and

ϕ up to at most order m; the fact that the derivatives of ϕ of order m + 1 are cancelled in

C1(dα, ∂ϕ)f follows from the second equation in (36).

6.2. Equations for the good unknowns in E near the boundary. In this subsection, we
derive evolution equations for the good unknowns ǔ(α) for α = (α0, α1, α2), and we also show
how these equations can be used to provide a control of normal derivatives of the good unknown
in terms of tangential ones.

6.2.1. Evolution equations for the good unknowns. Using the identities (83) and applying χbd
α,

or simply dα if α1 = α2 = 0, to (33), we get

(85)





∂tζ̌
(α) +∇ϕ · (hv̌(α) + wζ̌(α)) = f

(α)
1 in (0, T ) × E ,

∂tv̌
(α) +∇ϕ(w · v̌(α) + gζ̌(α)) = f

(α)
2 in (0, T ) × E ,

(∇ϕ)⊥ · v̌(α) = f
(α)
3 in (0, T ) × E ,

where in the case α1 + α2 ≥ 1

f
(α)
1 = −χb{C2(dα, ∂tϕ)ζ − (∂tϕ) · C1(dα, ∂ϕ)ζ + C1(dα, ∂ϕ) · (hv) +∇ϕ · ([dα;h, v])}

+ (∂ϕt χb)ď
αζ +∇ϕχb ·

(
(ďαζ)v + h(ďαv)

)
− (∇ϕ · ∂tϕ)ζ̌(α),

f
(α)
2 = −χb{C2(dα, ∂tϕ)v − (∂tϕ) · C1(dα, ∂ϕ)v + C1(dα, ∂ϕ)(12 |v|2 + gζ) +∇ϕ · (12 [dα; v, ·v])}

+ (∂ϕt χb)ď
αv + (∇ϕχb)

(
v · ďαv + gďαζ

)

− (v̌(α) · ∇ϕ)∂tϕ+ ((∇ϕ)⊥ · ∂tϕ)(v̌(α))⊥ + f
(α)
3 (∂tϕ)

⊥,

f
(α)
3 = −χbC1(dα, ∂ϕ)⊥ · v + (∇ϕχb)

⊥ · ďαv.

Here, we used the identities in (40) to calculate f
(α)
2 . In the case α1 = α2 = 0, it is sufficient to

put χb = 1 in the above equations.

Remark 9. If |α| = m ≥ 1, then the right-hand sides f
(α)
1 , f

(α)
2 , and f

(α)
3 include derivatives of

u and ϕ up to at most order m. The fact that the derivatives of ϕ of order m+ 1 are cancelled

is a consequence of the introduction of the good unknowns ǔ(α): if we had worked with standard

derivatives χbd
αu, derivatives of order m+ 1 in ϕ would have remained.
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6.2.2. Expressing normal derivatives in terms of tangential ones. The system (85) has the same

structure as the linearized system (48); we shall prove below that the good unknowns ǔ(αI ) for
αI = (α0, α1), which corresponds to the tangential derivatives in space-time, satisfy boundary
condition of the type (49)–(51). We will therefore be able to control them using the energy

estimate given in Proposition 2. In order to evaluate ǔ(α) when α2 > 0, that is, in the presence
of a normal derivative, we use (85) to convert the normal derivative into tangential derivatives
in space-time. Here, we derive this conversion formula. In view of (80), we have

(86) J∇ϕ = Nϕdnor + Tϕdtan

with Nϕ = J((∂ϕ)−1)TN and Tϕ = J
|T |2 ((∂ϕ)

−1)TT . Plugging this into (85) and adding the

last equation in (85) multiplied by an R
2-valued function a to the second equation, we obtain

(87) J∂tǔ
(α) +A(u, Tϕ,a)dtanǔ

(α) +A(u,Nϕ,a)dnorǔ
(α) = f

(α)
4 ,

where

A(u,N,a) =

(
N · w hNT

gN N ⊗ w + a⊗N⊥

)
,

f
(α)
4 = J

(
f
(α)
1 − (∇ϕh · v̌(α) + (∇ϕ · w)ζ̌(α))
f
(α)
2 − (∂ϕw)Tv̌(α) + f

(α)
3 a

)
.

Here, we have

detA(u,Nϕ,a) = (a⊥ ·Nϕ)(gh|Nϕ|2 − (w ·Nϕ)2).

Therefore, by choosing a = −(Nϕ)⊥, we see that detA(u,Nϕ,a) is strictly positive in the
support of the cut-off function χb under the subcriticality assumption of the flow. In the
following, we fix this choice of the function a.

Remark 10. The original equations (85) are partially characteristic, and it is not possible in

general to use them to convert normal derivatives in terms of tangential ones. The above proce-

dure shows that the last equation of (85), which corresponds to the irrotationality assumption,

can be used to transform the problem into an equivalent non-characteristic problem.

We proceed to rewrite the derivatives of ǔ(α) in (87) in terms of good unknowns without using
the derivatives. Let α = (j, k, l). Then, by the definition of the good unknowns we see that in
the case k + l ≥ 1

(88)





∂tǔ
(α) = ǔ(j+1,k,l) − χb((d

αϕ) · ∂t∇ϕ)u,

dtanǔ
(α) = ǔ(j,k+1,l) − χb((d

αϕ) · dtan∇ϕ)u+ (dtanχb)ď
αu,

dnorǔ
(α) = ǔ(j,k,l+1) − χb((d

αϕ) · dnor∇ϕ)u+ (dnorχb)ď
αu,

and in the case k = l = 0

(89)





∂tǔ
(j,0,0) = ǔ(j+1,0,0) − ((∂jtϕ) · ∂t∇ϕ)u,

χbdtanǔ
(j,0,0) = ǔ(j,1,0) − χb((∂

j
tϕ) · dtan∇ϕ)u,

χbdnorǔ
(j,0,0) = ǔ(j,0,1) − χb((d

αϕ) · dnor∇ϕ)u.

Therefore, in the case k + l ≥ 1 we obtain

(90) Jǔ(j+1,k,l) +A(u, Tϕ,a)ǔ(j,k+1,l) +A(u,Nϕ,a)ǔ(j,k,l+1) = f
(α)
5 ,

where

f
(α)
5 = f

(α)
4 + χb{J((dαϕ) · ∂t∇ϕ)u+A(u, Tϕ,a)((dαϕ) · dtan∇ϕ)u

+A(u,Nϕ,a)((dαϕ) · dnor∇ϕ)u} −A(u, J∇ϕχb,a)ď
αu.



THE MOVING CONTACT LINE PROBLEM FOR THE 2D NONLINEAR SHALLOW WATER EQUATIONS 35

In the case k = l = 0, by replacing Jǔ(j+1,0,0) with Jχbǔ
(j+1,0,0), (90) still holds with

f
(j,0,0)
5 = χbf

(j,0,0)
4 + χb{J((∂jtϕ) · ∂t∇ϕ)u

+A(u, Tϕ,a)((∂jtϕ) · dtan∇ϕ)u+A(u,Nϕ,a)((∂jtϕ) · dnor∇ϕ)u}.

We will use (90) for multi-indices α = (j, k, l) satisfying |α| = m − 1 to convert the normal

derivative into the tangential ones in space-time. In this case, if m ≥ 3, then f
(α)
5 includes

derivatives of u and ϕ up to at most order m− 1.

6.3. Equations for the good unknowns in I near the boundary. We want to express
in terms of the good unknowns the equations obtained by differentiating the interior equations
∇ϕ · (hivi) = 0 and vi = ∇ϕφi. This is more delicate than in the previous section for the exterior
region because the elliptic equation satisfied by φi is of second order; in order to preserve

an equation with a similar structure for the good unknown φ̌
(α)
i , it is necessary to include

subprincipal terms in the definition of φ̌
(α)
i , as we did in Section 6.1.1.

6.3.1. Differentiation of the interior equations. We proceed to derive the equations for v̌
(α)
i and

φ̌
(α)
i obtained by applying dα to the relations ∇ϕ · (hivi) = 0 and vi = ∇ϕφi. These equations

are stated in the following proposition.

Proposition 5. If vi, hi, and φi are regular functions satisfying ∇ϕ · (hivi) = 0 and vi = ∇ϕφi,
then for any nonzero multi-index α ∈ N

3, one has

(91)

{
∇ϕ · (hiv̌(α)i + f

(α)
i,2 ) = f

(α)
i,1 in (0, T ) × I,

v̌
(α)
i = ∇ϕφ̌

(α)
i + f

(α)
i,3 in (0, T ) × I,

where the expressions for f
(α)
i,1 , f

(α)
i,2 , and f

(α)
i,3 depend on α:

• If α1 + α2 ≥ 1, then f
(α)
i,1 = f

(α)
i,01 with f

(α)
i,01 given by (93) below, while f

(α)
i,2 = 0, and f

(α)
i,3

is given by (101) and subsequent explanation below;

• If α1 = α2 = 0, then f
(α)
i,1 = 0 and f

(α)
i,2 = f

(α)
i,02 with f

(α)
i,02 given by (98) below, while f

(α)
i,3

is given by (102) below.

Remark 11. i. If |α| = m ≥ 3, then f
(α)
i,2 and f

(α)
i,3 include derivatives of vi and ϕ up to at

most order m − 1 thanks to our definition of the good unknowns φ̌
(α)
i . In fact, if we adopt the

standard definition of the good unknowns for φ̌
(α)
i , that is, φ̌

(α)
i = χbď

αφi as for v̌
(α)
i , then f

(α)
i,3

would contain m-th order derivatives of ϕ, which would cause a difficulty for obtaining a priori

estimates.

ii. In the case α = (m, 0, 0), we have f
(α)
i,1 = 0, which is crucial in the application of the

energy estimate in Proposition 2. In fact, if it were not zero, then a difficulty would arise from

the term ∂tφ̌
(m,0,0)
i , which appears in the last term of the right-hand side of the energy estimate

in Proposition 2, because it cannot be evaluated by our energy function Em(t); this issue does not

appear when |α| = m and α1+α2 ≥ 1, because ∂tφ̌
(α)
i can then be written in terms of derivatives

of vi and ϕ up to at most order m; see Section 6.3.2 below.

Proof. By assumption, we have ∇ϕ · (hivi) = 0 and from the definition vi = ∇ϕφi, we have
(∇ϕ)⊥ · vi = 0. Let α = (α0, α1, α2) be a multi-index. As in the derivation of (85), we obtain

(92)

{
∇ϕ · (hiv̌(α)i ) = f

(α)
i,01 in (0, T )× I,

(∇ϕ)⊥ · v̌(α)i = f
(α)
i,03 in (0, T )× I,
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where in the case α1 + α2 ≥ 1

f
(α)
i,01 = −χb{∇ϕ ·

(
ďαζivi + [dα;hi, vi]

)
+ C1(dα, ∂ϕ) · (hivi)}+∇ϕχb · hiďαvi,(93)

f
(α)
i,03 = −χbC1(dα, ∂ϕ)⊥ · vi + (∇ϕχb)

⊥ · ďαvi.(94)

The proposition is therefore proved for the first equation in (91) in the case α1 + α2 ≥ 1.
We now consider the case α1 = α2 = 0; note that in this case, it might be sufficient to put

χb = 1 in the above equations. However, (92) is not satisfactory in this case because of the

nonzero term f
(α)
i,01, as explained in Remark 11 ii. In such a case, we want to keep the divergence

form of the first equation in (91). We first give a general lemma, which is valid for all types of
multi-index α, and in the statement of which we gather several commutator terms under the
notation c1(dα, ϕ)qi, where c1(dα, ϕ) is the scalar differential operator defined as

(95) c1(dα, ϕ)q =
∑

β≤α,|β|=|α|−1

(
α

β

)
(∂ϕdα−βq)⋆dβϕ+

∑

β≤α,1≤|β|≤|α|−2

(
α

β

)
(∂ϕdβϕ)⋆dα−βq,

where for A = (aij) a 2 × 2-matrix we write simply A⋆ = adj(A) = det(A)A−1 the adjugate
matrix of A. When |α| = m ≥ 3, the term c1(dα, ϕ)q only contains derivatives of ϕ and q of order
at most m−1; we used a lower case letter in the notation to distinguish it from the commutator
terms C1(dα, ∂ϕ)f and C2(dα, ∂tϕ)f defined in (84) and that may contain derivatives of ϕ and
f of order m; see Remark 8.

Lemma 4. Let qi be a regular function defined in I and satisfy ∇ϕ · qi = 0. Then, one has

∇ϕ ·
(
ďαqi + c1(dα, ϕ)qi

)
= 0

in the tubular neighborhood UΓ ∩ I of Γ in which the normal-tangential coordinates are well

defined if α1 + α2 > 0, and in I if α1 = α2 = 0.

Proof. We first transform the equation in the normal-tangential coordinates introduced in Sec-
tion 5.1. Observing that

A⋆ = det(A)A−1 =

(
a22 −a12

−a21 a11

)
,

we have the identity J∇ϕ · q = ∇ · (J(∂ϕ)−1q) = ∇ · ((∂ϕ)⋆q), as well as

(96)





((∂ϕ)⋆)−1(∂ψ)⋆ = 1
J (∂ϕ)(∂ψ)

⋆ = (∂ϕψ)⋆,

∇ · ((∂ψ)⋆q) = J∇ϕ · ((∂ϕψ)⋆q),
∇ϕ · ((∂ϕψ)⋆q)) = ∇ϕ · ((∂ϕq)⋆ψ)) = ∇ϕ · ((∇ϕ · q)ψ − (ψ · ∇ϕ)q).

We recall the definitions (77) and (81) of the maps θ and θ̃. Due to our choice of the diffeomor-

phism ϕ(t, ·), we have θ̃ = ϕ ◦ θ, that is, θ̃(t, r, s) = ϕ(t, θ(r, s)) for (r, s) ∈ (−r0, r0) × TL; see
(82). Then, the equation ∇ϕ · qi = 0 can be transformed in the normal-tangential coordinates

(r, s) into ∇θ̃ · q̃i = 0. Particularly, we have

∇ · ((∂θ̃)⋆q̃i) = 0,
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where ∇ is the nabla with respect to (r, s) and so is ∂. Let α = (α0, α1, α2) be a multi-index.
Applying ∂α0

t ∂α1
s ∂α2

r to the above equation, we see that

0 = ∇ ·
(
∂α0
t ∂α1

s ∂α2
r ((∂θ̃)⋆q̃i)

)

= ∇ ·
(
∑

β≤α

(
α

β

)
(∂∂β0

t ∂β1
s ∂β2

r θ̃)⋆∂α0−β0
t ∂α1−β1

s ∂α2−β2
r q̃i

)

= det(∂θ̃)∇θ̃ ·
(
∑

β≤α

(
α

β

)
(∂θ̃∂β0

t ∂β1
s ∂β2

r θ̃)⋆∂α0−β0
t ∂α1−β1

s ∂α2−β2
r q̃i

)
,

where we used the first and the second identities in (96). Pulling back to the coordinate y =
θ(r, s), we obtain

0 = ∇ϕ ·
(
∑

β≤α

(
α

β

)
(∂ϕdβϕ)⋆dα−βqi

)
.

For the term in the case β = (0, 0, 0), we have obviously ∂ϕϕ = Id2×2. For the term in the case
β = α, by the last identity in (96) we see that

∇ϕ · ((∂ϕdαϕ)⋆qi) = ∇ϕ · ((∂ϕqi)⋆dαϕ)
= ∇ϕ · ((∇ϕ · qi)dαϕ− ((dαϕ) · ∇ϕ)qi)

= −∇ϕ ·
(
((dαϕ) · ∇ϕ)qi

)
,

where we used ∇ϕ · qi = 0. When |α| = m, the m-th order derivative (∂ϕdβϕ)⋆ in the case
|β| = |α| − 1 is still troublesome. However, by using the last identity in (96) again, these terms
can be replaced by terms containing only (m− 1)-th order derivatives, and we have

0 = ∇ϕ ·
(
dαqi − ((dαϕ) · ∇ϕ)qi +

∑

β≤α,|β|=|α|−1

(
α

β

)
(∂ϕdα−βqi)

⋆dβϕ

+
∑

β≤α,1≤|β|≤|α|−2

(
α

β

)
(∂ϕdβϕ)⋆dα−βqi

)
,

which is the identity stated in the lemma. �

Using the lemma with qi = hivi, we obtain

(97) ∇ϕ ·
(
hiď

αvi + f
(α)
i,02

)
= 0,

where

(98) f
(α)
i,02 = [dα;hi, vi] + (ďαζi)vi + c1(dα, ϕ)(hivi).

Here, we note that f
(α)
i,02 is defined only in the tubular neighborhood UΓ∩I in the case α1+α2 ≥ 1

due to the derivatives dtan and dnor, while it is defined in all the interior domain I in the case
α1 = α2 = 0. Therefore, (97) proves the proposition for the first equation in (91) in the
remaining case α1 = α2 = 0.

We now proceed to prove the proposition for the second equation of (91). We want to apply
dα to the relation vi = ∇ϕφi and keep the right-hand side in gradient form, up to terms of order
m− 1 when |α| = m ≥ 3; we will use the following notation

c2(dα, ϕ)q =
∑

β≤α,|β|=|α|−1

(
α

β

)
(∂ϕdα−βq)Tdβϕ−

∑

β≤α,1≤|β|≤|α|−2

(
α

β

)
(∂ϕdβϕ)Tdα−βq;



38 TATSUO IGUCHI AND DAVID LANNES

as for c1(dα, ϕ)q above, c2(dα, ϕ)q only contains derivative of q and ϕ of order at most m − 1
when |α| = m ≥ 3.

Lemma 5. The following relation holds in the neighborhood UΓ ∩ I of Γ in which the normal-

tangential coordinates are well defined if α1 + α2 > 0, and in I if α1 = α2 = 0;

(99) ďαvi = ∇ϕ
{
dαφi −

∑

β≤α,|β|≥|α|−1

(
α

β

)
(dβϕ) · dα−βvi

}
+ c2(dα, ϕ)vi.

Proof. With the same notations as in the proof of the previous lemma, we put φ̃i = φi ◦ θ
and ṽi = vi ◦ θ. Then, the relation vi = ∇φi is transformed into ṽi = ∇θ̃φ̃i, so that we have
∇φ̃i = (∂θ̃)Tṽi. As before, we let α = (α0, α1, α2) be a multi-index. Applying ∂α0

t ∂α1
s ∂α2

r and

then ((∂θ̃)−1)T to this equation, we have

∇θ̃∂α0
t ∂α1

s ∂α2
r φ̃i =

∑

β≤α

(
α

β

)
(∂θ̃∂β0

t ∂β1
s ∂β2

r θ̃)T∂α0−β0
t ∂α1−β1

s ∂α2−β2
r ṽi.

Pulling back to the coordinate y = θ(r, s), we obtain

∇ϕdαφi =
∑

β≤α

(
α

β

)
(∂ϕdβϕ)Tdα−βvi.

For the term in the case β = α, we see that

(∂ϕdαϕ)Tvi = ∇ϕ((dαϕ) · vi)− (∂ϕvi)
Tdαϕ

= ∇ϕ((dαϕ) · vi)− ((dαϕ) · ∇ϕ)vi + ((∇ϕ)⊥ · vi)(dαϕ)⊥

= ∇ϕ((dαϕ) · vi)− ((dαϕ) · ∇ϕ)vi,

where we used (∇ϕ)⊥ · vi = 0. When |α| = m, the m-th order derivative (∂ϕdβϕ)T in the
case |β| = |α| − 1 is again troublesome and treated as (∂ϕdβϕ)Tdα−βvi = ∇ϕ((dβϕ) · dα−βvi)−
(∂ϕdα−βvi)

Tdβϕ. Therefore, we obtain

∇ϕ
{
dαφi −

∑

β≤α,|β|≥|α|−1

(
α

β

)
(dβϕ) · dα−βvi

}
= dαvi − ((dαϕ) · ∇ϕ)vi − c2(dα, ϕ)vi,

which is the identity stated in the lemma. �

Now, we need to multiply (99) by the cut-off function χb to obtain equations for good un-
knowns in the case α1 + α2 ≥ 1; in view of the definition of the good unknowns, this yields

(100) v̌
(α)
i = ∇ϕφ̌

(α)
i − (∇ϕχb)

{
dαφi −

∑

β≤α,|β|≥|α|−1

(
α

β

)
(dβϕ) · dα−βvi

}
+ χbc

2(dα, ϕ)vi.

The term (∇ϕχb)d
αφi cannot be evaluated directly by our energy function Em(t) and should be

rewritten in term of good unknowns related to vi. In the case α1 ≥ 1, in view of (79) we have
dtan = T · ∇ so that

dαφi − (dαϕ) · vi = ∂α0
t d

α1−1
tan dα2

nor(T · ∇φi)− (∂α0
t d

α1−1
tan dα2

nor((T · ∇)ϕ)) · vi
= ∂α0

t d
α1−1
tan dα2

nor(T · (∂ϕ)Tvi)− (∂α0
t d

α1−1
tan dα2

nor((T · ∇)ϕ)) · vi
= [∂α0

t d
α1−1
tan dα2

nor, vi] · (T · ∇)ϕ,

where we used (∂ϕ)T = (T · ∇)ϕ. Similarly, in the case α2 ≥ 1 we have

dαφi − (dαϕ) · vi = [∂α0
t d

α1
tand

α2−1
nor , vi] · (N · ∇)ϕ.
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By these equations and (100), we get

v̌
(α)
i = ∇ϕφ̌

(α)
i + f

(α)
i,3 in (0, T )× I,

where in the case α1 ≥ 1

f
(α)
i,3 = χbc

2(dα, ϕ)vi(101)

− (∇ϕχb)
{
[∂α0

t d
α1−1
tan dα2

nor, vi] · (T · ∇)ϕ−
∑

β≤α,|β|=|α|−1

(
α

β

)
(dβϕ) · dα−βvi

}
,

and in the case α1 = 0 and α2 ≥ 1, the term [∂α0
t d

α1−1
tan dα2

nor, vi] · (T · ∇)ϕ in f
(α)
i,3 should be

replaced with [∂α0
t d

α1
tand

α2−1
nor , vi] · (N · ∇)ϕ, while in the case α1 = α2 = 0,

(102) f
(α)
i,3 = c2(dα, ϕ)vi.

This proves the proposition for the second equation in (91) and therefore concludes the proof of
the proposition. �

6.3.2. Expressing ∂tφ̌
(α)
i in terms of vi and ϕ. In connection with Remark 11 ii, we derive here

an equation for ∂tφ̌
(α)
i in the case α1+α2 ≥ 1. Let α = (α0, α1, α2) be a multi-index with α1 ≥ 1

and put α′ = (α0 + 1, α1 − 1, α2). Then, we have

∂t
{
dαφi −

∑

β≤α,|β|≥|α|−1

(
α

β

)
(dβϕ) · dα−βvi

}

= dtan
{
dα

′

φi −
∑

β′≤α′,|β′|≥|α′|−1

(
α′

β′

)
(dβ

′

ϕ) · dα′−β′

vi
}
+ c3(dα, ϕ)vi,

where

c3(dα, ϕ)vi = −
∑

β≤α,|β|=|α|−1

(
α

β

)
(dβϕ) · ∂tdα−βvi +

∑

β′≤α′,|β′|=|α′|−1

(
α′

β′

)
(dβ

′

ϕ) · dtandα
′−β′

vi.

This equation together with dtan = T · ∇ = (∂ϕ)T · ∇ϕ = (dtanϕ) · ∇ϕ and (99) implies ∂tφ̌
(α)
i =

(dtanϕ) · v̌(α
′)

i + f
(α)
i,6 with

f
(α)
i,6 = χb(c

3(dα, ϕ)vi − (dtanϕ) · c2(dα, ϕ)vi).
Similar equation holds in the case α2 ≥ 1 with α′′ = (α0 + 1, α1, α2 − 1) and we obtain

(103) ∂tφ̌
(α)
i =

{
(dtanϕ) · v̌(α

′)
i + f

(α)
i,6 if α1 ≥ 1,

(dnorϕ) · v̌(α
′′)

i + f
(α)
i,7 if α2 ≥ 1,

where f
(α)
i,7 has a similar form to f

(α)
i,6 . We note that if |α| = m ≥ 3, then f

(α)
i,6 and f

(α)
i,7 include

derivatives of vi and ϕ up to at most order m− 1.

6.3.3. Expressing normal derivatives in terms of tangential ones. Similar to the case of the
exterior domain in Section 6.2, by the energy estimate given in Proposition 2, we can evaluate

the good unknowns v̌
(αI )
i for αI = (α0, α1), which corresponds to the tangential derivatives in

space-time. In order to evaluate v̌
(α)
i in the presence of a normal derivative, that is when α2 ≥ 1,

we use (92), to convert normal derivatives into tangential derivatives in space-time. Here, we
derive such a formula. Plugging the decomposition (86) into (92), we obtain

{
hi(N

ϕ · dnorv̌(α)i + Tϕ · dtanv̌(α)i ) = J(f
(α)
i,01 − v̌

(α)
i · ∇ϕζi),

(Nϕ)⊥ · dnorv̌(α)i + (Tϕ)⊥ · dtanv̌(α)i = Jf
(α)
i,03,
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so that

hi|Nϕ|2dnorv̌(α)i + hi(N
ϕ ⊗ Tϕ + (Nϕ)⊥ ⊗ (Tϕ)⊥)dtanv̌

(α)
i

= J{(f (α)i,01 − v̌
(α)
i · ∇ϕζi)N

ϕ + hif
(α)
i,03(N

ϕ)⊥}.

Here, we let α = (j, k, l). For the terms dnorv̌
(α)
i and dtanv̌

(α)
i in the above equation, we use

similar formulae to (88) and (89) to obtain

(104) hi|Nϕ|2v̌(j,k,l+1)
i + hi(N

ϕ ⊗ Tϕ + (Nϕ)⊥ ⊗ (Tϕ)⊥)v̌(j,k+1,l)
i = f

(α)
i,8 ,

where in the case k + l ≥ 1

f
(α)
i,8 = J{(f (α)i,01 − v̌

(α)
i · ∇ϕζi)N

ϕ + hif
(α)
i,03(N

ϕ)⊥}
+ hiχb{|Nϕ|2((dαϕ) · dnor∇ϕ)vi + (Nϕ ⊗ Tϕ + (Nϕ)⊥ ⊗ (Tϕ)⊥)((dαϕ) · dtan∇ϕ)vi}
− hi(N

ϕ ⊗ (J∇ϕχb) + (Nϕ)⊥ ⊗ (J∇ϕχb)
⊥)ďαvi,

and in the case k = l = 0 we have a similar formula; multiply χb to the first line and drop
the last line in the right-hand side. We will use (104) for multi-indices α = (j, k, l) satisfying
|α| = m − 1 to convert the normal derivative into the tangential ones. In this case, if m ≥ 3,

then f
(α)
i,8 includes derivatives of vi and ϕ up to at most order m− 1.

6.4. Tangential differentiation of the boundary conditions on Γ . We proceed to derive
equations obtained by differentiating tangentially the boundary conditions (34)–(35), that is, by
applying d

αI

‖ to these boundary conditions, where αI = (α0, α1) is a multi-index.

6.4.1. Tangential differentiation of the boundary condition ζ = ζi. Applying dαI

‖ to the boundary

condition ζ = ζi, we have d
αI

‖ ζ = d
αI

‖ ζi, so that

ζ̌(αI) − ζ̌
(αI )
i = ((dαI

‖ ϕ) · ∇ϕ)(ζi − ζ) on Γ ,

where ζ̌
(αI)
i = ďα‖ ζi = d

αI

‖ ζi− (dαI

‖ ϕ) ·∇ϕζi. Therefore, by the same calculations as in Section 3.1

we get Nϕ · (dαI

‖ ϕ) = − |Nϕ|2
Nϕ·∇ϕ(ζ−ζi)

(ζ̌(αI ) − ζ̌
(αI )
i ) on Γ . Here, by the decomposition (86) and

the boundary condition ζ = ζi on Γ , we have JNϕ · ∇ϕ(ζ − ζi) = |Nϕ|2(N · ∇)(ζ − ζi) on Γ .
Therefore, we get

(105) Nϕ · (dαI

‖ ϕ) = − J

(N · ∇)(ζ − ζi)
(ζ̌(αI ) − ζ̌

(αI )
i ) on (0, T )× Γ .

6.4.2. Tangential differentiation of the boundary condition v = vi. Proceeding as for the bound-
ary condition on ζ, we obtain

v̌(αI ) − v̌
(αI )
i = ((dαI

‖ ϕ) · ∇ϕ)(vi − v) on Γ ,

Therefore, by the same calculations as in Section 3.1 we get

(106)

{
Nϕ · (hv̌(αI ) + wζ̌(αI )) = Nϕ · (hiv̌(αI )

i + f
(αI)
i,4 ) on (0, T )× Γ ,

(Nϕ)⊥ · (hv̌(αI )) = (Nϕ)⊥ · (hiv̌(αI )
i ) on (0, T )× Γ ,

where f
(αI)
i,4 = wiζ̌

(αI)
i = wiď

α
‖ ζi.
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6.4.3. Tangential differentiation of the evolution equation for ψi. As for (35), we write it as
∂tφi − (∂tϕ) · v+ 1

2 |v|2 + gζ = 0 on Γ . Applying d
αI

‖ to this equation and using v = vi on Γ , we

see that

0 = ∂t(d
αI

‖ φi)− d
αI

‖ ((∂tϕ) · v) + v · dαI

‖ v + gd
αI

‖ ζ + [dαI

‖ ; v, ·v]

= ∂t
{
φ̌
(αI )
i +

∑

βI≤αI ,|βI |≥|αI |−1

(
αI

βI

)
(dβI

‖ ϕ) · d
αI−βI

‖ vi
}
−
∑

βI≤αI

(
αI

βI

)
(dβI

‖ ∂tϕ) · d
αI−βI

‖ v

+ v · (v̌(αI ) + ((dαI

‖ ϕ) · ∇ϕ)v) + g(ζ̌(αI) + (dαI

‖ ϕ) · ∇ϕζ) + [dαI

‖ ; v, ·v]

= ∂tφ̌
(αI )
i + w · v̌(αI ) + gζ̌(αI) + (dαI

‖ ϕ) · (∂tv + g∇ϕζ) + w · ((dαI

‖ ϕ) · ∇ϕ)v + [dαI

‖ ; v, ·v]

+
∑

βI≤αI ,|βI |=|αI |−1

(
αI

βI

)
(dβI

‖ ϕ) · d
αI−βI

‖ ∂tvi −
∑

βI≤αI ,1≤|βI |≤|αI |−2

(
αI

βI

)
(dβI

‖ ∂tϕ) · d
αI−βI

‖ vi.

Here, by the same calculation as in Section 3.1 we have

(dαI

‖ ϕ) · (∂tv + g∇ϕζ) + w · ((dαI

‖ ϕ) · ∇ϕ)v

= (dαI

‖ ϕ) ·
(
∂ϕt v +∇ϕ(12 |v|

2 + gζ) + ((∇ϕ)⊥ · v)(∂tϕ)⊥
)

= 0.

Therefore, recalling that we defined ψ̌
(αI )
i in Section 6.1.1 as the trace of φ̌

(αI )
i on Γ , we get

(107) ψ̌
(αI )
i +w · v̌(αI ) + gζ̌(αI) = f

(αI)
i,5 on (0, T )× Γ ,

where

f
(αI)
i,5 =

∑

βI≤αI ,1≤|βI |≤|αI |−2

(
αI

βI

)
(dβI

‖ ∂tϕ) · d
αI−βI

‖ vi

−
∑

βI≤αI ,|βI |=|αI |−1

(
αI

βI

)
(dβI

‖ ϕ) · d
αI−βI

‖ ∂tvi − [dαI

‖ ; vi, ·vi].

6.5. Equations for good unknowns away from the boundary. We proceed to derive

equations for the good unknowns ǔ
(α)
r , v̌

(α)
i,r , and φ̌

(α)
i,r , whose supports are away from the boundary

Γ . In this case, we do not need to use the normal-tangential coordinates. As in the derivation
of (85), applying χe∂

α to (33), we get

(108)

{
∂tζ̌

(α)
r +∇ϕ · (hv̌(α)r + wζ̌

(α)
r ) = f

(α)
r,1 in (0, T )× E ,

∂tv̌
(α)
r +∇ϕ(w · v̌(α)r + gζ̌

(α)
r ) = f

(α)
r,2 in (0, T )× E ,

where f
(α)
r,1 and f

(α)
r,2 are obtained exactly as f

(α)
1 and f

(α)
2 that appear in (85); for instance,

f
(α)
r,1 = −χe{C2(∂α, ∂tϕ)ζ − (∂tϕ) · C1(∂α, ∂ϕ)ζ + C1(∂α, ∂ϕ) · (hv) +∇ϕ · ([∂α;h, v])}

+ (∂ϕt χe)∂̌
αζ +∇ϕχe ·

(
(∂̌αζ)v + h(∂̌αv)

)
− (∇ϕ · ∂tϕ)ζ̌(α).

Similarly, as in the derivation of (91), we get for all α such that α1 + α2 ≥ 1 that

(109)

{
∇ϕ · (hiv̌(α)i,r ) = f

(α)
i,r,1 in (0, T ) × I,

v̌
(α)
i,r = ∇ϕφ̌

(α)
i,r + f

(α)
i,r,3 in (0, T ) × I,

where f
(α)
i,r,1 is easily deduced from the expression (93) for f

(α)
i,01,

f
(α)
i,r,1 = −χi{∇ϕ ·

(
∂̌αζivi + [dα;hi, vi]

)
+ C1(∂α, ∂ϕ) · (hivi)}+∇ϕχb · hi∂̌αvi,



42 TATSUO IGUCHI AND DAVID LANNES

while f
(α)
i,r,3 is similarly deduced from the expression (101) for f

(α)
i,3 . Moreover, as in the derivation

of (103), we get also

(110) ∂tφ̌
(α)
i,r =

{
(∂1ϕ) · v̌(α

′)
i,r + f

(α)
i,r,6 if α1 ≥ 1,

(∂2ϕ) · v̌(α
′′)

i,r + f
(α)
i,r,7 if α2 ≥ 1,

where f
(α)
i,r,6 and f

(α)
i,r,6 are deduced from the quantities f

(α)
i,6 and f

(α)
i,6 that appear in (103) with

straightforward adaptations. Finally, we remark that the case α1 = α2 = 0 is covered by
Proposition 5 because in that case the good unknowns are defined without using any localization
function.

6.6. Equations for the derivatives of γ. To conclude this section, we derive equations for
derivatives of γ under Assumption 3 on the unknown curve Γ (t). Such equations are essentially
given by (105). Here, we relate the derivative ∂α0

t ∂α1
s γ to (Nϕ · dαI

‖ ϕ)|Γ , which is the quantity

that appears in the left-hand side of (105). To this end, we recall that the diffeomorphism ϕ(t, ·)
was constructed from γ(t, ·) by (82). By a straightforward calculation, we see that

(∂θ)|r=0
=

(
x′2(s) x′1(s)
−x′1(s) x′2(s)

)
,

(∂θ̃)|r=0
=

(
x′2(s) (1 + κ(s)γ(t, s))x′1(s) + (∂sγ(t, s))x

′
2(s)

−x′1(s) (1 + κ(s)γ(t, s))x′2(s)− (∂sγ(t, s))x
′
1(s)

)
,

where we used (∂rγ
ext)|r=0

= 0 and x′′(s) = κ(s)x′(s)⊥. Therefore, in view of Nϕ
|x=x(s)

=
(
J((∂ϕ)−1)TN

)
|x=x(s)

=
(
det((∂θ̃)(∂θ)−1)((∂θ)(∂θ̃)−1)T

)
|x=x(s)

(−x′(s))⊥, we obtain

(111) Nϕ
|x=x(s)

= (1 + κ(s)γ(t, s))N − (∂sγ)(t, s)N
⊥.

On the other hand, for a multi-index αI = (α0, α1), we see that

(dαI

‖ ϕ)|x=x(s)
= (∂α0

t ∂α1
s (ϕ ◦ θ))|r=0

= ∂α0
t ∂α1

s

(
x(s) + γ(t, s)(−x′(s))⊥

)

= (∂α0
t ∂α1

s γ)N + [∂α1
s , (−x′)⊥]∂α0

t γ + ∂α0
t ∂α1

s x.

Therefore, we get

(112) (1 + κγ)∂α0
t ∂α1

s γ = (Nϕ · dαI

‖ ϕ)|x=x(s)
+ b(αI ),

where

b(αI ) = −((1 + κγ)N − (∂sγ)N
⊥) ·

(
[∂α1

s , (−x′)⊥]∂α0
t γ + ∂α0

t ∂α1
s x
)
.

We note that if |αI | = m ≥ 2, then b(αI ) includes derivatives of γ up to at most order m− 1.

Remark 12. Let us use (105) and (112) for αI = (1, 0). Then, noting that b(1,0) = 0, J|x=x(s)
=

1 + κγ, ζ̌(1,0) = ∂ϕt ζ = −∇ϕ · (hv), and ζ(1,0)i = ∂ϕt ζi = 0, we obtain

∂tγ =

( ∇ϕ · (hv)
N · ∇(ζ − ζi)

)

|x=x(s)

.

This is the evolution equation for the unknown function γ, that is, for the unknown curve Γ (t).
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7. A priori estimates

In this last section, we prove the a priori estimate given in Theorem 1. Let m ≥ 3 and
u = (ζ, vT)T, vi, pi, and γ be a regular solution to the shallow water model (8)–(10) satisfying

initially (12). We recall that the diffeomorphism ϕ(t, ·) has been constructed from γ by (82).
Then, by the analysis in Sections 2.4 and 2.5, there exists a scalar function ψi such that (33)–(35)
hold. With I0, c0 and M0 as in Assumption 1, and recalling that r0 is the width of the tubular
neighborhood in which the normal-tangential coordinates are defined, we suppose also that the
solution satisfies

(113)





{ϕ(t, x) |x ∈ I} ⊂ I0 for 0 ≤ t ≤ T,

inf(t,x)∈(0,T )×E (gh(t, x)− |w(t, x)|2) ≥ c0,

inf(t,x)∈(0,T )×Γ |N · (∇ζ −∇ζi)(t, x)| ≥ c0,

sup0<t<T |γ(t)|L∞(TL) ≤ η0r0,

sup0<t<T (‖u(t)‖m−1,e + ‖vi(t)‖m−1,i + |γ(t)|m−1) ≤ 2M0,

where as in the statement of Theorem 1, one has 0 < ηin0 < η0 < 1, and

(114)

{
‖∂(h,w)‖L1(0,T ;L∞(E)) + ‖∂hi‖L1(0,T ;L∞(I)) + ‖∂∂ϕ‖L1(0,T ;L∞(R2)) ≤M1,

sup0<t<T Em(t) ≤M2,
∫ T
0 |γ(t)|2mdt ≤M3,

where the time T and the constants M1,M2, and M3 will be defined later. Then, Assumption
3 is satisfied with a positive constant δ0 depending only on η0 and m0 = 1. We note that
the first condition in (113) guarantees that the function ζi(t, ·) = Zw ◦ ϕ(t, ·) is defined as a
function of (t, x) ∈ (0, T ) × I. In the following, we simply denote positive constants depending
on c0,M0, η0, and m by the same symbol C0, which may change from line to line, whereas we
track carefully the dependence of the constants M1, M2, and M3. Then, by the analysis of
Section 5.2, especially, Lemma 3 together with the Sobolev embedding theorem we have





infx∈R2 J(t, x) = infx∈R2 det(∂ϕ(t, x)) ≥ C−1
0 ,∑

|α|≤m−2 ‖∂αϕ̃(t)‖L∞(R2) ≤ C0,∑
|α|≤m−1 ‖∂αϕ̃(t)‖L2∩L4(R2) ≤ C0,∑
|α|=m ‖∂αϕ̃(t)‖L2∩L4(R2) ≤ C0|γ(t)|m,∑
|α|≤m−3(‖∂αu(t)‖L∞(E) + ‖∂αvi(t)‖L∞(I)) ≤ C0

for 0 ≤ t ≤ T . We will use these estimates freely in the following without any comments.
Moreover, to simplify the notation, for non-negative integer k we write |∂kf | = ∑

|α|=k |∂αf |,
and similar notation will be used in the following. Such a simplification causes no confusion.

We first show in Section 7.1 how to control various derivatives of the solution in terms of the
energy Em(t) introduced in Section 1.4, and we also define equivalent energy norms, one of them
involving only tangential derivatives. We then control this latter energy in Section 7.2, using the
linear estimate of Proposition 2, while the evolution of the surface parametrization is controled
by using Proposition 3. The lower order terms involved in these energy estimates are controled in
Section 7.3. We then conclude the proof of Theorem 1 by proving that the conditions (113) and
(114) remain satisfied on a time interval [0, T ] with T > 0 as in the statement of the theorem.
This is done in Section 7.4 for the transversality condition which requires special care in the
critical case m = 3 and in Section 7.5 for the other ones.

7.1. Controls in terms of the energy norms. We show in the following lemma how to
control various norms in terms of the energy Em(t) introduced in Section 1.4.

Lemma 6. For 0 ≤ t ≤ T , we have

(i) ‖∂mu(t)‖L2(E) + ‖∂mvi(t)‖L2(I) ≤ C0(1 + |γ(t)|m)Em(t);
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(ii) ‖∂m−1u(t)‖L2∩L4(E)+ ‖∂m−1vi(t)‖L2∩L4(I) ≤ C0Em(t)1/2(‖u(t)‖m−1,e + ‖vi(t)‖m−1,i)
1/2;

(iii) ‖∂m−2u(t)‖L∞(E) + ‖∂m−2vi(t)‖L∞(I) ≤ C0Em(t)1/4(‖u(t)‖m−1,e + ‖vi(t)‖m−1,i)
3/4;

(iv) ‖∂∂m−1u(t)‖L2(E) + ‖∂∂m−1vi(t)‖L2(I) ≤ C0(1 + |γ(t)|1/2m )Em(t).

Proof. We give a proof of the estimates only for u, because the estimates for vi can be obtained
in the same way. Moreover, we write ‖ · ‖Lp instead of ‖ · ‖Lp(E) for simplicity. We see that

‖∂mu‖L2 ≤ ‖∂mu− ((∂mϕ) · ∇ϕ)u‖L2 + ‖((∂mϕ) · ∇ϕ)u‖L2

≤ Em(t) + ‖∂mϕ‖L4‖(∂ϕ)−1‖L∞‖∂u‖L4

≤ Em(t) + C0|γ|m‖u‖H2

≤ C0(1 + |γ|m)Em,

where we used the Sobolev embedding theorem H1(E) →֒ L4(E). This shows (i).
We proceed to evaluate ‖∂m−1u(t)‖L4 and ‖∂m−2u(t)‖L∞ . By the Gagliardo–Nirenberg in-

terpolation inequality ‖f‖L4 . ‖∇f‖1/2
L2 ‖f‖1/2L2 + ‖f‖L2 , we see that

‖∂m−1u‖L4

≤ ‖∂m−1u− ((∂m−1ϕ) · ∇ϕ)u‖L4 + ‖((∂m−1ϕ) · ∇ϕ)u‖L4

≤ C0

{
‖∂(∂m−1u− ((∂m−1ϕ) · ∇ϕ)u)‖1/2

L2 ‖∂m−1u− ((∂m−1ϕ) · ∇ϕ)u‖1/2
L2

+ ‖∂m−1u− ((∂m−1ϕ) · ∇ϕ)u‖L2 + ‖∂m−1ϕ‖L4‖∂u‖L∞

}

≤ C0

{(
‖∂mu− ((∂mϕ) · ∇ϕ)u‖L2 + ‖∂m−1ϕ‖L4‖∂2u‖L4 + ‖∂m−1ϕ‖L4‖∂2ϕ‖L4‖∂u‖L∞

)1/2

×
(
‖∂m−1u‖L2 + ‖∂m−1ϕ‖L4‖∂u‖L4

)1/2

+ ‖u‖m−1,e + ‖∂m−1ϕ‖L4‖∂u‖L4 + ‖∂u‖L∞

}

≤ C0

{
(Em + ‖∂m−1u‖L4 + ‖∂u‖L∞)1/2‖u‖1/2m−1,e + ‖∂u‖L∞

}
,

which yields ‖∂m−1u‖L4 ≤ C0(E
1/2
m ‖u‖1/2m−1,e + ‖∂u‖L∞). Particularly, we get

(115) ‖∂m−1u‖L4 ≤ C0(E
1/2
m ‖u‖1/2m−1,e + ‖∂m−2u‖L∞).

Using this, the Gagliardo–Nirenberg interpolation inequality, and the Sobolev embedding theo-
rem, we see that

‖∂m−2u‖L∞ ≤ C0(‖∂m−1u‖1/2
L4 ‖∂m−2u‖1/2

L4 + ‖∂m−2u‖L4)

≤ C0(‖∂m−1u‖1/2
L4 ‖u‖1/2m−1,e + ‖u‖m−1,e)

≤ C0(E
1/4
m ‖u‖3/4m−1,e + ‖∂m−2u‖1/2L∞‖u‖1/2m−1,e),

which yields ‖∂m−2u‖L∞ ≤ C0E
1/4
m ‖u‖3/4m−1,e. This shows (iii). Plugging this into (115), we

obtain (ii).
Finally, by Lemma 3 and (iii) we see that

‖((∂∂m−1ϕ) · ∇ϕ)u‖L2 ≤ ‖∂∂m−1ϕ‖L2‖(∂ϕ)−1‖L∞‖∂u‖L∞

≤ C0|γ|1/2m Em.

Therefore, in the same way as the proof of (i) we obtain (iv). �

For a multi-index α = (α0, α1, α2) satisfying |α| = m, let ǔ(α), v̌
(α)
i , ǔ

(α)
r , and v̌

(α)
i,r be the good

unknowns introduced in Section 6.1. The energy Em(t) is defined in terms of ∂̌αu and ∂̌αvi; in
view of the results of the previous section, it is convenient to use instead quantities that involve
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the good unknowns. We therefore define other energy functions Ěm(t) and Ěm,‖(t) of order m
by

Ěm(t) =
∑

|α|=m

(‖ǔ(α)(t)‖L2(E) + ‖v̌(α)i (t)‖L2(I))

+
∑

|α|=m,α0≤m−1

(‖ǔ(α)r (t)‖L2(E) + ‖v̌(α)i,r (t)‖L2(I)) + ‖u(t)‖m−1,e + ‖vi(t)‖m−1,i

and

Ěm,‖(t) =
∑

|αI |=m

(‖ǔ(αI )(t)‖L2(E) + ‖v̌(αI )
i (t)‖L2(I))

+
∑

|α|=m,α0≤m−1

(‖ǔ(α)r (t)‖L2(E) + ‖v̌(α)i,r (t)‖L2(I)) + ‖u(t)‖m−1,e + ‖vi(t)‖m−1,i,

where αI = (α0, α1). Here, as in the proof of Lemma 6 (i), for any multi-index α satisfying
1 ≤ |α| ≤ m− 1 we have

{
‖((∂αϕ) · ∇ϕ)u(t)‖L2(E) ≤ C0‖u(t)‖m−1,e,

‖((∂αϕ) · ∇ϕ)vi(t)‖L2(I) ≤ C0‖vi(t)‖m−1,i.

In view of this together with (79) and (80), we see that Em(t) and Ěm(t) are equivalent, that
is, we have

(116) C−1
0 Em(t) ≤ Ěm(t) ≤ C0Em(t).

Since the good unknowns ǔ(α) and v̌
(α)
i satisfy (90) and (104) and we have det(A(u,Nϕ,a)) ≥

C−1
0 and hi|Nϕ|2 ≥ C−1

0 , we can convert the normal derivatives into the tangential ones in
space-time modulo lower order terms. Therefore, we have

(117) Ěm,‖(t) ≤ Ěm(t) ≤ C0(Ěm,‖(t) +R1(t)),

where R1(t) = Re,1(t) +Ri,1(t) = ‖re,1(t)‖L2(E) + ‖ri,1(t)‖L2(I) with

re,1 =
∑

|α|=m−1

|f (α)5 |, ri,1 =
∑

|α|=m−1

|f (α)i,8 |;

these terms are the lower order terms appearing in (90) and (104) and include derivatives of u,
vi, and ϕ of order at most m− 1. It follows from (116) and (117) that it is sufficient to derive
an energy estimate for Ěm,‖(t) in order to control the energy Em(t); the two norms are actually
equivalent; see Remark 13 below.

7.2. Application of energy estimates. We recall that the good unknowns satisfy the equa-
tions derived in Sections 6.2–6.5. Introduce R2(t) = Ri,2(t) = ‖ri,2(t)‖L2(I) with

ri,2 =
∑

|αI |=m

|(f (αI )
i,2 , . . . , f

(α)
i,7 )|+

∑

|α|=m,α0≤m−1

|(f (α)i,r,3, f
(α)
i,r,6, f

(α)
i,r,7)|;

these are the lower order terms in (91), (103), (106), (107), (109), and (110) and also include
derivatives of u, vi, and ϕ up to at most order m − 1. Next, put R3(t) = Re,3(t) + Ri,3(t) =
‖re,3(t)‖L2(E) + ‖ri,3(t)‖L2(I) with

re,3 =
∑

|αI |=m

|(f (αI )
1 , f

(αI )
2 , f

(αI )
3 )|+

∑

|α|=m,α0≤m−1

|(f (α)r,1 , f
(α)
r,2 )|+

∑

|α|≤m−1

|∂t∂αu|,

ri,3 =
∑

|αI |=m

|(f (αI )
i,1 ,∂(f

(αI )
i,2 , . . . , f

(αI )
i,5 ))|+

∑

|α|=m,α0≤m−1

|(f (α)i,r,1,∂f
(α)
i,r,3)|+

∑

|α|≤m−1

|∂t∂αvi|;
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these quantities contain the lower order terms in (85), (91), (108), and (109), that contain
derivatives of u, vi and ϕ of order at most m, and derivatives of lower order terms in (91), (106),
(107), and (109) that contain only derivatives of order at most m − 1. In order to control the
last term in the energy estimate in Proposition 2, we put

R4(t) =
∑

|αI |=m,α0≤m−1

‖(∂tφ̌(αI )
i , f

(αI )
i,5 )(t)‖L2(I)‖fi,1(t)‖L2(I)

+
∑

|α|=m,α0≤m−1

‖∂tφ̌(α)i,r (t)‖L2(I)‖fi,r,1(t)‖L2(I),

where we recall that ∂tφ̌
(αI )
i , f

(αI )
i,5 , ∂tφ̌

(α)
i,r , and fi,r,1 are as in (103), (107), (110), and (109),

respectively. These terms include derivatives of vi and ϕ of order m. Finally, we put

R5(t) =
∑

|αI |=m

|(ζ̌(αI )
i , b(αI ))(t)|L2(Γ ),

where b(αI ) is as in (112).
To evaluate the energy function Ěm,‖(t), we use the energy estimate in Proposition 2. We

apply it with (ǔ, v̌i, ψ̌i) = (ǔ(αI ), v̌
(αI )
i , ψ̌

(αI )
i ), which satisfy (85), (91), and (107), and with

(ǔ, v̌i, φ̌i) = (ǔ
(α)
r , v̌

(α)
i,r , φ̌

(α)
i,r ) and (fi,4, fi,5) = (0, 0), which satisfy (108) and (109). We also

use obvious estimates ‖u(t)‖m−1,e ≤ ‖u(0)‖m−1,e +
∫ t
0 ‖∂tu(t′)‖m−1,edt

′ and ‖vi(t)‖m−1,i ≤
‖vi(0)‖m−1,i +

∫ t
0 ‖∂tvi(t′)‖m−1,idt

′. Then, we obtain the desired energy estimate on Ěm,‖(t):

(118) sup
0≤t≤T

Ěm,‖(t) ≤ C0e
C0M1

{
Ěm,‖(0) +R2(0) +

∫ T

0
R3(t)dt+

(∫ T

0
R4(t)dt

)1/2}
.

In order to prove the a priori estimate of the theorem, we also need an estimate on the
parametrization γ of the contact line. By Proposition 3, we obtain the following additional
boundary estimate

∑

|αI |=m

∫ T

0
|ζ̌(αI)(t)|2L2(Γ )dt ≤ C0

{
(1 + T +M1) sup

0≤t≤T
(Ěm,‖(t) +R2(t))

2 +

(∫ T

0
R3(t)dt

)2}
.

On the other hand, γ and ϕ satisfy (105) and (112), so that we have

|γ(t)|m ≤ C0



∑

|αI |=m

|ζ̌(αI )(t)|L2(Γ ) +R5(t) + 1


 .

Therefore, we get

∫ T

0
|γ(t)|2mdt ≤ C0

{
(1 + T +M1) sup

0≤t≤T
(Ěm,‖(t) +R2(t))

2(119)

+

(∫ T

0
R3(t)dt

)2

+

∫ T

0
(R5(t) + 1)2dt

}
.

7.3. Estimates for lower order terms. We proceed to evaluate the lower order terms Rj(t)
for j = 1, . . . , 5.

Lemma 7. It holds that R1(t) ≤ C0Em(t)1/2(‖u(t)‖m−1,e + ‖vi(t)‖m−1,i)
1/2 for ≤ t ≤ T .
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Proof. We first evaluate Re,1(t) = ‖re,1(t)‖L2(E). We write ‖·‖Lp instead of ‖·‖Lp(E) for simplicity.
In view of (36), for any multi-index α satisfying |α| = m− 1 we have

χb|C1(dα, ∂ϕ)f | = χb|([dα,∇ϕ] + (∂ϕdαϕ)T∇ϕ)f |
≤ C0

{ ∑

|β|≤m−2

|∂β∇f |+ |∂m−2∂ϕ||∂∇f |+ |∂m−2∂ϕ||∂∂ϕ||∇f |
}
.

Therefore, by a straightforward calculation, we obtain

re,1 ≤ C0

{ ∑

3≤|α|≤m−1

|∂αu|+ (|∂m−1ϕ|+ 1)|∂2u|

+ (|∂m−1ϕ|+ 1)(|∂2ϕ|+ 1)|∂u|+ |∂u||∂m−1u|
+ (|∂2u|+ |∂u|)|∂m−2u|+ (|∂m−1ϕ|+ 1)|∂u|2

}
.

Particularly, in the case m ≥ 4 we have

re,1 ≤ C0

{ ∑

|α|≤m−1

|∂αu|+ |∂m−1ϕ||(∂2u,∂u)| + |∂2u||∂m−2u|
}
,

so that, by the Sobolev embedding theorem H1(E) →֒ L4(E),

‖re,1‖L2 ≤ C0

(
‖u‖m−1,e + ‖∂m−1ϕ‖L4‖(∂2u,∂u)‖L4 + ‖∂2u‖L4‖∂m−2u‖L4

)

≤ C0(1 + ‖u‖3,e)‖u‖m−1,e

≤ C0‖u‖m−1,e.

In the critical case m = 3, we have

re,1 ≤ C0{(|∂2ϕ|+ 1)|∂2u|+ (|∂2ϕ|2 + 1)|∂u|+ |∂u||∂2u|+ (|∂2ϕ|+ 1)|∂u|2},

so that

‖re,1‖L2 ≤ C0

(
‖u‖2,e + ‖∂2ϕ‖L4‖∂2u‖L4 + ‖∂2ϕ‖2L4‖∂u‖L∞

+ ‖∂u‖L4‖∂2u‖L4 + ‖∂2ϕ‖L4‖∂u‖L4‖∂u‖L∞ + ‖∂u‖2L4

)

≤ C0(1 + ‖u‖2,e)(‖u‖2,e + ‖∂2u‖L4 + ‖∂u‖L∞)

≤ C0E
1/2
3 ‖u‖1/22,e ,

where we used Lemma 6. In any cases, we obtain Re,1(t) ≤ C0E3(t)
1/2‖u(t)‖1/22,e .

Since the structure of ri,1 is the same as that of re,1 by replacing u with vi, we obtain Ri,1(t) ≤
C0E3(t)

1/2‖vi(t)‖1/22,i in the same way as above. Therefore, we obtain the desired estimate. �

Remark 13. As we noted in (116), Em(t) and Ěm(t) are equivalent. Therefore, by Lemma 7

we have R1(t) ≤ C0Ěm(t)1/2Ěm,‖(t)
1/2, which together with (117) implies Ěm,‖(t) ≤ Ěm(t) ≤

C0Ěm,‖(t). Therefore, the three energy functions Em(t), Ěm(t), and Ěm,‖(t) are all equivalent.

Lemma 8. It holds that R2(t) ≤ C0(Em(t) + 1) for ≤ t ≤ T .

Proof. The structure of ri,2 is almost the same as that of ri,1. The only difference rises from

f
(αI)
i,4 , which is not necessarily zero even if Em(t) = 0. However, we easily get ‖f (αI )

i,4 ‖L2(I) ≤ C0,
so that we obtain the desired estimate. �

Lemma 9. It holds that R3(t) ≤ C0(|γ(t)|3/2m + 1)(Em(t)2 + 1) for ≤ t ≤ T .
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Proof. We first evaluate Re,3(t) = ‖re,3(t)‖L2(E). We write ‖·‖Lp instead of ‖·‖Lp(E) for simplicity.
In view of (36), for any multi-index α satisfying |α| = m we have

χb|C1(dα, ∂ϕ)f | = χb|([dα,∇ϕ] + (∂ϕdαϕ)T∇ϕ)f |
≤ C0

{ ∑

|β|≤m−1

|∂β∇f |+ |∂m−2∂ϕ||∂2∇f |

+
(
|∂m−1∂ϕ|+ (|∂m−2∂ϕ|+ 1)(|∂∂ϕ| + 1)

)
|∂∇f |

+
(
|∂m−1∂ϕ|(|∂∂ϕ| + 1) + (|∂m−2∂ϕ|+ 1)(|∂∂ϕ| + 1)2

)
|∇f |

}
.

Therefore, by a straightforward calculation, we obtain

re,3 ≤ C0

{ ∑

m1+m2≤m−1

(|∂m1+1u|+ 1)|∂m2+1u|+ |∂m−1ϕ|(|∂3u|+ |∂2u||∂u|)

+
(
|∂mϕ|+ (|∂m−1ϕ|+ 1)(|∂2ϕ|+ 1)

)
(|∂2u|+ |∂u|2)

+
(
|∂mϕ|(|∂2ϕ|+ 1) + (|∂m−1ϕ|+ 1)(|∂2ϕ|+ 1)2

)
|∂u|

}
.

Particularly, in the case m ≥ 4 we have

re,3 ≤ C0

{ ∑

|α|≤m

|∂αu|+ |∂2u||∂m−1u|+ (|∂3u|+ |∂2u|)|∂m−2u|

+ |∂m−1ϕ||∂3u|+ (|∂mϕ|+ |∂m−1ϕ|)(|∂2u|+ |∂u|)
}
,

so that, by the Sobolev embedding theorem H1(E) →֒ L4(E),
‖re,3‖L2 ≤ C0

(
‖u‖m,e + ‖∂2u‖L4‖∂m−1u‖L4 + ‖(∂3u,∂2u)‖L4‖∂m−2u‖L4

+ ‖∂m−1ϕ‖L4‖∂3u‖L4 + ‖(∂mϕ,∂m−1ϕ)‖L4‖(∂2u,∂u)‖L4

)

≤ C0{(‖u‖m−1,e + 1)‖u‖m,e + |γ|m‖u‖m−1,e}
≤ C0(|γ|m + 1)Em,

where we used Lemma 6. In the critical case m = 3, we have

re,3 ≤ C0

{
(|∂u|+ 1)(|∂3u|+ |∂2u|+ |∂u|) + |∂2u|2 + |∂2ϕ|(|∂3u|+ |∂2u||∂u|)

+ (|∂3ϕ|+ |∂2ϕ|2 + |∂2ϕ|)(|∂2u|+ |∂u|2) + (|∂3ϕ||∂2ϕ|+ |∂3ϕ|+ |∂2ϕ|3)|∂u|
}
,

so that

‖re,3‖L2 ≤ C0

(
(‖∂u‖L∞ + 1)‖u‖3,e + ‖∂2u‖2L4 + ‖∂2ϕ‖L∞(‖∂3u‖L2 + ‖∂2u‖L2‖∂u‖L∞)

+ (‖(∂3ϕ,∂2ϕ)‖L4 + ‖∂2ϕ‖2L8)(‖∂2u‖L4 + ‖∂u‖3/2L∞‖∂u‖1/2
L2 )

+ (‖∂3ϕ‖L4‖∂2ϕ‖L4 + ‖∂3ϕ‖L2 + ‖∂2ϕ‖3L6)‖∂u‖L∞

≤ C0

(
(E3 + 1)(|γ|3 + 1)E3 + E2

3

+ |γ|1/23 ((|γ|3 + 1)E3 +E2
3) + (|γ|3 + 1)(E3 + E2

3)
)

≤ C0(|γ|3/23 + 1)(E3 + 1)E3,

where we used Lemma 6 and ‖∂2ϕ‖Lp ≤ C0|γ|1/2−2/p
3 for p ∈ [4,∞], which comes from Lemma

3. In any cases, we obtain Re,3(t) ≤ C0(|γ(t)|3/2m + 1)(Em(t) + 1)Em(t).
Since the structure of ri,3 is the same as that of re,3 by replacing u with vi, we obtain Ri,3(t) ≤

C0(|γ(t)|3/2m + 1)(Em(t)2 + 1) in the same way as above. We note that this is the place where
we need not only to Zw ∈ Cm(I0) but also to Zw ∈ Cm+1(I0) in Assumption 1. Therefore, we
obtain the desired estimate. �

Lemma 10. It holds that R4(t) ≤ C0(|γ(t)|3/2m + 1)(Em(t)3 + 1) for ≤ t ≤ T .
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Proof. By (103) and (110), for any multi-index α satisfying |α| = m and α0 ≤ m − 1 we have

|∂tφ̌(α)i |+ |∂tφ̌(α)i,r | ≤ C0
∑

|β|=m(|v̌(β)i |+ |v̌(β)i,r |)+ri,2, which implies ‖∂tφ̌(α)i ‖L2(I)+‖∂tφ̌(α)i,r ‖L2(I) ≤
C0(Ěm +R2). Therefore, we obtain R4 ≤ C0(Ěm +R2)R3, which together with Lemmas 8 and
9 yields the desired estimate. �

Lemma 11. It holds that R5(t) ≤ C0 for 0 ≤ t ≤ T .

Proof. For any multi-index αI satisfying |αI | = m, we see easily that
{
|ζ(αI )
i | ≤ C0(|∂m−1ϕ|+ 1),

|b(αI )| ≤ C0(
∑

j+k=m−1 |∂
j
t ∂

k
s γ|+ 1),

which together with Lemma 3 implies R5 ≤ C0(|γ|m−1 + 1) ≤ C0. �

7.4. The transversality condition. When we show the estimates in (113) for some time
T > 0, we usually evaluate the time derivative of each quantities. Such a standard procedure
can work in the case m ≥ 4. However, in the critical case m = 3, this procedure does not work,
especially, for the transversality condition |N · (∇ζ −∇ζi)| ≥ c0 on Γ , because we do not have
the boundedness of the second order derivatives ∂t∇ζ and ∂t∇ζi. To bypass this difficulty, we
prepare the following lemmas.

Lemma 12. Let Ω = E or I. There exists a positive constant C such that for any f ∈
H2((0, T ) × Ω) and any t ∈ (0, T ) we have

‖f(t, ·)− f(0, ·)‖L∞(Ω) ≤ C
√
t
(
‖f‖H2((0,T )×Ω) + ‖f(0, ·)‖H3/2(Ω) + ‖∂tf(0, ·)‖H1/2(Ω)

)
,

where the constant C does not depend on T .

Proof. By using an appropriate extension operator from Hs(Ω) to Hs(R2), it is sufficient to
show the estimate in the case Ω = R

2. We first consider the case f(0, x) ≡ ∂tf(0, x) ≡ 0. Then,
by extending f(t, x) for t < 0 by zero and denoting it by f0, we have f0 ∈ H2((−∞, T ) × R

2)
and ‖f0‖H2((−∞,T )×R2) = ‖f‖H2((0,T )×R2). We further extend f0(t, x) for t > T smoothly by a

standard procedure. Then, we have F0 ∈ H2(R×R
2) and ‖F0‖H2(R×R2) ≤ C‖f0‖H2((−∞,T )×R2).

Now, by the Sobolev embedding theorem H2(R3) →֒ C1/2(R3) we have

|f(t, x)− f(0, x)| = |F0(t, x)− F0(0, x)|
≤ C

√
t‖F0‖H2(R×R2)

≤ C
√
t‖f‖H2((0,T )×R2).

We then consider the general case. By the trace theorem, we have f(0, ·) ∈ H3/2(R2) and

∂tf(0, ·) ∈ H1/2(R2). Therefore, there exists F ∈ H2(R× R
2) such that

{
F (0, x) = f(0, x), ∂tF (0, x) = ∂tf(0, x),

‖F‖H2(R×R2) ≤ C(‖f(0, ·)‖H3/2(R2) + ‖∂tf(0, ·)‖H1/2(R2)

)
.

Putting f1 := f − F , we have f1(0, x) ≡ ∂tf1(0, x) ≡ 0. Therefore, we see that

|f(t, x)− f(0, x)| ≤ |f1(t, x)− f1(t, x)|+ |F (t, x)− F (0, x)|
≤ C

√
t
(
‖f1‖H2((0,T )×R2) + ‖F‖H2(R×R2)

)

≤ C
√
t
(
‖f‖H2((0,T )×R2) + ‖F‖H2(R×R2)

)
,

which gives the desired estimate. �
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Lemma 13. Let Ω = E or I. There exists a positive constant C such that for any f ∈
H2((0, T ) × Ω) and any t ∈ (0, T ) we have

‖f(t, ·)− f(0, ·)‖L∞(Ω) ≤ C‖f‖H2((0,T )×Ω),

where the constant C does not depend on T .

Proof. By a standard trace theorem, we have ‖f(0, ·)‖H1/2(Ω) . ‖f‖H1((0,1)×Ω). Therefore,

by a simple scaling t → T t, we obtain ‖f(0, ·)‖H1/2(Ω) . ( 1√
T
+

√
T )‖f‖H1((0,T )×Ω), so that

‖f(0, ·)‖H3/2(Ω) + ‖∂tf(0, ·)‖H1/2(Ω) . ( 1√
t
+

√
t)‖f‖H2((0,T )×Ω) for 0 < t ≤ T . This and Lemma

12 imply |f(t, x)− f(0, x)| . (1 + t)‖f‖H2((0,T )×Ω). Therefore, the desired estimate holds in the
case 0 ≤ t ≤ 1. On the other hand, in the case t > 1, by the Sobolev embedding theorem we see
that ‖f(0, ·)‖L∞(Ω) . ‖f‖L∞((0,1)×Ω) . ‖f‖H2((0,1)×Ω) . ‖f‖H2((0,t)×Ω). Similarly, we have also
‖f(t, ·)‖L∞(Ω) . ‖f‖H2((0,t)×Ω). Therefore, we obtain the desired estimate. �

Now, we evaluate |N · (∇ζ −∇ζi)(t, x)| as follows. For any x ∈ Γ , by Lemma 13 we see that

|N · (∇ζ −∇ζi)(t, x)−N · (∇ζ −∇ζi)(0, x)|
≤ ‖∇ζ(t, ·)−∇ζ(0, ·)‖L∞(E) + ‖∇ζ(t, ·)−∇ζ(0, ·)‖L∞(I)
. ‖∇ζ‖H2((0,T )×E) + ‖∇ζi‖H2((0,T )×I).

Here, by Lemma 6 (iv) we have

‖∇ζ‖2H2((0,T )×E) ≤
∑

|α|≤m−1

∫ T

0
‖∇∂αζ(t)‖2L2(E)dt

≤ C0

∫ T

0
(|γ(t)|m + 1)Em(t)2dt

≤ C0M
2
2 ((M3T )

1/2 + T ).

In view of |∇∂αζi| ≤ C0(|∂∂m−1ϕ|+|∂m−1ϕ|+1) and Lemma 3, we have also ‖∇ζi‖2H2((0,T )×I) ≤
C0((M3T )

1/2 + T ). Therefore, we obtain

(120) |N · (∇ζ −∇ζi)(t, x) −N · (∇ζ −∇ζi)(0, x)| ≤ C0(M2 + 1)((M3T )
1/2 + T )1/2,

for any (t, x) ∈ [0, T ]× Γ .

7.5. Completion of the a priori estimates. By Lemma 9, our assumption (114), and
Hölder’s inequality, we see that

∫ T

0
R3(t)dt ≤ C0(M

2
2 + 1)

∫ T

0
(|γ(t)|3/2m + 1)dt

≤ C0(M
2
2 + 1){

(∫ T

0
|γ(t)|2mdt

)3/4

T 1/4 + T}

≤ C0(M
2
2 + 1)((M3

3T )
1/4 + T ).

Similarly, by Lemma 10 we have
∫ T
0 R4(t)dt ≤ C0(M

3
2 +1)((M3

3T )
1/4+T ). Therefore, by (114),

(118), Lemma 8, and Remark 13, we obtain

sup
0≤t≤T

Em(t) ≤ C0e
C0M1

{
Em(0) + 1 +

∫ T

0
R3(t)dt+

(∫ T

0
R4(t)dt

)1/2}
(121)

≤ C0e
C0M1

{
1 + (M3

2 + 1)((M3
3T )

1/4 + T )}.



THE MOVING CONTACT LINE PROBLEM FOR THE 2D NONLINEAR SHALLOW WATER EQUATIONS 51

Similarly, we get
∫ T

0
|γ(t)|2mdt ≤ C0

{
(1 + T +M1) sup

0≤t≤T
(Em(t) + 1)2 +

(∫ T

0
R3(t)dt

)2

+ T
}

(122)

≤ C0

{
(M1 + 1)(M2 + 1)2 + (M2

2 + 1)2((M3
3T )

1/4 + T )2
}
.

As for the first condition in (114), by Lemmas 3 and 6 we see that

‖∂(h,w)‖L∞(E) + ‖∂hi‖L∞(I) + ‖∂∂ϕ‖L∞(R2) ≤ C0

(
‖∂u‖L∞(E) + ‖(∂2ϕ,∂2ϕ)‖L∞(R2)

)

≤ C0(Em + |γ|1/2m + 1)

≤ C0(M2 + 1)(|γ|1/2m + 1),

so that

‖∂(h,w)‖L1(0,T ;L∞(E)) + ‖∂hi‖L1(0,T ;L∞(I)) + ‖∂∂ϕ‖L1(0,T ;L∞(R2))(123)

≤ C0(M2 + 1)((M3T
3)1/4 + T ).

In view of (121)–(123), we first chooseM1 as an arbitrary positive constant, for example,M1 = 1.
Then, we choose M2 = 2C0e

C0M1 and M3 = 2C0(M1 + 1)(M2 + 1)2. If we take the time T > 0
appropriately small depending only on these constants M1,M2,M3, and C0, then we see that
the solution satisfies in fact (114).

It remains to show that the solution satisfies also (113). Since I(0) ⊂ I0 and I0 is open,
there exists a constant δ1 > 0 such that for any X ∈ R

2, dist(X,I(0)) ≤ δ1 implies X ∈ I0. We
note also that I(0) = {ϕ(0, x) |x ∈ I}. Therefore, in order to prove the first condition in (113),
it is sufficient to show that for any x ∈ I, we have |ϕ(t, x) − ϕ(0, x)| ≤ δ1. By Lemmas 3 and 6
and the Sobolev embedding theorem H1(TL) →֒ L∞(TL), we have





‖∂t(gh− |w|2)(t)‖L∞(E) ≤ C0(M2 + 1)(|γ|1/2m + 1),

|∂tγ(t)|L∞(TL) ≤ C0,

‖∂tu(t)‖m−1,e + ‖∂tvi(t)‖m−1,i + |∂tγ(t)|m−1 ≤ C0(M2 + 1)(|γ(t)|m + 1),

which together with (120) and the assumptions in (12) on the initial data implies




supx∈I |ϕ(t, x)− ϕ(0, x)| ≤ C0T,

inf(t,x)∈(0,T )×E (gh(t, x) − |w(t, x)|2) ≥ 2c0 − C0(M2 + 1)((M3T
3)1/4 + T ),

inf(t,x)∈(0,T )×Γ |N · (∇ζ −∇ζi)(t, x)| ≥ 2c0 − C0(M2 + 1)((M3T )
1/2 + T )1/2,

sup0<t<T |γ(t)|L∞(TL) ≤ ηin0 r0 + C0T,

sup0<t<T (‖u(t)‖m−1,e + ‖vi(t)‖m−1,i + |γ(t)|m−1) ≤M0 + C0(M2 + 1)((M3T )
1/2 + T ).

Therefore, if we take T > 0 further small depending on the constants δ1, c0, η
in
0 , η0, C0,M0,M2,

and M3, then we see that the solution satisfies in fact (113), too. The proof of Theorem 1 is
complete. �
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