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A B S T R A C T

Particle-Resolved Simulations (PRS) of fluid–solid particles are conducted to study fluid–particle heat transfers
and wall-to-bed heat transfers in an anisothermal liquid–solid fluidized bed. An overview of existing PRS
methods to study anisothermal fluid–solid flows is presented. In the framework of fluidized bed simulations,
the collision detection method is optimized using Verlet tables. The overall computation time is reduced by
20%. An original Lagrangian method to compute the fluid–particle heat transfers is presented for an isolate
particle. A parametric study on the fluid–particle heat transfer is performed to assess well-known correlations
of the literature for a settling particle in a quiescent fluid. 77 PRS are performed for Reynolds numbers between
1 and 32 and Prandtl number between 0.1 and 10 for a grid resolution of 20 meshes per particle diameter. For
two of three correlations considered, the predicted heat flow is within 10% error. An anisothermal fluidized bed
of 2 134 particles is finally studied. Four fluidization velocities are considered for a solid fraction comprised
between 0.13 and 0.35. Three grid resolutions are carried out to assess the sensitivity of the mesh for the
lowest fluidization velocity (12, 24 and 36 meshes per particle diameter). Results show that the macroscopic
behavior of the bed is well retrieved even with a coarser grid as the solid fraction is well predicted. However,
strong effects of the grid resolution are observed on the fluid–particle and the wall-to-bed heat transfers. The
study of the velocity–temperature correlation shows that the parietal heat transfer is driven by the turbulent
heat flow near the wall (𝑥+ ∼ 30).
1. Introduction

The concept of fluidization is studied since a hundred years. In a
recent review, Zhang et al. [1] highlighted that the first prototype of
fluidization was introduced by Winkler et al. [2] in 1922 for water-
gas production. Since then, it has been used in many industrial areas
such as pneumatic conveying for powder transport [3] or methane
cracking for hydrogen production with fluidized beds [4]. In the field
of solar energy, fluidized beds are used as a new heat transfer fluid
(HTF) in concentrated solar power (CSP) plants. In solar tower power
plants, a panel of heliostats reflects solar radiation to a receiving
surface located at the top of a solar tower. The HTF is exposed to
the concentrated solar flux at the receiving surface so it received the
solar flux. The HTF is then either transported in a thermal storage or
injected into a thermodynamic Rankine cycle to convert its thermal
energy into electricity [5]. Current CSP plants use molten salt as HTF.
However, the main drawback is the limitation of the working tempera-
ture (<560 ◦C) due to the degradation of thermodynamic properties at
high temperature as a result of chemical reactions [5–7]. To overcome
this issue, the use of solid particles as a new HTF is of great interest.

∗ Corresponding authors.
E-mail addresses: edouard.butaye@promes.cnrs.fr (E. Butaye), adrien.toutant@univ-perp.fr (A. Toutant).

In particle-in-tube solar receiver, introduced by Flamant in 1982 [8],
solid particles are fluidized in a dispenser with a primary air injection.
With an imposed pressure gradient, the particles flow upward the tube.
Finally, a secondary injection directly into the tube controls the mass
flow rate and thus the fluidization regime. [7]. In a recent study,
Gueguen et al. [7] succeeded in operating at 650 ◦C demonstrating
a 50% increase of the wall-to-bed heat transfer in front of a mean
operating temperature of the particles of 500 ◦C (see Fig. 13 in [7]).
With such systems, the main limitation is no longer the temperature
of the HTF but the solar receiver wall temperature. When very high
temperatures are reached, the inhomogeneous solid fraction at the wall
leads to a highly inhomogeneous heat transfer between the wall and
the bed, resulting in high thermomechanical stresses. It is therefore
required to characterize the flow inside the solar receiver for two
reasons. First, to predict the wall-to-bed heat transfer as a function of
the flow regime and physical properties of the fluid and the particles.
It implies to understand the complex dynamic and thermal behavior of
the fluid–particles flow. Then, to limit the thermomechanical stresses
exerted on the wall of the solar receiver.
https://doi.org/10.1016/j.ijheatmasstransfer.2025.126687
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Nomenclature

𝛼 Volumic presence rate [−]
𝛥𝑡 Temporal discretization [s]
𝛥𝑥 Spatial discretization [m]
𝛿𝑛 Overlapping during collision [m]
𝜆 Thermal conductivity [W m−1 K−1]
𝐅𝐜 Vector collision force [N m−3]
𝐠 Vector gravity acceleration [m s−2]
𝐮 Vector velocity [m s−1]
𝜇 Dynamic viscosity [Pa s]
𝛷 Heat flux [W]
𝜌 Density [kg m−3]
𝜏0 Collision time [s]
𝑓 Fluid
𝑝 Particle
𝑤 Wall
𝑐𝑝 Heat capacity [J K−1 kg−1]
𝐷 Diameter [m]
𝑒𝑑 𝑟𝑦 Dry restitution coefficient [−]
𝑒𝑒𝑓 𝑓 Effective restitution coefficient [−]
𝑒𝑤𝑒𝑡 Wet restitution coefficient [−]
ℎ Heat transfer coefficient [W m−2 K−1]
𝐼 Volume phase indicator function [−]
𝑘 Spring stiffness [N m−1]
𝑚 Mass [kg]
𝑁𝑓 Facets number [−]
𝑁𝑝 Particles number [−]
𝑁 𝑢 Nusselt number [−]
𝑝 Pressure [Pa]
𝑃 𝑒 Peclet number [−]
𝑃 𝑟 Prandtl number [−]
𝑅𝑒 Reynolds number [−]
𝑆 Surface area [m2]
𝑆 𝑡 Stokes number [−]
𝑇 Temperature [K]
𝑇 ′ Fluctuating temperature [K]
𝑈 ′ Fluctuating velocity [m s−1]
CFD-DEM Computational Fluid Dynamics - Discrete

Element Method
CSP Concentrated Solar Power
HTF Heat Transfer Fluid
PR-DNS Particle Resolved - Direct Numerical Simu-

lation
PRS Particle Resolved Simulation

Over the last decades, a number of experiments were conducted
to study fluidized beds [9,10]. Flow regime transitions are now well
characterized in terms of particle shape [11] and hydrodynamics [12,
13]. Regarding heat transfers, Gueguen et al. showed that the wall-
to-bed heat transfer increases with temperature and strongly depend
on the fluidization regime. The aforementioned experimental studies
have described the dynamic and thermal behavior of fluidized beds

acroscopically. However, a local description of the flow is not possible
hrough an experimental process without invasive methods and nearly
mpossible at high temperature. The prediction of the inhomogeneous
ehavior of parietal heat transfer is required to understand the ther-
omechanical stresses exerted on the wall of the solar receiver. The

reater the particle agitation, the greater the heat transfer. Since the
7], the
egime of interest for solar applications is turbulent fluidization [

2 
inhomogeneous nature of heat transfer cannot be neglected. Therefore,
numerical simulation is an excellent tool to fully characterize the flow
nside the solar receiver. It enables to access local quantities of the fluid
nd particles such as physical properties, mean value and fluctuations
f velocity, pressure and temperature, or the local solid fraction.

Numerical simulations of fluidized beds are challenging because of
the multi-scale phenomenon occurring in the flow. In a particle-in-
tube fluidized beds, the largest structures can be of the order of the

eter and yet strongly depend on fluid–particle and particle–particle
nteractions at the particle scale [14]. At the particle scale - also

referred to as microscopic scale-, the hydrodynamic force exerted by
the fluid to the particles and particle–particle interactions operate. At
the scale of several particle diameters (mesoscopic scale), the wake
of the particle and the interaction with the wake of other particles
must be considered. At a larger scale (macroscopic scale), particle
assembly movements prevail, resulting in different flow regimes which
depend on the fluidization velocity and the particle size. Different scales
of resolution have emerged to study fluidized beds [1,14,15]. At the
smallest scale, particle-resolved direct numerical simulation (PR-DNS)
fully resolve the flow at the particle scale and thus capture all the
forementioned hydrodynamic interactions. This requires to capture
he velocity and temperature gradients at the interface between the
luid and the particle. For a review of PR-DNS methods, the reader
s referred to Tenneti and Subramanian [16], Maxey [17] and more

recently Marchelli et al. [18]. The Eulerian grid resolution associated
with PR-DNS is then more than 40 meshes per diameter for viscous
flows and increase with the Reynolds number [19]. The numerical
cost of PR-DNS limits its application to academic cases, thus excluding
the possibility to study the collective effects of a large number of
particles involving several hundreds of millions of particles. To study
 large number of particles, Computational Fluid Dynamics - Discrete

Element Method (CFD-DEM) simulations, also commonly referred to as
Eulerian–Lagrangian methods in the literature, can be performed [20–
22]. At this scale, particles are smaller than the Eulerian grid size,
enabling to study the collective effects of a particle assembly. CFD-DEM
esolve Navier–Stokes equations on an Eulerian grid and track particles
n a Lagrangian way. Particles are transported by solving Newton
quation. As the flow is not resolved at the particle scale in that case,
orrelations are employed to model the hydrodynamic forces exerted
y the fluid to the particles (drag force, lift force, Basset’s force...) [23,

24]. If the solid fraction is sufficiently high, particles are not simply
advected by the fluid (one-way coupling) and the force exerted by
he particles to the fluid have to be considered (two-way coupling)
s well as collision forces between particles (four-way coupling) [25].

CFD-DEM presents the advantage to track individually each particle
nd so to accurately compute the mean velocity and fluctuations of
articles and solid fraction but models are required to considered

mutual interactions exerted between the fluid and the particles. Closure
models are obtained from PR-DNS simulations, as the hydrodynamic
forces exerted by the fluid on the interface can be computed explicitly
or each particle. Experience at a laboratory scale can be reproduced

numerically. To study fluidized beds in an industrial context, the Euler–
Euler method is most appropriate. It considered the fluid and the
articles as two distinct and continuous phases [26,27]. Phase averaged

Navier–Stokes equations are solved for each medium and interphase
coupling is ensured via closure terms. CFD-DEM simulations can be
harnessed to inform Euler–Euler simulations [28,29].

An intermediate scale between PR-DNS and CFD-DEM is Particle
esolved Simulation (PRS). PRS uses the same methodology as PR-
NS but with a coarser mesh because of the numerical costs associated
ith PR-DNS for a fluidized bed. Particles are therefore represented
y a dozen meshes per diameter on the Eulerian mesh, which is not
ufficient to fully resolved hydrodynamics and thermal gradients at the
nterface between the fluid and the particles. A first attempt to correct

hydrodynamic gradients at the fluid–particle interface was presented
19] for a single-particle Stokes flow. This correction will not be
in [
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studied or applied in the present work, as extensions of the method
re needed to tackle the complex case of fluidized beds.

PRS are widely employed to compute drag force to inform Euler–
agrange simulations [24,30,31]. However, due to high computational
ost, the Eulerian mesh is coarse and hydrodynamic gradients are not
ully resolved in the meaning of PR-DNS. Indeed, at least 5 Eulerian
esh cells in the boundary layer are required to accurately capture

the gradients [30]. In the best cases, a mesh sensitivity is performed
on macroscopic quantities such as the mean velocity, the drag force
and the bed height [32]. In other scenarios, hydrodynamic forces
were accurately computed on fixed beds, shallow fluidized beds, two-
dimensional or very small three-dimensional fluidized beds [30,33–35].
To this day, the largest particle resolved simulation of a fluidized
bed was performed by Dou et al. [36]. The authors computed a 3D
article resolved simulation of 115 200 particles in a shallow fluidized
ed using a Lattice Boltzmann Method - Discrete Element Method
LBM-DEM) approach and GPU-based parallel computation. It is an
mpressive achievement for particle resolved simulation demonstrating
he ability of their method to simulate multi-scale flows with relatively

high accuracy (the lattice step was 20 times smaller than the particle
diameter).

In the case of fluidized beds in solar receivers, heat transfers need
o be considered. If numerical methods to study the hydrodynamic of

fluidized beds with PRS are now well established, the consideration
of heat transfers is much more recent. The first study to consider
hree-dimensional heat transfer on a single particle was conducted by
agchi et al. [37] in 2001. Later, two-dimensional studies investigated

heat transfers in a particle assembly. Feng and Michaelides [38] devel-
ped a numerical method to consider heat transfers with an Immersed
oundary Method (IBM) on a four-way coupling basis. Boussinesq
ypothesis was assumed to consider density variation in the buoyancy
erm. Gan et al. [39] used the same hypothesis to study heat transfers

with the Arbitrary Lagrangian Eulerian (ALE) finite-element method.
Both authors demonstrated that the sedimentation process of particles
is affected by the local temperature and buoyancy force. Gan et al.
identified five sedimentation regimes defined by the Grashof number —
which confronts buoyant force with viscous force. The authors demon-
strated that the terminal velocity of a sedimenting particle depends
on the Grashof number in a complex way. Yu et al. [40] employed
the fictitious domain method and retrieved Gan results. It was later
extended to three-dimensional simulations by Dan and Wachs [41]

ho performed the first three-dimensional study of a single particle in
edimentation in a semi-infinite channel.

Two types of heat transfers can be identified in particle-in-tube solar
eceiver: fluid–particle heat transfer and wall-to-bed heat transfer. In
 review, Deen et al. highlighted the work of Tenneti et al. [42] and
avassoli et al. [43] for the study of heat transfer in fixed array of
pheres. Both authors computed the mean Nusselt number as a function

of the void fraction to assess the validity of Gunn’s correlation [44]
p to Reynolds 100 for a Prandtl number of 0.72 [42] and 1 [43].

Deen et al. [45] refit Gunn’s correlation based on the numerical data
of the work of Tenneti and Tavassoli. In a following study, the authors
xtended their method to consider heat and mass transfer between the
luid and a fixed array of particles [46]. Three Reynolds numbers were

studied (120, 180 and 240). The results are consistent with Gunn’s
orrelation (within 4%), even if the resolution was rather coarse,

with 24 meshes per particle diameter. Other studies investigated mass
transfers in fixed and dynamic beds (fluidized beds with high inertia
particles) [47], heat and mass transfers in a shallow fluidized bed [48].
Feng and Musong [48] pointed out that the simulation is partially
under-resolved at Reynolds numbers above 200 when the resolution is
only 15 meshes per particle diameter. Furthermore, the authors showed
that the average particle Nusselt number increases with the fluidization
velocity and the fluid-to-particle heat transfer decreases along the bed
height. More recently, Chadil et al. [49,50] computed with a high-
rder interpolation method the fluid-to-particle heat transfer for each
3 
particle in a fixed assembly. Finally, one of the most recent work on
heat transfer in fluidized beds was pursued by Thiam [51]. The authors
realized an extensive study on the heat transfer in a small fluidized bed
(1120 particles) with coarse mesh (16 meshes per particle diameter).

n excellent agreement was found with Wen & Yu [52] correlation for
the drag force and with Gunn’s [44] correlation for heat transfers. The
results obtained for the resolution of 16 meshes per particle diameter
were confronted with those obtained with a resolution of 32 meshes per
diameter for Reynolds numbers comprised between 15 and 50 and for
a Prandtl number equals to 7. No significant deviations were observed
for the hydrodynamic behavior. However, the authors showed that a
mesh refinement would have been required to correctly predict heat
transfers because of the high Prandtl number. In their work, periodic
boundary conditions were applied so parietal heat transfers were not
considered.

Wall-to-bed heat transfers were studied by Haid [53]. The author
ompared five correlations to predict the heat transfer coefficient on

a database of more than 2500 experiments. As it gathers experiments
with very different heater geometries, the mean relative error of all
orrelations lie in 67.2%. The best prediction is obtained with the
orrelation using 7 constants, for an error of 32.0%. For the simplest

correlation, using 3 constants, the error is 34.4%. The author empha-
sizes that this correlation is a reasonable compromise between accuracy
and complexity. More recent experiments on wall-to-bed heat transfers

ere conducted by Gueguen et al. [7] and Lee et al. [54].
To the best of our knowledge, there is no study of wall-to-bed

and fluid-to-particle heat transfers, for a particle-in-tube fluidized bed
with a PRS approach, in the literature. This study aims to clarify heat
transfers in an anisothermal fluidized bed. The paper is organized
as follows. First, the numerical and physical modeling are described
in Section 2. Key aspects of the numerical analysis are presented in
section. Section 3. Section 4 pertains a parametric study of the heat
ransfers on a isolate particle. Section 5 investigates fluid–particle and

wall-to-bed heat transfers in an anisothermal liquid–solid fluidized bed.
Finally, conclusions and outlooks are drawn in Section 6.

2. Physical and numerical modeling

The assumptions on which the model relies are described in Sec-
tion 2.1. The simulations of the present study are performed with
rioCFD software. TrioCFD, previously named Trio_U is developed
y the French atomic energy commission (CEA) since 1993 [55]. Since

then, it has been widely used to study heat transfers [56], turbu-
lence [57] and bubbly flows [58], to name but a few. In the present
work, TrioCFD is used to investigate anisothermal fluid–solid flows.
The numerical modeling of the particle-resolved approach on the Eule-
rian grid is presented in Section 2.2. The choices of the discretization
schemes and solvers are detailed in Section 2.3.

2.1. General hypothesis

The computation of anisothermal fluidized beds requires to resolve
he flow of the fluid and the particles trajectory. The model is based on
 one-fluid formulation of the Navier–Stokes equations and particles are

model as a highly viscous fluid. The numerical model is based on the
following assumptions:

(i) both phases are incompressible. The fluid velocity is very small
in front of the speed of sound. All physical properties of fluid
and particles are assumed constants.

(ii) particles are considered spherical and non-deformable. Particle–
particle and wall-particle collision velocities are too small to
induce a deformation. The imposed temperature is sufficiently
far from the melting temperature of the particles for dilation to
be neglected. Only monodisperse fluidized beds are considered
in the present study so all particles have the same diameter.
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Fig. 1. Interpolation of Eulerian velocity on Lagrangian markers. 𝐮𝑖𝑠 represents the
velocity of the i-eme Lagrangian marker. ∙: pressure and temperature nodes, ▴/▶ : y
/ x velocity nodes, ∙: Lagrangian marker.

(iii) the temperature is constant inside the particles. A boundary
condition imposes the constant temperature on their surfaces.
The thermal conductivity of particles is several orders of mag-
nitude larger than that of the fluid. Conduction can therefore
be considered instantaneous in the particles. In aimed applica-
tion, solid particles are in addition small (less than 100 μm).
The Biot number is small enough to justify the hypothesis of
homogeneous temperature.

(iv) the particles’ temperature is constant in time and uniform for
all the particles in the bed. The fluidized beds computed are not
circulating. Particles are therefore considered as a thermal sink.

(v) radiative heat transfers are neglected in the present approach as
well as contact thermal resistances as particles are maintained
at a constant temperature (heat sink).

2.2. Particle-resolved numerical approach

Numerous studies have investigated the numerical modeling of PRS.
ne can identify, the fictitious domain methods [59], the lattice Boltz-
ann methods [60] and the Arbitrarian Lagrangian Eulerian - Finite

Element Methods (ALE-FEM) [61]. The approach described below is a
ictitious domain method. The TrioCFD-1.9.1 one-fluid formulation
f Navier–Stokes equation is employed to resolve the fluid flow (see
ection 2.2.1). The surface of the particles is described with a Front-

Tracking method [62]. Each particle is therefore represented by a set
of Lagrangian markers (see Fig. 1). Hereinafter, Lagrangian facets will
refer to the closed surface formed by three Lagrangian markers (in
wo-dimension, it refers to the segment formed by two Lagrangian
arkers). To enforce the solid-body motion, all Lagrangian markers

f a particle are advected with the same velocity (see Section 2.2.2).
Furthermore, spurious velocities in particles are damped with a viscous
penalization. This method implicitly enforces fluid constraints on the
interface and was early validated in [63,64]. A soft-sphere collision
model was developed in [65] to tackle the collision process. The nu-

erical approach was employed in [19,65] to study fluidized beds and
o compute hydrodynamic forces exerted by the fluid to the particles.

2.2.1. Navier–Stokes equation and temperature energy equation
With the one-fluid formulation, the fluid and the particles move-

ment are governed by the following mass, momentum and energy
equations, respectively:

∇ ⋅ 𝐮 = 0 (1)
𝜕 (𝜌𝐮)

+ ∇ (𝜌𝐮⊗ 𝐮) = −∇𝑝 + ∇ ⋅
(

𝜇
(

∇𝐮 + ∇𝑇 𝐮
))
𝜕 𝑡
4 
+ 𝜌𝐠 + 𝐅𝐜 (2)
𝜕
(

𝜌𝐶𝑝𝑇
)

𝜕 𝑡 + ∇ ⋅
(

𝜌𝐶𝑝𝐮𝑇
)

= ∇ ⋅ (𝜆∇𝑇 ) (3)

𝐮 is the velocity, 𝑝 the pressure, 𝑇 the temperature, 𝑡 the time, 𝐠
he gravity vector, 𝜌 the density, 𝜇 the viscosity. The definition of 𝜌
nd 𝜇 specific to the one-fluid formulation is defined in Section 2.2.3.

A collision source term 𝐅𝐜 is added to the classical formulation of
the momentum equation to consider wall-particle and particle–particle
interactions. 𝐅𝐜 ensures the coupling between the Eulerian field on
which Navier–Stokes equations are solved, and the Lagrangian ap-
proach employed to compute the collision forces. Velocity, pressure
and temperature are solved on a staggered grid (see Fig. 1). Scalar
uantities are computed at the center of Eulerian cells whereas vector

quantities are computed component by component at the center of the
aces of the element volume control (see Fig. 1).

Without phase change, there is no stress jump at the interface
etween the fluid and the particle [66,67]. Inside solid particles, the

deformation tensor is null. This condition is achieved by imposing
 high viscosity ratio between the fluid and the particles (viscous

penalization).
For the energy equation, the boundary condition to impose is a

Dirichlet condition (𝑇𝑝 = 0 K). The temperature is only solved for
the fluid. As both phases are incompressible, physical properties are
not temperature-dependent. Consequently, the value of 0K does not
efer to absolute zero, and only the temperature difference between

the fluid and the solid should be considered. A ghost fluid method
is employed to ensure it implicitly. The procedure is the following.
irst, the Lagrangian facets’ normal is computed. Then, the temperature

gradient is evaluated at the gravity center of all the Lagrangian facets
by considering a pure diffusion model in the boundary layer of the par-
ticles. The gradient, computed in a Lagrangian manner, is distributed to
purely fluid Eulerian cells close to the interface. A linear extrapolation
is performed to extend the temperature gradient in solid cells. Finally,
the convection and diffusion therms of the energy equation (see Eq. (3))
can be computed in the whole computational domain. A complete
description of the procedure is detailed in Grosso et al. [56].

2.2.2. Transport of Lagrangian markers
Lagrangian markers that describe the particles’ surface represent

a mobile mesh overlying on the fixed Eulerian mesh. The interest of
he method lies in its ability to represent accurately the position of

the interface. The Front-Tracking (FT) method is often described as
complex because of the remeshing procedures that are required for
bubbles or drops. For solid particles – which are rigid by definition
 no remeshing is required which drastically simplifies the FT algo-
ithm. Nevertheless, it should be pointed out that, because of the data
tructure and the communications between Lagrangian and Eulerian
eshes, the computation of the volume fraction in two-phase cells and

he management of MPI operations for multiprocessor computing are
ather complex.

The interface is advected by a transport equation:
𝜕 𝜒
𝜕 𝑡 + 𝐮 ⋅ ∇𝜒 = 0 (4)

where 𝜒 is the phase indicator function. 𝜒 = 0 in the solid phase and
𝜒 = 1 in the fluid phase (see Fig. 2).

To solve this equation numerically, a trilinear interpolation of the
Eulerian velocity field is computed at each Lagrangian marker (see
Eq. 1). The velocity is then computed at the gravity center of each
agrangian marker. The velocity of a particle 𝑝 writes:

𝐮𝐩 = 1
𝑆𝑝

∑

facets
𝑆𝑖𝐮𝐢 (5)

where 𝑆𝑝 is the particle surface, 𝑆𝑖 and 𝐮𝐢 the surface and velocity of
the facet 𝑖. The Lagrangian markers are transported with the velocity
𝐮𝐩:
𝐭+𝟏 𝐭
𝐱𝐢 = 𝐱𝐢 + 𝐮𝐩𝛥𝑡 (6)
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Fig. 2. Phase indicator function.

where 𝐱𝐢 denotes the position of the Lagrangian marker 𝑖 and 𝛥𝑡 is the
time step of the simulation. As mentioned in [19], the Lagrangian mak-
rs are not physical points of the interface. Consequently, if the particle
s rotating, a given marker does not represent the same physical point at
wo different instants. This is possible because the particle is spherical.
he projection of its shape onto the Eulerian mesh remains unchanged
y pure rotation. The rotational motion of a particle is only considered

when solving the Navier–Stokes equation, and would result from a local
sheared flow. This phenomenon can be observed by looking at a cross-
ection of the velocity field inside the particle. The rotational motion

of a particle cannot result directly from a collision. For non-spherical
articles, the equation of angular momentum conservation must be
esolved.

2.2.3. Defining the one-fluid properties
In the one-fluid formulation of Navier–Stokes equation, physical

roperties are defined by the presence rate of each phase in an Eulerian
ell. In each Eulerian cell of volume 𝑉 , the volume indicator function

is defined as:

𝐼 = ∫𝑉
𝜒 𝑑 𝑉 (7)

The density is computed with an arithmetic average (see Eq. (8))
whereas the viscosity is computed with a harmonic average (see Eq.
(9)).

𝜌 = 𝐼 𝜌𝑓 + (1 − 𝐼)𝜌𝑝 (8)

𝜇 =
𝜇𝑓𝜇𝑝

𝐼 𝜇𝑝 + (1 − 𝐼)𝜇𝑓
(9)

The thermal conductivity is only defined in purely fluid cells as
temperature is not solved inside the particle (𝑇𝑝 = 0 K).

2.2.4. Collision modeling
The soft-sphere collision model of Hamidi et al. [65] is used to

odel solid–solid interactions. As the collision time is of the order
0−9 s, the resolution of solid–solid interaction with strain laws is
mpossible as it would drastically constrain the simulation time step.

Thus, the collision is spread over several time steps of the fluid solver.
Collision forces are computed using a Lagrangian approach. Each colli-
ion force exerted on a particle is discretized on the Eulerian field in the
orresponding purely solid meshes. The coupling between the Eulerian
pproach and the Lagrangian approach is achieved by the number of
he particle. Indeed, at each time step, a correspondence is performed

between the Lagrangian and the Eulerian number of the particles. The
model developed by Hamidi et al. [65] is briefly described hereinafter.

The contact force is modeled with a harmonic oscillator and writes:
𝐹𝑐 = −𝑘𝛿𝑛𝐧 (10)

5 
where 𝛿𝑛 is the particle–wall or particle–particle overlapping, 𝑘 is the
spring stiffness constant and 𝐧 is the normal vector to the plan of
collision. 𝛿𝑛 is described by the following equation:

𝑚𝑒𝛿𝑛 + 𝑘𝛿𝑛 = 0 (11)

where 𝑚𝑒 is the effective mass. 𝑚𝑒 =
𝑚𝑝
2 for a particle–particle collision

and 𝑚𝑒 = 𝑚𝑝 for a particle–wall collision.
The collision process is divided in two steps: the impact step cor-

responds to the decrease of the particle velocity during a collision
while the rebound step starts when the particle’s velocity changes sign.

uring the impact:

𝑘 = 𝑚𝑒

(

𝜋
𝜏0

)2
(12)

where 𝜏0 represents the collision time. During the rebound:

𝑘 = 𝑒2𝑒𝑓 𝑓𝑚𝑒

(

𝜋
𝜏0

)2
(13)

where 𝑒𝑒𝑓 𝑓 is the effective restitution coefficient and is another input
parameter of the model. 𝑒𝑒𝑓 𝑓 is the ratio of the particle velocity after
impact to the particle velocity before impact. 𝑒𝑒𝑓 𝑓 = 𝑒𝑑𝑒𝑤𝑒𝑡. 𝑒𝑑 is
he dry coefficient that models the energy loss during the collision
y elastic deformation of the particle and vibration. 𝑒𝑤𝑒𝑡 models the
unresolved) lubricating force that dissipates kinetic energy through
iscosity. According to Legendre et al. [68]:

𝑒𝑤𝑒𝑡 = 𝑒𝑥𝑝
(

−35
𝑆 𝑡

)

(14)

The Stokes number is defined by 𝑆 𝑡 = 1
9
𝜌𝑝
𝜌𝑓

𝑅𝑒 and the Reynolds number

is defined by 𝑅𝑒 = 𝜌𝑈 𝐷𝑝
𝜇𝑓

. The input parameters of the collision model
are the dry coefficient and the collision time.

2.3. Discretization schemes and solvers

An explicit first-order Euler scheme is used to discretize the time
derivatives of the mass, momentum and energy equations and to ad-
vect Lagrangian markers. An implicit treatment of diffusion relaxes
the time step. Spatial derivatives of convection and diffusion terms
are discretized using a second-order centered scheme. A prediction
orrection algorithm is used to solve the momentum equation. The

Poisson equation is then solved by the conjugate gradient method with
 symmetrical successive overrelaxation preconditioner (ssor).

3. Numerical tool optimization and post-processing

PRS of fluidized beds is challenging because it requires to detect
nd model all collisions separately. The computation time to detect the
articles in collisions increases with the square of the particle number
ecause all particle pairs are tested. Thus, it limits the number of

particles to be studied without a careful treatment of the algorithm
of detection. This issue is addressed in Section 3.1. The assets of PRS-
DEM approach lie in its ability to (i) track particles in their movement,
(ii) compute the hydrodynamic force exerted by the fluid and the heat
flux received on the particles surface. A description of the heat flux
computing procedure is provided in Section 3.2. The post-processing
of fluidized bed simulations is complex because of the large amount
f data generated. The post-processing methodology is presented in
ection 3.3.

3.1. Optimization of collision detection

One of the numerical challenges to fluidized beds computation is
he detection of collision. The simplest algorithm to implement is to

compute the distance to center for all particle pairs in the domain [65].
This procedure is realized by each CPU of the simulation and is there-
fore not optimized. Furthermore, the computational complexity scales
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as O
(

𝑁𝑝
(

𝑁𝑝+1
)

2

)

. However, not all collisions are likely to occur, as two

particles may be located several diameters apart. It is therefore essen-
ial to have efficient collision detection processing to handle several
housand or even tens of thousands of particles at reasonable cost.

An alternative procedure, namely the Verlet algorithm [69], is im-
lemented in this paper. This method is widely employed for collision
etection [64,70] in granular media. It is based on the Verlet table,
hich records the particles with which each particle may collide during
 given time step. The algorithm is described in Appendix C.

This procedure is very similar to the one detailed by Fang et al. [70].
For all the simulations, 𝜖𝑣 is set to 30% of the particle diameter
and 𝛥𝑡𝑚𝑎𝑥 = 50𝛥𝑡𝑠𝑖𝑚𝑢 with 𝛥𝑡𝑠𝑖𝑚𝑢 the computational time step. The
computational efficiency of the approach is presented in for a fluidized
bed of 2134 particles, three mesh resolutions (12, 24 and 36 meshes
per particle diameter) and four solid fractions. One can see that for the
coarser mesh, the computational time of the collision process is scaled
y a factor comprised between 12.2 and 13.6. The lower the solid
olume fraction, the more efficient the method as less collision occurs.
or finest grid resolutions (24 and 36 meshes per particle diameter),
ne can note that the computational time of the collision process is
omprised between 1.0% and 1.3% which shows the high scalability of
he method. One should point out that the collision detection does not
epend on the grid resolution. However, the finer the mesh, the longer
he CPU time to complete a time step (due to increased CPU commu-
ications). As a result, the relative time devoted to collision detection
ver a time step decreases with grid resolution. For these resolutions,
he simulations were only performed for the Verlet algorithm due to its
omputational cost.

For the coarser mesh, the overall simulation time is reduced by
0%. A parametric study on the distance 𝜖𝑣 and the time 𝛥𝑡𝑚𝑎𝑥 would

be required to have the optimal pair of parameters. For the sake of
simplicity, we propose to define 𝛥𝑡𝑚𝑎𝑥 as the time required for a particle
to travel half the distance 𝜖𝑣 at the median velocity of all particles.
Indeed, 𝛥𝑡𝑚𝑎𝑥 in only used as a safety factor. It must therefore be neither
oo small, as this would considerably increase computation time, nor
oo large, as some collisions might not be detected.

The order of the Verlet method is O
(𝑁𝑝(𝑁𝑝+1)

2

)

every 𝛥𝑡𝑚𝑎𝑗 time
steps and O (𝑁) otherwise. Some preliminary tests on a fluidized bed of
8536 particles showed that with Verlet algorithm, the computation time
of the collision force represents 14% of the time it takes to complete
a time step. Therefore, one suggests combining the Verlet Algorithm
with the Link Cell (LC) method as proposed by Fang et al. [70]. The
lgorithm is currently under development and will not be presented
n the present paper. The LC method was previously employed in the
iterature [64,71]. It consists to search for potential collision in sub-
omains close to a given one. In [64] and [71], a sub-domain matches

the domain of a CPU or a GPU. Therefore, potential collisions between
long-distance particles are not computed.

The efficiency of collision detection does not necessarily justify
the implementation of a complex algorithm, especially if only a few
particles are being investigated. Furthermore, LC algorithms require
communication between Central Processing Units (CPUs), which can
also increase computation time. The choice of the algorithm therefore
depends on the number of particles and the solid fraction of the bed.
More precisely, it depends on the number of particles contained in each
sub-domain and therefore on the choice of domain partitioning between
CPU or GPU for a given solid fraction. The denser the bed, the larger
he number of collisions to be handled. As it is difficult to define a
riterion considering these two parameters, we propose the following

classification:

• 𝑁𝑝 = O(1) −O(10): classical algorithm
• 𝑁𝑝O(10) −O(103): Verlet algorithm [69]
• 𝑁𝑝 ≥ O(104): Fang algorithm [70]
6 
Table 1
Collision force computation time as a percentage of the total
time it takes to complete a time step. 𝛼 is the solid volume
fraction, 𝐷𝑝, 𝛥𝑥 are the particle diameter and the spatial
discretization step, respectively. 𝐷𝑝

𝛥𝑥
represents the spatial

resolution as a function of the particle diameter.

𝐷𝑝

𝛥𝑥

𝛼
0.36 0.29 0.20 0.13

Verlet
algorithm

12 1.8 1.7 1.7 1.4
24 1.3 1.1 1.1 -
36 1.0 - - -

Classic
algorithm 12 22 22 21 19

Fig. 3. Diagram of the heat flux computing.
Source: Figure extracted from [19].

3.2. Fluid–particle heat flux postprocessing

The computation of the heat flux follows the method developed
n [19] for the hydrodynamic force. The heat flux received by the
article writes:

𝛷𝑝 = ∬𝑆𝑝

𝜆𝑓𝛁𝐓 ⋅ 𝐧𝑑 𝑆 (15)

with 𝜆𝑓 the thermal conductivity of the fluid, 𝐧 the normal to the
interface and 𝑆𝑝 the particle surface. Eq. (15) is discretized on the
agrangian mesh as follows:

𝛷𝑝 =
𝑁𝑓
∑

𝑖
𝜆𝑓𝛁𝐓𝑖 ⋅ 𝐧𝐢𝑆𝑖 (16)

where 𝑁 𝑓 is the number of Lagrangian facets of a particle and 𝑆𝑖 is
its surface area. For each Lagrangian facets, two interpolation points
are defined at a distance 𝛿 and 2𝛿 along the normal (see Fig. 3). The
distance 𝛿 is chosen equals to 𝛥𝑥 as defined in [19], where 𝛥𝑥 is the
Eulerian mesh size. The temperature is evaluated in all points 𝑃1 and 𝑃2
with a tri-linear interpolation from the Eulerian mesh. The temperature
gradient is computed with a second order upwind scheme as follows:

𝛁𝐓𝑖 = 𝜆
−𝑇𝑃2 + 4𝑇𝑃1 − 3𝑇𝑝

2𝛿
𝑆𝑖 (17)

where 𝑇𝑝 is the temperature of the particle. The reader is referred
to [19] for a complete description of the interpolation procedure.

3.3. Post-processing methodology

The post-processing of the simulations of fluidized bed is rather
complex because of the amount of data generated. For the finest
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Fig. 4. Two-dimensional diagram of the configuration of the sedimentation of a particle
in an infinite medium. The boundary conditions are as follows: –: Imposed pressure
walls, –: Imposed velocity walls, –: Imposed temperature walls, –: Imposed temperature
interface.

mesh, containing 181 million meshes, more than 1 Terabyte of data
was generated for 10 𝑠 of simulated flow. Post-processing such a large
quantity of data requires specific treatment. A brief description of the
procedure is detailed hereinafter for the Lagrangian statistics on one
hand, and on the Eulerian statistics on the other hand. More details are
also given in Appendices A and B.

Lagrangian statistics include the velocity and position of each par-
icle, as well as the hydrodynamic force exerted by the fluid on the
article surface and the heat flux received by the particle. Data is
ecorded for all particles every 0.01 s of physical simulated time, which
epresents a good compromise between the accuracy of particle track-
ng, the simulation time spent writing the data and the computation
ime for post-processing the statistics. The supercomputer on which the
omputations were performed requires a maximum execution time of
4 h per simulation. Each complete simulation is therefore divided into
4 h simulation folders. Each folder contains a single file including the
agrangian quantities of all the particles for each time step. For each
older, the velocity, position, hydrodynamic force and heat flux are ex-
racted using bash commands and GNU Parallel [72]. Each variable

is saved in an independent csv file. The data is then concatenated for
all the folders of the simulation and saved in HDF format for faster
rereading. Finally, the void fraction, bed height, position and velocity
statistics are computed using Python multiprocessing tools.

Eulerian fields include the pressure, the velocity, the temperature
nd the solid volume fraction. The fields are written by TrioCFD
oftware in a lata format at the same frequency as for the Lagrangian
ata. The files are first converted to the vtk format using GNU paral-
el [72] and Visit software. The Vtk files are loaded into Python

using the module Pyvista [73]. The variables of interest are averaged
for each 24 h simulation folder using Pyvista and Pandas modules
coupled with Python multiprocessing tools and saved in HDF format.
Finally, the data is concatenated for all the folders of the simulation and
Eulerian statistics are computed. The computation of Eulerian averages
on planes parallel and transverse to the flow is detailed in Appendix A.
Finally, the wall heat transfer coefficient computation is explained in
Appendix B.

4. Heat transfers on an isolated particle

The present method was validated in [19,65] for the hydrodynamic
of the flow. A parametric study of the heat transfer computation is
presented on the sedimentation of a particle at very small Reynolds
7 
Table 2
Physical parameters of Stokes configuration.
𝑅𝑒 𝑃 𝑟 𝜌𝑝

𝜌𝑓

𝜇𝑝

𝜇𝑓
𝐷𝑝 𝛥𝑇

7.8.10−2 6 10 103 5.2.10−6 m 5K

under Stokes assumption (see Section 4.1) and on the sedimentation of
a sphere in a quiescent fluid (see Section 4.2).

4.1. Sedimentation of a particle in an infinite medium with heat transfer

The aim of this section is to study temperature diffusion in a case
here it is predominant compared to convection. For this purpose, the

onfiguration described in [19] was reproduced and adapted to study
eat transfer (see Fig. 4). A cubic domain of section 3𝐷𝑝 is considered.

The theoretical velocity and pressure fields of Stokes sedimentation are
imposed at the boundaries (see Tab. 1 in [19]). A fixed temperature 𝑇𝑤
s imposed on the lateral walls. The thermal boundary condition at the
nlet is also an imposed temperature at 𝑇𝑤. The solid temperature is
nitialized at 𝑇𝑝 and remains constant during the simulation. The initial
luid initial is 𝑇𝑤. Due to the heat transfer with the particle, a boundary

layer develops around the particle (see Fig. 5).
The heat flux received by the sphere is computed with two methods.

The first one is described in Section 3.2 and the second relies on a heat
alance at the boundaries of the domain. It writes:

𝛷𝑝 = 𝛷𝑖 +𝛷𝑙 −𝛷𝑜 (18)

with respectively 𝛷𝑝, 𝛷𝑖, 𝛷𝑙 and 𝛷𝑜, the heat flux at the particle, the
nlet, the lateral boundaries and the outlet. The Nusselt number is
omputed as follows:

𝑁 𝑢𝑝 =
ℎ𝐷𝑝

𝜆𝑓
(19)

and the heat transfer coefficient writes:

ℎ =
𝛷𝑝

𝑆𝑝(𝑇∞ − 𝑇𝑝)
(20)

with 𝑆𝑝, the particle surface and 𝑇∞ the undisturbed temperature of the
luid (𝑇∞ = 𝑇𝑤).

The physical and numerical parameters of the simulation are sum-
marized in Table 2. A mesh convergence study of the particle Nusslet
number is presented in Table 3 for the method which uses the heat
alance at the boundaries. This method presents the advantage of pro-
iding the flux actually received by the particle during the simulation,
n contrast to the first method described in Section 3.2. The relative

error to the finest mesh, 𝐷𝑝
𝛥𝑥 = 50 which is considered as the exact

solution, is 3.5% for the coarser mesh while it drops down to 0.17% for
a mesh resolution of 𝐷𝑝

𝛥𝑥 = 20. Snapshots of the steady-state temperature
field are presented in Fig. 5 for two mesh resolutions (5 and 40 meshes
per diameter). Even with the coarser mesh, the boundary layer of the
particle is well captured. The particle Nusselt number computed with
the finest mesh is compared to well-known correlations of the literature
listed below:

• Ranz and Marshall [74]

𝑁 𝑢 = 2 + 0.6𝑃 𝑟1∕3𝑅𝑒1∕2 (21)

for 2 ≤ 𝑅𝑒 ≤ 104, 𝑃 𝑟 ≥ 0.6
• Whitaker [75]:

𝑁 𝑢 = 2 + (0.4𝑅𝑒1∕2 + 0.06𝑅𝑒2∕3)𝑃 𝑟2∕5 (22)

for 0.71 ≤ 𝑃 𝑟 ≤ 380, 3.5 ≤ 𝑅𝑒 ≤ 7.6.104

• Feng and Michaelides [76]

𝑁 𝑢 = 0.992 + 𝑃 𝑒1∕3 + 0.1𝑃 𝑒1∕3𝑅𝑒1∕3 (23)

for 0.1 ≤ 𝑅𝑒 ≤ 4000, 0.2 ≤ 𝑃 𝑒 ≤ 2000.
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Fig. 5. Temperature field of a Stokes flow past a sphere.
Fig. 6. Mesh convergence of the Nusselt number computed with two methods. x: heat
balance at the boundaries, x: interpolation method.

Table 3
Particle Nusselt number computed with the heat flux obtained with a heat balance at
the boundaries.
𝐷𝑝∕𝛥𝑥 5 8 10 12 16
𝑁 𝑢𝑝 2.647 2.704 2.716 2.738 2.736
𝐷𝑝∕𝛥𝑥 20 24 30 40
𝑁 𝑢𝑝 2.740 2.740 2.742 2.742

Table 4
Relative error of the prediction of the Nusselt number compared to the value computed
with PR-DNS.

Reference value Nusselt number Relative error

PR-DNS 2.74 –
Ranz and Marshall 2.30 16.1%
Whitaker 2.25 17.8%
Feng and Michaelides 1.80 34.3%

The relative error of the correlations to the computed value with
PR-DNS is presented in Table 4. The error is larger than 15% for all
correlations. It can be explained by the fact that the Reynolds number
of the simulation is too low and the correlations are not adapted for this
flow regime. In addition, the error could be related to a confinement
effect, as the domain is small compared to the particle diameter. The
fixed temperature imposed on the boundaries may also alter the shape
of the thermal boundary layer.

The heat balance method for calculating the flux received by the
particle is only possible because the calculation domain contains only
one particle. For multi-particle system, the use of the interpolation
method (see Section 3.2) is required even though for resolution or
collision reasons, the calculated flux might deviate from the exact heat
8 
Table 5
Fluid properties of Cate’s et al. experiment [77].

Case number 𝜌𝑓 [kg m−3] 𝜇𝑓 [Pa s] 𝑅𝑒

𝐸1 970 0.373 1.50
𝐸2 965 0.212 4.10
𝐸3 962 0.113 11.6
𝐸4 960 0.058 31.9

flux received by the particle. A mesh convergence of the heat flux
computed with this method is presented in Fig. 6. The interpolation
method and the heat balance method both converge to the same value.
The relative deviation falls below 4% for resolutions greater than 20
meshes per particle diameter. The interpolation method is therefore
validated and will be employed to compute the flux received by the
particle in the next section.

4.2. Settling sphere in a quiescent viscous fluid with heat transfer

A particle in sedimentation in a quiescent fluid is considered to
assess the method at higher Reynolds numbers. The isothermal case
of Cate’s et al. experiment [77] is adapted to study fluid–particle heat
transfer. The domain is a rectangular parallelepiped with square cross-
section, sides 6.67𝐷𝑝 and height 10.67𝐷𝑝. The particle diameter is
15 mm. The fluid properties are reported in Table 5. This configuration
was previously studied by [65] with the same method without consid-
ering the heat transfer. The position and velocity profiles were in good
agreement with the experimental data even with a coarse mesh of 15
meshes per particle diameter.

4.2.1. Assessment of the sedimentation trajectory
A fixed wall condition is applied on lateral and bottom boundaries.

A pressure imposed condition is applied at the top. The temperature is
imposed at 10 K at the wall and at 0 K at the particle surface. Initially,
the fluid is at 10 K. Three mesh resolutions are investigated: 20, 30
and 40 meshes per particle diameter. It required respectively 200, 490
and 1088 CPUs. Four fluid viscosities were considered by Cate et al.
to compute different flow regimes. Reynolds numbers based on the
terminal settling velocity – in a infinite medium – are 1.50, 4.10, 11.6
and 31.9. The temporal evolution of the vertical position and velocity
of the particle are represented in Fig. 7. It should be noted that the
simulation was terminated before the particle reached the bottom of
the tank in cases where the Reynolds number is below 4.10. For all
Reynolds number, the numerical results are converged with the mesh
resolution of 20 meshes per diameter, as all curves completely overlap.
This avoided excessive computation costs when the simulated trajectory
already correctly predicted the experiment. The curves representing the
different meshes are superimposed. It shows that the mesh resolution
of 15 meshes per particle diameter of Hamidi et al. [65] was too
coarse to fully capture the hydrodynamic force exerted by the fluid
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Fig. 7. Temporal evolution of the particle vertical position (left) and velocity (right). : 𝐷𝑝

𝛥𝑥
= 20, : 𝐷𝑝

𝛥𝑥
= 30, ∙ : 𝐷𝑝

𝛥𝑥
= 40, ∙ : experimental data [77]. : 𝑅𝑒 = 1.50, :

𝑒 = 4.10, : 𝑅𝑒 = 11.6, : 𝑅𝑒 = 31.9. For a given Reynolds number, all mesh resolutions are superimposed.
Table 6
Nusselt number for various Reynolds and Prandtl number. 𝑁 𝑢𝑅𝑀 , 𝑁 𝑢𝑊 and 𝑁 𝑢𝐹 𝑀 are the Nusselt number computed with the correlation of
Ranz and Marshall [74], Whitaker [75] and Feng and Michaelides [76], respectively. 𝑁 𝑢𝑃 𝑅−𝐷 𝑁 𝑆 is the simulated value of the Nusselt number.
𝜖 is the relative error of the correlation to the simulated value: 𝜖 = (𝑁 𝑢𝑐 𝑜𝑟𝑟𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑝 −𝑁 𝑢𝑃 𝑅𝑆𝑝 )∕𝑁 𝑢𝑃 𝑅𝑆𝑝 .

Pe 𝑅𝑒 𝑃 𝑟 𝑁 𝑢𝑃 𝑅𝑆𝑝 𝑁 𝑢RM
𝑝 𝑁 𝑢W

𝑝 𝑁 𝑢FM
𝑝 𝜖𝑅𝑀 [%] 𝜖𝑊 [%] 𝜖𝐹 𝑀 [%]

0.67 1.33 0.5 2.23 2.55 2.40 1.96 14.3 7.86 −12.0
1.33 1.33 1 2.35 2.69 2.53 2.21 14.5 7.80 −5.86
1.94 3.88 0.5 2.47 2.94 2.71 2.44 18.8 9.54 −1.55
2.66 1.33 2 2.58 2.87 2.70 2.53 11.2 4.71 −2.04
3.88 3.88 1 2.77 3.18 2.94 2.81 14.7 5.87 1.33
5.50 11.0 0.5 3.04 3.58 3.23 3.15 17.8 6.31 3.68
7.76 3.88 2 3.18 3.49 3.24 3.28 9.74 1.76 3.26
11.0 11.0 1 3.55 3.99 3.63 3.71 12.4 2.09 4.56
15.0 29.9 0.5 4.01 4.61 4.10 4.22 14.7 2.04 5.15
22.0 11.0 2 4.21 4.51 4.15 4.42 7.12 −1.56 4.99
29.9 29.9 1 4.84 5.28 4.77 5.06 9.11 −1.54 4.53
59.8 29.9 2 5.87 6.14 5.65 6.12 4.50 −3.76 4.20
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to the particle. This further explains the slight discrepancy with the
experiment observed by the authors on particle velocity at the highest
sedimentation velocity.

4.2.2. Assessment of fluid–particle heat transfer
In this section, the Nusselt number is computed with the method

ased on the interpolation from the nearest Eulerian fluid points. For
ach fluid viscosity considered in the previous section, three Prandtl
umbers were studied (𝑃 𝑟 ∈ {0.5, 1, 2}). In each case, one can compute
he Nusselt number as a function of the time. However, the method
equired the boundary layer to be fully developed for the interpolation
f the gradient to be accurate. Therefore, the transient phase from
he start of the simulation cannot be studied. In each case, one can
ompute the Nusselt number of the particle when it has reached its
erminal velocity. The data are presented in Table 6. The minimum

relative error of the three correlations to the computed value is below
% for all the computed cases. Ranz and Marshall correlation [74]
lways overestimates the particle Nusselt number and appeared less
dapted than the correlations developed by Whitaker [75] and Feng

and Michaeliedes [76]. One cannot define the most appropriate corre-
ation between Whitaker and Feng and Michaelides, as neither appears
o predict more accurately the Nusselt number than the other.

The parametric study is extended to a wider range of Peclet numbers
𝑃 𝑒 = 𝑅𝑒𝑃 𝑟 = 𝐷𝑝𝑈𝑡∕𝛼, with 𝑈𝑡 the particle terminal velocity and 𝛼 the

thermal diffusivity). 77 simulations with a resolution of 20 meshes per
particle diameter. 7 Reynolds numbers and 11 Prandtl numbers were
considered. Reynolds numbers are defined by the viscosity of the fluid
and correspond to the Reynolds number reached by the particle when it
reaches its terminal sedimentation velocity (𝑅𝑒 ∈ {1, 2, 3, 4, 5, 12, 32}).

Prandtl numbers are defined by the thermal conductivity of the fluid

9 
(𝑃 𝑟 ∈ {0.1, 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5, 10}). In the context of flows
n solar receivers, Reynolds numbers are of the order of unity and
he Prandtl number is approximately 0.7 for air. Peclet numbers are
herefore very low. The parametric study focuses on these flow regimes.
n each case, one value of the particle Nusselt number is computed
hen the thermal boundary layer is fully developed. The value given
y the three correlations is computed with the corresponding Reynolds
nd Prandtl numbers. One can plot the Nusselt number obtained with
he correlations as a function of the Nusselt number computed with PR-
NS (see Fig. 8). The closer the points to the identity curve, the more

accurate the correlation. The correlations of Whitaker [75] and Feng
nd Michaelides [76] are both within the 10% confidence interval of

the PR-DNS values. This demonstrates that they are both appropriate
or predicting heat transfer between the fluid and an isolated particle
t low Peclet numbers.

An attempt was made to optimize the coefficients of Whitaker [75]
and Feng and Michaelides correlations [76]. The following equations
were considered:

𝑁 𝑢𝑜𝑝𝑡_𝑊 (𝑃 𝑟, 𝑅𝑒) = 𝑎1 + (𝑏1𝑅𝑒𝑐1 + 𝑑1𝑅𝑒
𝑒1 )𝑃 𝑟𝑓1 (24)

 𝑢𝑜𝑝𝑡_𝐹 𝑀 (𝑃 𝑒, 𝑅𝑒) = 𝑎2 + 𝑏2𝑃 𝑒𝑐2 + 𝑑2𝑃 𝑒𝑒2𝑅𝑒𝑓2 (25)

where {𝑎𝑖..𝑓𝑖} are constant coefficients determined with the least square
method (see Table 7). Both new correlations are represented on Fig. 8.
It should be emphasized that the plots are superimposed, even if
the equation is not in the same form. It suggests that there are too

any degrees of freedom in determining the correlation coefficients.
n addition, these correlations fail to predict the Nusselt value when
he Reynolds number tends to zero. Indeed, for a sphere in a stationary
luid, the Nusselt number equals 2 [78]. A possible explanation is the

fact that the computational domain is too small in front of the particle
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Fig. 8. Assessment of the correlation of Whitaker and Feng and Michaelides with the data produced with PRS. Opt FM and Opt W refers to the correlations obtained with optimized
coefficients of Feng and Michaelides, and Whitaker correlations, respectively.
Table 7
Coefficients obtained with the least square method for Eqs. (24) and (25). W:
coefficients of Whitaker’s correlation [75], FM: coefficients of Feng & Michaelides’s
correlation [76].

𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖 𝑒𝑖 𝑓𝑖
𝑖 = 1 1.5 0.072 −2.5 0.73 0.44 0.37
𝑖 = 2 1.5 0.64 0.38 0.10 0.34 0.30
W 2 0.4 0.5 0.06 2∕3 2∕5
FM 0.992 1 1∕3 0.1 1∕3 1∕3

diameter. At low Peclet numbers, the thermal diffusion is predominant
in front of the thermal convection and the thermal boundary layer
is thicker than the dynamic one for low Prandtl number. Thus, the
influence of the domain boundaries is higher at low Peclet numbers
and could explain the discrepancy.

5. Study of an anisothermal liquid–solid fluidized bed

In this section, an anisothermal liquid–solid fluidized bed is studied.
The physical configuration is described in Section 5.1. The numerical
method is validated by confrontation with experimental [79] and nu-
merical [80] work of the literature in Section 5.2. Fluid–particle heat
transfer and wall-to-bed heat transfer are addressed in Sections 5.3
and 5.4 respectively. Finally, velocity–temperature correlations are
discussed in Section 5.5.

5.1. Description of the physical configuration

The simulation reproduces the experimental work of Corona [79,
81]. The author investigated an isothermal liquid–solid fluidized bed
in a cylindrical vessel. The working fluid is a concentrated aqueous
solution of Potassium Thiocyanate (KSCN, 64% w/w). The particles
are 6 mm Pyrex spheres. The fluid viscosity is 3.8 × 10−3 Pa s. A
viscosity ratio of 104 is imposed as in [65]. The density of the fluid
and the particles is, respectively, 1400 kg m−3 and 2230 kg m−3. In
the experiment, the cylindrical vessel is made of glass. The column is
8 cm in diameter and 60 cm height. The exponent of the Richardson–
Zaki fluidization law [82] was measured experimentally by the authors
as equal to 2.41. The terminal velocity of the particles in the fluid
is 0.23m s−1 and the minimum fluidization velocity is estimated to
0.03m s−1 based on Fig. 2.24 of [79].
10 
To numerically reproduce the experiment, a parallelipedic domain
is defined with the same cross section area (see Fig. 9). The square
cross-section is slightly larger than the circular cross-section by 3.1%.
A no-slip boundary condition is imposed on the lateral walls. The
fluid is injected at the bottom of the tank with a velocity 𝑈𝑓 . A
pressure imposed boundary condition is applied to the outlet section.
The wall temperature is imposed 10 K higher than that of the particles.
In the present work, all particles remain at a constant temperature.
The entrance temperature of the fluid is that of the particles so only
wall-to-bed heat transfer is considered. The thermal conductivity and
the heat capacity of the fluid are constant in the whole domain (𝜆𝑓 =
3.8W m−1 K−1, 𝑐𝑝,𝑓 = 1000 J kg−1 K−1). The thermal properties of
the fluid were selected so that the Prandtl number equals 1. Four flu-
idization velocities were studied, 𝑈𝑓 ∈ {0.073, 0.090, 0.120, 1.150}m s−1.
Three mesh resolutions were considered for the lowest fluidization
regime (𝐷𝑝

𝛥𝑥 ∈ {12, 24, 36}), whereas two mesh resolutions were inves-
tigated for the fluidization velocities of 0.090m s−1 and 0.120m s−1

(𝐷𝑝
𝛥𝑥 ∈ {12, 24}). Finally, one mesh resolution is considered for the

highest fluidization velocity (𝐷𝑝
𝛥𝑥 = 12). The numerical configuration of

each case is detailed in Table 8. The height of the computation domain
was shortened for the lowest fluidization velocities in order to reduce
the numerical cost of the simulation. Preliminary tests showed that it
did not affect the bed height, the solid volume fraction or the particle
velocity variances. The computational time step depends on the grid
resolution and the fluidization velocity. For all the simulations, 𝛥𝑡𝑠𝑖𝑚𝑢
lies between 5 ⋅ 10−5 s and 1 ⋅ 10−4 s.

5.2. Hydrodynamic behavior

The numerical method was previously validated by Hamidi et al.
[65] for the same configuration of the fluidized bed with a mesh
resolution of 𝐷𝑝

𝛥𝑥 = 12. The authors studied the bed height, the mean
solid fraction as well as velocity variances and its anisotropy. The
method has evolved since the TrioCFD-1.7.9 version used in [65].
A harmonic viscosity model is employed in the present work compared
to the on-off model employed in [65]. The on-off viscosity model
implicitly define an effective diameter smaller than the real diameter
for the computation of the diffusive term in the momentum equation.
For coarse meshes, the consideration of the real diameter lead to an
overestimation of the drag force [64]. However, the harmonic viscosity
model should be employed to compute the stress tensor as it was proved
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Table 8
Numerical configuration of fluidized beds.
Studied case Dimensions (𝐿∕𝐷𝑝) Resolution (𝐷𝑝∕𝛥𝑥) Nb Eulerian cells Nb CPU’s Physical simulated

time
(s/24 h
computation)

𝑣 < 0, 15m s−1 12 × 54 × 12 12 13.4 ⋅ 106 288 1.74
24 107 ⋅ 106 1152 0.8

𝑣 = 0.073m s−1 12 × 27 × 12 36 181 ⋅ 106 3888 0.35

𝑣 = 0.15m s−1 12 × 108 × 12 12 26.9 ⋅ 106 544 1.45
Fig. 9. Snapshot of a simulation at the highest solid fraction (𝛼 = 0.36, 𝑈𝑓 =
0.073m s−1).

Fig. 10. Time evolution of the bed height for different fluidization velocities and mesh
resolutions. : present work, : numerical work of Ozel [80]. : 𝑈𝑓 = 0.15m s−1
- 𝐷𝑝

𝛥𝑥
= 12, :𝑈𝑓 = 0.12m s−1 - 𝐷𝑝

𝛥𝑥
= 12, :𝑈𝑓 = 0.09m s−1 - 𝐷𝑝

𝛥𝑥
= 12,

:𝑈𝑓 = 0.073m s−1 - 𝐷𝑝

𝛥𝑥
= 12, :𝑈𝑓 = 0.073m s−1 - 𝐷𝑝

𝛥𝑥
= 24, :𝑈𝑓 = 0.073m s−1 -

𝐷𝑝

𝛥𝑥
= 36. For 𝑈𝑓 = 0.073m s−1, all mesh resolutions are superimposed.
11 
Fig. 11. Fluidization law. •: experiment of Corona [79], : Richardson–Zaki law [82]
x: numerical work of Ozel [80], +: numerical work of Hamidi [65], ⧫: present work
for 𝐷𝑝

𝛥𝑥
= 12.

to converge with the grid resolution [67]. For the simulations per-
formed in this paper, with Reynolds numbers above 460 for meshes of
up to 36 meshes per diameter, mesh convergence is not achieved. This
leads to a slight overestimation of the drag force, which consequently
results in an underestimation of the presence rate compared to Hamidi
et al. [65] and Corona [79] experimental data. For this reasons, the
numerical method is further evaluated against the experimental work of
Corona [79] and the numerical work of Ozel [80]. Ozel et al. employed
the Implicit Tensorial Penalty Fictitious Domain Method (ITPM) of
Vincent et al. [64] for their simulations. A parallelipedic domain was
considered and a Darcy penalty method was employed to add a wall
boundary condition in the momentum equation and thus consider a
cylindrical column. A grid resolution of 12 meshes per diameter was
defined by the authors. The temporal evolution of the bed height is
represented in Fig. 10. The bed height closely matches the simulation
conducted by Ozel for the lowest fluidization velocities with the same
grid resolution. The higher the fluidization velocity, the larger the
fluctuations in bed height. The mesh sensitivity is represented in the
figure for the lowest fluidization velocity. As shown in the figure, the
bed height is slightly affected by the grid resolution. The discrepancy
observed for the highest fluidization velocities could be explained
by the fact that the cross-section area differs of 3.1% between both
computational domain. It could also be explained by the difference
in the geometry of the cross-section as a square is defined in the
present work whereas a disk is defined in the work of Ozel [80]. The
average solid fraction is computed between 5% and 85% of the bed
height to avoid any boundary effects. It is represented in Fig. 11 as
a function of the fluidization velocity. The fluidization law is well
predicted and closely matches the experimental work of Corona [79]
and the numerical work of Ozel [80] and Hamidi [65]. The slight
deviation observed is explained by the choice of the harmonic viscosity
model as detailed above. A reduced diameter of 𝛥𝑥 was defined in [64]
and employed in [80]. The viscosity model defined in [65] mimics
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Fig. 12. Instantaneous visualization of the streamwise velocity field. 𝑈𝑦 = 0.073m s−1. Left: 𝐷𝑝

𝛥𝑥
= 12, Middle: 𝐷𝑝

𝛥𝑥
= 24, Right: 𝐷𝑝

𝛥𝑥
= 36.
Fig. 13. Mean temperature profile along the bed height for different fluidization
velocities 𝑈𝑓 and mesh resolutions 𝐷𝑝

𝛥𝑥
. : 𝑈𝑓 = 0.073m s−1, : 𝑈𝑓 = 0.09m s−1, :

𝑈𝑓 = 0.12m s−1, : 𝑈𝑓 = 0.15m s−1. : 𝐷𝑝

𝛥𝑥
= 12, : 𝐷𝑝

𝛥𝑥
= 24, ∙: 𝐷𝑝

𝛥𝑥
= 36.

the reduced diameter of the penalty method. In the present work, the
harmonic viscosity model was employed as it is expected to converge
with the grid resolution.

Instantaneous visualization of the streamwise velocity field is shown
in Fig. 12. The whole domain is represented for the grid resolutions of
24 and 36 grid per particle diameter while the domain is cropped for the
coarsest grid to confront the above grid resolutions. The particle wake
appears to be more accurately captured for the 24-mesh resolution than
for the 12-mesh resolution. On the other hand, few differences are
visible between the resolutions of 24 and 36 meshes per diameter.

5.3. Fluid–particle heat transfer

The mean temperature profiles along the height of the column are
represented in Fig. 13 for the four fluidization velocities. For details
on the way this quantity is computed from the simulations results, the
reader is referred to Appendix A. For hereinafter, the notation ⟨𝐴⟩𝑖,𝑗
denotes for the spatial average of the quantity 𝐴 in directions 𝑖, 𝑗 and
𝐴 denotes for the time average. In the figure, one can observe that
the lower the fluidization velocity, the more homogenous the fluid
12 
Fig. 14. Profile of the double temperature correlation along the bed height for different
fluidization velocities 𝑈𝑓 and mesh resolutions 𝐷𝑝

𝛥𝑥
. : 𝑈𝑓 = 0.073m s−1, : 𝑈𝑓 =

0.09m s−1, : 𝑈𝑓 = 0.12m s−1, : 𝑈𝑓 = 0.15m s−1. : 𝐷𝑝

𝛥𝑥
= 12, : 𝐷𝑝

𝛥𝑥
= 24, ∙:

𝐷𝑝

𝛥𝑥
= 36. For all mesh resolution, curves are superimposed along the bed height.

temperature in the bed. Indeed, the particles act as a heat sink in the
simulations and the lower the fluidization velocity, the denser the flu-
idized bed and therefore the more homogeneous the temperature field.
Particles thus limit the increase in fluid temperature. One can point out
that the bed height can be identified by the change in the slope of the
temperature profile along the height of the column. Above the later,
the fluid is simply heated by the walls and the temperature variation
with 𝑦 significantly rises. One can point out that a grid resolution of
12 meshes per particle diameter is too coarse to accurately capture the
temperature evolution along the column height. A large discrepancy
is observed between the evolution of the fluid temperature for grid
resolutions of 12 and 24 meshes per diameter. However, the evolution
of the fluid temperature for grid resolutions of 24 and 36 meshes per
particle diameter, closely match. Therefore, for this configuration, at
least 24 meshes per particle diameter is required to predict the mean
temperature profiles.

The double correlation of temperature temporal fluctuations are
represented with respect to the bed height and the wall distance
in Figs. 14 and 15, respectively. The computation of ⟨(𝑇 ′𝑇 ′) ⟩ and
𝑓 𝑥
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Fig. 15. Profile of the double temperature correlation as a function of 𝑥+ for different
luidization velocities 𝑈𝑓 and mesh resolutions 𝐷𝑝

𝛥𝑥
. : 𝑈𝑓 = 0.073m s−1, : 𝑈𝑓 =

.09m s−1, : 𝑈𝑓 = 0.12m s−1, : 𝑈𝑓 = 0.15m s−1. : 𝐷𝑝

𝛥𝑥
= 12, : 𝐷𝑝

𝛥𝑥
= 24, ∙:

𝐷𝑝

𝛥𝑥
= 36.

Fig. 16. Relation between 𝑥+ and the wall distance normalized by the particle
diameter. The legend is the same as for Fig. 15.

⟨(𝑇 ′𝑇 ′)𝑓 ⟩𝑦 is detailed in Appendix A. One can notice in Fig. 14 that the
higher the Reynolds number, the higher the temperature variance. The
nfluence of the lack of resolution for coarse grid has less effects than
or the mean temperature profiles (see Fig. 13). In addition, when the

fluid leaves the bed, temperature variance increase strongly. This can
be explained by the destruction of fluid agitation by pseudo-turbulence.
Once exiting the bed, turbulence develops, generating strong spatial
nd temporal fluctuations in the temperature field. The effect of the
ack of resolution of near-wall flow is more visible in Fig. 15. In the

figure, 𝑥+ is a dimensionless distance to the wall. 𝑥+ = |𝑥−𝑥𝑤𝑎𝑙 𝑙 |𝑢∗
𝜈𝑓

,

𝑢∗ = 𝜏𝑤
𝜌𝑓

and 𝜏𝑤 = 𝜇𝑓
𝜕 𝑢𝑦
𝜕 𝑥 . The link between 𝑥+ and the wall distance

scaled by the particle diameter is described in Fig. 16. In Fig. 15, the
horizontal lines for low values of 𝑥+ are due to the under-resolved
discretization. All values of the double correlation of the temperature
are 0 at the wall. Contrary to what is observed in Fig. 14, the maximum
values of the correlation do not appear to depend on the Reynolds
number. The correlation peak is located approximately at 𝑥+ = 10,
which correspond to a distance below 10% of the particle diameter. It
emphasizes the necessity to refine the mesh at the wall. It is confirmed
by the significant influence of the mesh resolution on the location of the
correlation peak. The temperature variance falls to zero in the center
f the bed, as the fluid and particles are at the same temperature.

The mean Nusselt number is defined as follows:

⟨𝑁 𝑢𝑓 ⟩0𝐷 =
⟨ℎ𝑓 ⟩0𝐷𝐷𝑝 (26)
𝜆𝑓

13 
Fig. 17. Nusselt number as a function of the solid fraction. +: 𝐷𝑝

𝛥𝑥
= 12, ×: 𝐷𝑝

𝛥𝑥
= 24,

: 𝐷𝑝

𝛥𝑥
= 36. ∙: Gunn’s correlation [44].

where ℎ𝑓 is the heat transfer coefficient, 𝐷𝑝 is the particle diameter
nd 𝜆𝑓 is the thermal conductivity of the fluid. ℎ𝑓 writes:

⟨ℎ𝑓 ⟩0𝐷 =
𝛷𝑓→𝑝

𝑁𝑝𝑆𝑝(𝑇𝑝 − ⟨𝑇𝑓 ⟩0𝐷)
(27)

where 𝛷𝑓→𝑝 is the total heat flux received by the particles. 𝛷𝑓→𝑝 is
omputed with a heat balance at the boundaries as described in Sec-
ion 4.1. 𝑁𝑝 is the number of particles in the bed, 𝑇𝑝 is the temperature

of the particles and ⟨𝑇𝑓 ⟩0𝐷 is the mean fluid temperature in the bed.
Therefore, one can express the Nusselt number as follows:

⟨𝑁 𝑢𝑓 ⟩0𝐷 =
𝛷𝑓→𝑝

𝑁𝑝𝜆𝑓𝜋 𝐷𝑝(𝑇𝑝 − ⟨𝑇𝑓 ⟩0𝐷)
(28)

The Nusselt computed for each fluidization velocity and each mesh
grid resolution is represented in Fig. 17. The computed Nusselt number
increases with the solid fraction. A large discrepancy is observed with
the correlation of Gunn [44] even for the mesh grid resolution of 24
and 36 meshes per particle diameter. In such configuration, the fluid
is injected at the same temperature as the particles and is only heated
by the lateral walls. Thus, near-wall particles are submitted to a mean
temperature gradient. Gunn’s correlation [44] was not developed to
describe such fluid-to-particle heat transfer. To assess Gunn’s corre-
lation [44] in the present case, the mean heat flux received by the
articles (𝛷𝑓→𝑝) should only be computed in the homogeneous part of

the fluidized bed. However, the fluid-to-particle heat flux was not post-
processed on a Lagrangian way for each particle in the current version
of the code. Only the mean particle-to-fluid heat flux is available for
post-processing. Nevertheless, it should be noted that Gunn’s correla-
tion always underestimates the fluid–particle heat transfer, which is
expected as it was originally developed for fixed bed configurations.
The same results were observed in [51]. Thus, as shown in Fig. 17,
Gunn’s correlation is not suitable to predict the overall convective
eat transfer in the present configuration. Furthermore, even with 36
eshes per particle diameter, the mesh grid resolution is too coarse for

he studied regime. Indeed, the particle Reynolds number defined as
𝑅𝑒 = 𝜌𝑓𝑈𝑓𝐷𝑝

𝛼𝑝𝜇𝑓
is 461 for the lowest fluidization velocity and 𝑃 𝑟 = 1 and

thus the Peclet number equals the Reynolds number. Consequently, a
complete resolution of the thermal boundary layer would require more
than a hundred meshes per particle diameter.

5.4. Wall-to-bed heat transfer

The wall-to-bed heat transfer is computed for the four walls of
the parallelepipedic domain with a first order upwind scheme. The
computation of the heat transfer coefficient is detailed in Appendix B.
Instantaneous visualization of the heat transfer coefficient is shown
in Fig. 18 for various mesh resolutions. The thermal wake is more
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Fig. 18. Instantaneous wall-to-bed heat transfer coefficient. From left to right, the grid resolution is 12, 24 and 36 meshes per particle diameter.
.

spread out for the coarser grid than for the others and the magnitude
of the heat transfer is lower. A large discrepancy is observed between
the grid resolutions of 12 and 24 meshes per particle diameter. Even
though the thermal wake of the particles is thinner for the finest grid,
few differences are observed between the two finest grid resolutions,
suggesting mesh convergence.

The mean heat transfer coefficient is represented in Fig. 19. The
wall-to-bed heat transfer decreases with the fluid fraction. This be-
havior is in agreement with the correlation of Haid [53]. The author
defined the Nusselt number as a function of the Reynolds number, the
Prandtl number and the solid fraction (see Eq. (29)).

𝑁 𝑢𝑝 = 0.0734𝑅𝑒0.75𝑝 𝑃 𝑟0.63𝛼0.25𝑝
(

1 − 𝛼𝑝
)−1 (29)

To assess the correlation, the Reynolds number is computed with
the velocity corresponding to a given solid fraction according to the
Richardson–Zaki law [82]. One can point out an important effect of
the mesh resolution on the wall-to-bed heat transfer coefficient. For the
lowest fluid fraction, corresponding to the lowest fluidization velocity,
the computed coefficient start to falls within the 30% confidence inter-
val for the finest mesh. The finer the grid resolution, the less intense
the heat transfer, contrary to what Fig. 18 suggests. Indeed, even if the
points of contact with the wall are subject to high instantaneous values
of the heat transfer coefficient, the contact zone and the collision time
are very small. The higher coefficient computed for the coarser grid
resolutions is therefore due to the more extensive thermal wake than for
the finer resolutions. This results from the lack of resolution of pseudo-
turbulence dissipation. An unexpected result is that the error is smaller
for the largest fluid fractions and therefore, for the highest fluidization
velocities. Indeed, for the fluidization velocity of 𝑈𝑓 = 0.12m s−1

(1 − 𝛼 = 0.8), the heat transfer coefficient falls within the confidence
interval for a grid resolution of 24 meshes per particle diameter. It
should be noted, however, that the current configuration does not fall
within the range of validity of the correlation. Indeed the correlation
is valid for a Prandtl number between 1.65 and 7700, whereas in the
present simulations 𝑃 𝑟 = 1.

5.5. Velocity–temperature correlation

Velocity–temperature correlations are investigated to study heat
transfers. The mean and bulk temperatures are computed along the
cross-section of the flow. The bulk temperature is defined in Appendix A
The mean and bulk temperature profiles along the cross-section area
are represented in Fig. 21. The higher the velocity, the hotter the
mean temperature of the fluid along the cross-section area. Indeed, the
14 
Fig. 19. Space–time averaged wall-to-bed heat transfer coefficient. x: 𝐷𝑝

𝛥𝑥
= 12, x:

𝐷𝑝

𝛥𝑥
= 24, x: 𝐷𝑝

𝛥𝑥
= 36. : Haid correlation [53] and its confidence interval of 34.4%.

Fig. 20. Fluidization velocity effect on the near wall evolution of space–time average
of the velocity–temperature correlation. 𝐷𝑝

𝛥𝑥
= 12. : 𝑈𝑓 = 0.073m s−1, : 𝑈𝑓 =

0.09m s−1, : 𝑈𝑓 = 0.12m s−1, : 𝑈𝑓 = 0.15m s−1. : streamwise velocity, :
normal wall velocity, ∙: wall tangent velocity.

higher the velocity, the less cooled the fluid by the particles along the
bed height (see Fig. 13). Strong spatial variations of the temperature
are observed along the transverse direction to the flow as the fluid



E. Butaye et al.

m

i
d

4
t

c
v
v
i
F
t

M

t

t

w

t

a

t

w
r
T
r
d
w

v
I
–
r
I

d
g
p
g

International Journal of Heat and Mass Transfer 241 (2025) 126687 
Fig. 21. Mean and bulk fluid temperature along the cross-section area. 𝐷𝑝

𝛥𝑥
= 12. :

ean temperature, : bulk temperature, : 𝑈𝑓 = 0.073m s−1, : 𝑈𝑓 = 0.09m s−1,
: 𝑈𝑓 = 0.12m s−1, : 𝑈𝑓 = 0.15m s−1.

is only heated at the wall. The computation of velocity–temperature
correlation ⟨(𝑈 ′𝑇 ′)𝑓 ⟩𝑦 is detailed in Appendix A.

Fig. 20 represents this correlation, for the four fluidization veloc-
ties, along the cross-section area. The fluid Reynolds number can be
efined as 𝑅𝑒 = 𝑈𝑓𝐿𝑥

𝜈𝑓 𝛼𝑓
. From the lowest to the highest fluidization

velocity, the Reynolds number is respectively 2980, 3360, 3980 and
970. The extremum of the double correlation is located further into
he bed when the Reynolds number increases. The main component of

the turbulent movement is obtained with the streamwise velocity. One
an note that the turbulent agitation associated with the normal wall
elocity is less than a third of the intensity of that of the streamwise
elocity. The correlation peak associated with the normal wall velocity
s located further into the bed than that of the streamwise component.
urthermore, the location of the correlation peak differs from that of
he temperature variance (see Fig. 15) which was located at 𝑥+ ∼ 10.

For both studied correlation, it corresponds to a distance less than half
of the particle diameter. Finally, the velocity tangent to the wall does
not contribute to the turbulent heat flow. Results on the average of
each velocity component showed that the mean normal wall velocity
is almost zero. Therefore, the mean convective heat flux, computed as
𝜌𝑓 𝑐𝑝,𝑓 ⟨𝑢𝑥⟩0𝐷⟨𝑇 ⟩0𝐷, is very small in front of the term 𝜌𝑓 𝑐𝑝,𝑓 ⟨𝑢′𝑥𝑇 ′

⟩0𝐷.
Wall-to-bed heat transfer is therefore driven by the turbulent convec-
tive heat flux. One should note that it is not the case for the streamwise
mean convective heat flux as the mean fluid velocity is equal to the
fluidization velocity divided by the mean fluid fraction. However, for
heat transfer enhancement in the bed, it is the convective heat flux
associated to the normal wall velocity that needs to be considered.

esh resolution has a strong influence on the location of the agitation
peak, as shown in Fig. 22. Indeed, the agitation peak associated with
he streamwise component is located at 𝑥+ = 16 for the mesh resolution

of 12 meshes per particle diameter whereas it is located at 𝑥+ = 27 for
he mesh resolution of 36 meshes per particle diameter. The intensity

of the turbulent heat flow is slightly affected by the grid resolution.

6. Concluding remarks

The objective of this study was to study the dynamic and the heat
transfers in a fluidized bed. For this purpose, the numerical method

as first validated on the study of an isolate particle in sedimentation
in an infinite medium. A method to compute the heat flux received by
he particle was developed, inspired by the method of hydrodynamic

force computation of Butaye et al. [19]. Then a parametric study of
the particle Nusselt number of a particle in sedimentation in quiescent
fluid was performed. An excellent agreement with existing correlation
of the literature was found except for very low Peclet numbers (below
 p

15 
Fig. 22. Resolution effect on the near wall evolution of space–time average of the
velocity–temperature correlation. 𝑈𝑓 = 0.073m s−1, : 𝐷𝑝

𝛥𝑥
= 12, : 𝐷𝑝

𝛥𝑥
= 24, :

𝐷𝑝

𝛥𝑥
= 36. The components of the velocity are described with the same representation

than that of Fig. 20.

1) which could be explained by the influence of the lateral boundaries
t these regimes.

A study of a liquid–solid anisothermal fluidized bed showed that
he macroscopic behavior of the bed was well predicted based on the

bed height and the solid fraction. However, for coarse grid (𝐷𝑝∕𝛥𝑥 =
12), the method fails to predict the thermal behavior of the flow. A
finer mesh (𝐷𝑝∕𝛥𝑥 = 24) was required to predict the heat transfer at
a reasonable cost. The fluid Nusselt number increases with the solid
fraction, in accordance with Gunn’s correlation [44]. Finally, regarding
the wall-to-bed heat transfer, the heat transfer coefficient increases with
the solid fraction. The deviation from Haid’s correlation [53] increases

ith the solid fraction, which is unexpected since, for the same grid
esolution, the resolution of the flow decreases as the velocity increases.
he velocity–temperature correlations are strongly affected by the grid
esolution. Finally, it was shown that the wall-to-bed heat transfer is
riven by the turbulent convective heat flux associated with the normal
all velocity.

The perspectives to this work would be to study anisothermal gas-
solid fluidized beds. In such configurations, the particle diameter is less
than a hundred micrometers and the fluid studied is air.
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Fig. A.23. Diagram of planes employed in the spatial average. Along streamwise direction (left) and along the cross-section area (right).
Appendix A. Computation of Eulerian statistics

The mean Eulerian properties of the flow are computed with a
pace–time average. Two configurations can be distinguished. The
irst is an average over planes parallel to the flow and the second is
n average over the cross-section area (see Fig. A.23). For the first
onfiguration, all the planes at the centre of the domain are considered

over a thickness of two particle diameters and along the two transverse
directions. Thus, for resolutions of 12, 24 and 36 meshes per diameter,

e consider 48, 96 and 144 planes respectively. Three cross-sections are
considered for the second configuration, at a height of 25%, 50% and
5% of the mean bed height.

For a field 𝐴, the space–time average in a two-dimensional plane
⟨𝐴⟩ is computed as follows:

⟨𝐴⟩(𝑥, 𝑦) = 1
𝑁𝑡

∑

𝑡

(

1
𝑁𝑝𝑙 𝑎𝑛𝑒𝑠

∑

𝑝𝑙 𝑎𝑛𝑒𝑠
𝐴(𝑥, 𝑦, 𝑧, 𝑡)

)

where 𝑁𝑡 is the number of timesteps considered in the simulation and
𝑁𝑝𝑙 𝑎𝑛𝑒𝑠 is the number of planes.

The zero-dimensional average of the quantity ⟨𝐴⟩(𝑥, 𝑦) is then com-
puted on a section of the two-dimensional plane. To avoid any bound-
ary effects, cells located at a distance of 3𝐷𝑝 near the fluid injection are
ot taken into account, nor are cells located at a distance of one particle
iameter near the corners. In addition, as only the characteristics of the
luid inside the bed are studied, cells located above the average height
f the bed are not taken into account in the average. Then, the 0𝐷
verage writes:

⟨𝐴⟩0𝐷 = ∫

ℎ𝑏𝑒𝑑

3𝐷𝑝
∫

𝐿𝑥∕2−𝐷𝑝

−𝐿𝑥∕2+𝐷𝑝

⟨𝐴⟩(𝑥, 𝑦)𝑑 𝑥𝑑 𝑦

One dimensional space–time average in the direction 𝑥 or in the
direction 𝑦 are computed as follows:

⟨𝐴⟩𝑦 = ∫

ℎ𝑏𝑒𝑑

3𝐷𝑝

⟨𝐴⟩(𝑥, 𝑦)𝑑 𝑦

⟨𝐴⟩𝑥 = ∫

𝐿𝑥∕2−𝐷𝑝

−𝐿𝑥∕2+𝐷𝑝

⟨𝐴⟩(𝑥, 𝑦)𝑑 𝑥

The mean fluid temperature is computed over the planes parallel to
he streamwise direction of the flow and writes:

⟨𝑇 ⟩𝑓 ,0𝐷 =
⟨𝛼𝑓𝑇 ⟩0𝐷

⟨𝛼𝑓 ⟩0𝐷 𝑆

16 
Fig. C.24. Diagram of the Verlet algorithm (not to scale).

The bulk temperature writes:

⟨𝑇𝑏⟩𝑓 ,0𝐷 =
⟨𝛼𝑓𝑉 𝑇 ⟩0𝐷
⟨𝛼𝑓𝑉 ⟩0𝐷

where 𝑉 stands for the streamwise velocity.
Double correlation for field 𝐴 and field 𝐵 are computes as follows:

⟨(𝐴′𝐵′)𝑓 ⟩𝑦 =
⟨𝛼𝑓𝐴𝐵⟩𝑦
⟨𝛼𝑓 ⟩𝑦

−
⟨𝛼𝑓𝐴⟩𝑦⟨𝛼𝑓𝐵⟩𝑦

⟨𝛼𝑓 ⟩2𝑦

⟨(𝐴′𝐵′)𝑓 ⟩𝑥 =
⟨𝛼𝑓𝐴𝐵⟩𝑥
⟨𝛼𝑓 ⟩𝑥

−
⟨𝛼𝑓𝐴⟩𝑥⟨𝛼𝑓𝐵⟩𝑥

⟨𝛼𝑓 ⟩2𝑥

Appendix B. Computation of the wall-to-bed heat transfer

The mean heat transfer coefficient is computed as follows:

ℎ = 1
𝑁𝑡

∑

𝑁𝑡

1
4
∑

𝑖

1
𝑆𝑖
𝑤 ∬𝑆𝑖

𝑤

ℎ𝑖𝑡(𝑥, 𝑦, 𝑧) 𝑑 𝑆 (B.1)

where 𝑁𝑡 is the number of timesteps considered for the time-average,
𝑖 is the surface of the lateral wall 𝑖 and depends on the bed height,
𝑤
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ℎ𝑖𝑡(𝑥, 𝑦, 𝑧) is the heat transfer coefficient at the position (x,y,z) of the
lateral wall 𝑖 at the time 𝑡.

Appendix C. Verlet algorithm

1. Construction of the Verlet tables At the start of the calculation,
for each particle 𝑖, the distance 𝑑𝑖𝑗 with all the other particles
is computed. If 𝑑𝑖𝑗 is below a given threshold 𝜖𝑣, the particle 𝑗
is identified as a potential candidate for collision for particle 𝑖
and saved in its Verlet table. The algorithm is schematized in
Fig. C.24

2. Identifying the fastest particle The speed of the fastest particle
is identified as 𝑣𝑝,𝑚𝑎𝑥.

3. Computation of the update time A characteristic time of the
table update is constructed based on the time two particles at
𝑣𝑝,𝑚𝑎𝑥, distant by 𝜖𝑣 and traveling in the opposite direction,
need to collide 𝛥𝑡𝑉 = 𝜖𝑣

2𝑣𝑝,𝑚𝑎𝑥
. A numerical security 𝛥𝑡𝑚𝑎𝑥 is

also considered to avoid excessively long time intervals without
update. The final update time is 𝛥𝑡𝑢𝑝𝑑 = 𝑚𝑖𝑛

(

𝛥𝑡𝑉 , 𝛥𝑡𝑚𝑎𝑥
)

.
4. Update fo the tables Every 𝛥𝑡𝑢𝑝𝑑 the Verlet tables are recalcu-

lated

Data availability

Data will be made available on request.
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