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A B S T R A C T

In Statistical Process Monitoring, Distribution-free charting schemes play a vital role in Industry

4.0 for their superior effectiveness compared to parametric methods, especially in cases where the

underlying process distribution is not well-defined or poses challenges in estimation. Traditional

distribution-free charting schemes focus on surveilling only one process aspect: the location or

scale parameter. The past two decades have also witnessed a rapid expansion of research on joint

monitoring of the two aspects, location and scale, using combined bi-aspect charting schemes.

However, there is a notable scarcity of methods that addressing complex industrial scenarios

where multiple parameters (like location, scale, and shape) need simultaneous monitoring with

high sensitivity and specificity. Our research is motivated by this challenge, and this paper

describes a distribution-free tri-aspect monitoring procedure called the Maximum Exponentially

Weighted Moving Average (Max-EWMA) scheme. This scheme can effectively monitor shifts

in three process characteristics, encompassing aspects related to process location, scale, and

shape parameters. We utilize weighted versions of well-known statistical measures such as the

Wilcoxon, Ansari-Bradley, and Savage-type statistics to construct the plotting statistics. An

essential feature of our proposed Max-EWMA chart is its robustness under various continuous

distributions, ensuring reliable performance in in-control situations. Competing schemes are

compared via intensive computing techniques based on Monte Carlo using the Median Run

Length metric, which evaluates the effectiveness of the proposed scheme. Finally, our proposed

schemes are illustrated with two examples. Some concluding remarks and limitations of the study

are noted.

1. Introduction

As one of the most extensively applied graphical techniques in Statistical Process Monitoring (SPM), various

charting schemes have been widely used in the manufacturing sector since their inception. See Anwar, Aslam,

Zaman and Riaz (2021), Mukherjee and Marozzi (2021), Yan, Grasso, Paynabar and Colosimo (2022), Zhao, Lui,

Du, Wang and Shao (2023), Wu, Li, Tsung and Pan (2023), for recent charting applications in manufacturing

industries. In recent years, the applications of SPM schemes are no longer confined to the manufacturing domain.

To understand its application in healthcare surveillance, we recommend Keshavarz, Asadzadeh and Niaki (2021),

Erfanian, Sadeghpour Gildeh and Reza Azarpazhooh (2021), and the references cited there. See also Zhang, He, Zhao

and Qu (2021) for applications in monitoring service quality, Wu, Castagliola and Celano (2021) for monitoring French

forest fire, Chan, Chong and Mukherjee (2022) for monitoring time spent in Google applications and so forth. SPM

schemes are often broadly classified as parametric and nonparametric depending on whether the functional form of the

distribution is known or estimable from the Phase-I reference sample or unknown. Traditional parametric SPM schemes

commonly assume a priori knowledge of the complete distributional structure of the underlying processes. However,

fitting a specific parametric distribution in practice can be challenging when an adequately large reference sample is

unavailable. The same is also true if the process characteristic has more complex behaviour. The Nonparametric SPM

(NSPM) schemes facilitate process monitoring without distributional assumption. Therefore, NSPM schemes have

gained considerable popularity in the past twenty years as they offer advantages in dealing with challenges associated

with the parametric approach. These alternative charting schemes have emerged as attractive options when limited data

is available, or the data does not conform to specific assumptions about the distribution. To this end, we encourage

reading the comprehensive textbook by Qiu (2013). An excellent review by Qiu (2018) is also a must-read for a thorough

understanding of various perspectives of NSPM schemes.

A common advantage regarding the nonparametric charting scheme is that its In-Control (IC) robustness remains

valid regardless of the actual process distribution. Depending on whether the premise is standard known or unknown,

the actual or target values of the parameters of the said distribution may be known (Parameter-K) or unknown
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(Parameter-U). The partitioning of SPM schemes into Parameter-K and Parameter-U is valid in both the parametric and

nonparametric setups. However, noting the focus of the current article is nonparametric, we highlight some vital NSPM

schemes under Parameter-K and Parameter-U. In a Parameter-K setup, one may consider NSPM schemes based on the

sign and Wilcoxon’s signed-rank statistics. See, for example, Abid, Nazir, Riaz and Lin (2017), Castagliola, Tran,

Celano and Maravelakis (2020), Alevizakos, Chatterjee and Koukouvinos (2021), Rasheed, Zhang, Arslan, Zaman,

Anwar, Abid and Abbasi (2021), Rasheed, Khan, Abiodun, Anwar, Khalaf and Abbasi (2022), Zhang, Rasheed, Khan,

Namangale, Anwar and Hamid (2022), Almanjahie, Rasheed, Khan, Anwar and Cheema (2023) and Perdikis, Celano,

Psarakis and Castagliola (2023). Likewise, Parameter-U NSPM schemes have also drawn significant attention from

researchers recently. When the target parameter is unknown, we often consider designing a monitoring scheme based

on the ranks or empirical reference distribution. First, a presumably IC sample is gathered when the process behaviour

is supposed to be smooth and fine. The observed sample is subsequently processed through appropriate Phase-I analysis

and established as a reference sample. Then, we obtain each Phase-II sample that needs to be monitored sequentially

and compare it with the reference sample at each monitoring stage unless some signal is raised. Numerous Parameter-U

NSPM schemes are presented to monitor the process location. See, for example, Graham, Mukherjee and Chakraborti

(2012), Mukherjee and Sen (2015), Li, Mukherjee, Su and Xie (2016), Graham, Mukherjee and Chakraborti (2017),

Malela-Majika and Rapoo (2017) and Malela-Majika (2021). There are also some charting schemes for monitoring the

process scale. See, for example, Das and Bhattacharya (2008), Zhou, Zhou and Geng (2016) and Haq (2017).

Most existing NSPM schemes cited in the earlier paragraphs, barring Zhang et al. (2021) and Chan et al. (2022),

focus on detecting isolated shifts in either the process location or scale parameter. Consequently, they are referred to

as uni-aspect NSPM schemes. These uni-aspect schemes utilize plotting statistics explicitly designed to detect only

one aspect of process quality. Nevertheless, practical processes often undergo concurrent shifts in location and scale

characteristics. Some studies have suggested using a single combined charting statistic to monitor the location and scale

parameters simultaneously to avoid such issues. These charting schemes belong to the class of bi-aspect NSPM schemes

that evolved from the early works of Mukherjee and Chakraborti (2012) about a decade ago. They used a quadratic

combination of the Wilcoxon Rank Sum (WRS) and the Ansari-Bradley (AB) statistics, known as the Lepage Statistic

(LS). Subsequently, the authors introduced a bi-aspect Shewhart-LS scheme for examining process location and scale

parameters in a Phase-II Parameter-U setup. Mukherjee and Sen (2018) has extended a new class of Shewhart-LS

scheme with the adaptive Gastwirth Score. Recent years have witnessed a growing interest in bi-aspect schemes for

joint monitoring of the location and scale parameters. Examples of such research include Mukherjee, Cheng and Gong

(2018), Xiang, Gao, Li, Pu and Dou (2019), Chong, Mukherjee and Khoo (2020), Song, Mukherjee and Zhang (2020b),

Song, Mukherjee, Marozzi and Zhang (2020a), Chan, Mukherjee, Chong and Lee (2021) and Liang, Mukherjee, Xiang

and Xu (2022).

In practical applications, the EWMA- and Cumulative Sum (CUSUM)-type schemes are commonly favoured over

the Shewhart-type scheme for detecting more moderate and small shifts. A Shewhart-type scheme may, in fact, be

looked upon as a particular case of the EWMA scheme when the smoothing parameter � = 1. Interested readers may

see Chowdhury, Mukherjee and Chakraborti (2015) and Song et al. (2020a) for more details on the bi-aspect NSPM

CUSUM-LS and EWMA-LS schemes. Although the uni-aspect and bi-aspect strategies have gained much attention

recently, they do not look at the shape parameter separately. Most bi-aspect schemes are inherently sensitive to a shift in

shape parameter and perform excellently in practice. However, following up and detecting a shape shift with bi-aspect

schemes are difficult as the constituent plotting statistic does not explicitly consider the shape aspect. In dealing with

customer satisfaction, product reliability, or Time-Between-Event (TBE) applications, changes in the process shape

often occur frequently. By exploring the literature on nonparametric NSPM schemes, we note a relative dearth of

research on the simultaneous monitoring of three process aspects: location, scale and shape. Only recently, Mukherjee,

Qiu and Marozzi (2021) proposed a Tri-aspect Shewhart NSPM (TNS) scheme. This scheme employs a combined

statistic, calculated as the Euclidean distance of the standardized WRS, AB and Savage-type (SA) statistics from the

origin. Tang, Mukherjee and Ma (2023) integrated the TNS design with an CUSUM setup.

In contrast to the Shewhart-type chart, where only the current information is used in the plotting statistics, the

EWMA-type chart accumulates more recent observations in each sub-chart statistics, leading to improved process

monitoring and enhanced detection of process improvements. See, for example, Abid et al. (2017), Graham et al.

(2017), Haq (2017), Tang, Castagliola, Sun and Hu (2019), Chan et al. (2022) and Liang et al. (2022). Particularly,

recent studies have extensively demonstrated the effectiveness of the Max-EWMA scheme for monitoring parametric

processes. For example, Javaid, Noor-ul Amin and Hanif (2020) investigated the performance of the Max-EWMA

scheme with measurement error for monitoring process mean and variance. Noorul-Amin, Javaid, Hanif and Dogu
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(2022) further considered the auxiliary information to improve the efficiency of the Max-EWMA chart proposed in

Javaid et al. (2020). In their study, Sanusi, Teh and Khoo (2020) proposed a Max-EWMA monitoring chart for the joint

monitoring of two variables, time (T ) and amplitude (X), where T follows an exponential distribution and X follows

a gamma distribution. Subsequently, other pairs of distributions for T and X have been explored in the works of Ali,

Akram and Shah (2022) and Talib, Ali and Shah (2022).

However, it is noteworthy that studies specifically focusing on nonparametric Max-EWMA control charts are quite

rare. In this paper, we explore the application of a tri-aspect nonparametric Max-EWMA (TNME) monitoring scheme,

which utilizes the maximum of three (WRS, AB and SA) robust test statistics to achieve comprehensive monitoring. The

proposed TNME scheme outperforms current state-of-the-art methods, with the additional advantage of an easy-to-use

signaling identification procedure. The key innovations of this paper have been summarized as follows:

1. This paper combines three well-established nonparametric statistics-Wilcoxon, Ansari-Bradley, and Savage-to

create effective plotting statistics for detecting different types of shifts. The use of Max-EWMA strategy on

the standardized statistics makes the TNME scheme more sensitive to small and moderate shifts compared to

existing charts.

2. This paper provides a convenient follow-up procedure that directly compares the component with the Upper

Control Limit (UCL) to identify the signalling cause. This avoids the need for complicated analysis when a

signal is observed.

3. This paper provides optimal design methodology for the TNME scheme based on Median Run Length (MRL).

Simulation studies and real examples demonstrate the superiority of the proposed TNME scheme over existing

methods in detecting various shifts.

This article has been arranged and presented in six sections, including this Introduction. Section 2 introduces the

tri-aspect nonparametric Max-EWMA scheme by combining the WRS, AB and SA statistics. The remainder of the

article is devoted to outlining the novelty of the proposed procedure. Section 3 describes the implementation and

the follow-up procedure. The IC robustness and detection ability of the Out-of-control (OOC) state under different

continuous distributions are discussed in Section 4. Two real data sets are presented in Section 5 to show the practical

applications of our proposed methodology. Finally, we provide some concluding remarks in Section 6.

2. The tri-aspect nonparametric Max-EWMA chart

Let cumulative distribution function (c.d.f.) FX of the process characteristic under surveillance be unknown

but continuous. We consider a set of independently and identically distributed (iid) historical observations, say

Xm = (X1, X2,… , Xm) of size m, collected from FX when process behaviour was apparently stable and IC. Further,

suppose that Xm is subsequently established as a reference sample through appropriate Phase-I analysis. A proper

Phase-I analysis is very important for the success of Phase-II applications; however, it is a different topic and not the

focus area of the current investigation. We refer to Li, Mukherjee and Su (2019), Li, Mukherjee and Marozzi (2020)

and Suzuki, Murakami and Mukherjee (2021) for more details on multi-aspect Phase-I applications.

During the online inspection at Phase-II, suppose a test sample Yt,n = (Yt1, Yt2,… , Ytn) of size n is observed at the

tth stage for t = 1, 2,…. Suppose further that the population cdf corresponding to an observation in any test sample be

FY . Note that FY is also supposed to be continuous and unknown. Ideally, as long the process is in IC, we expect the

identity FX
d
= FY to hold in all respect. We consider a versatile location-scale-shape family of alternatives introduced

by Kössler and Mukherjee (2020). The versatile alternative combines the traditional location-scale alternatives used in

bi-aspect charting schemes and the Lehmann alternative corresponding to the shape, which is heavily used in lifetime

and reliability testing. The model is given by:

FY (x) =
[
FX

(
x − �

e�

)]e%
, (�, �, %) ∈ ℝ

3, (1)

where �, �, %, respectively, represent the location, scale and shape parameters. The notation ℝ stands for the real line,

and ℝ
3 is the corresponding three-dimensional real plane. Following Mukherjee et al. (2021), (1) may be written

alternatively as:

FY (x) =
[
FX

(
x − �

�′

)]%′
, � ∈ ℝ, �′ ∈ ℝ

+, %′ ∈ ℝ
+, (2)
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where �′ and %′ are the reparameterized scale and shape parameters. Here ℝ
+ indicates the positive half of the real

line. It immediately follows that the probability density function (p.d.f.) of FY is

fY (x) =
%′

�′
fX

(
x − �

�′

) [
FX

(
x − �

�′

)]%′−1
, � ∈ ℝ, �′ ∈ ℝ

+, %′ ∈ ℝ
+. (3)

This alternative includes both isolated and mixed types of shifts as flexible options. All embedded hypotheses in the

corresponding two-sample comparison studies can be outlined as follows:

• The IC state corresponds to H0 ∶ [� = 0, �′ = 1, %′ = 1];

• The pure location shift corresponds to H1 ∶ [� ≠ 0, �′ = 1, %′ = 1];

• The pure scale shift corresponds to H2 ∶ [� = 0, �′ ≠ 1, %′ = 1];

• The pure shape shift corresponds to H3 ∶ [� = 0, �′ = 1, %′ ≠ 1];

• The classical location-scale alternative is a particular case and corresponds to H4 ∶ [� ≠ 0, �′ ≠ 1, %′ = 1];

• The joint location-shape shift is characterised by H5 ∶ [� ≠ 0, �′ = 1, %′ ≠ 1];

• The joint scale-shape shift is characterised by H6 ∶ [� = 0, �′ ≠ 1, %′ ≠ 1];

• The versatile location-scale-shape shift is characterised by H7 ∶ [� ≠ 0, �′ ≠ 1, %′ ≠ 1].

At the tth stage, a pooled sample of size N = m + n, comprising the m reference sample and the n test sample,

is obtained. We then propose the design of a new tri-aspect nonparametric Max-EWMA plotting statistic using three

constituent rank statistics, namely, WRS for location, AB for scale and SA for Lehmann alternative involving shape.

Let Ii be an indicator variable such that

Ii =

{
1 if the itℎ order statistic of the pooled sample belongs to Yt,n,

0 otherwise.

The WRS statistic is given as follows:

ZW ,t =

N∑
i=1

iIi, (4)

The AB statistic is given as follows:

ZA,t =

N∑
i=1

{||||i −
(
N + 1

2

)|||| Ii
}
. (5)

The detection efficacy of the ZW ,t statistic for a shift in � suffers when there is a shift in �′. Similarly, the power of the

ZA,t statistic also suffers when a shift in � is present. The well-known phenomenon was the instrumental motivation

behind the bi-aspect Lepage statistic, denoted as Lt, combining the WRS and AB statistics. The Lt statistic is defined

by

Lt =

(
ZW ,t − �W

�W

)2

+

(
ZA,t − �A

�A

)2

= W 2
t
+ A2

t
, (6)

where

�W = E(ZW ,t|IC) = n(N + 1)

2
, (7)

�2
W

= V ar(ZW ,t|IC) = mn(N + 1)

12
; (8)
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�A = E(ZA,t|IC) =
⎧
⎪⎨⎪⎩

n(N2−1)

4N
if N is odd

nN

4
if N is even,

(9)

�2
A
= V ar(ZA,t|IC) =

⎧⎪⎨⎪⎩

mn(N+1)(N2+3)

48N2 if N is odd

mn(N2−4)

48(N−1)
if N is even.

(10)

Further, the SA test statistic is given as follows:

ZS,t =

N∑
i=1

(
N∑

j=N−i+1

1

j
− 1

)
Ii. (11)

A standardized SA statistic may be realised as follows:

S2
t
=

(
ZS,t − �S

�S

)2

, (12)

where

�S = E(ZS,t|IC) = 0, (13)

�2
S
= V ar(ZS,t|IC) = mn

N − 1

(
1 −

1

N

N∑
j=1

1

j

)
. (14)

It goes without saying that Wt and At are linearly independent, while St is not independent of Wt and At. Based

on the above three statistics, three EWMA statistics may designed as follows:

QW ,t = �W 2
t
+ (1 − �)QW ,t−1, (15)

QA,t = �A2
t
+ (1 − �)QA,t−1, (16)

QS,t = �S2
t
+ (1 − �)QS,t−1, (17)

where QW ,0 = E(W 2
t
|IC) = 1, QA,0 = E(A2

t
|IC) = 1 and QS,0 = E(S2

t
|IC) = 1 are respectively the starting values

and 0 < � ≤ 1 is a smoothing constant. Finally, a tri-aspect nonparametric Max-EWMA scheme, refer to as TNME

scheme, combining QW ,t, QA,t and QS,t, is computed as

Mt = max(QW ,t, QA,t, QS,t). (18)

From the theory of linear rank statistics, it is well-known that QW ,t, QA,t, and QS,t are expected to be higher than 1

when the null hypothesis corresponding to the particular parameter is violated. We always expect an upward shift in

one or more of QW ,t, QA,t, and QS,t, notwithstanding the direction of shifts. Consequently, the plotting Mt statistic

would be expected to be larger in an OOC situation. Therefore, the TNME scheme only has an UCL. An OOC signal

will be triggered if the value of Mt exceeds UCL. For a Max-EWMA scheme, no additional charting parameter is

necessary for its follow-up procedure. The details of the implementation steps and simple post-signal follow-up rule

are given in the following section.

3. Implementation and charting design

Figure 1 outlines the step-by-step implementation procedure of the proposed Max-EWMA type TNME scheme for

tri-aspect surveillance. Construction of the TNME procedure can be described as follows:

1. To conduct a Phase-I analysis, initially gather a randomly selected reference batch Xm = (X1, X2,… , Xm) with

m elements from a process confirmed to be IC using a suitable Phase-I technique. Although it is not the focus of

this study, an distribution-free approach, essential for identifying an IC reference sample and confirming the IC

status, is detailed in Capizzi and Masarotto (2017).
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Figure 1: Implementation of the proposed TNME chart.

2. During the online inspection at Phase-II, collect a test sample Yt,n = (Yt1, Yt2,… , Ytn) of size n at the tth stage.

3. Compute the standardized statistics W 2
t

, A2
t

and S2
t

for t = 1, 2,… .

4. Calculate the EWMA statisticsQW ,t,QA,t andQS,t and the plotting statisticMt = max(QW ,t, QA,t, QS,t) of the

TNME scheme.

5. PlotMt against the specified UCL. IfMt ≤ UCL, the process is determined to be IC, monitoring continues. It is

advised to collect and evaluate the subsequent test samples, as in Step 2. Otherwise, it indicates a potential shift

in the process, prompting a follow-up as described in Step 6 for an assignable cause.

6. Follow up: The TNME scheme is straightforward to implement since it does require no additional charting

parameters for its follow-up procedure. If an OOC situation is detected, any component QW ,t, QA,t and QS,t
exceeding the UCL can be considered as the primary cause of the deviation in the signal. It’s important to note

that in this context, the UCL value is the same as previously defined. Therefore, there is no need to introduce

additional parameters.

3.1. Determination of UCL
The proposed charting scheme and its merits depend on the two design parameters, UCL and the smoothing

parameter �. Following standard practices, we recommend the IC run-length properties to determine theUCL values for

a given (m, n, �). The run length (RL) refers to the number of subgroup samples drawn from the beginning of Phase-II

monitoring until the first alarm is issued, and its average value is called the Average Run Length (ARL). Traditionally,

practitioners fix a target IC ARL (ARL0) and aim to search for the optimal OOC ARL (ARL1). Nevertheless, the use

of the ARL has recently been criticised. In most cases, the RL distribution is substantially skewed, and its form also

changes according to the shift magnitudes. Also, the existence of theoretical expectation of the RL variable with small
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m and � is questionable in various Phase-II distribution-free monitoring schemes. See Chakraborti, Van der Laan and

Van de Wiel (2004).

On the contrary, the MRL is less affected by the skewness, and it can provide a measure of the central tendency

of the RL distribution. Also, the median of the RL variable always exists. The MRL performance measure has also

been used by You, Khoo, Castagliola and Qu (2016), Teoh, Chong, Khoo, Castagliola and Yeong (2017), Teoh, Lim,

Khoo, Chong and Yeong (2018), Tang et al. (2019), Mukherjee and Marozzi (2021) and Chong, Tan, Khoo, Teoh

and Castagliola (2022), among others. To this end, we set the target IC MRL value (MRL0) to 250 in this paper,

meaning that the TNME chart will trigger a first OOC alarm at or before the 250th test sample 50% of the time.

Choosing charting parameters (UCL, �) often involves two steps: First, finding the combinations of (UCL, �) that yield

the desired IC MRL value (e.g. MRL0 = C). The step involves using a dichotomy method to estimate the appropriate

UCL value for a given m, n, � and C . In the second step, optimal � is chosen amongst various (UCL, �) combinations,

the one that offers the best overall performance for detecting shifts of various sizes. Next, we describe the pseudocode

for determining the UCL values, considering fixed values of m, n, and � that result in a nominal IC MRL0 close to the

target value. See Algorithm 1 for the same. It should be noted that the estimated UCL can be applied to any continuous

distribution since the TNME charting scheme is distribution-free. The 106 replications in Matlab for calculating UCL

should be enough to obtain reliable approximations.

Algorithm 1 Search the UCL

Define m, n, � and C

min ← 1

max ← a large value, e.g. 20

mid ← 1

UCL ← 1

while min < max and UCL = 1

do mid ← (min + max)∕2

if |(MRL0(mid, �, m, n) − C)∕C| ≤ 0.01

then UCL ← mid

else if |(MRL0(mid, �, m, n) − C)∕C| > 0.01

then max← mid

else min← mid

return UCL

3.2. Problem with the choice of �
Selecting an appropriate � is essential to obtain optimal performance of the charting schemes. The choice of �

is tricky. When MRL0 is prefixed, and the shift size is known, the optimal � is the TNME(�) scheme one that offers

the smallest OOC MRL (MRL1,�). The same idea may be extended to compare various monitoring schemes for a

given shift. From our experience, we know that a typical recommendation is to choose a small �, say equal to 0.05 to

0.1, for small shifts and larger � for relatively larger shifts when charts are designed using prefixed ARL0 or MRL0.

The same logic is applicable in the current context. However, the unknown shift size is the major challenge in the

current context. In practice, shift size is often unknown; therefore, optimal � for a given shift may not be optimal in

another shift situation. Since possible shift size is unknown at the very outset, choosing a � which returns good overall

performance for a class of shifts using specific suitable metrics for measuring overall performance is essential.

In addition to using MRL as a performance measure, Han and Tsung (2006) propose a Relative Median Index

(RMI) for evaluating the ARL performance of a control chart over a range of change magnitudes. In this paper, we

consider using the RMI based on the MRL to explore charting schemes’ overall performance. The general index RMI

for detecting a whole range of shifts is given by

RMI(UCL, �) = ∫
+∞

−∞ ∫
+∞

0 ∫
+∞

0

(
MRL(UCL, �, �, �′, %′)

MRLopt(�, �′, %′)

)
d(�)d(�′)d(%′), (19)

where MRLopt(�, �′, %′) denotes the minimum MRL1 value of all charts compared for detecting (�, �′, %′). Given the

challenges in estimating the exact shape of the parameters (�, �′, %′), we assumed uniform distributions for �, �′, %′,

respectively. (19) may be written alternatively as:
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RMI(UCL, �) =
1

K × P ×Q

K∑
k=1

P∑
p=1

Q∑
q=1

(
MRL(UCL, �, �(k), �′(p), %′(q))

MRLopt(�(k), �′(p), %′(q))

)
, (20)

where MRL(UCL, �, �(k), �′(p), %′(q)) denotes the MRL for detecting the shift (�(k), �′(p), %′(q)), and K × P × Q is the

number of shift combinations considered in the comparison. Therefore,RMI(UCL, �) is a relative efficiency measure of

the chart (UCL, �) compared to the best-performing chart. A smallerRMI indicates that the chart (UCL, �) outperforms

others in detecting shifts overall. The subsequent steps outline the procedure for searching the optimal � value.

1) Set m, n and target MRL0 = C values and for a fixed �, compute corresponding UCL by using Algorithm 1.

2) Generate m IC reference observations from a specific distribution, and generate n test observations at the ttℎ

stage from the same distribution but with shift (�, �′, %′). For each combination of (UCL, �), compute Mt and

compare it with UCL, record RL = t when the first OOC signal is detected at the ttℎ test sample.

3) Repeat step 2 for 106 times and compute MRL1 value for this shifted process.

4) Consider different shift combinations, compute RMI(UCL, �) for a whole range of shifts.

5) Finally, select the optimal combination (UCL, �) having the smallest RMI value.

4. Simulation studies

In this section, we delve into a comprehensive analysis of various aspects related to control charts. We initiate

our exploration by investigating the IC properties of the TNME charting scheme. Subsequently, we shift our focus

towards evaluating the influence of parameters m and n on the chart’s performance. Moving forward, we delve into the

determination of the optimal � value based on the RMI methodology. To conclude this section, we conduct a thorough

OOC comparison, pitting our proposed approach against existing competitors in the field.

4.1. IC properties
In Table 1, we present the UCL values corresponding to all � ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

values when target MRL0 = 250. It is important to emphasize that our TNME scheme is distribution-free. Therefore,

both the determination of UCL and the RL performance analysis in this paper can be easily achieved using Monte Carlo

simulations. In order to investigate the IC performance of proposed TNME scheme, along with the standard normal

distribution, various heavy-tailed and skewed distributions have been considered. These distributions are: (1) The

standard normal distribution N(0, 1); (2) The student’s-t distribution T(3); (3) The Logistic distribution L(0,
√
3∕�);

(4) The gamma distribution G(3, 5); (5) The logarithmic normal distribution LN(0, 1); (6) The exponential distribution

E(1). In Table 2 When (� = 0, �′ = 1, %′ = 1), we estimate the P5, P25, P50, P75 and P95 percentiles as well as the

ARL0, and the Standard Deviation ARL (SDRL0) of the IC RL distribution for the target MRL0 = 250.

Here, we illustrate the IC performance of the TNME scheme using � = 0.1 as an example, considering

m ∈ {100, 300} for the reference sample size, n ∈ {5, 10} for the test sample size. Notably, the TNME scheme

consistently exhibits MRL0 values close to the target value, irrespective of the process distributions. While there might

be minor sampling fluctuations, these MRL0 values remain within a narrow range of 247 to 253. This observation

leads us to conclude that the IC RL distribution and the associated characteristics of the TNME schemes remain robust

across all considered continuous distributions. Table 2 also demonstrates that the ARL0, SDRL0 and IC the Quartile

Deviation of the RL
(
QDRL0 =

P75−P25
2

)
value decrease with larger m and n. For example, when (m, n) = (100, 5),

for monitoring the N(0, 1) distribution, we have ARL0 = 685.36, SDRL0 = 1197.99 and QDRL0 = 320.5. While

when (m, n) = (100, 10), we have ARL0 = 678.36, SDRL0 = 1159.3 and QDRL0 = 325, and ARL0 = 472.29,

SDRL0 = 635.75 and QDRL0 = 247.5 for (m, n) = (300, 10).

4.2. Effect of parameters m and n

The OOC c.d.f. is, as you may have noticed in (2), FY (x) =
[
FX

(
x−�

�′

)]%′
. The probability integral transformation

indicates that FY (x) follows a uniform distribution across the interval [0, 1]. Our approach involves generating samples
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Table 1

UCL for the TNME schemes for m ∈ {100, 300}, n ∈ {5, 10} and target MRL0 = 250.

(m, n) = (100, 5) (m, n) = (100, 10) (m, n) = (300, 5) (m, n) = (300, 10)

� UCL UCL UCL UCL

0.05 1.728 1.721 1.754 1.737
0.1 2.25 2.23 2.335 2.28
0.15 2.741 2.7 2.887 2.792
0.2 3.214 3.153 3.435 3.294
0.25 3.684 3.602 3.994 3.782
0.3 4.149 4.048 4.537 4.282
0.35 4.621 4.492 5.095 4.764
0.4 5.086 4.935 5.634 5.266
0.45 5.549 5.38 6.178 5.754
0.5 6.028 5.815 6.75 6.258

Table 2

The IC RL profiles of the TNME scheme when target MRL0 = 250, � = 0.1.

(m, n) = (100, 5) (m, n) = (100, 10)

P5 P25 P50 P75 P95 ARL SDRL P5 P25 P50 P75 P95 ARL SDRL

N(0, 1) 15 81 252 722 2879 685.36 1197.99 N(0, 1)) 15 80 253 730 2848 678.36 1159.30
T(3) 15 80 250 719 2868 685.56 1200.87 T(3) 15 79 251 725 2766 667.08 1146.81

L(0,
√
3∕�) 15 81 249 710 2852 680.71 1200.12 L(0,

√
3∕�) 15 79 250 717 2808 675.37 1172.98

G(3, 5) 15 81 252 721 2865 682.33 1191.03 G(3, 5) 15 79 250 721 2782 668.76 1156.30
LN(0, 1) 14 80 250 714 2877 681.82 1194.10 LN(0, 1) 15 80 251 717 2781 669.28 1155.88
E(1) 14 80 247 714 2833 677.27 1185.22 E(1) 15 79 248 727 2810 673.66 1157.20

(m, n) = (300, 5) (m, n) = (300, 10)

P5 P25 P50 P75 P95 ARL SDRL P5 P25 P50 P75 P95 ARL SDRL

N(0, 1) 17 91 251 615 1896 516.84 780.07 N(0, 1) 18 92 248 587 1687 472.29 653.75
T(3) 17 91 250 609 1917 516.59 781.07 T(3) 18 93 250 591 1714 478.55 664.99

L(0,
√
3∕�) 17 92 251 609 1896 515.70 775.33 L(0,

√
3∕�) 17 92 247 588 1692 474.57 660.10

G(3, 5) 17 91 250 613 1914 519.24 788.24 G(3, 5) 18 93 250 592 1686 474.52 656.75
LN(0, 1) 17 92 251 614 1904 517.93 778.97 LN(0, 1) 18 92 249 587 1698 475.57 659.09
E(1) 17 92 252 614 1930 520.20 788.02 E(1) 18 92 249 594 1694 478.93 669.59

from the uniform distribution within the range [0, 1], raising them to the power of %′−1, and then applying the quantile

function of the corresponding location-scale distribution family with parameters � and �′. This method effectively

generates random samples for the process observations.

Due to space limitations, we have selected the following three typical distributions for comparison and explanation

in cases of OOC situations. Our study encompasses two symmetric distributions and one asymmetric distribution:

• The N(0, 1) distribution is a fundamental distribution in statistics, characterized by its symmetry and bell-shaped

curve. It’s a common reference point for many statistical methods and theories. Its properties are well understood,

making it a natural choice for a baseline comparison;

• The T(3) distribution is chosen for its heavier tails compared to the normal distribution. This makes it useful

for studying scenarios where extreme values are more common than what the normal distribution predicts. In

practical terms, this distribution can better represent real-world data that may have outliers or be slightly skewed.

• The E(1) distribution is an asymmetric distribution and is often used to model time until an event occurs, such as

failure times in reliability testing. Its selection is significant because it differs fundamentally from the symmetric

properties of the normal and t-distributions, thus providing a contrasting perspective in the study.
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In order to explore the influence of m and n on the OOC performance of the proposed TNME chart, we present the

MRL1 values for different scenarios involving m ∈ {100, 300} and n ∈ {5, 10} in Table 3. An interesting finding in

the comparative results is the consistent decrease in MRL1 values as both m and n increase across all control schemes.

Furthermore, it’s worth highlighting that the enhancement of charting scheme performance is more noticeable with

an increase in n. For example, in Table 3, when m = 100, n = 5, for detecting (�, �′, %′) = (0.2, 1.2, 1.2) in N(0.5),

we have MRL1 = 12 for the TNME (� = 0.05) chart, MRL1 = 11 for the TNME (� = 0.1) chart, 12 for the TNME

(� = 0.3) chart and 13 for the TNME (� = 0.5) chart. When n increases to 10, for a same m = 100 we have MRL1 = 8

for the TNME (� = 0.05) chart, MRL1 = 7 for the TNME (� = 0.1) chart, 8 for the TNME (� = 0.3) chart and 8 for

the TNME (� = 0.5) chart. But for the increasing of m, this improvement in detecting performance is not as great as n.

For example, when m = 300 and n = 5, for detecting (�, �′, %′) = (0.2, 1.2, 1.2), we have MRL1 = 10 for the TNME

(� = 0.1) chart, MRL1 = 9 for the TNME (� = 0.1) chart, 11 for the TNME (� = 0.3) chart and 11 for the TNME

(� = 0.5) chart.

4.3. Optimal � based on RMI
The overall performance based on RMI is investigated within � ∈ {0.05, 0.1,… , 0.5}. Our study includes

one asymmetric and two symmetric distributions to search the optimal � over a wide range of shifts. We also

have investigated several larger � and find that the TNME chart with � > 0.5 has no advantage for different shift

combinations, so we drop these results. We consider location parameters as � ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2},

and increasing variability is of major concern, and thus, we consider scale parameters as �′ ∈ {1, 1.25.1.5, 1.75, 2}.

Also, we choose shape parameters as %′ ∈ {1, 2, 5, 10}. Therefore, we have 8×5×4 = 160 combinations of (�, �′, %′).

Clearly, the setting (�, �′, %′) = (0, 1, 1) corresponds to the IC scenario.

The performance of the TNME scheme in detecting a wide array of shifts is showcased in Figure 2, evaluated

through the RMI index. For instance, in Figure 1(a) with parameters m = 100 and n = 5, the TNME chart with

� = 0.3 (indicated by the “-◦-” line) exhibits the smallest RMI under the N(0, 1) distribution. Similarly, the TNME

chart with � = 0.3 proves effective in detecting shifts within the T(3) distribution (“-⋄-” line), while the TNME chart

with � = 0.2 performs optimally under the E(1) distribution (“-□-” line). Additionally, the mean value of the RMI

scores is computed across the three distributions, represented by the “-∗-” line. This visualization underscores that the

TNME chart with � = 0.3 yields the best performance, followed by the TNME scheme with � = 0.2, and then with

� = 0.2.

4.4. Comparison with existing competitors
For assessing our proposed scheme for detecting OOC cases, we facilitate performance comparisons with the

EWMA Cramér-von Mises (ECvM) scheme proposed in Zhang, Li and Li (2017), the EWMA-Lepage (EL) scheme

proposed in Song et al. (2020a), the tri-aspect nonparametric CUSUM (TNC) scheme proposed in Tang et al. (2023) and

the distribution-free chart based on the score test (DFS) scheme proposed in Ding, Li, Tsung and Li (2023). For brevity,

in this subsection, our attention is directed towards assessing the detection performance under the (m, n) = (100, 5)

scenario.

The CvM statistic in Zhang et al. (2017) is given by:

Wm,n,t =
mn

(m + n)2

(
m∑
i=1

(F̂X(xi) − F̂Y (xi))
2 +

n∑
j=1

(F̂X(ytj) − F̂Y (ytj))
2

)
(21)

where F̂X(x) =
1

m

∑m

i=1
l(xi ≤ x) and F̂Y (y) =

1

n

∑n

j=1
l(ytj ≤ y) represent the empirical cumulative distribution

functions (CDFs) based on the m and n observations, respectively. The l(B) is an indicator variable, taking the value 1

whenB is true and 0 otherwise. Notably, Zhang et al. (2017) explored an EWMA approach employing the standardized

CvM statistic, which can be highlighted as follows:

Ut =
Wm,n,t − �Wm,n

�Wm,n

, (22)

Et = �Ut + (1 − �)Et−1, (23)
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(a) m = 100, n = 5
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(b) m = 100, n = 10
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(c) m = 300, n = 5
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(d) m = 300, n = 10

Figure 2: Optimal � selection based on RMI for the ME-OR scheme when m ∈ {100, 300}, n ∈ {5, 10} and MRL0 = 250.

with E0 = 0, �Wm,n
=

m+n+1

6(m+n)
and �Wm,n

=
(m+n+1)[(1−

3

4m
)(m+n)2+(1−m)(m+n)−m]

45(m+n)2n
.

The EL statistic, as discussed in Song et al. (2020a), constitutes a robust two-sample test designed for a joint

location-scale shift hypothesis. This is expressed through equations

Lt = W 2
t
+ A2

t
, (24)

Zt = �Lt + (1 − �)Zt−1, (25)

with Z0 = 2. When � = 1, this EWMA-Lepage scheme coincides with the Shewhart Lepage scheme.

Recently, Tang et al. (2023) introduced a distribution-free CUSUM scheme that relies on the Euclidean distance

among the Wt, At, and St statistics, as follows:

Tt = W 2
t
+ A2

t
+ S2

t
, (26)

Qt = max{0, Qt−1 + (Tt − 3) − k}, (27)

where k ≥ 0 is the reference parameter and Q0 = 0.

Ding et al. (2023) introduced a distribution-free EWMA scheme, labelled DFS, for jointly monitoring location

and scale. In Ding et al. (2023), they assume the IC c.d.f. F0 is known or has been accurately estimated. The charting

statistic they suggested monitoring is

Rt =
1

n
�

T

t
I−1�t, (28)

Author et al.: Preprint submitted to Elsevier Page 11 of 23



MAX-EWMA joint surveillance scheme

where �t = (1 − �)�t−1 + � t, I =

[
1∕3 0

0 (�2 + 3)∕9

]
,  t =

[∑n

j=1
�1(F0(Ytj)),

∑n

j=1
�2(F0(Ytj))

]T

, �1(u) = 2u− 1

and �2(u) = (2u − 1) ln
u

1−u
− 1.

Comparing all existing charting schemes with their respective optimal parameters � (or k) while maintaining a fixed

MRL0 is a more rational approach. Consequently, we explore the optimal values of �within the range 0.05, 0.1,… , 0.5

for ECvM, EL, DFS and TNME schemes, encompassing a broad spectrum of shifts. As for the TNC chart, Tang et al.

(2023) expressed k in the form k = ℎ×SD(T |IC), where the k value denotes ℎ times the standard deviation (SD) of T ,

with an approximate value of SD(T |IC) ≈ 3.073. Therefore, when ℎ ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}, we have

k ∈ {0.15, 0.31, 0.77, 1.54, 2.30, 3.07, 4.60, 6.15}. In Figure 3, we show the RMI performance of the EWMA-CvM,

EL and TNC schemes based on different distributions when m = 100, n = 5 and MRL0 = 250. Among the considered

ℎ values, the TNC scheme with ℎ = 1 exhibits favorable overall performance. Similarly, the EWMA-CvM chart with

� = 0.25, the EL scheme with � = 0.2 and the DFS chart with � = 0.4 demonstrate the lowest mean(RMI).

Figure 4 illustrates the probability density and cumulative proportion of false alarms for the competing schemes.

The x-axis represents the RL with intervals marked up to 5000, while the y-axis shows the cumulative proportion of

false alarms, ranging from 0 to 1. It shows that, the curves of all schemes are very close to one another, indicating similar

initial performance across the different methods. As RL exceeds 250, the TNME scheme offers a lower cumulative

proportion of false alarms than the others. The graph shows that all methods converge towards a cumulative proportion

of 1, which is expected for the probability distribution function as RL increases. Around the IC MRL0 of 250, almost

all schemes have a type-I error probability of approximately 0.001.
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Figure 3: Optimal parameter selection based on RMI for the EWMA-CvM, EL, DFS and TNC schemes when m = 100, n = 5

and MRL0 = 250.
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Figure 4: Probability density and cumulative proportions of false alarm.

We explore an extensive array of OOC “micro” scenarios, ranging from small to large shifts in one, two, or

all of the three parameters. It is essential to highlight that the comparisons are based exclusively on the optimal

values of � (or ℎ) for all competing methods. Figure 5 presents the OOC MRL1 performance of the five competing

monitoring techniques for detecting isolated shifts in process location, scale, and shape, respectively. With a fixed IC

MRL0 = 250, a notable observation from the comparative results is that the proposed TNME competes effectively

with ECvM and EL schemes, consistently demonstrating superior detection performance for most OOC situations,

barring a few exceptions. The TNME scheme displays significantly better detection ability of the location and shape

shifts. This observation aligns with the substantial location shift identification capability of the St statistic and its

substantial correlation with the Wt statistic. Consequently, the combined test statistic Mt outperforms the Lt statistic

when detecting location and shape shifts. The finding aligns well with the findings in Kössler and Mukherjee (2020).

For monitoring the scale shifts, it is interesting to find that the DFS chart has a significantly better performance than

other competitors. It is also worth noting that the ECvM, EL and DFS schemes display MRL-biasedness (MB) for

small shifts in the shape parameter, such as (� = 0, �′ = 1, %′ = 1.1), where the MRL1 value exceeds the MRL0.

The TNME and the TNC schemes exhibit somewaht similarities in their performance for detecting isolated shifts.

But it becomes evident that the TNME scheme holds a distinct advantage, especially when it comes to detecting shifts

involving two or three parameters, such as location-shape, scale-shape, or shifts across all three parameters. Therefore,

we can drown the conclusion that the proposed TNME method offers a more comprehensive monitoring effect,

particularly in complex industrial applications where multiple aspects of a process need monitoring simultaneously.

Significantly, the TNME charting scheme not only excels in identifying more complex shifts but also offers enhanced

capabilities during the diagnostic phase, providing a more robust tool for comprehensive monitoring and analysis.

We present the simulation results in Table 4 when considering the OOC cases with various shifts in two parameters.

For detecting the location-sale and the scale-shape shifts, the DFS scheme has a better performance for monitoring

the N(0, 1) and T(3) distributions, and the TNME scheme performs the best for monitoring the E(1) distribution.

For detecting the location-shape shifts, the superiority of the DFS scheme over other schemes becomes evident. We

must emphasise that the DFS scheme assumes that the process c.d.f. is fully known or can be accurately estimated.

However, in most scenarios, the TNME scheme remains the preferred choice when limited data is available. The same

conclusion applies to cases where all three parameters experience shifts, as shown in Table 5. The proposed TNME

scheme performs better for detecting large shifts than the DFS scheme. Overall, the TNME control chart has substantial

advantages compared to existing control charts, consistently displaying superior performance across various scenarios.
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Figure 5: OOC MRL1 simulation values for pure shifts in the process location, scale and shape when target MRL0 = 250,
m = 100 and n = 5.
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Table 3

OOC MRL1 simulation values of the TNME scheme when target MRL0 = 250, � = 0.1, m ∈ {100, 300} and n ∈ {5, 10}.

(�, �′, %′) m = 100, n = 5 m = 100, n = 10 m = 300, n = 5 m = 300, n = 10

N(0, 1) 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5

(0.2, 1, 1) 61 62 68 73 44 47 59 65 52 54 64 69 36 26 46 50
(0, 1.2, 1) 39 41 49 54 33 34 43 47 33 35 44 49 26 29 34 37
(0, 1, 1.6) 29 30 40 48 14 14 18 25 27 30 41 48 13 13 17 23
(0.2, 1.2, 1) 19 19 21 23 15 14 16 18 16 15 18 20 11 9 12 13
(0, 1.2, 1.2) 26 25 28 31 20 20 23 27 21 21 25 28 15 12 17 19
(0.2, 1, 1.2) 27 27 32 38 15 15 19 23 24 25 32 36 13 11 16 20
(0.2, 1.2, 1.2) 12 11 12 13 8 7 8 8 10 9 11 12 7 5 6 7
(0.2, 1.2, 1.4) 8 7 7 8 5 5 5 5 7 7 7 8 4 3 4 4
(0.2, 1.2, 1.6) 6 5 5 6 4 3 3 3 5 5 5 6 3 3 3 3
(0.4, 1.4, 1.2) 5 4 4 4 3 3 3 3 4 4 4 4 3 2 2 2
(0.4, 1.4, 1.4) 4 3 3 3 2 2 2 2 3 3 3 3 2 2 2 2
(0.4, 1.4, 1.6) 3 3 2 2 2 2 2 2 3 2 2 2 2 2 1 1
(0.6, 1.2, 1.2) 4 4 4 4 3 2 2 2 4 3 3 3 2 2 2 2
(0.6, 1.4, 1.2) 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 2
(0.6, 1.6, 1.2) 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

T(3) 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5

(0.2, 1, 1) 118 120 127 130 87 92 110 118 106 111 123 131 73 79 96 101
(0, 1.2, 1) 66 70 84 94 54 59 74 82 59 65 85 91 45 49 64 73
(0, 1, 1.6) 39 31 40 47 14 14 19 25 27 30 41 48 13 13 17 22
(0.2, 1.2, 1) 40 41 49 54 29 31 38 43 35 36 47 52 25 25 31 36
(0, 1.2, 1.2) 42 42 48 52 32 33 40 45 35 36 45 51 25 25 32 36
(0.2, 1, 1.2) 43 47 60 66 22 23 32 41 41 45 60 67 20 21 30 37
(0.2, 1.2, 1.2) 21 21 25 28 14 13 15 19 19 19 24 29 12 11 13 15
(0.2, 1.2, 1.4) 13 12 14 17 8 7 7 9 12 12 14 17 7 6 7 8
(0.2, 1.2, 1.6) 9 8 9 11 5 5 5 5 8 8 9 11 5 4 4 5
(0.4, 1.4, 1.2) 9 8 9 10 6 5 5 5 8 8 9 10 5 5 5 5
(0.4, 1.4, 1.4) 6 6 6 6 4 4 3 3 6 5 6 6 3 3 3 3
(0.4, 1.4, 1.6) 5 4 4 5 3 3 2 2 4 4 4 5 3 2 2 2
(0.6, 1.2, 1.2) 8 7 8 9 5 4 4 4 7 7 8 10 4 4 4 4
(0.6, 1.4, 1.2) 6 6 6 6 4 4 3 3 6 5 6 7 4 3 3 3
(0.6, 1.6, 1.2) 5 5 5 5 3 3 3 3 5 5 5 5 3 3 3 3

E(1) 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5 0.05 0.1 0.3 0.5

(0.2, 1, 1) 58 67 93 105 22 23 40 55 66 78 101 108 23 26 45 59
(0, 1.2, 1) 47 48 53 57 39 40 48 52 38 39 46 51 29 29 35 39
(0, 1, 1.6) 29 30 40 47 14 14 19 25 27 30 41 47 13 13 17 23
(0.2, 1.2, 1) 20 19 23 27 10 10 12 15 18 18 22 25 9 9 11 13
(0, 1.2, 1.2) 23 23 26 30 15 14 17 20 20 20 24 28 12 12 14 16
(0.2, 1, 1.2) 28 31 47 55 12 11 16 24 29 33 49 56 11 11 17 25
(0.2, 1.2, 1.2) 11 11 12 15 6 5 6 7 10 10 12 14 5 5 5 6
(0.2, 1.2, 1.4) 8 7 8 9 4 4 4 4 7 7 8 9 4 4 3 4
(0.2, 1.2, 1.6) 6 5 5 6 3 3 3 3 6 5 6 7 3 3 3 3
(0.4, 1.4, 1.2) 4 4 4 4 3 2 2 2 4 4 4 4 2 2 2 2
(0.4, 1.4, 1.4) 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 2
(0.4, 1.4, 1.6) 3 3 2 2 2 2 1 1 3 3 2 3 2 2 1 1
(0.6, 1.2, 1.2) 4 4 4 4 2 2 2 2 4 4 4 5 2 2 2 2
(0.6, 1.4, 1.2) 3 3 3 3 2 2 2 1 3 3 3 3 2 2 1 1
(0.6, 1.6, 1.2) 3 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1
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Table 4

OOC MRL1 simulation values for the shift in process location-scale, scale-shape and location-shape when target
MRL0 = 250, m = 100 and n = 5.

N(0,1) T(3) E(1)

Location-scale � �′ %′ TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC

0.2 1.2 1 21 58 36 14 24 49 74 55 32 46 23 34 43 26 27
0.2 1.4 1 10 33 15 5 12 24 45 24 13 23 9 14 18 10 11
0.2 1.6 1 7 23 9 3 7 14 30 13 7 14 6 9 10 6 6
0.2 1.8 1 5 16 6 2 5 9 22 9 5 10 4 6 7 4 4
0.4 1.4 1 6 18 10 4 7 15 26 17 10 15 6 6 8 6 6
0.6 1.4 1 4 10 7 3 4 9 14 11 7 9 4 3 5 4 4
0.8 1.4 1 3 6 5 3 3 6 9 7 5 6 3 2 3 3 2
1 1.4 1 2 4 3 2 2 4 6 5 4 4 2 2 2 2 2

Scale-shape � �′ %′ TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC

0 1.2 1.2 28 72 54 22 32 48 86 74 48 48 26 47 52 28 29
0 1.2 1.4 17 39 34 16 19 27 43 46 28 28 15 20 26 15 16
0 1.2 1.6 11 20 21 11 12 16 22 25 16 17 10 11 15 9 10
0 1.2 1.8 8 12 13 8 9 11 13 16 10 11 7 8 10 7 7
0 1.4 1.2 12 37 19 7 13 23 47 29 17 23 10 18 18 10 11
0 1.6 1.2 7 24 10 4 8 13 30 16 9 14 5 9 9 5 6
0 1.8 1.2 5 17 7 3 5 9 22 10 6 9 4 6 6 4 4
0 2 1.2 4 13 5 2 4 6 17 7 4 7 3 5 5 3 3

Location-shape � �′ %′ TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC

0.2 1 1.2 32 44 57 35 35 60 59 84 60 55 47 40 55 48 51
0.2 1 1.4 18 19 26 17 19 30 24 38 25 30 24 17 27 20 26
0.2 1 1.6 11 10 15 10 12 17 12 20 14 17 15 10 16 11 15
0.2 1 1.8 8 7 10 7 8 11 8 12 9 11 10 7 10 8 10
0.4 1 1.2 11 12 16 10 11 24 18 27 19 23 16 9 13 11 17
0.6 1 1.2 5 6 7 5 5 11 8 11 8 10 7 4 7 5 7
0.8 1 1.2 3 3 4 3 3 6 5 6 5 5 4 3 4 4 4
1 1 1.2 2 2 3 2 2 4 3 4 4 4 3 2 3 3 2
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Table 5

OOC MRL1 simulation values for the shift in process location-scale-shape when target MRL0 = 250, m = 100 and n = 5.

N(0,1) T(3) E(1)

Location-scale-shape � �′ %′ TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC TNME ECvM EL DFS TNC

0.2 1.2 1.2 12 27 23 11 13 25 36 36 23 24 12 14 19 12 14
0.2 1.2 1.4 7 14 13 7 8 14 17 20 13 14 8 8 10 7 8
0.2 1.2 1.6 5 8 9 6 6 9 10 12 8 9 6 5 7 5 6
0.2 1.2 1.8 4 6 6 4 4 6 7 8 6 6 4 4 5 4 4
0.2 1.4 1.2 7 18 12 5 7 14 24 18 11 14 6 7 9 6 6
0.2 1.4 1.4 5 11 8 4 5 9 13 12 8 9 4 5 6 4 4
0.2 1.4 1.6 4 7 6 4 4 6 8 8 6 6 3 4 4 4 3
0.2 1.4 1.8 3 5 5 3 3 5 6 6 5 4 3 3 4 3 3
0.2 1.6 1.2 5 14 8 3 5 9 19 11 7 9 4 5 6 4 4
0.2 1.6 1.4 3 9 6 3 4 6 11 8 6 6 3 4 4 3 3
0.2 1.6 1.6 3 6 5 3 3 4 7 6 5 5 2 3 3 3 2
0.2 1.6 1.8 2 4 4 2 2 4 5 5 4 4 2 2 3 2 2
0.2 1.8 1.2 4 11 6 2 4 7 15 8 5 7 3 4 4 3 3
0.2 1.8 1.4 3 7 5 2 3 5 9 6 4 5 2 3 3 3 2
0.2 1.8 1.6 2 5 4 2 2 4 6 5 4 4 2 2 3 2 2
0.2 1.8 1.8 2 4 3 2 2 3 5 4 3 3 2 2 2 2 2
0.4 1.2 1.2 6 11 10 6 6 13 15 17 11 13 6 5 8 6 7
0.4 1.2 1.4 4 7 7 4 4 8 8 10 7 8 4 4 6 4 5
0.4 1.2 1.6 3 4 5 4 3 6 6 7 5 5 4 3 4 4 3
0.4 1.2 1.8 3 3 4 3 3 4 4 5 4 4 3 3 3 3 3
0.4 1.4 1.2 4 10 7 4 5 9 13 11 8 8 4 4 5 4 4
0.4 1.4 1.4 3 6 5 3 3 6 8 7 6 6 3 3 4 3 3
0.4 1.4 1.6 2 4 4 3 3 4 5 5 4 4 2 3 3 3 2
0.4 1.4 1.8 2 3 3 2 2 3 4 4 4 3 2 2 3 2 2
0.4 1.6 1.2 3 9 6 3 4 6 11 8 6 6 3 3 4 3 3
0.4 1.6 1.4 2 6 4 2 3 5 7 6 4 4 2 3 3 3 2
0.4 1.6 1.6 2 4 3 2 2 3 5 5 4 3 2 2 2 2 2
0.4 1.6 1.8 2 3 3 2 2 3 4 4 3 3 2 2 2 2 2
0.4 1.8 1.2 3 8 5 2 3 5 10 6 4 5 2 3 3 3 2
0.4 1.8 1.4 2 5 4 2 2 4 6 5 4 4 2 2 2 2 2
0.4 1.8 1.6 2 4 3 2 2 3 5 4 3 3 2 2 2 2 2
0.4 1.8 1.8 2 3 3 2 2 2 3 3 3 2 1 2 2 2 1
0.6 1.2 1.2 3 6 5 4 4 8 8 9 7 7 4 3 4 4 4
0.6 1.2 1.4 3 4 4 3 3 5 5 6 5 5 3 3 3 3 3
0.6 1.2 1.6 2 3 3 3 2 4 4 4 4 4 3 2 3 3 2
0.6 1.2 1.8 2 2 3 2 2 3 3 3 3 3 2 2 2 3 2
0.6 1.4 1.2 3 6 6 3 3 6 8 7 5 6 3 3 3 3 3
0.6 1.4 1.4 2 4 4 2 2 4 5 5 4 4 2 2 3 3 2
0.6 1.4 1.6 2 3 3 2 2 3 4 4 3 3 2 2 2 2 2
0.6 1.4 1.8 2 2 3 2 2 3 3 3 3 2 2 2 2 2 2
0.6 1.6 1.2 2 6 5 2 3 5 7 6 4 5 2 2 3 2 2
0.6 1.6 1.4 2 4 4 2 2 3 5 4 4 3 2 2 2 2 2
0.6 1.6 1.6 2 3 3 2 2 3 4 3 3 3 2 2 2 2 2
0.6 1.6 1.8 1 2 2 2 2 2 3 3 3 2 1 2 2 2 1
0.6 1.8 1.2 2 5 4 2 2 4 7 5 4 4 2 2 2 2 2
0.6 1.8 1.4 2 4 3 2 2 3 5 4 3 3 1 2 2 2 2
0.6 1.8 1.6 2 3 3 2 2 2 3 3 3 2 1 2 2 2 1
0.6 1.8 1.8 1 2 2 1 1 2 3 3 2 2 1 2 2 2 1
0.8 1.2 1.2 2 4 4 3 2 5 5 5 5 5 3 2 3 3 3
0.8 1.2 1.4 2 3 3 2 2 4 4 4 4 3 2 2 2 3 2
0.8 1.2 1.6 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2
0.8 1.2 1.8 1 2 2 2 1 2 2 3 3 2 2 2 2 2 2
0.8 1.4 1.2 2 4 4 2 2 4 5 5 4 4 2 2 2 2 2
0.8 1.4 1.4 2 3 3 2 2 3 4 4 3 3 2 2 2 2 2
0.8 1.4 1.6 1 2 2 2 2 2 3 3 3 2 2 2 2 2 1
0.8 1.4 1.8 1 2 2 2 1 2 2 2 2 2 1 2 2 2 1
0.8 1.6 1.2 2 4 3 2 2 4 5 4 3 3 2 2 2 2 2
0.8 1.6 1.4 2 3 3 2 2 3 4 3 3 3 2 2 2 2 1
0.8 1.6 1.6 1 2 2 2 1 2 3 3 3 2 1 2 2 2 1
0.8 1.6 1.8 1 2 2 1 1 2 2 2 2 2 1 1 1 2 1
0.8 1.8 1.2 2 4 3 2 2 3 5 4 3 3 1 2 2 2 1
0.8 1.8 1.4 2 3 2 2 2 2 4 3 3 2 1 2 2 2 1
0.8 1.8 1.6 1 2 2 1 1 2 3 3 2 2 1 1 1 2 1
0.8 1.8 1.8 1 2 2 1 1 2 2 2 2 2 1 1 1 1 1
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5. Examples analysis

This part demonstrates the implementation of the TNME scheme using two real-data examples reported in

Montgomery (2012). We commence by examining an illustration rooted in the renowned piston ring statistics.

Subsequently, we explore a second example involving monitoring flow width in semiconductor manufacturing.

5.1. Forging process monitoring
In this subsection, we hope to establish a nonparametric chart for monitoring the inner diameters of the rings

in a forging process. Here, we use the proposed TNME chart for monitoring this operation. The Phase-I data in

Montgomery (2012), is made up of 125 IC reference observations, and the Phase-II data in Montgomery (2012)

consists of 15 test samples each of size 5. Therefore, when m = 125, n = 5 and target MRL0 = 250, we obtain,

using Monte Carlo methods, the optimal � = 0.3 and the corresponding UCL = 4.236 for the TNME chart, optimal

� = 0.25 and UCL = 1.405 for the ECvM chart, optimal � = 0.2 and UCL = 4.139 for the EL chart, optimal � = 0.4

and UCL = 3.6 for the DFS chart, optimal ℎ = 1 and UCL = 15.28 for the TNC chart.

The charting statistics Mt, Et, Zt, Rt and Qt are depicted in Figure 6. The initial OOC signal is observed at the

12th sample for the TNME, ECvM, DFS and TNC charts, and at the 13th sample for the EL chart. It’s important to

highlight that both the ECvM and DFS approaches lack the ability to pinpoint the primary contributors-be it location,

scale, or shape-in generating a signal. This characteristic of the the bi-aspect and tri-aspect schemes simplifies the

diagnostic verification process in practical applications when compared to its counterparts. If the objective is to pinpoint

the predominant factor (location, scale, or shape) responsible for this signal, the follow-up procedure of the TNME

charting scheme proves to be the simplest approach. This approach only requires scrutinizing the values ofQW ,t,QA,t,

andQS,t against the UCL. Upon examination, it becomes evident that the statistic associated withQS,t corresponds to

the contributing factor behind the signal. This observation signifies a shift in the process shape.

5.2. Hard-bake process monitoring
In this subsection, we consider a realistic dataset associated with semiconductor manufacturing, as introduced

in Montgomery (2012). In semiconductor production, photolithography plays a crucial role. This intricate process

involves coating a silicon wafer with a photosensitive substance known as photoresist. Typically, high-intensity

ultraviolet light is employed to expose the circuit layout onto the resist. Subsequent to this step, the extraneous resist

material is eradicated during the development process. To transfer the resist pattern onto the substrate, two distinct

methods can be employed: wet etching and dry etching. Wet etching employs liquid chemicals or etchants, while

dry etching, like plasma etching, hinges on plasmas or etchant gases. Following this step, a hard-bake technique is

often employed to enhance adhesion and etch resistance. Notably, in hard bake procedures, the flow width of the

resist serves as a critical quality indicator. Therefore, the establishment of charting schemes for the vigilance of resist

flow width becomes essential to detect any atypical alterations in the process’s underlying location, scale, or shape

parameters.

In Phase-I, we use the 125 observations in Montgomery (2012) as the IC reference data. Thus, in this context, we

havem = 125. In Phase-II, we monitor 20 test samples each of size n = 5. Form = 125, n = 5 and target MRL0 = 250,

we shall employ the same charting scheme as described in the previous example for monitoring purposes. We present

the plotting statistics QW ,t, QA,t and QS,t of the TNME, ECvM, EL and TNC charts, respectively, in Figure 7.

The initial OOC signal is observed at the 15th sample for the TNME chart. In contrast, the remaining three charts

breach the UCL for the first time at the 16th sample. Concerning the TNME chart, beyond detecting the signal at the

15th sample, a crucial point of interest pertains to identifying the specific factor (location, scale, or shape) accountable

for this signal. Based on our meticulous analysis, we can deduce that the statistics tied to theQS,t component highlight

a dominant shift in the process shape, thereby underscoring its primary role as the driving cause behind the observed

signal.
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Figure 6: TNME, ECvM, EL, DFS and TNC schemes for monitoring the forging process.
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Figure 7: TNME, ECvM, EL, DFS and TNC schemes for monitoring hard-bake process.
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6. Concluding remarks

This paper introduces a novel nonparametric Max-EWMA scheme that employs a tri-aspect statistic to identify

alterations in the location, scale, and shape parameters, both individually and in combination. The proposed TNME

scheme integrates standardized WRS statistics for location, standardized AB statistics for scale, and standardized

SA statistics for shape. Our approach’s implementation strategy relies on the MRL measure, with its robustness

validated across various distributions through Monte Carlo simulations. A central focus of this paper revolves around

determining the optimal � parameter for the proposed Max-EWMA chart. This parameter choice facilitates the

detection of a broad spectrum of unknown location-scale-shape shifts. Furthermore, we conduct a comparative

analysis by evaluating the performance of our proposed scheme against other contenders using the MRL metric.

The results underscore our approach’s remarkable competitiveness and extensive applicability in identifying shifts in

location, scale, or shape parameters. It outperforms existing bi-aspect or tri-aspect schemes like CCvM, EL, DFS and

TNC schemes.

As an avenue for further research, we suggest exploring other combinations of statistics, particularly various

orthogonal statistics, as an alternative to our proposed scheme. Additionally, there is room to explore an adaptive

EWMA scheme that concurrently monitors unspecified shifts in location, scale, and shape. This can be achieved by

employing data-dependent � values assigned to the three constituent statistics.
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