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Abstract

In this paper we prove discrete Poincaré inequalities that are uniform in the mesh size for the
discrete de Rham complex of differential forms developed in [Bonaldi, Di Pietro, Droniou, and
Hu, An exterior calculus framework for polytopal methods, J. Eur. Math. Soc., to appear, arXiv
preprint 2303.11093 [math.NA]]. We unify the underlying ideas behind the Poincaré inequalities
for all differential operators in the sequence, extending the known inequalities for the gradient,
curl, and divergence in three-dimensions to polytopal domains of arbitrary dimension and general
topology. A key step in the proof involves deriving specific Poincaré inequalities for the cochain
complex supported on the polytopal mesh. These inequalities are of independent interest, as they
are useful, for instance, in establishing the existence and stability, on domains of generic topology,
of solutions of schemes based on Mimetic Finite Differences, Compatible Discrete Operators or
Discrete Geometric Approach.
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1 Introduction
The well-posedness of important classes of partial differential equations can be related to the cohomology
of the de Rham complex through Poincaré-type inequalities. Such inequalities state that the 𝐿2-norm
of forms that lie in an orthogonal complement of the kernel of the exterior derivative is controlled by
the 𝐿2-norm of the latter. Mimicking Poincaré inequalities on the discrete level is required for the
stability of compatible numerical schemes, the design of which hinges on discrete versions of the de
Rham complex.

In the context of conforming Finite Element de Rham complexes, Poincaré inequalities can be
derived through bounded cochain projections; see [2, Chapter 5], [3], and also [11] for a recent
generalization. Owing to the need to identify an underlying computable space of (polynomial) functions,
Finite Element constructions are, however, typically limited to conforming meshes with elements of
simple shape. Recent works have pointed out the possibility of constructing arbitrary-order discrete
de Rham complexes on general polytopal meshes, either through the use of virtual spaces, standard
differential operators, and projections [4, 5], or by replacing both the spaces and operators with fully
discrete counterparts [15, 19]; see also the related works [6, 8, 9, 12, 13, 25] dealing with the lowest-
order case. Both the virtual and fully discrete approaches lead to non-conforming schemes, resulting in
additional difficulties with respect to Finite Elements.
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Poincaré inequalities on domains of general topology for the three-dimensional DDR complex of
vector proxies of [15] have been recently proved in [20]. Using operator-specific techniques, fully general
Poincaré inequalities for the gradient and the divergence had already been obtained, respectively, in [15,
Theorem 3] and [16]. A Poincaré inequality for the curl on contractible domains had been obtained in [16,
Theorem 20]. We also cite here [14] as a first example of Poincaré-type inequalities for two-dimensional
de Rham complexes with enhanced regularity and, possibly, boundary conditions.

Very recently, Discrete de Rham (DDR) complexes of differential forms have been proposed in
[7], generalizing both the constructions of [15] and of [4]; see also [22] for an extension to manifolds.
The purpose of this work is to establish discrete Poincaré inequalities for the complex studied in [7,
Section 3]. The proofs generalize and broaden the ideas of [20]. The starting point is the Poincaré
inequality for cochains stated in Lemma 6 below. Given a polytopal mesh admitting a conforming
simplicial submesh, this inequality is proved by constructing a mapping to lift polytopal cochains onto
simplicial cochains, identifying the latter with conforming piecewise polynomial forms through the
Whitney and de Rham maps in order to leverage continuous Poincaré inequalities, and concluding with
local norms estimates. The discrete Poincaré inequality for the arbitrary-order DDR complex is then
proved in Theorem 4 using the Poincaré inequality for cochains to construct, given a discrete 𝑘-form,
another discrete 𝑘-form with the same discrete exterior derivative and bounded by the latter. Finally, in
Corollary 5 this result is bridged to a more standard form of the Poincaré inequality for discrete 𝑘-forms
that lie in an orthogonal complement of the kernel of the exterior derivative.

The rest of the paper is organized as follows. Section 2 states the main results of the paper
after briefly recalling the DDR construction. The Poincaré inequality for cochains, stated and proved
in Section 3, is then used in Section 4 to prove the main result. The paper is completed by three
appendices. Appendix A collects results on local polynomial spaces that generalize those proved in [15,
17] for polynomial functions. Appendix B contains estimates for Whitney forms. Finally, Appendix C
describes an algorithm for the computation of a basis for a subspace of simplicial cycles used in the
proof of the Poincaré inequality for cochains.

2 Main results
2.1 Setting

2.1.1 Polytopal mesh

Let 𝑘 ∈ {0, . . . , 𝑛}. A (flat) 𝑘-cell 𝑓 is a subset of a 𝑘-dimensional subspace of R𝑛 that is homeomorphic
to a closed 𝑘-dimensional ball. A polytopal meshMℎ of a polytopal domainΩ ⊂ R𝑛 is a finite collection
of 𝑘-cells, for all 𝑘 ∈ {0, . . . , 𝑛}, such that the following properties hold:

(i) The union of the 𝑛-cells cover Ω;

(ii) For each 𝑘 ∈ {1, . . . , 𝑛}, the boundary 𝜕 𝑓 of each 𝑘-cell 𝑓 is a union of (𝑘 − 1)-cells inMℎ;

(iii) The intersection of two distinct 𝑘-cells is either empty or is a union of lower-dimensional cells in
Mℎ;

(iv) Given a 𝑘-cell 𝑓 and an ℓ-cell 𝑓 ′ with ℓ ≤ 𝑘 , such that 𝑓 ≠ 𝑓 ′ and 𝑓 ∩ 𝑓 ′ ≠ ∅, we have 𝑓 ∩ 𝑓 ′ ⊂ 𝜕 𝑓 .

We denote by Δ𝑘 (Mℎ) the set of all 𝑘-cells of Mℎ, and each of these 𝑘-cell is equipped by an
orientation. For any 𝑘-cell 𝑓 ∈ Δ𝑘 (Mℎ), we define the polytopal submesh induced byMℎ on 𝑓 to be
Mℎ ( 𝑓 ) := { 𝑓 ′ ∈ Mℎ : 𝑓 ′ ⊂ 𝑓 }. It is easy to verify thatMℎ ( 𝑓 ) is a polytopal mesh on 𝑓 . Moreover,
Mℎ (𝜕 𝑓 ) is also well-defined and is a polytopal mesh on 𝜕 𝑓 .
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A 𝑘-simplex 𝑓 is a 𝑘-cell that is obtained by applying an affine transformation (i.e, composition of
a translation and a non-singular linear transformation) to the reference 𝑘-simplex{

(𝑥0, . . . , 𝑥𝑘) ∈ R𝑘+1 : 𝑥𝑖 ≥ 0,
𝑘∑︁
𝑖=0

𝑥𝑖 = 1

}
.

We say thatMℎ is simplicial if it forms a simplicial mesh in the usual sense. Given a polytopal mesh
Mℎ of Ω, we say that Sℎ is a simplicial submesh ofMℎ if: (i) Sℎ is a simplicial mesh of Ω; (ii) each
𝑘-cell ofMℎ is a union of 𝑘-simplices of Sℎ.

The notion of mesh regularity is given by [17, Definition 1.9]. Namely, we say that a sequence
of meshes (Mℎ)ℎ is regular if there exists 𝜌 ∈ (0, 1), independent of ℎ, and a sequence of simplicial
submeshes (Sℎ)ℎ of (Mℎ)ℎ, such that:

• For each 𝑘 ∈ {1, . . . , 𝑛} and any 𝑘-cell 𝑓 of Sℎ, it holds that 𝜌ℎ 𝑓 ≤ 𝑟 𝑓 , where ℎ 𝑓 denotes the
diameter of 𝑓 and 𝑟 𝑓 its inradius.

• For any 𝑘-cell 𝑓 ofMℎ, and all 𝑘-simplex 𝑓 ′ of Sℎ such that 𝑓 ′ ⊂ 𝑓 , it holds that 𝜌ℎ 𝑓 ≤ ℎ 𝑓 ′ .

To avoid the proliferation of constants, throughout the rest of the paper we write 𝑎 ≲ 𝑏 in place of
𝑎 ≤ 𝐶𝑏, with real number 𝐶 > 0 independent of the mesh size and, for local inequalities on a 𝑘-cell
𝑓 , also on 𝑓 , but possibly depending on other parameters such as the domain, the mesh regularity
parameter, the polynomial degree of the complex, etc. We also write 𝑎 ≃ 𝑏 for “𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎”.

The regularity requirements on the mesh imply that the number of simplices in a cell is bounded
uniformly in ℎ. Specifically, for each 𝑘 ∈ {1, . . . , 𝑛} and any 𝑑-cell 𝑓 ofMℎ with 𝑑 ∈ {𝑘, . . . , 𝑛}, it
holds that card(Δ𝑘 (Sℎ ( 𝑓 )) ≲ 1.
2.1.2 Discrete differential forms

We give here a brief presentation, and refer to [7, Section 2 and Appendix A] for more details. LetMℎ

be a polytopal mesh. Let 𝑑 ∈ {0, . . . , 𝑛}, and 𝑓 ∈ Δ𝑑 (Mℎ) be a 𝑑-cell ofMℎ. In particular, 𝑓 is a (flat)
𝑑-dimensional manifold. For 𝑘 ∈ {0, . . . , 𝑑}, we denote by Λ𝑘 ( 𝑓 ) the set of differential 𝑘-forms on 𝑓 .
When a specific regularity is necessary, we prepend the appropriate space. For instance, 𝐶0Λ𝑘 ( 𝑓 ) is
the set of 𝑘-forms defined on 𝑓 and that are continuous.

We recall that the inner product on the space of 𝑘-forms can be written using the Gram determinant
as:

⟨𝜔, 𝜇⟩ 𝑓 =
∫
𝑓

⟨𝜔𝑥 , 𝜇𝑥⟩ d𝑥 =

∫
𝑓

det
(
(⟨𝜔𝑖 (𝑥), 𝜇 𝑗 (𝑥)⟩)𝑖, 𝑗

)
d𝑥 ∀𝜔, 𝜇 ∈ 𝐿2Λ𝑘 ( 𝑓 ), (1)

where (𝜔 𝑗) 𝑗=1,...,𝑘 and (𝜇 𝑗) 𝑗=1,...,𝑘 are 1-forms such that 𝜔𝑥 = 𝜔1(𝑥) ∧ · · · ∧ 𝜔𝑘 (𝑥) and 𝜇𝑥 = 𝜇1(𝑥) ∧
· · · ∧ 𝜇𝑘 (𝑥). The corresponding 𝐿2-norm is

∥𝜔∥ 𝑓 ≔ ⟨𝜔, 𝜔⟩
1
2

𝑓
.

We denote by ★ 𝑓 the Hodge star operator on a 𝑑-cell 𝑓 for 𝑑 ∈ {0, . . . , 𝑛}; it is an isomorphism
Λ𝑘 ( 𝑓 ) → Λ𝑑−𝑘 ( 𝑓 ). For the sake of brevity, we shall simply denote it “★” in the remaining of the paper,
since its domain and codomain can be inferred from its argument. We note that, using this Hodge star
operator, the inner product (1) can be written

⟨𝜔, 𝜇⟩ 𝑓 ≔
∫
𝑓

𝜔 ∧★𝜇 ∀𝜔, 𝜇 ∈ 𝐿2Λ𝑘 ( 𝑓 ). (2)

For each 𝑓 ∈ Mℎ we fix a point 𝑥 𝑓 such that 𝑓 is star-shaped with respect to a ball centered at 𝑥 𝑓

and of radius ≳ ℎ 𝑓 . We define the Koszul operator 𝜅 𝑓 on 𝑓 to be the interior product against the identity
vector field shifted at 𝑥 𝑓 . Specifically, for 𝜔 ∈ Λ𝑘 ( 𝑓 ), 𝜅 𝑓𝜔 ∈ Λ𝑘−1( 𝑓 ) satisfies

(𝜅 𝑓𝜔)𝑥 (𝑣1, . . . , 𝑣𝑘−1) = (𝜔)𝑥 (𝑥 − 𝑥 𝑓 , 𝑣1, . . . , 𝑣𝑘−1),
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for all 𝑥 ∈ 𝑓 , and all 𝑣1, . . . , 𝑣𝑘−1 tangent vectors to 𝑓 . From hereon, and for the same reason that we
dropped the index 𝑓 on the Hodge-star operator ★, we drop the index 𝑓 in the notation for the Koszul
operator.
2.2 Local spaces of forms with polynomial coefficients

For any integer 𝑟 ≥ 0, we denote by P𝑟Λ𝑘 ( 𝑓 ) the space of 𝑘-forms on 𝑓 with polynomial coefficients of
total degree less than or equal to 𝑟 . By convention, we set P−1Λ𝑘 ( 𝑓 ) ≔ {0}. For 𝑘 ≥ 1, the following
decomposition of the polynomial space holds (see [3, Eq. (3.11)]):

P𝑟Λ𝑘 ( 𝑓 ) = dP𝑟+1Λ𝑘−1( 𝑓 ) ⊕ 𝜅P𝑟−1Λ𝑘+1( 𝑓 ).

With this decomposition in mind, we define the space of trimmed polynomials lowering by one the
polynomial degree of the first component for 𝑘 ∈ {1, . . . , 𝑑}:

P−𝑟 Λ0( 𝑓 ) ≔ P𝑟Λ0( 𝑓 ),
P−𝑟 Λ𝑘 ( 𝑓 ) ≔ dP𝑟Λ𝑘−1( 𝑓 ) ⊕ 𝜅P𝑟−1Λ𝑘+1( 𝑓 ) if 𝑘 ∈ {1, . . . , 𝑑}.

Using the inner product (1), we can define an associated orthogonal projector 𝜋
−,𝑘
𝑟 , 𝑓

: 𝐿2Λ𝑘 ( 𝑓 ) →
P−𝑟 Λ𝑘 ( 𝑓 ) such that, for 𝜔 ∈ 𝐿2Λ𝑘 ( 𝑓 ),

⟨𝜋−,𝑘
𝑟 , 𝑓

𝜔, 𝜇⟩ 𝑓 = ⟨𝜔, 𝜇⟩ 𝑓 , ∀𝜇 ∈ P−𝑟 Λ𝑘 ( 𝑓 ).

2.3 The Discrete De Rham construction

From this point on, we fix an integer 𝑟 ≥ 0 corresponding to the polynomial degree of the discrete de
Rham complex.
2.3.1 Spaces and interpolators

For any 𝑘 ∈ {0, . . . , 𝑛}, the discrete counterpart 𝑋 𝑘
𝑟 ,ℎ

of the space 𝐻Λ𝑘 (Ω) is defined as

𝑋 𝑘
𝑟 ,ℎ ≔

𝑛?
𝑑=𝑘

?
𝑓 ∈Δ𝑑 (Mℎ )

★−1P−𝑟 Λ𝑑−𝑘 ( 𝑓 ).

Notice that, compared with the original paper [7], we have taken★−1P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) instead of P−𝑟 Λ𝑑−𝑘 ( 𝑓 )
as component space. In the context considered here, based on a polytopal meshes of a domain of R𝑛,★ is
an isomorphism between spaces of polynomial forms and these choices equivalent up to an application
of the Hodge star to each component. In what follows, we will therefore directly invoke results from
[7] without specifying each time the adaptation (application of suitable Hodge star to the components)
to the present setting. When considering general Riemannian manifolds, however, ★ no longer maps
polynomials into polynomials, and each choice leads to a different construction. The one adopted here
has the advantage to allow the generalization of the method to manifolds (as it is done in [22]), whereas
the one of [7] yields a more direct link with the DDR complex in vector calculus notation of [15].
2.3.2 Local construction

For any dimension 𝑑 ∈ {0, . . . , 𝑛}, any face 𝑓 ∈ Δ𝑑 (Mℎ), and any form degree 𝑘 ∈ {0, . . . , 𝑑}, we
define the local interpolator 𝐼𝑘

𝑟 , 𝑓
: 𝐶0Λ𝑘 ( 𝑓 ) → 𝑋 𝑘

𝑟 , 𝑓
such that

𝐼𝑘𝑟 , 𝑓𝜔 ≔

(
★−1𝜋−,𝑑

′−𝑘
𝑟 , 𝑓 ′ ★ tr 𝑓 ′ 𝜔

)
𝑓 ′∈Δ𝑑′ (Mℎ ( 𝑓 ) ) ,𝑑′∈{𝑘,...,𝑑}

∀𝜔 ∈ 𝐶0Λ𝑘 ( 𝑓 ).

We set, for the sake of brevity,

⟨·, ·⟩𝜕 𝑓 ≔
∑︁

𝑓 ′∈Δ𝑑−1 (Mℎ (𝜕 𝑓 ) )
𝜖 𝑓 𝑓 ′ ⟨·, ·⟩ 𝑓 ′ , (3)
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where 𝜖 𝑓 𝑓 ′ ∈ {−1, +1} is the relative orientation of 𝑓 ′ with respect to 𝑓 .
Let a form degree 𝑘 ∈ {0, . . . , 𝑛} and a vector of forms 𝜔

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
be fixed. For all 𝑑 ≥ 𝑘 and all

𝑓 ∈ Δ𝑑 (Mℎ), we define a local discrete exterior derivative d𝑘
𝑟 , 𝑓

: 𝑋 𝑘
𝑟 , 𝑓
→ ★−1P𝑟Λ𝑑−𝑘−1( 𝑓 ) and a

local potential reconstruction 𝑃𝑘
𝑟 , 𝑓

: 𝑋 𝑘
𝑟 , 𝑓
→ ★−1P𝑟Λ𝑑−𝑘 ( 𝑓 ). The definition is recursive on the cell

dimension 𝑑:

• If 𝑑 = 𝑘 , we set
𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

≔ 𝜔 𝑓 ∈ ★−1P𝑟Λ0( 𝑓 ). (4)

• For 𝑑 ∈ {𝑘 + 1, . . . , 𝑛}:

1. We first define the discrete exterior derivative such that

⟨★d𝑘
𝑟 , 𝑓𝜔 𝑓

, 𝜇 𝑓 ⟩ 𝑓 = (−1)𝑘+1⟨★𝜔 𝑓 , d𝜇 𝑓 ⟩ 𝑓 + ⟨★𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝑓
, tr𝜕 𝑓 𝜇 𝑓 ⟩𝜕 𝑓

∀𝜇 𝑓 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ), (5)

where 𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝑓

is the piecewise polynomial form on 𝜕 𝑓 obtained patching together the
polynomials (𝑃𝑘

𝑟 , 𝑓 ′𝜔 𝑓 ′) 𝑓 ′∈Δ𝑑−1 (Mℎ (𝜕 𝑓 ) ) (which are made available by the previous step).
2. We then define the potential reconstruction that satisfies

(−1)𝑘+1⟨★𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

, d𝜇 𝑓 + 𝜈 𝑓 ⟩ 𝑓
= ⟨★d𝑘

𝑟 , 𝑓𝜔 𝑓
, 𝜇 𝑓 ⟩ 𝑓 − ⟨★𝑃𝑘

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
, tr𝜕 𝑓 𝜇 𝑓 ⟩𝜕 𝑓 + (−1)𝑘+1⟨★𝜔 𝑓 , 𝜈 𝑓 ⟩ 𝑓

∀(𝜇 𝑓 , 𝜈 𝑓 ) ∈ 𝜅P𝑟Λ𝑑−𝑘 ( 𝑓 ) × 𝜅P𝑟−1Λ𝑑−𝑘+1( 𝑓 ).

Remark 1 (Integral formulas). Expanding the definition (2) of the inner product on 𝑓 and each 𝑓 ′ ∈
Δ𝑑−1(Mℎ ( 𝑓 )), recalling (3), and using the relation 𝜎 ∧ ★𝜉 = ★−1𝜎 ∧ 𝜉 valid for any couple (𝜎, 𝜉)
of ℓ-forms, we note that (5) is equivalent to the following relation, which exposes a discrete Stokes
formula:∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 𝑓 = (−1)𝑘+1
∫
𝑓

𝜔 𝑓 ∧ d𝜇 𝑓 +
∑︁

𝑓 ′∈Δ𝑑−1 (Mℎ ( 𝑓 ) )
𝜖 𝑓 𝑓 ′

∫
𝑓 ′
𝑃𝑘
𝑟 , 𝑓 ′𝜔 𝑓 ′ ∧ tr 𝑓 ′ 𝜇 𝑓 . (6)

The global discrete spaces are connected by the discrete differential d𝑘
𝑟 ,ℎ : 𝑋 𝑘

𝑟 ,ℎ
→ 𝑋 𝑘+1

𝑟 ,ℎ
obtained

by projecting each local discrete exterior derivative on the corresponding component of 𝑋 𝑘+1
𝑟 ,ℎ

:

d𝑘
𝑟 ,ℎ𝜔ℎ

≔

(
★−1𝜋−,𝑑−𝑘−1

𝑟 , 𝑓
★ d𝑘

𝑟 , 𝑓𝜔 𝑓

)
𝑓 ∈Δ𝑑 (Mℎ ) ,𝑑∈{𝑘+1,...,𝑛}

. (7)

2.3.3 Component norms

For any form degree 𝑘 ∈ {0, . . . , 𝑛} and any 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
, we define the following 𝐿2-like norms

recursively:

• For each 𝑓 ∈ Δ𝑘 (Mℎ), we set
|||𝜔

𝑓
||| 𝑓 ≔ ∥𝜔 𝑓 ∥ 𝑓 . (8)

• For 𝑑 ∈ {𝑘 + 1, . . . , 𝑛} and 𝑓 ∈ Δ𝑑 (Mℎ),

|||𝜔
𝑓
||| 𝑓 ≔ ©­«∥𝜔 𝑓 ∥2𝑓 + ℎ 𝑓

∑︁
𝑓 ′∈Δ𝑑−1 (Mℎ ( 𝑓 ) )

|||𝜔 𝑓 ′ |||2𝑓 ′
ª®¬

1
2

. (9)
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The global norm is then defined as

|||𝜔
ℎ
|||ℎ ≔

©­«
∑︁

𝑓 ∈Δ𝑛 (Mℎ )
|||𝜔

ℎ
|||2𝑓

ª®¬
1
2

. (10)

Remark 2 (Equivalent component norms). A slightly different choice of component norms is made in
[18, Eq. A.7] (with 𝑠 = 2 in this reference). Accounting for the mesh regularity assumption (which
gives, in particular, a uniform bound on the cardinality of Δ𝑑−1(Mℎ ( 𝑓 )) for each 𝑓 ∈ Δ𝑑 (Mℎ)), these
choices are equivalent in terms of scaling with ℎ, which entitles us to use the results of [18, Appendix A].
A third equivalent choice of norm is obtained replacing (9) with

|||𝜔
𝑓
||| 𝑓 ≔ ©­«

𝑛∑︁
𝑖=𝑘

ℎ𝑛−𝑖𝑓

∑︁
𝑓 ′∈Δ𝑖 (Mℎ ( 𝑓 ) )

∥𝜔 𝑓 ′ ∥2𝑓 ′
ª®¬

1
2

. (11)

Remark 3 (Properties of the potential reconstruction). Recalling [7, Eq. (3.37)], we have that, for all
integers 𝑑 ∈ {0, . . . , 𝑛} and 𝑘 ∈ {0, . . . , 𝑑}, all 𝑓 ∈ Δ𝑑 (Mℎ), and all 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,

𝜋
−,𝑑−𝑘
𝑟 , 𝑓

★ 𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

= ★𝜔 𝑓 . (12)

Moreover, following the same arguments as [18, Eq. (A.10)], we also get

∥ ★ 𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∥ 𝑓 ≲ |||𝜔 𝑓
||| 𝑓 . (13)

2.4 Poincaré inequalities for the Discrete de Rham complex

The main result of this work is the following generic Poincaré inequality, which is valid for forms of any
degree and domains of general topology.

Theorem 4 (Poincaré inequality). Let 𝑘 ∈ {0, . . . , 𝑛−1} and let𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
. Then, there exists 𝜏

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ

such that d𝑘
𝑟 ,ℎ𝜏ℎ = d𝑘

𝑟 ,ℎ𝜔ℎ
and

|||𝜏
ℎ
|||ℎ ≲ |||d𝑘

𝑟 ,ℎ𝜔ℎ
|||ℎ .

Equivalently,
min

𝜙
ℎ
∈Kerd𝑘

𝑟,ℎ

|||𝜔
ℎ
+ 𝜙

ℎ
|||ℎ ≲ |||d𝑘

𝑟 ,ℎ𝜔ℎ
|||ℎ .

Proof. See Section 4. □

This formulation of the Poincaré inequalities avoids any reference to an orthogonality condition. In
fact, it does not even rely on the existence of an associated inner product. However, it is fully equivalent
to the usual one, which is stated in the following corollary.

Corollary 5 (Poincaré inequality on orthogonal complements). Let ⟨·, ·⟩ℎ be an inner product on
𝑋 𝑘
𝑟 ,ℎ

such that its associated norm ∥·∥ℎ satisfies ∥𝜔
ℎ
∥ℎ ≃ |||𝜔ℎ

|||ℎ for all 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
, and denote by

(Ker d𝑘
𝑟 ,ℎ)⊥ the orthogonal complement for this inner product. Then, Theorem 4 is equivalent to the

following statement:
∥𝜔

ℎ
∥ℎ ≲ ∥d𝑘

𝑟 ,ℎ𝜔ℎ
∥ℎ ∀𝜔

ℎ
∈ (Ker d𝑘

𝑟 ,ℎ)
⊥. (14)
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Proof. First, we show that Theorem 4 implies (14). Let 𝜔
ℎ
∈ (Ker d𝑘

𝑟 ,ℎ)⊥, and let 𝑃ℎ denote the
orthogonal projector onto (Ker d𝑘

𝑟 ,ℎ)⊥ for the scalar product ⟨·, ·⟩ℎ. Theorem 4 ensures the existence of
𝜙
ℎ
∈ Ker d𝑘

𝑟 ,ℎ such that
|||𝜔

ℎ
+ 𝜙

ℎ
|||ℎ ≲ |||d𝑘

𝑟 ,ℎ𝜔ℎ
|||ℎ . (15)

By definition of 𝑃ℎ, we have 𝑃ℎ𝜔ℎ
= 𝜔

ℎ
and 𝑃ℎ𝜙ℎ

= 0. Using the uniform equivalence of the two
norms and the fact that ∥𝑃ℎ·∥ℎ ≤ ∥·∥ℎ since 𝑃ℎ is an orthogonal projector, we write

∥𝜔
ℎ
∥ℎ = ∥𝑃ℎ (𝜔ℎ

+ 𝜙
ℎ
)∥ℎ ≤ ∥𝜔ℎ

+ 𝜙
ℎ
∥ℎ ≃ |||𝜔ℎ

+ 𝜙
ℎ
|||ℎ

(15)
≲ |||d𝑘

𝑟 ,ℎ𝜔ℎ
|||ℎ ≃ ∥d𝑘

𝑟 ,ℎ𝜔ℎ
∥ℎ .

To prove the reverse implication, let 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
and let 𝜓

ℎ
be the orthogonal projection of 𝜔

ℎ
into

Ker d𝑘
𝑟 ,ℎ. By construction, 𝜔

ℎ
− 𝜓

ℎ
∈ (Ker d𝑘

𝑟 ,ℎ)⊥ and 𝜓
ℎ
∈ Ker d𝑘

𝑟 ,ℎ. Moreover, it holds:

inf
𝜙
ℎ
∈Kerd𝑘

𝑟,ℎ

|||𝜔
ℎ
+ 𝜙

ℎ
|||ℎ ≤ |||𝜔ℎ

− 𝜓
ℎ
|||ℎ ≃ ∥𝜔ℎ

− 𝜓
ℎ
∥ℎ

(14)
≲ ∥d𝑘

𝑟 ,ℎ (𝜔ℎ
− 𝜓

ℎ
)∥ℎ = ∥d𝑘

𝑟 ,ℎ𝜔ℎ
∥ℎ ≃ |||d𝑘

𝑟 ,ℎ𝜔ℎ
|||ℎ . □

3 A Poincaré inequality for cochains
The proof of Theorem 4 relies on a Poincaré inequality for cochains on Mℎ. We first recall some
concepts related to this notion, before stating and proving this inequality.

3.1 Setting

3.1.1 Chain complex

A 𝑘-chain 𝑤 ofMℎ is a formal linear combination of 𝑘-cells

𝑤 =
∑︁

𝑓 ∈Δ𝑘 (Mℎ )
𝑤 𝑓 𝑓 , (16)

where the 𝑤 𝑓 are real numbers. The set of all 𝑘-chains, equipped with the natural addition and scalar
multiplication, is a real vector space that we denote by𝐶𝑘 (Mℎ). For a 𝑘-chain 𝑤 ∈ 𝐶𝑘 (Mℎ), its support
supp(𝑤) is defined by

supp(𝑤) :=
{
𝑓 ∈ Δ𝑘 (Mℎ) : 𝑤 𝑓 ≠ 0

}
.

Observe that each 𝑘-cell 𝑓 ∈ Δ𝑘 (Mℎ) is also a 𝑘-chain 𝑓 ∈ 𝐶𝑘 (Mℎ), obtained by considering 𝑤 𝑓 = 1
as the unique non-zero real number in the linear combination (16). Therefore, the set of all 𝑘-cells
Δ𝑘 (Mℎ) forms a basis for 𝐶𝑘 (Mℎ), which we call the canonical basis of 𝐶𝑘 (Mℎ). We also consider
the following two identifications: (i) we identify the 𝑘-cell 𝑓 taken with opposite orientation with the
𝑘-chain − 𝑓 ∈ 𝐶𝑘 (Mℎ); (ii) we identify the (topological) boundary 𝜕 𝑓 with the boundary (𝑘 − 1)-chain
𝜕𝑘 𝑓 ∈ 𝐶𝑘−1(Mℎ) defined by

𝜕𝑘 𝑓 :=
∑︁

𝑓 ′∈Δ𝑘−1 (Mℎ ( 𝑓 ) )
𝜖 𝑓 𝑓 ′ 𝑓

′, (17)

where 𝜖 𝑓 𝑓 ′ is equal to +1 if 𝑓 ′ has the orientation induced by that of 𝑓 and −1 otherwise. The boundary
operator 𝜕𝑘 : 𝐶𝑘 (Mℎ) → 𝐶𝑘−1(Mℎ) is defined by linearity on the space of 𝑘-chains by setting, for
𝑤 ∈ 𝐶𝑘 (Mℎ) as in (16),

𝜕𝑘𝑤 :=
∑︁

𝑓 ∈Δ𝑘 (Mℎ )
𝑤 𝑓 𝜕𝑘 𝑓 .

It can be checked that 𝜕𝑘 ◦ 𝜕𝑘+1 = 0 for 𝑘 ∈ {1, . . . , 𝑛 − 1}. As a consequence, the sequence

· · · 𝜕𝑘+1−−−→ 𝐶𝑘 (Mℎ)
𝜕𝑘−−→ 𝐶𝑘−1(Mℎ)

𝜕𝑘−1−−−−→ · · · ,
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with 𝐶𝑘 (Mℎ) = {0} if 𝑘 < 0 or 𝑘 > 𝑛, is a chain complex. Accordingly, we can also define 𝜕𝑛+1 := 0
and 𝜕0 := 0 as the zero maps.

We define the subspace of 𝑘-cycles

𝑍𝑘 (Mℎ) ≔ ker 𝜕𝑘 = {𝑤 ∈ 𝐶𝑘 (Mℎ) : 𝜕𝑘𝑤 = 0} ⊂ 𝐶𝑘 (Mℎ),

and the space of 𝑘-boundaries

𝐵𝑘 (Mℎ) ≔ Im 𝜕𝑘+1 = {𝜕𝑘+1𝑤 : 𝑤 ∈ 𝐶𝑘+1(Mℎ)} ⊂ 𝐶𝑘 (Mℎ).

Noticing that 𝜕𝑘 ◦ 𝜕𝑘+1 = 0 implies 𝐵𝑘 (Mℎ) ⊂ 𝑍𝑘 (Mℎ), we then define the 𝑘-th homology space as the
quotient space

𝐻𝑘 (Mℎ) := 𝑍𝑘 (Mℎ)/𝐵𝑘 (Mℎ).
3.1.2 Cochain complex

A 𝑘-cochain 𝜆 ofMℎ is a linear map 𝜆 : 𝐶𝑘 (Mℎ) → R. Therefore, the set 𝐶𝑘 (Mℎ) of all 𝑘-cochains is
a vector space corresponding to the dual space of 𝐶𝑘 (Mℎ). Given a 𝑘-chain 𝑤 ∈ 𝐶𝑘 (Mℎ), we denote
the value of 𝜆 at 𝑤 by ⟨𝜆 , 𝑤⟩ := 𝜆(𝑤).

From basic linear algebra, for each 𝑘-cell 𝑓 ∈ Δ𝑘 (Mℎ), there exist a unique cochain 𝑓 ∈ 𝐶𝑘 (Mℎ)
such that

⟨ 𝑓 , 𝑓 ′⟩ = 𝛿 𝑓 𝑓 ′ ≔

{
1 if 𝑓 = 𝑓 ′,
0 otherwise.

The set
{
𝑓 ∈ 𝐶𝑘 (Mℎ) : 𝑓 ∈ Δ𝑘 (Mℎ)

}
is the canonical basis of 𝐶𝑘 (Mℎ). Accordingly, a 𝑘-cochain

𝜆 ∈ 𝐶𝑘 (Mℎ) can be uniquely written as

𝜆 =
∑︁

𝑓 ∈Δ𝑘 (Mℎ )
𝜆 𝑓 𝑓 where 𝜆 𝑓 := ⟨𝜆 , 𝑓 ⟩. (18)

We also define the inner product ⟨· , ·⟩ on Δ𝑘 (Mℎ) such that, for any 𝑓 , 𝑓 ′ ∈ Δ𝑘 (Mℎ), ⟨ 𝑓 , 𝑓 ′⟩ ≔
⟨ 𝑓 , 𝑓 ′⟩ = 𝛿 𝑓 𝑓 ′ , and we extend ⟨· , ·⟩ by linearity on 𝐶𝑘 (Mℎ).

On the space of 𝑘-cochains we define the coboundary operator 𝛿𝑘 : 𝐶𝑘 (Mℎ) → 𝐶𝑘+1(Mℎ) as the
adjoint of the boundary operator, by requiring that, for every 𝑘-cochain 𝜆 ∈ 𝐶𝑘 (Mℎ), the following
identity holds:

⟨𝛿𝑘𝜆 , 𝑤⟩ = ⟨𝜆 , 𝜕𝑘+1𝑤⟩ ∀𝑤 ∈ 𝐶𝑘+1(Mℎ). (19)

Using (19) and 𝜕𝑘 ◦ 𝜕𝑘+1 = 0, it can be verified that 𝛿𝑘 ◦ 𝛿𝑘−1 = 0 for 𝑘 ∈ {1, . . . , 𝑛 − 1}. As a
consequence, the sequence

· · · 𝛿𝑘−1
−−−−→ 𝐶𝑘 (Mℎ)

𝛿𝑘

−−→ 𝐶𝑘+1(Mℎ)
𝛿𝑘+1
−−−−→ · · · , (20)

with 𝐶𝑘 (Mℎ) = {0} if 𝑘 < 0 or 𝑘 > 𝑛, is a cochain complex. Accordingly, we also define 𝛿𝑛 := 0 as the
zero map. We define the space of 𝑘-coboundaries

𝐵𝑘 (Mℎ) ≔ Im 𝛿𝑘−1 =
{
𝛿𝑘−1𝜆 : 𝜆 ∈ 𝐶𝑘−1(Mℎ)

}
⊂ 𝐶𝑘 (Mℎ).

3.2 Poincaré inequality for cochains

The Poincaré inequality for cochains actually consists in finding, for each boundary cochain, a pre-
image (by the coboundary operator) with coefficients in the canonical basis that can be estimated in
terms of the coefficients of the coboundary cochain. In what follows, 𝑘-chains 𝑤 ∈ 𝐶𝑘 (Mℎ) and 𝑘-
cochains 𝜆 ∈ 𝐶𝑘 (Mℎ) will be identified whenever needed with the corresponding vectors of coefficients
(𝑤 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) and (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) in their expansions (16) and (18) on the canonical bases of 𝐶𝑘 (Mℎ)
and 𝐶𝑘 (Mℎ), respectively.
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Lemma 6 (Poincaré inequality for cochains). Let 𝑘 ∈ {0, . . . , 𝑛 − 1} and let a (𝑘 + 1)-coboundary
𝜉 = (𝜉 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ∈ 𝐵𝑘+1(Mℎ) be given. Then, there exists a 𝑘-cochain 𝜆 = (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ∈ 𝐶𝑘 (Mℎ)
such that 𝛿𝑘𝜆 = 𝜉 and∑︁

𝑇∈Δ𝑛 (Mℎ )
ℎ𝑛−2𝑘𝑇

∑︁
𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )

𝜆2𝑓 ≲
∑︁

𝑇∈Δ𝑛 (Mℎ )
ℎ𝑛−2𝑘−2𝑇

∑︁
𝑓 ∈Δ𝑘+1 (Mℎ (𝑇 ) )

𝜉2𝑓 . (21)

Proof. See Section 3.4. □

Remark 7 (Interpretation of Lemma 6 in the context of low-order compatible methods). Consider, for
each 𝑘 ∈ {0, . . . , 𝑛}, the canonical basis for 𝐶𝑘 (Mℎ), and let D𝑘 be the matrix associated with the
linear map 𝛿𝑘 : 𝐶𝑘 (Mℎ) → 𝐶𝑘+1(Mℎ) for 𝑘 ∈ {0, . . . , 𝑛 − 1}. By (19), D𝑘 is precisely the incidence
matrix between (𝑘 + 1)-cells and 𝑘-cells, which is routinely used in low-order compatible schemes like
the Compatible Discrete Operator method [8, 9], the Discrete Geometric Approach [12, 13, 25], or
the Mimetic Finite Difference method [6]. In these works, the focus is on dimension 𝑛 = 3, and the
coboundary operator 𝛿𝑘 , for 𝑘 ∈ {0, 1, 2}, acts as a topological counterpart of the continuous differential
operators of the de Rham complex; in particular, 𝛿0 acts as a gradient, 𝛿1 as a curl, and 𝛿2 as a divergence.
For this reason, the following specific notation is also of common use: G := D0, C := D1, and D := D2.

Applying the same reasoning of Corollary 5 to Lemma 6, we obtain the following mimetic version
of the Poincaré inequality, which involves a suitable inner product and its associated norm: For all
𝜆 = (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ∈ (KerD𝑘)⊥, with orthogonal taken with respect to an appropriate mimetic product,
it holds

|||𝜆 |||ℎ ≲ |||D𝑘𝜆 |||ℎ .

This result generalizes the known mimetic Poincaré inequalities for the gradient and the curl (c.f. [10,
Lemma 7.45 and Lemma 7.47]) to domains with general topology in arbitrary dimension 𝑛.

The proof of the Poincaré inequality on the cochains onMℎ relies on a lifting of these cochains as
cochains on a simplicial submesh, that we can then identify (through the Whitney and de Rham maps)
to conforming piecewise polynomial forms.

3.3 Mapping between polytopal and simplicial cochains

LetSℎ be a given simplicial submesh ofMℎ. In what follows, for clarity of notation, we use the symbols
𝑓 and 𝐹 to denote a generic 𝑘-cell and 𝑘-simplex ofMℎ and Sℎ, respectively; the symbols 𝑇 and 𝑆 will
also sometimes be used instead of 𝑓 and 𝐹, respectively, for the special case 𝑘 = 𝑛.

The purpose of this section is to construct a graded map (𝐼𝑘)𝑘∈{0,...,𝑛} that sends polytopal 𝑘-
cochains onto simplicial 𝑘-cochains, and that is a cochain map (i.e., it commutes with the coboundary
operator). We first introduce a selection operator which, to each simplex, associates the polytopal
element of smaller dimension that contains it; then, we explain the principle of the construction (which
requires a double induction); finally, we establish the properties of this graded map: cochain property,
and norm estimates.

3.3.1 Selection map

Each simplex in Sℎ is contained in one or more polytopal cells of Mℎ; in the following lemma, we
show that the lowest-dimensional of such cells is unique and that the simplex is actually contained in its
relative interior.

Lemma 8 (Lowest-dimensional containing polytopal cell). For each 𝐹 ∈ Δ𝑘 (Sℎ), there exists a unique
𝑑-cell 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ∈ {𝑘, . . . , 𝑛} such that 𝐹 ⊂ 𝑓 and 𝐹 ⊄ 𝜕 𝑓 .

Proof. The set {ℓ ∈ {0, . . . , 𝑛} : ∃ 𝑓 ∈ Δℓ (Mℎ) s.t. 𝐹 ⊂ 𝑓 } is non-empty and contained in N, so it has
a minimum 𝑑. Let 𝑓 ∈ Δ𝑑 (Mℎ) that contains 𝐹; we obviously have 𝑑 ≥ 𝑘 as a 𝑑-cell cannot contain
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a simplex of strictly lower dimension. If we had 𝐹 ⊂ 𝜕 𝑓 , since this boundary is the union of cells in
Δ𝑑−1(Mℎ), 𝐹 would be contained in some cell of Δ𝑑−1(Mℎ), contradicting the definition of 𝑑. Hence,
𝐹 ⊂ 𝑓 and 𝐹 ⊄ 𝜕 𝑓 .

We now prove the uniqueness of this 𝑓 . Assume that we have a 𝑑′-cell 𝑓 ′ ≠ 𝑓 such that 𝐹 ⊂ 𝑓 ′

and 𝐹 ⊄ 𝜕 𝑓 ′. Without loss of generality we can assume that 𝑑′ ≥ 𝑑. Then, the intersection 𝑓 ∩ 𝑓 ′

is non-empty, since it contains 𝐹. However, by Point (iv) in the definition of Mℎ, this would imply
𝐹 ⊂ 𝜕 𝑓 ′, contradicting the choice of 𝑓 ′. □

Thanks to Lemma 8, we can define a function 𝑔𝑘 : Δ𝑘 (Sℎ) → Mℎ which maps each 𝑘-simplex 𝐹

to the unique 𝑑-cell 𝑓 := 𝑔𝑘 (𝐹) ∈ Mℎ such that 𝐹 ⊂ 𝑓 and 𝐹 ⊄ 𝜕 𝑓 .

Proposition 9 (Partitions via lowest-dimensional containing cells). For each 𝑘 ∈ {0, . . . , 𝑛} and 𝑑 ∈
{𝑘, . . . , 𝑛}, define the set of all 𝑘-simplices whose lowest-dimensional containing polytopal cell is of
dimension 𝑑:

𝑃𝑘 (𝑑) := {𝐹 ∈ Δ𝑘 (Sℎ) : 𝑔𝑘 (𝐹) ∈ Δ𝑑 (Mℎ)} .
Then, the following two properties hold:

(i) The family {𝑃𝑘 (𝑘), . . . , 𝑃𝑘 (𝑛)} forms a partition of Δ𝑘 (Sℎ), i.e., Δ𝑘 (Sℎ) =
⊔𝑛

𝑑=𝑘 𝑃𝑘 (𝑑);

(ii) If a 𝑘-simplex lies on the boundary of a 𝑑-cell, then the lowest-dimensional polytopal cell that
contains this simplex is of dimension < 𝑑: for all 𝐹 ∈ Δ𝑘 (Sℎ) such that 𝐹 ⊂ 𝜕 𝑓 for some
𝑓 ∈ Δ𝑑 (Mℎ), then 𝐹 ∈ ⊔𝑑−1

𝑑′=𝑘 𝑃𝑘 (𝑑′).

Proof. (i) Is a direct consequence of the definition of 𝑃𝑘 (𝑑) and of Lemma 8.
(ii) This is a direct consequence of the reasoning in the proof of Lemma 8: if 𝐹 ⊂ 𝜕 𝑓 for 𝑓 ∈ Δ𝑑 (Mℎ)
then 𝐹 is fully contained in some 𝑓 ′ ∈ Δ𝑑−1(Mℎ ( 𝑓 )) and the minimal dimension of the cells that
contains 𝐹 is thus ≤ 𝑑 − 1. □

3.3.2 Construction

In what follows, we will consider that, for all 𝑘 ∈ {0, . . . , 𝑛}, every simplex in 𝐹 ∈ 𝑃𝑘 (𝑘) inherits the
orientation of the unique 𝑘-cell 𝑔𝑘 (𝐹) ∈ Δ𝑘 (Mℎ) in which it is contained.

For each 𝑘 ∈ {0, . . . , 𝑛}, we construct a map 𝐼𝑘 : 𝐶𝑘 (Mℎ) → 𝐶𝑘 (Sℎ) which associates to each
polytopal 𝑘-cochain 𝜆 ∈ 𝐶𝑘 (Mℎ) a simplicial 𝑘-cochain 𝐼𝑘 (𝜆) ∈ 𝐶𝑘 (Sℎ). Recalling the partition
Δ𝑘 (Sℎ) =

⊔𝑛
𝑑=𝑘 𝑃𝑘 (𝑑) and the fact that Δ𝑘 (Sℎ) is the canonical basis of 𝐶𝑘 (Sℎ), we define 𝐼𝑘 by

specifying 𝐼𝑘 (𝜆) : 𝑃𝑘 (𝑑) → R for all 𝑑 ∈ {𝑘, . . . , 𝑛} and for a generic 𝜆.

Principles driving the construction We have to define, for each 𝑘 ∈ {0, . . . , 𝑛}, each 𝜆 ∈ 𝐶𝑘 (Mℎ),
each 𝑑 ∈ {𝑘, . . . , 𝑛}, and each 𝐹 ∈ 𝑃𝑘 (𝑑), the value of ⟨𝐼𝑘 (𝜆) , 𝐹⟩. This has to be done in a way
that ensures that 𝐼𝑘 commutes with the coboundary operator, so that commutation must be inherently
embedded in the choice of this value.

The definition of ⟨𝐼𝑘 (𝜆) , 𝐹⟩ is carried out through a double recursion. The outer recursion proceeds
on the cochain index 𝑘 , decreasing from 𝑘 = 𝑛 to 𝑘 = 0, while the inner recursion operates on the index
𝑑, increasing from 𝑑 = 𝑘 to 𝑑 = 𝑛. For each pair of values 𝑘 and 𝑑, consider the pair of indices (𝑘, 𝑑),
which serve to track the construction process of the map 𝐼𝑘 by identifying the specific set 𝑃𝑘 (𝑑). Table
1 illustrates the steps and how they are intertwined.

The diagonal steps (𝑘, 𝑑) = (𝑘, 𝑘) in this table are easy. These steps correspond to the case where
𝐹 is a 𝑘-simplex contained in a 𝑘-cell 𝑓 ∈ Δ𝑘 (Mℎ); since 𝜆 ∈ 𝐶𝑘 (Mℎ), the real number ⟨𝜆 , 𝑓 ⟩ is fully
defined and ⟨𝐼𝑘 (𝜆) , 𝐹⟩ can then be defined as a fraction (weighted by the relative volumes of 𝑓 and 𝐹)
of ⟨𝜆 , 𝑓 ⟩. This choice corresponds to (23) (in the case 𝑘 = 𝑛) and (24) (in the case 𝑘 < 𝑛) below.

Let us consider the first non-trivial step (𝑘, 𝑑) = (𝑛−1, 𝑛) for 𝑛 > 1, which is actually representative
of all the other steps in the table. In this case, 𝐹 is an (𝑛 − 1)-simplex contained in the interior of an
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𝑛 𝑛 − 1 𝑛 − 2 · · ·

0

...

𝑛 − 2 𝑃𝑛−2(𝑛 − 2) · · ·

𝑛 − 1 𝑃𝑛−1(𝑛 − 1) 𝑃𝑛−2(𝑛 − 1) · · ·

𝑛 𝑃𝑛 (𝑛) 𝑃𝑛−1(𝑛) 𝑃𝑛−2(𝑛) · · ·

Cochain index 𝑘 of 𝜆

D
im

en
si

on
𝑑

su
ch

th
at

𝐹
∈
𝑃
𝑘
(𝑑
)

Table 1: Illustration of the double recursion used to define the value ⟨𝐼𝑘 (𝜆) , 𝐹⟩. The recursion proceeds first
across the columns from left to right. Within each column, it advances row by row, starting from the diagonal
element and moving down to the bottom. The arrows indicate the sets 𝑃𝑘 (𝑑) that have already been used to define
⟨𝐼𝑘 (𝜆) , 𝐹⟩ for every 𝐹 ∈ 𝑃𝑘 (𝑑). These sets are then used to define new values as the double recursion progresses.
By the end of each column 𝑘 , the mapping 𝐼𝑘 (𝜆) : 𝑃𝑘 (𝑑) → R is fully defined.

𝑛-cell 𝑓 . Let 𝑧 ∈ 𝑍𝑛−1(Sℎ ( 𝑓 )) be a (𝑛 − 1)-cycle and notice that, since 𝑓 is homeomorphic to a closed
𝑛-dimensional ball, 𝑧 is a (𝑛 − 1)-boundary, i.e., there exists 𝑤 ∈ 𝐶𝑛 (Sℎ ( 𝑓 )) such that 𝑧 = 𝜕𝑛𝑤. The
commutation condition requires

⟨𝐼𝑛 (𝛿𝑛−1𝜆) , 𝑤⟩ = ⟨𝛿𝑛−1𝐼𝑛−1(𝜆) , 𝑤⟩ (19)
= ⟨𝐼𝑛−1(𝜆) , 𝜕𝑛𝑤⟩ = ⟨𝐼𝑛−1(𝜆) , 𝑧⟩. (22)

In this expression, the left-hand side is fully known by the step (𝑘, 𝑑) = (𝑛, 𝑛); moreover, expanding the
right-hand side according to the decomposition 𝑧 =

∑
𝐹′∈Δ𝑛−1 (Sℎ ( 𝑓 ) ) 𝑧𝐹′ 𝐹

′ of 𝑧, the values ⟨𝐼𝑛−1(𝜆) , 𝐹′⟩
are also fully known by the step (𝑘, 𝑑) = (𝑛−1, 𝑛−1) whenever 𝐹′ ∈ supp(𝑧) is contained in 𝜕 𝑓 (since,
in this case, 𝐹′ ∈ 𝑃𝑛−1(𝑛 − 1)).

To exploit (22) and define new values of 𝐼𝑛−1(𝜆), we build upon the theory developed in [24].
Specifically, consider cycles 𝑧 that belong to a complement 𝑍c

𝑛−1(Sℎ ( 𝑓 )) of the space of cycles whose
support is fully contained in 𝜕 𝑓 ; see (25) below. Then, we select a particular 𝐹 ⊄ 𝜕 𝑓 in the support of 𝑧,
fix ⟨𝐼𝑛−1(𝜆) , 𝐹⟩ = 0 for all 𝐹 ∈ supp(𝑧) different from 𝐹, and determine the only remaining undefined
value, ⟨𝐼𝑛−1(𝜆) , 𝐹⟩, so that the relation in (22) is satisfied.

For the construction above to be valid, we must be cautious that, each time we select a 𝑧 to define
some values ⟨𝐼𝑛−1(𝜆) , 𝐹⟩ (either 0 or to ensure (22) for 𝑧), we are not re-defining a value that is also fixed
when selecting another 𝑧′. This is achieved by first building (see Appendix C) a particular basis (𝑧𝑖)𝑖
of the cycles 𝑍𝑛−1(Sℎ ( 𝑓 )) that have some support in the interior of 𝑓 , and such that each 𝑧𝑖 has some
(𝑛 − 1)-simplex 𝐹𝑖 in its support, that is interior to 𝑓 but not in the support of the other 𝑧 𝑗 for 𝑗 ≠ 𝑖 (see
(26) below). The process above is then applied to 𝑧𝑖 in order to fix ⟨𝐼𝑛−1(𝜆) , 𝐹⟩ = 0 for all 𝐹 ∈ supp(𝑧)
interior to 𝑓 and different from 𝐹𝑖 , and to set ⟨𝐼𝑛−1(𝜆) , 𝐹𝑖⟩ to ensure (22) for 𝑧 = 𝑧𝑖 . Doing the same for
another 𝑧 𝑗 in the basis does not risk re-defining any value since, by choice of the basis, 𝐹𝑖 ∉ supp(𝑧 𝑗)
and, if 𝐹 ∈ supp(𝑧𝑖) ∩ supp(𝑧 𝑗), both the processes for 𝑧𝑖 and for 𝑧 𝑗 set ⟨𝐼𝑛−1(𝜆) , 𝐹⟩ = 0.

The remaining work, carried out in Lemma 11 below, consists in checking that this local enforcement
of the commutation condition (22) actually leads to a global commutation property.
Detailed construction We now turn to the detailed construction of the map which is done, as indicated
above, in a recursive way on the index 𝑘 ∈ {𝑛, . . . , 0} (i.e., for 𝑘 ranging from 𝑛 down to 0) and on the
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index 𝑑 ∈ {𝑘, . . . , 𝑛} as described hereafter.

• Base case 𝑘 = 𝑛. For each 𝑛-simplex 𝐹 ∈ 𝑃𝑛 (𝑛), let 𝑓 = 𝑔𝑛 (𝐹) ∈ Δ𝑛 (Mℎ) and set, for any
𝜆 ∈ 𝐶𝑘 (Mℎ),

⟨𝐼𝑘 (𝜆) , 𝐹⟩ ≔ |𝐹 || 𝑓 | ⟨𝜆 , 𝑓 ⟩. (23)

• Induction step 𝑘 ∈ {𝑛 − 1, . . . , 0}. Assume that 𝐼𝑘+1 has been defined and let us define 𝐼𝑘 (𝜆) for a
given 𝜆 ∈ 𝐶𝑘 (Mℎ).

– Base case 𝑑 = 𝑘 . For each 𝐹 ∈ 𝑃𝑘 (𝑘), let 𝑓 = 𝑔𝑘 (𝐹) ∈ Δ𝑘 (Mℎ) and set

⟨𝐼𝑘 (𝜆) , 𝐹⟩ ≔ |𝐹 || 𝑓 | ⟨𝜆 , 𝑓 ⟩. (24)

– Induction step 𝑑 ∈ {𝑘 + 1, . . . , 𝑛}. Assume that 𝐼𝑘 (𝜆) : 𝑃𝑘 (𝑑′) → R has been defined for all
𝑑′ ∈ {𝑘, . . . , 𝑑 − 1} and let us define 𝐼𝑘 (𝜆) : 𝑃𝑘 (𝑑) → R. Let 𝑓 ∈ Δ𝑑 (Mℎ), and denote by Sℎ ( 𝑓 )
the simplicial subcomplex induced by Sℎ on 𝑓 . Let 𝑍c

𝑘
(Sℎ ( 𝑓 )) be a subspace of 𝑍𝑘 (Sℎ ( 𝑓 )) such

that
𝑍𝑘 (Sℎ ( 𝑓 )) = 𝑍𝑘 (Sℎ (𝜕 𝑓 )) ⊕ 𝑍c

𝑘 (Sℎ ( 𝑓 )), (25)

and let B𝑘 = {𝑧1, . . . , 𝑧𝑝} with 𝑝 ∈ N (𝑝 = 0 means B𝑘 = ∅) be the basis of 𝑍c
𝑘
(Sℎ ( 𝑓 )) computed

with Algorithm 1 in Appendix C. This basis has the following two properties: first, for any 𝑘-cycle
𝑧𝑖 =

∑
𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) ) 𝑧𝑖,𝐹 𝐹 ∈ B𝑘 , it holds 𝑧𝑖,𝐹 ∈ {−1, 0, 1}; second, by Lemma 21 below, there

exists a set of 𝑝 𝑘-simplices F𝑘 =
{
𝐹1, . . . , 𝐹𝑝

}
of Sℎ ( 𝑓 ) dual to B𝑘 in the sense that:

𝐹𝑖 ⊄ 𝜕 𝑓 ∀𝑖 ∈ {1, . . . , 𝑝},
⟨𝐹𝑖 , 𝑧 𝑗⟩ = 𝛿𝑖 𝑗 ∀𝑖, 𝑗 ∈ {1, . . . , 𝑝},

(26)

where we have assumed, without loss of generality, each 𝐹𝑖 oriented in such a way that ⟨𝐹𝑖 , 𝑧𝑖⟩ = 1
(note that ⟨𝐹𝑖 , 𝑧𝑖⟩ ≠ 0 is equivalent to 𝐹𝑖 ∈ supp(𝑧𝑖)).
Let us now characterize 𝑘-cycles in terms of 𝑘-boundaries. Recalling that each 𝑑-cell 𝑓 is
homeomorphic to a closed 𝑑-dimensional ball,1 we have

𝑍𝑘 (Sℎ ( 𝑓 )) =
{
𝐵0(Sℎ ( 𝑓 )) + 𝐹∗ if 𝑘 = 0,

𝐵𝑘 (Sℎ ( 𝑓 )) if 𝑘 ∈ {1, . . . , 𝑑},
(27)

where 𝐹∗ ∈ Δ0(Sℎ ( 𝑓 )) is an arbitrary 0-cell on the boundary of 𝑓 (the existence of 𝐹∗ is guaranteed
by the fact that 𝑑 > 𝑘 = 0). The case 𝑘 = 0 can then be subsumed into the general in the spirit of
reduced homology [1]. Specifically, we consider the substitution

𝑍0(Sℎ ( 𝑓 )) ← 𝑍0(Sℎ ( 𝑓 )) − 𝐹∗, (28)

where 𝑍0(Sℎ ( 𝑓 )) − 𝐹∗ is the set obtained by subtracting to each 𝑧 ∈ 𝑍0(Sℎ ( 𝑓 )) the specific 0-cell
𝐹∗ chosen in (27). With this substitution, for all 𝑘 ∈ {𝑛 − 1, . . . , 0}, we can write 𝑍𝑘 (Sℎ ( 𝑓 )) =
𝐵𝑘 (Sℎ ( 𝑓 )). Therefore, by considering also the substitution

B0 ← B0 − 𝐹∗ = {𝑧1 − 𝐹∗, . . . , 𝑧𝑝 − 𝐹∗}, (29)
1Letting 𝐵𝑑 be the 𝑑-ball, we have the following well-known characterization of its homology [1]:

𝐻𝑘 (𝐵𝑑) =
{
Z if 𝑘 = 0,

0 if 𝑘 ∈ {1, . . . , 𝑑}.
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for each 𝑧𝑖 ∈ B𝑘 ⊂ 𝑍𝑘 (Sℎ ( 𝑓 )), there exists a (𝑘 + 1)-chain 𝑤𝑖 =
∑

𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) ) 𝑤𝑖,𝐹 𝐹 ∈
𝐶𝑘+1(Sℎ ( 𝑓 )) such that 𝑤𝑖,𝐹 ∈ {−1, 0, 1} and

𝜕𝑘+1𝑤𝑖 = 𝑧𝑖 . (30)

For each 𝑧𝑖 ∈ B𝑘 , let 𝑧′
𝑖
∈ 𝐶𝑘 (Sℎ (𝜕 𝑓 )) be the restriction of 𝑧𝑖 to 𝜕 𝑓 , that is, the 𝑘-chain such that

supp(𝑧′
𝑖
) = supp(𝑧𝑖) ∩ Sℎ (𝜕 𝑓 ) and ⟨𝐹 , 𝑧′

𝑖
⟩ = ⟨𝐹 , 𝑧𝑖⟩ for each 𝑘-simplex 𝐹 ∈ supp(𝑧′

𝑖
). For each

𝐹 ∈ 𝑃𝑘 (𝑑) such that 𝑓 = 𝑔𝑘 (𝐹), we then let

⟨𝐼𝑘 (𝜆) , 𝐹⟩ :=
{
⟨𝐼𝑘+1(𝛿𝑘𝜆) , 𝑤𝑖⟩ − ⟨𝐼𝑘 (𝜆) , 𝑧′𝑖⟩ if 𝐹 = 𝐹𝑖 ∈ {𝐹1, . . . , 𝐹𝑝},
0 otherwise.

(31)

Observe that, if 𝐹 ∈ supp(𝑧′
𝑖
), then 𝐹 ∈ Δ𝑘 (Sℎ) and 𝐹 ⊂ 𝜕 𝑓 since 𝑧′

𝑖
∈ 𝐶𝑘 (Sℎ (𝜕 𝑓 )). Applying

Point (ii) in Proposition 9, we have 𝐹 ∈ ⊔𝑑−1
𝑑′=𝑘 𝑃𝑘 (𝑑′), hence ⟨𝐼𝑘 (𝜆) , 𝐹⟩ (and thus ⟨𝐼𝑘 (𝜆) , 𝑧′

𝑖
⟩) has

already been defined by the induction hypothesis on 𝑑, while 𝐼𝑘+1 has been defined owing to the
recurrence assumption. Hence, the recursive formula (31) is well-defined, i.e., its right-hand side
is computable by induction for each 𝐹 ∈ 𝑃𝑘 (𝑑).

Example 10 (Definition of 𝐼𝑘 on a 3-cell). We exemplify the definition of the map 𝐼𝑘 : 𝐶𝑘 (Mℎ) →
𝐶𝑘 (Sℎ) for the specific case of the pyramidal 3-cell 𝑓 shown in Figure 1(a).

Consider, for each 𝑘 ∈ {3, . . . , 0} and 𝑑 ∈ {𝑘, . . . , 3}, the pair of indices (𝑘, 𝑑), which keeps track
of the construction process of the map 𝐼𝑘 by identifying the specific set 𝑃𝑘 (𝑑). First, we notice that
the cases for which 𝑘 = 𝑑, i.e., (𝑘, 𝑑) ∈ {(3, 3), (2, 2), (1, 1), (0, 0)}, are trivial, since formulas (23),
(24) are directly applied. Moreover, for this specific example, the cases (𝑘, 𝑑) ∈ {(0, 1), (0, 3)} are
also trivial, since there are no 0-cells of Sℎ ( 𝑓 ) that are internal to any 1-cell or 3-cell of Sℎ ( 𝑓 ). We
thus focus on the remaining cases, i.e., (𝑘, 𝑑) ∈ {(2, 3), (1, 2), (1, 3), (0, 2)}, for which, we show the
construction of the sets F𝑘 and B𝑘 associated with the subspace 𝑍c

𝑘
(Sℎ ( 𝑓 )) of 𝑍𝑘 (Sℎ ( 𝑓 )) in Figure

1(b-d).

3.3.3 Properties

Lemma 11 (Cochain map property for (𝐼𝑘)𝑘). The graded map (𝐼𝑘)𝑘 , with 𝐼𝑘 : 𝐶𝑘 (Mℎ) → 𝐶𝑘 (Sℎ)
for 𝑘 ∈ {0, . . . , 𝑛}, is a cochain map, i.e., for all 𝑘 ∈ {0, . . . , 𝑛},

𝛿𝑘 𝐼𝑘 (𝜆) = 𝐼𝑘+1(𝛿𝑘𝜆), ∀𝜆 ∈ 𝐶𝑘 (Mℎ), (32)

with the convention that 𝐼𝑛+1 := 0.

Proof. We verify the formula (32) by induction on 𝑘 ∈ {𝑛, 𝑛 − 1, . . . , 0}.

1) Base case 𝑘 = 𝑛. Recalling the cochain complex (20), we have 𝛿𝑛 = 0 and thus, by the convention on
𝐼𝑛+1, the relation (32) holds.

2) Induction step 𝑘 ∈ {𝑛 − 1, . . . , 0}. Assume that (32) holds for 𝑘 + 1 and let us prove it for 𝑘 . To
alleviate the notation, in the rest of the proof, for 𝜆 ∈ 𝐶𝑘 (Mℎ), we set

𝜆 := 𝐼𝑘 (𝜆) ∈ 𝐶𝑘 (Sℎ) and 𝜉 := 𝐼𝑘+1(𝛿𝑘𝜆) ∈ 𝐶𝑘+1(Sℎ). (33)

We thus need to check that 𝛿𝑘𝜆 = 𝜉, that is, recalling that Δ𝑘+1(Sℎ) is the canonical basis of 𝐶𝑘+1(Sℎ)
and the relation (19), that

⟨𝜆 , 𝜕𝑘+1𝐹⟩ = ⟨𝜉 , 𝐹⟩ ∀𝐹 ∈ Δ𝑘+1(Sℎ).

13



Figure 1: (a) A simplicial subdivision Sℎ ( 𝑓 ) of a pyramidal 3-cell 𝑓 with a quadrilateral base 𝑓 ′; Sℎ ( 𝑓 ) is made
of four 3-simplices so that Δ3 (Sℎ ( 𝑓 )) = {𝑆1, 𝑆2, 𝑆3, 𝑆4}. (b) Case (𝑘, 𝑑) = (2, 3) (2-simplices contained in the
pyramid). A exploded view of the set F2 = {𝐹1, 𝐹2, 𝐹3} of 2-simplices associated with the basis B2 computed
with Algorithm 1 in Appendix C. In red and blue, the 2-cycle 𝑧1 ∈ B2 satisfying ⟨𝐹𝑖 , 𝑧1⟩ = 𝛿𝑖1 for 𝑖 ∈ {1, 2, 3};
the 3-chain 𝑤1 such that 𝜕3𝑤1 = 𝑧1 is 𝑤1 = 𝑆1. In blue, the restriction 𝑧′1 ∈ 𝐶2 (Sℎ ( 𝑓 )) of 𝑧1 to 𝜕 𝑓 . (c) Case
(𝑘, 𝑑) = (1, 2) (left, corresponding to 1-simplices contained in a polygonal 2-cell) and (𝑘, 𝑑) = (1, 3) (right,
corresponding to 1-simplices contained in the pyramid). On the left, 𝑑 = 2, and the set F1 = {𝐹1, 𝐹2, 𝐹3} of
1-simplices associated with the basis B1 computed with Algorithm 1. In red and blue, the 1-cycle 𝑧1 ∈ B1

satisfying ⟨𝐹𝑖 , 𝑧1⟩ = 𝛿𝑖1 for 𝑖 ∈ {1, 2, 3}. In blue, the restriction 𝑧′1 ∈ 𝐶1 (Sℎ ( 𝑓 )) of 𝑧1 to 𝜕 𝑓 , and in light grey
the 2-chain 𝑤1 such that 𝜕2𝑤1 = 𝑧1. On the right, 𝑑 = 3, and the set F1 = {𝐹1}. In red, blue, and light grey the
corresponding 1-chains 𝑧1, 𝑧′1, and 2-chain 𝑤1 (supported by two 2-simplices). (d) Case (𝑘, 𝑑) = (0, 2). The set
F0 = {𝐹1} associated with the basis B0 computed with Algorithm 1, and the 0-cell 𝐹∗ ∈ Δ0 (Sℎ (𝜕 𝑓 ′)). By the
substitution in (29), the 0-chain 𝑧1 ∈ B0 is 𝑧1 := 𝐹1 − 𝐹∗, and its restriction 𝑧′1 to 𝜕 𝑓 ′ is the 0-chain 𝑧′1 = −𝐹∗.
The 1-chain 𝑤1 such that 𝜕1𝑤1 = 𝑧1 is then simply the 1-simplex in Sℎ ( 𝑓 ′) connecting 𝐹1 and 𝐹∗.
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Since any 𝐹 ∈ Δ𝑘+1(Sℎ) is contained in Sℎ ( 𝑓 ) for 𝑓 = 𝑔𝑘 (𝐹) ∈ Δ𝑑 (Mℎ), it is sufficient to verify the
following local version of the commutation property: For all 𝑑 ∈ {𝑘 + 1, . . . , 𝑛} and all 𝑓 ∈ Δ𝑑 (Mℎ),

⟨𝜆 , 𝜕𝑘+1𝑤⟩ = ⟨𝜉 , 𝑤⟩ ∀𝑤 ∈ 𝐶𝑘+1(Sℎ ( 𝑓 )). (34)

Let us now focus on the boundary map 𝜕𝑘+1 appearing in (34). By (25), we can find a basis
{𝑧1, . . . , 𝑧𝑞} of 𝑍𝑘 (Sℎ ( 𝑓 )) such that {𝑧1, . . . , 𝑧𝑝} (with 𝑝 ≤ 𝑞) is the basis B𝑘 of 𝑍c

𝑘
(Sℎ ( 𝑓 )) obtained

via Algorithm 1 in Appendix C (and used in the definition of 𝜆 in the recursive step), and {𝑧𝑝+1, . . . , 𝑧𝑞}
is a basis of 𝑍𝑘 (Sℎ (𝜕 𝑓 )). Recall the substitution we performed in (28) and (29) for the sets 𝑍0(Sℎ ( 𝑓 ))
and B0 via the 0-cell 𝐹∗ ∈ Δ0(Sℎ (𝜕 𝑓 )) in (27), and notice also that the property (26) of the set F0 of
0-simplices still holds for the new set B0 after the substitution (29), since 𝐹∗ ⊂ 𝜕 𝑓 . All of the above
substitutions ensure that 𝑍𝑘 (Sℎ ( 𝑓 )) = 𝐵𝑘 (Sℎ ( 𝑓 )) whatever the value of 𝑘 (including 𝑘 = 0), and we
can find (𝑘 + 1)-chains {𝑤1, . . . , 𝑤𝑞} such that 𝑧𝑖 = 𝜕𝑘+1𝑤𝑖 for each 𝑖 ∈ {1, . . . , 𝑞}; we choose these
chains to ensure that the first 𝑝 ones are those used in the definition of 𝐼𝑘 (see (30)). Accordingly,
consider the direct decomposition

𝐶𝑘+1(Sℎ ( 𝑓 )) = 𝑍𝑘+1(Sℎ ( 𝑓 )) ⊕ span {𝑤1, . . . , 𝑤𝑞}, (35)

which follows by applying the First Isomorphism Theorem to the linear map 𝜕𝑘+1 : 𝐶𝑘+1(Sℎ ( 𝑓 )) →
𝐵𝑘 (Sℎ ( 𝑓 )) (cf., e.g., [26, Theorems 3.5 and 3.6]), after noticing that {𝑧1, . . . , 𝑧𝑞} is a basis of
𝐵𝑘 (Sℎ ( 𝑓 )) = 𝑍𝑘 (Sℎ ( 𝑓 )), since 𝑓 is homeomorphic to a closed 𝑑-dimensional ball.

Since 𝜉 ∈ 𝐶𝑘+1(Sℎ), by induction hypothesis it holds

𝛿𝑘+1𝜉
(33)
= 𝛿𝑘+1𝐼𝑘+1(𝛿𝑘𝜆) (32)

= 𝐼𝑘+2𝛿𝑘+1(𝛿𝑘𝜆) = 0, (36)

where the last equality follows from the cochain complex property 𝛿𝑘+1 ◦ 𝛿𝑘 = 0. Let now 𝑤 ∈
𝑍𝑘+1(Sℎ ( 𝑓 )). Exploiting the fact that 𝑍𝑘+1(Sℎ ( 𝑓 )) = 𝐵𝑘+1(Sℎ ( 𝑓 )) since the (𝑘 + 1)-th homology
group is trivial (as 𝑓 is contractible), we can write 𝑤 = 𝜕𝑘+2𝑡 with 𝑡 ∈ 𝐶𝑘+2(Sℎ ( 𝑓 )). We then have

⟨𝜆 , 𝜕𝑘+1𝑤⟩ = ⟨𝜆 , 0⟩ = 0, (37)

⟨𝜉 , 𝑤⟩ = ⟨𝜉 , 𝜕𝑘+2𝑡⟩
(19)
= ⟨𝛿𝑘+1𝜉 , 𝑡⟩ (36)

= 0, (38)

meaning that (34) is trivially verified for the elements 𝑤 ∈ 𝑍𝑘+1(Sℎ ( 𝑓 )). Therefore, recalling the
decomposition (35) as well as the fact that 𝑧𝑖 = 𝜕𝑘+1𝑤𝑖 for all 𝑖 ∈ {1, . . . , 𝑞}, the relation (34) follows if
we show that

⟨𝜆 , 𝑧𝑖⟩ = ⟨𝜉 , 𝑤𝑖⟩ ∀𝑖 ∈ {1, . . . , 𝑞}. (39)

We check this condition by induction on the dimension 𝑑 ∈ {𝑘 + 1, . . . , 𝑛} of 𝑓 . To this end, we will
treat separately the cases 𝑖 ∈ {1, . . . , 𝑝} (corresponding to 𝑧𝑖 ∈ 𝑍c

𝑘
(Sℎ ( 𝑓 ))) and 𝑖 ∈ {𝑝 + 1, . . . , 𝑞}

(corresponding to 𝑧𝑖 ∈ 𝑍𝑘 (Sℎ (𝜕 𝑓 ))).
2a) Base case 𝑑 = 𝑘 + 1. Let 𝑓 ∈ Δ𝑘+1(Sℎ). In this case, 𝑍𝑘 (Sℎ (𝜕 𝑓 )) has dimension 1 and is spanned
by the 𝑘-cycle

𝑧𝑝+1 =
∑︁

𝐹′∈Δ𝑘 (Sℎ (𝜕 𝑓 ) )
𝜖 𝑓 𝑓 ′ 𝐹

′ (40)

= 𝜕𝑘+1
©­«

∑︁
𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )

𝐹
ª®¬︸                ︷︷                ︸

≕𝑤𝑝+1

, (41)
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Figure 2: Illustration of the 2-chain 𝑤𝑝+1 (light grey) and 1-chain 𝑧𝑝+1 (red) for a simplicial subdivision Sℎ ( 𝑓 )
of a quadrilateral 2-cell 𝑓 . Note how the orientation of the 2-simplex 𝐹 is the same as that of the 2-cell 𝑓 , as well
as how 𝐹 and 𝑓 induce the same orientation on the unique 1-cell 𝑓 ′ = 𝐹′ (also, 1-simplex in this case) which lies
in their intersection 𝜕𝐹 ∩ 𝜕 𝑓 = { 𝑓 ′} = {𝐹′} so that 𝜖𝐹𝐹′ = 𝜖 𝑓 𝑓 ′ .

where 𝑓 ′ ∈ Δ𝑘 (Mℎ (𝜕 𝑓 )) is such that 𝐹′ ⊂ 𝑓 ′ and 𝜖 𝑓 𝑓 ′ denotes its orientation relative to 𝑓 (which is
inherited by 𝐹′); see Figure 2. We can then write

⟨𝜆 , 𝑧𝑝+1⟩
(33), (40)

=
∑︁

𝐹′∈Δ𝑘 (Sℎ (𝜕 𝑓 ) )
𝜖 𝑓 𝑓 ′ ⟨𝐼𝑘 (𝜆) , 𝐹′⟩

(24)
=

∑︁
𝑓 ′∈Δ𝑘 (Mℎ (𝜕 𝑓 ) )

𝜖 𝑓 𝑓 ′
©­«

∑︁
𝐹′∈Δ𝑘 (Sℎ (𝜕 𝑓 ) ) , 𝐹′⊂ 𝑓 ′

|𝐹′ |
| 𝑓 ′ | ⟨𝜆 , 𝑓

′⟩ª®¬
=

∑︁
𝑓 ′∈Δ𝑘 (Mℎ (𝜕 𝑓 ) )

𝜖 𝑓 𝑓 ′ ⟨𝜆 , 𝑓 ′⟩

(17),(19)
= ⟨𝛿𝑘𝜆 , 𝑓 ⟩,

(42)

where in the second line we have used the fact that, if 𝐹′ ∈ Δ𝑘 (Sℎ (𝜕 𝑓 )), then 𝐹′ ∈ 𝑃𝑘 (𝑘) by Point (ii) in
Proposition 9, while, to pass to the third line, we have used the fact that

∑
𝐹′∈Δ𝑘 (Sℎ (𝜕 𝑓 ) ) , 𝐹′⊂ 𝑓 ′

|𝐹′ |
| 𝑓 ′ | = 1.

Noticing that 𝐹 ∈ Δ𝑘+1(Sℎ ( 𝑓 )) implies 𝑔𝑘+1(𝐹) = 𝑓 and thus 𝐹 ∈ 𝑃𝑘+1(𝑘 + 1), we can apply a
similar reasoning as above and use the definition of 𝐼𝑘+1(𝛿𝑘𝜆) in (24) but with 𝛿𝑘𝜆 in place of 𝜆 to get

⟨𝜉 , 𝑤𝑝+1⟩
(33), (41)

=
∑︁

𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )
⟨𝐼𝑘+1(𝛿𝑘𝜆) , 𝐹⟩

=
∑︁

𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )

(
|𝐹 |
| 𝑓 | ⟨𝛿

𝑘𝜆 , 𝑓 ⟩
)

= ⟨𝛿𝑘𝜆 , 𝑓 ⟩.

(43)

Comparing (42) and (43), we get (39) when 𝑖 = 𝑝 + 1.
Take now 𝑖 ∈ {1, . . . , 𝑝}, i.e., 𝑧𝑖 is an element of the basis B𝑘 of 𝑍c

𝑘
(Sℎ ( 𝑓 )). Recall that 𝑧′

𝑖
∈

𝐶𝑘 (Sℎ (𝜕 𝑓 )) is the restriction of 𝑧𝑖 to 𝜕 𝑓 , so that supp(𝑧𝑖 − 𝑧′
𝑖
) ∩ Δ𝑘 (Sℎ (𝜕 𝑓 )) = ∅. The properties

(26) of the set of 𝑘-simplices F𝑘 = {𝐹1, . . . , 𝐹𝑝} imply: (i) 𝐹𝑖 ⊄ 𝜕 𝑓 and 𝐹𝑖 ∈ supp(𝑧𝑖) for any
𝑖 ∈ {1, . . . , 𝑝}; (ii) 𝐹𝑗 ∉ supp(𝑧𝑖) for any 𝑗 ≠ 𝑖, 𝑗 ∈ {1, . . . , 𝑝}. By Property (i), 𝐹𝑖 ∈ supp(𝑧𝑖 − 𝑧′

𝑖
),

and so, in particular, the set supp(𝑧𝑖 − 𝑧′
𝑖
) is nonempty. Thus, if 𝐹 ∈ supp(𝑧𝑖 − 𝑧′

𝑖
), then 𝐹 ⊂ 𝑓 and

𝐹 ∈ 𝑃𝑘 (𝑘 + 1). By Property (ii), if 𝐹 ∈ supp(𝑧𝑖 − 𝑧′
𝑖
) \ {𝐹𝑖}, we have 𝐹 ∉ {𝐹1, . . . , 𝐹𝑝} and thus,

applying the definition of 𝜆 given by (31), we infer ⟨𝜆 , 𝐹⟩ = 0. Hence, ⟨𝜆 , 𝑧𝑖 − 𝑧′
𝑖
− 𝐹𝑖⟩ = 0, so that

⟨𝜆 , 𝑧′
𝑖
⟩ = ⟨𝜆 , 𝑧𝑖 − 𝐹𝑖⟩, and

⟨𝜆 , 𝐹𝑖⟩
(31), (33)

= ⟨𝜉 , 𝑤𝑖⟩ − ⟨𝜆 , 𝑧′𝑖⟩ = ⟨𝜉 , 𝑤𝑖⟩ − ⟨𝜆 , 𝑧𝑖 − 𝐹𝑖⟩, (44)
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from which we infer

⟨𝜆 , 𝑧𝑖⟩ = ⟨𝜆 , 𝑧𝑖 − 𝐹𝑖⟩ + ⟨𝜆 , 𝐹𝑖⟩
(44)
= ⟨𝜉 , 𝑤𝑖⟩,

and conclude the proof of (39) for 𝑖 ∈ {1, . . . , 𝑝}.
2b) Induction step 𝑑 ∈ {𝑘+2, . . . , 𝑛}. Assume that (34) holds for all 𝑑′-cells with 𝑑′ ∈ {𝑘+1, . . . , 𝑑−1},
and let 𝑓 ∈ Δ𝑑 (Sℎ).

Suppose first 𝑧𝑖 ∈ 𝑍𝑘 (Sℎ (𝜕 𝑓 )). Since 𝑓 is homeomorphic to a closed 𝑑-dimensional ball, its
boundary 𝜕 𝑓 is homeomorphic to a (𝑑 − 1)-sphere2. Since 𝑘 < 𝑑 − 1, and recalling the substitution we
performed in (28) for the set 𝑍0(Sℎ ( 𝑓 )) using the 0-cell 𝐹∗ ∈ Δ0(Sℎ (𝜕 𝑓 )) in (27), together with the fact
that 𝑍0(Sℎ (𝜕 𝑓 )) ⊂ 𝑍0(Sℎ ( 𝑓 )), there exists a (𝑘 + 1)-chain 𝑤′

𝑖
∈ 𝐶𝑘+1(Sℎ (𝜕 𝑓 )) such that 𝜕𝑘+1𝑤′𝑖 = 𝑧𝑖 .

Recalling that 𝑧𝑖 = 𝜕𝑘+1𝑤𝑖 and that 𝑓 is contractible, we can write 𝑤𝑖 = 𝑤′
𝑖
+ 𝜕𝑘+2𝑡 with 𝑡 ∈

𝐶𝑘+2(Sℎ ( 𝑓 )). This observation implies that verifying (39) for 𝑤′
𝑖

suffices, as (34) is trivially satisfied
for 𝑤 = 𝜕𝑘+2𝑡 ∈ 𝑍𝑘+1(Sℎ ( 𝑓 )), as shown by the relations (37) and (38).

Since every 𝐹 ∈ supp(𝑤′
𝑖
) is contained in Sℎ ( 𝑓 ′), where 𝑓 ′ = 𝑔𝑘+1(𝐹) ∈ Mℎ (𝜕 𝑓 ) is a 𝑑′-cell with

𝑑′ ∈ {𝑘 + 1, . . . , 𝑑 − 1}, we can apply the induction hypothesis on 𝑑 to each 𝑓 ′. As a result, (34) is
satisfied for each 𝑤 = 𝐹 ∈ supp(𝑤′

𝑖
). Therefore, (39) is satisfied for 𝑤 = 𝑤′

𝑖
, and thus for 𝑤 = 𝑤𝑖 , as

required.
Now, suppose 𝑧𝑖 ∈ 𝑍c

𝑘
(Sℎ ( 𝑓 )). In this case, to verify (39) is sufficient to repeat the same argument

applied for the case 𝑑 = 𝑘 + 1. □

Lemma 12 (Estimate on 𝐼𝑘). Let 𝑘 ∈ {0, . . . , 𝑛} and 𝜆 = (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ∈ 𝐶𝑘 (Mℎ), and set 𝜆 =

(𝜆𝐹)𝐹∈Δ𝑘 (Mℎ ) := 𝐼𝑘 (𝜆) ∈ 𝐶𝑘 (Sℎ). Then, for all 𝑇 ∈ Δ𝑛 (Mℎ), the following uniform bound holds:∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜆2𝐹 ≲
∑︁

𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )
𝜆2𝑓 +

∑︁
𝑓 ∈Δ𝑘+1 (Mℎ (𝑇 ) )

(𝛿𝑘𝜆)2𝑓 . (45)

Proof. Thanks to mesh regularity ofMℎ, we have card ({𝑆 ∈ Δ𝑛 (Sℎ (𝑇)) : 𝐹 ⊂ 𝑆}) ≤ card(Δ𝑛 (Sℎ (𝑇))) ≲
1 for each 𝑘 ∈ {0, . . . , 𝑛}, and it follows that∑︁

𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜆2𝐹 ≃
∑︁

𝐹∈Δ𝑘 (Sℎ (𝑇 ) )
𝜆2𝐹 =

∑︁
𝐹∈𝑃𝑘 (𝑘 ) , 𝐹⊂𝑇

𝜆2𝐹︸              ︷︷              ︸
≕𝐴1

+
𝑛∑︁

𝑑=𝑘+1

∑︁
𝐹∈𝑃𝑘 (𝑑) , 𝐹⊂𝑇

𝜆2𝐹︸                      ︷︷                      ︸,
≕𝐴2

(46)

where, to conclude, we have used the partition Δ𝑘 (Sℎ) = 𝑃𝑘 (𝑘) ⊔
(⊔𝑛

𝑑=𝑘+1 𝑃𝑘 (𝑑)
)

of Proposition 9. We
now focus on bounding the terms 𝐴1 and 𝐴2 by the right-hand side of (45). This is done by induction
on 𝑘 ∈ {𝑛, . . . , 0}.

Base case 𝑘 = 𝑛. In this case, 𝐴2 = 0 and we just have to bound 𝐴1. Applying the definition of 𝜆𝑆 given
by (23), and observing that |𝐹 || 𝑓 | ≤ 1 for each 𝐹 ∈ Δ𝑛 (Sℎ ( 𝑓 )), we have

∑︁
𝐹∈Δ𝑛 (Sℎ ( 𝑓 ) )

(
|𝐹 |
| 𝑓 |

)2
≤

∑︁
𝐹∈Δ𝑛 (Sℎ ( 𝑓 ) )

|𝐹 |
| 𝑓 | = 1,

2Letting 𝑆𝑑 be the 𝑑-sphere, we have the following well-known characterization of its homology [1]:

𝐻𝑘 (𝑆𝑑) =
{
Z if 𝑘 ∈ {0, 𝑑}
0 if 𝑘 ∈ {1, . . . , 𝑑 − 1}.

17



from which we readily infer, using card(Δ𝑛 (Sℎ ( 𝑓 ))) ≲ 1 (consequence of mesh regularity),

𝐴1 =
∑︁

𝐹∈Δ𝑛 (Sℎ ( 𝑓 ) )

(
|𝐹 |
| 𝑓 |

)2
𝜆2𝑓 ≲ 𝜆2𝑓 .

This yields (45) since Δ𝑛 (Mℎ ( 𝑓 )) = { 𝑓 }.
Induction step 𝑘 ∈ {𝑛 − 1, . . . , 0}. Assume that the inequality (45) holds for 𝑘 + 1 and let us prove it for
𝑘 .
Term 𝐴1. Using the definition of 𝜆𝐹 given by formula (24) and reasoning as above, we have

𝐴1 =
∑︁

𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) )

(
|𝐹 |
| 𝑓 |

)2
𝜆2𝑓 ≲

∑︁
𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )

𝜆2𝑓 . (47)

Term 𝐴2. Let 𝑓 ∈ Δ𝑑 (Mℎ (𝑇)) for 𝑑 ∈ {𝑘 + 1, . . . , 𝑛}. Let 𝜁 = (𝜁𝐹)𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) ) ∈ 𝐶𝑘 (Sℎ ( 𝑓 )), and
let 𝑡 =

∑
𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) ) 𝑡𝐹 𝐹 ∈ 𝐶𝑘 (Sℎ ( 𝑓 )) be such that 𝑡𝐹 ∈ {−1, 0, 1}. Then, by mesh regularity and a

Cauchy–Schwarz inequality, it holds

|⟨𝜁 , 𝑡⟩|2 =

������ ∑︁
𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) )

𝑡𝐹 𝜁𝐹

������
2

≤ card(supp(𝑡))
∑︁

𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) )
𝜁2𝐹 ≲

∑︁
𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) )

𝜁2𝐹 , (48)

where we have used the fact that 𝑡2
𝐹
= 1 for each 𝐹 ∈ supp(𝑡) in the second inequality to write the

squared norm in terms of the support of 𝑡, while the conclusion follows observing that card(supp(𝑡)) ≤
card(Δ𝑘 (Sℎ ( 𝑓 ))) ≲ 1 by mesh regularity.

Let 𝐹 ∈ Δ𝑘 (Sℎ ( 𝑓 )) ∩ 𝑃𝑘 (𝑑) and recall the definition (31) of 𝜆𝐹 . Setting 𝜉 ≔ 𝐼𝑘+1(𝛿𝑘𝜆) and
applying the bound (48) to both terms ⟨𝜆 , 𝑧′

𝑖
⟩ and ⟨𝜉 , 𝑤𝑖⟩ leads to∑︁

𝐹∈𝑃𝑘 (𝑑) , 𝐹⊂ 𝑓

𝜆2𝐹 ≲
∑︁

𝐹∈Δ𝑘 (Sℎ (𝜕 𝑓 ) )
𝜆2𝐹 +

∑︁
𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )

𝜉2𝐹 ∀ 𝑓 ∈ Δ𝑑 (Mℎ (𝑇)). (49)

Observe that, by Point (ii) in Proposition 9, the first term in the right-hand side of (49) can be equivalently
written as

𝑑−1∑︁
𝑑′=𝑘

∑︁
𝑓 ′∈Δ𝑑′ (Mℎ ( 𝑓 ) )

©­«
∑︁

𝐹∈𝑃𝑘 (𝑑′ ) , 𝐹⊂ 𝑓 ′
𝜆2𝐹

ª®¬ ,
and, in the case 𝑑 = 𝑘 + 1, it holds for this term∑︁

𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )

©­«
∑︁

𝐹∈𝑃𝑘 (𝑘 ) , 𝐹⊂ 𝑓 ′
𝜆2𝐹

ª®¬
(24)
≲

∑︁
𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )

𝜆2𝑓 ′ .

Hence, via a simple induction argument on the dimension 𝑑 involving the bound (49) and the mesh
regularity assumption (to uniformly bound the cardinalities ofΔ𝑘 (Mℎ ( 𝑓 )) andΔ𝑘 (Sℎ ( 𝑓 ))), we conclude

𝐴2 =

𝑛∑︁
𝑑=𝑘+1

∑︁
𝑓 ∈Δ𝑑 (Mℎ (𝑇 ) )

©­«
∑︁

𝐹∈𝑃𝑘 (𝑑) , 𝐹⊂ 𝑓

𝜆2𝐹
ª®¬ ≲

∑︁
𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )

𝜆2𝑓 +
∑︁

𝐹∈Δ𝑘+1 (Sℎ (𝑇 ) )
𝜉2𝐹 . (50)

Recalling that 𝜉 = 𝐼𝑘+1(𝛿𝑘𝜆) ∈ 𝐶𝑘+1(Mℎ) we can apply the induction hypothesis for 𝑘 + 1 with 𝜆

replaced by 𝛿𝑘𝜆, which states that this cochain satisfies (45). Since 𝛿𝑘+1(𝛿𝑘𝜆) = 0 by complex property,
this gives ∑︁

𝐹∈Δ𝑘+1 (Sℎ (𝑇 ) )
𝜉2𝐹 ≲

∑︁
𝑓 ∈Δ𝑘+1 (Mℎ (𝑇 ) )

(𝛿𝑘𝜆)2𝑓 . (51)

Using (47) to estimate 𝐴1 and plugging (51) into (50) to estimate 𝐴2 in (46) concludes the proof of the
induction step. □
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3.3.4 Left inverse

For 𝑘 ∈ {0, . . . , 𝑛}, let (𝐽𝑘)𝑘 be the graded map with 𝐽𝑘 : 𝐶𝑘 (Sℎ) → 𝐶𝑘 (Mℎ) such that, for any
𝜆 ∈ 𝐶𝑘 (Sℎ), it holds

⟨𝐽𝑘 (𝜆) , 𝑓 ⟩ :=
∑︁

𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) )
⟨𝜆 , 𝐹⟩ ∀ 𝑓 ∈ Δ𝑘 (Mℎ). (52)

Lemma 13 (Left inverse of 𝐼𝑘). The graded map (𝐽𝑘)𝑘 satisfies the following properties:

(i) 𝐽𝑘 is a left inverse of 𝐼𝑘;

(ii) (𝐽𝑘)𝑘 is a cochain map;

(iii) For all 𝑇 ∈ Δ𝑛 (Mℎ) and 𝜆 = (𝜆𝐹)𝐹∈Δ𝑘 (Sℎ ) ∈ 𝐶𝑘 (Sℎ), setting 𝜆 = (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) := 𝐽𝑘 (𝜆) ∈
𝐶𝑘 (Mℎ), the following bound holds:∑︁

𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )
𝜆2𝑓 ≲

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜆2𝐹 . (53)

Proof. (i) It suffices to write, for all 𝑓 ∈ Δ𝑘 (Mℎ),

⟨𝐽𝑘 (𝐼𝑘 (𝜆)) , 𝑓 ⟩ (52)
=

∑︁
𝐹∈Δ𝑘 (Sℎ ( 𝑓 ) )

⟨𝐼𝑘 (𝜆) , 𝐹⟩ (23),(24)
= ⟨𝜆 , 𝑓 ⟩,

where we have additionally noticed that 𝑔𝑘 (𝐹) = 𝑓 for all 𝐹 ∈ Δ𝑘 (Sℎ ( 𝑓 )) in the last step.

(ii) Let 𝜆 and 𝜆 as in Point (iii) and set 𝜉 := 𝛿𝑘𝜆 and 𝜉 := 𝐽𝑘+1(𝜉). We have to show that 𝛿𝑘𝜆 = 𝜉. This
is done by writing, for any 𝑓 ∈ Δ𝑘+1(Mℎ),

⟨𝛿𝑘𝜆 , 𝑓 ⟩ (19),(17),(52)
=

∑︁
𝑓 ′∈Δ𝑘 (Mℎ (𝜕 𝑓 ) )

𝜖 𝑓 𝑓 ′
∑︁

𝐹′∈Δ𝑘 (Sℎ ( 𝑓 ′ ) )
⟨𝜆 , 𝐹′⟩

=
∑︁

𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )

∑︁
𝐹′∈Δ𝑘 (Sℎ (𝜕𝐹 ) )

𝜖𝐹𝐹′ ⟨𝜆 , 𝐹′⟩

(17),(19)
=

∑︁
𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )

⟨𝜉 , 𝐹⟩

(52)
= ⟨𝜉 , 𝑓 ⟩,

where, in the second equality, we have used the assumption that the orientation on Sℎ is the one induced
by the maps 𝑔• : Sℎ →Mℎ (which implies 𝜖𝐹𝐹′ = 𝜖 𝑓 𝑓 ′ if 𝑓 = 𝑔𝑘+1(𝐹) and 𝑓 ′ = 𝑔𝑘 (𝐹′) in these sums),
together with the relation ∑︁

𝐹∈Δ𝑘+1 (Sℎ ( 𝑓 ) )

∑︁
𝐹′∈Δ𝑘 (Sℎ (𝜕𝐹 ) ) , 𝐹′⊄𝜕 𝑓

𝜖𝐹𝐹′𝜆𝐹′ = 0,

which translates the fact that contributions on 𝑘-simplices that do not lie on the boundary of 𝑓 cancel
out since 𝜖𝐹1𝐹

′ + 𝜖𝐹2𝐹
′ = 0 whenever 𝐹1, 𝐹2 are the (𝑘 + 1)-simplices in Sℎ ( 𝑓 ) on each side of 𝐹′.

(iii) Is a direct consequence of the definition (52) and of the regularity assumption onMℎ. □
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3.4 Proof of the Poincaré inequality for cochains

We can now prove Lemma 6, which we recall here for the sake of legibility.

Lemma 6 (Poincaré inequality for cochains). Let 𝑘 ∈ {0, . . . , 𝑛 − 1} and let a (𝑘 + 1)-coboundary
𝜉 = (𝜉 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ∈ 𝐵𝑘+1(Mℎ) be given. Then, there exists a 𝑘-cochain 𝜆 = (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ∈ 𝐶𝑘 (Mℎ)
such that 𝛿𝑘𝜆 = 𝜉 and∑︁

𝑇∈Δ𝑛 (Mℎ )
ℎ𝑛−2𝑘𝑇

∑︁
𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )

𝜆2𝑓 ≲
∑︁

𝑇∈Δ𝑛 (Mℎ )
ℎ𝑛−2𝑘−2𝑇

∑︁
𝑓 ∈Δ𝑘+1 (Mℎ (𝑇 ) )

𝜉2𝑓 . (21)

Proof. Let 𝜃 ∈ 𝐶𝑘 (Mℎ) be such that 𝛿𝑘𝜃 = 𝜉, and consider the following extensions to simplicial
cochains:

𝜉 ≔ 𝐼𝑘+1(𝜉) and 𝜃 := 𝐼𝑘 (𝜃). (54)

By Lemma 11, (𝐼𝑘)𝑘 is a cochain map so we have

𝛿𝑘𝜃 = 𝛿𝑘 𝐼𝑘 (𝜃) = 𝐼𝑘+1(𝛿𝑘𝜃) = 𝜉. (55)

For 𝑘 ∈ {0, . . . 𝑛}, denote by 𝑅𝑘
ℎ
: 𝔚𝑘 (Sℎ) → 𝐶𝑘 (Sℎ) the De Rham map restricted to the space𝔚𝑘 (Sℎ)

of Whitney 𝑘-forms (see [2] and Appendix B), and by 𝑊 𝑘
ℎ
: 𝐶𝑘 (Sℎ) → 𝔚𝑘 (Sℎ) the Whitney map on

the simplicial complex Sℎ [21]. For each 𝜁 = (𝜁𝐹)𝐹∈Δ𝑘 (Sℎ ) ∈ 𝐶𝑘 (Sℎ), 𝑊 𝑘
ℎ
(𝜁) is explicitly written as

𝑊 𝑘
ℎ (𝜁) :=

∑︁
𝑆∈Δ𝑛 (Sℎ )

∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜁𝐹𝜙
𝑘
𝐹,𝑆 . (56)

Crucially, the graded map (𝑊 𝑘
ℎ
)𝑘 is a cochain isomorphism between the simplicial cochain complex and

the Whitney form complex supported on Sℎ, and 𝑅𝑘
ℎ

is the inverse of 𝑊 𝑘
ℎ

.
Let

𝜉ℎ := 𝑊 𝑘+1
ℎ (𝜉) and 𝜃ℎ := 𝑊 𝑘

ℎ (𝜃). (57)

Thanks to the cochain map property of 𝑊 𝑘
ℎ

, we have d𝑘𝜃ℎ = d𝑘𝑊 𝑘
ℎ
(𝜃) = 𝑊 𝑘+1

ℎ
(𝛿𝑘𝜃) (55)

= 𝜉ℎ. Therefore,
𝜉ℎ ∈ Imd𝑘 . Invoking the continuous Poincaré inequality [3, Theorem 5.11], then the proof of Corollary
5 to retrieve a formulation of this inequality in the spirit of Theorem 4, we infer the existence of
𝜆ℎ ∈ 𝔚𝑘 (Sℎ) such that

d𝑘𝜆ℎ = 𝜉ℎ and ∥𝜆ℎ∥𝐿2Λ𝑘 (Ω) ≲ ∥𝜉ℎ∥𝐿2Λ𝑘+1 (Ω) . (58)

Letting 𝜆 := 𝑅𝑘
ℎ
(𝜆ℎ) and using the cochain map property of 𝑅𝑘

ℎ
, we find

𝛿𝑘𝜆 = 𝛿𝑘𝑅𝑘
ℎ (𝜆ℎ) = 𝑅𝑘+1

ℎ (d
𝑘𝜆ℎ)

(58)
= 𝑅𝑘+1

ℎ 𝜉ℎ
(57)
= 𝑅𝑘+1

ℎ 𝑊 𝑘+1
ℎ (𝜉) = 𝜉, (59)

where the conclusion follows since 𝑅𝑘+1
ℎ

is the inverse of 𝑊 𝑘+1
ℎ

. Letting 𝜆 := 𝐽𝑘 (𝜆), we then have

𝛿𝑘𝜆 = 𝛿𝑘𝐽𝑘 (𝜆) = 𝐽𝑘+1(𝛿𝑘𝜆) (59)
= 𝐽𝑘+1𝜉

(54)
= 𝐽𝑘+1𝐼𝑘+1(𝜉) = 𝜉,

where we have used, respectively, Points (ii) and (i) in Lemma 13 to infer the second and last equalities.
It remains to prove that 𝜆 = (𝜆 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) satisfies (21). Decomposing 𝜆ℎ = 𝑊 𝑘

ℎ
(𝜆) according

to (56), noticing that
∑

𝑆∈Δ𝑛 (Sℎ ) • =
∑

𝑇∈Δ𝑛 (Mℎ )
∑

𝑆∈Δ𝑛 (Sℎ (𝑇 ) ) •, and observing that each 𝜙𝐹,𝑆 is only
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supported in 𝑆, we write (equations (90) and (89) are stated and proved in Appendix B)

∥𝜆ℎ∥2𝐿2Λ𝑘 (Ω) =
∑︁

𝑇∈Δ𝑛 (Mℎ )

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )







 ∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜆𝐹𝜙
𝑘
𝐹,𝑆








2

𝑆

(90)≃
∑︁

𝑇∈Δ𝑛 (Mℎ )

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜆2𝐹 ∥𝜙𝑘
𝐹,𝑆 ∥

2
𝑆

(89)≃
∑︁

𝑇∈Δ𝑛 (Mℎ )

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘 (Sℎ (𝑆) )

𝜆2𝐹ℎ
𝑛−2𝑘
𝑆

(53)
≳

∑︁
𝑇∈Δ𝑛 (Mℎ )

ℎ𝑛−2𝑘𝑇

∑︁
𝑓 ∈Δ𝑘 (Mℎ (𝑇 ) )

𝜆2𝑓 ,

(60)

where, in the last passage, we have used the mesh regularity condition to write ℎ𝑆 ≃ ℎ𝑇 for all
𝑆 ∈ Δ𝑛 (Sℎ (𝑇)). Similarly, we have

∥𝜉ℎ∥2𝐿2Λ𝑘 (Ω)
(56)
=

∑︁
𝑇∈Δ𝑛 (Mℎ )

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )







 ∑︁
𝐹∈Δ𝑘+1 (Sℎ (𝑆) )

𝜉𝐹𝜙
𝑘+1
𝐹,𝑆








2

𝑆

(90)≃
∑︁

𝑇∈Δ𝑛 (Mℎ )

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘+1 (Sℎ (𝑆) )

𝜉2𝐹 ∥𝜙𝑘+1
𝐹,𝑆 ∥

2
𝑆

(89)≃
∑︁

𝑇∈Δ𝑛 (Mℎ )

∑︁
𝑆∈Δ𝑛 (Sℎ (𝑇 ) )

∑︁
𝐹∈Δ𝑘+1 (Sℎ (𝑆) )

𝜉2𝐹ℎ
𝑛−2𝑘−2
𝑆

(45)
≲

∑︁
𝑇∈Δ𝑛 (Mℎ )

ℎ𝑛−2𝑘−2𝑇

∑︁
𝑓 ∈Δ𝑘+1 (Mℎ (𝑇 ) )

𝜉2𝑓 ,

(61)

where the conclusion follows from (45) applied to 𝜉, after noticing that 𝛿𝑘+1𝜉 = 𝛿𝑘+1𝛿𝑘𝜃 = 0.
The estimate (21) follows combining (58), (60) and (61). □

4 Proof of the main result
We are now ready to prove Theorem 4.

Proof. Let 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
and set 𝜎

ℎ
≔ d𝑘

𝑟 ,ℎ𝜔ℎ
. We will construct 𝜏

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
such that d𝑘

𝑟 ,ℎ𝜏ℎ = 𝜎
ℎ

and
|||𝜏

ℎ
|||ℎ ≲ |||𝜎

ℎ
|||ℎ.

(i) Construction of 𝜏
ℎ

on 𝑘-cells. For 𝑓 ∈ Δ𝑘+1(Mℎ), we notice that∫
𝑓

𝜎 𝑓
(7)
=

∫
𝑓

★−1𝜋−,0
𝑟 , 𝑓

★ d𝑘
𝑟 , 𝑓𝜔 𝑓

=

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

,

where the last equality follows from P−𝑟 Λ0( 𝑓 ) = P𝑟Λ0( 𝑓 ) together with ★d𝑘
𝑟 , 𝑓

𝜔
𝑓
∈ P𝑟Λ0( 𝑓 ). The

discrete Stokes formula (6) with 𝜇 𝑓 = 1 ∈ P𝑟Λ0( 𝑓 ) and the definition (4) then yield∫
𝑓

𝜎 𝑓 =
∑︁

𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )
𝜖 𝑓 𝑓 ′

∫
𝑓 ′
𝜔 𝑓 ′ .

This shows that the (𝑘 + 1)-cochain 𝜉 ≔ (
∫
𝑓
𝜎 𝑓 ) 𝑓 ∈Δ𝑘+1 (Mℎ ) ∈ 𝐶𝑘+1(Mℎ) is a coboundary (precisely,

the coboundary of the 𝑘-cochain with coefficients (
∫
𝑓 ′
𝜔 𝑓 ′) 𝑓 ′∈Δ𝑘 (Mℎ ) ). Hence, by Lemma 6 there exists
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a 𝑘-cochain 𝜆 = (𝜆 𝑓 ′) 𝑓 ′∈Δ𝑘 (Mℎ ) satisfying (21) and such that 𝛿𝑘𝜆 = 𝜉, which translates into: for all
𝑓 ∈ Δ𝑘+1(Mℎ), ∫

𝑓

𝜎 𝑓 =
∑︁

𝑓 ′∈Δ𝑘 (Mℎ (𝜕 𝑓 ) )
𝜖 𝑓 𝑓 ′

∫
𝑓 ′
𝜏 𝑓 ′ , (62)

where we have defined
𝜏 𝑓 ′ ≔ ★−1

𝜆 𝑓 ′

| 𝑓 ′ | . (63)

(ii) Construction of 𝜏
ℎ

on 𝑑-cells for 𝑑 ∈ {𝑘 + 1, . . . , 𝑛}. The construction is done by induction
on 𝑑 (noticing that 𝑑 = 𝑘 has already been done), by following the ideas in [7, Lemma 27]. For
𝑑 ∈ {𝑘 + 1, . . . , 𝑛} and 𝑓 ∈ Δ𝑑 (Mℎ), assuming that (𝜏

𝑓 ′) 𝑓 ′∈Δ𝑑−1 ( 𝑓 ) have been constructed, we define

𝜏 𝑓 ∈ ★−1dP𝑟Λ𝑑−𝑘−1( 𝑓 ) ⊂ ★−1P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) (64)

such that, for all 𝜇 𝑓 ∈ 𝜅P𝑟−1Λ𝑑−𝑘 ( 𝑓 ),

(−1)𝑘+1⟨★𝜏 𝑓 , d𝜇 𝑓 ⟩ 𝑓 = ⟨★𝜎 𝑓 , 𝜇 𝑓 ⟩ 𝑓 − ⟨★𝑃𝑘
𝑟 ,𝜕 𝑓

𝜏
𝜕 𝑓
, tr𝜕 𝑓 𝜇 𝑓 ⟩𝜕 𝑓 . (65)

The existence and uniqueness of 𝜏 𝑓 follows from the fact that d : 𝜅P𝑟−1Λ𝑑−𝑘 ( 𝑓 ) → dP𝑟Λ𝑑−𝑘−1( 𝑓 ) is
an isomorphism.

(iii) Proof that d𝑘
𝑟 ,ℎ𝜏ℎ = 𝜎

ℎ
. Let 𝑓 ∈ Δ𝑑 (Mℎ) for some 𝑑 ∈ {𝑘 + 1, . . . , 𝑛}. Plugging (65) into

the definition (5) of the discrete exterior derivative for 𝜏
𝑓

we have, for all 𝜇 𝑓 ∈ 𝜅P𝑟−1Λ𝑑−𝑘 ( 𝑓 ) ⊂
P𝑟Λ𝑑−𝑘−1( 𝑓 ),

⟨★d𝑘
𝑟 , 𝑓 𝜏 𝑓

, 𝜇 𝑓 ⟩ 𝑓 = ⟨★𝜎 𝑓 , 𝜇 𝑓 ⟩ 𝑓 . (66)

We now prove that d𝑘
𝑟 , 𝑓 𝜏 𝑓

= 𝜎
𝑓

by induction on the dimension 𝑑 of 𝑓 . Let us assume first that
𝑑 = 𝑘 + 1 and apply the definition (5) of d𝑘

𝑟 , 𝑓
𝜏
𝑓

with a test function 𝛼 𝑓 ∈ P0Λ0( 𝑓 ) to get

⟨★d𝑘
𝑟 , 𝑓 𝜏 𝑓

, 𝛼 𝑓 ⟩ 𝑓 = ⟨★𝜏𝜕 𝑓 , 𝛼 𝑓 ⟩𝜕 𝑓
(62)
= ⟨★𝜎 𝑓 , 𝛼 𝑓 ⟩ 𝑓 . (67)

Adding together (66) and (67) shows that the projections of★d𝑘
𝑟 , 𝑓

𝜏
𝑓

and★𝜎 𝑓 on 𝜅P𝑟−1Λ1( 𝑓 )+P0Λ0( 𝑓 )
coincide. Since this space is P𝑟Λ0( 𝑓 ) (cf. [7, Equation (2.7a)]), which contains both★d𝑘

𝑟 , 𝑓
𝜏
𝑓

and★𝜎 𝑓 ,
this shows that d𝑘

𝑟 , 𝑓
𝜏
𝑓
= 𝜎 𝑓 , that is, that d𝑘

𝑟 ,ℎ𝜏ℎ and 𝜎
ℎ

have the same component on 𝑓 .
We now consider the case 𝑑 ∈ {𝑘 +2, . . . , 𝑛}. Since d𝑘+1

𝑟 , 𝑓
𝜎

𝑓
= d𝑘+1

𝑟 , 𝑓
d𝑘
𝑟 , 𝑓𝜔 𝑓

= 0 (see [7, Eq. (3.32)]),
we have, for all 𝜁 𝑓 ∈ 𝜅P𝑟−1Λ𝑑−𝑘−1( 𝑓 ) ⊂ P−𝑟 Λ𝑑−𝑘−2( 𝑓 ),

0
(5)
= (−1)𝑘+2⟨★𝜎 𝑓 , d𝜁 𝑓 ⟩ 𝑓 + ⟨★𝑃𝑘+1

𝑟 ,𝜕 𝑓
𝜎

𝜕 𝑓
, tr𝜕 𝑓 𝜁 𝑓 ⟩𝜕 𝑓

(12)
= (−1)𝑘+2⟨★𝜎 𝑓 , d𝜁 𝑓 ⟩ 𝑓 + ⟨★𝜎𝜕 𝑓 , tr𝜕 𝑓 𝜁 𝑓 ⟩𝜕 𝑓 ,

(68)

where we have used the fact that tr 𝑓 ′ 𝜁 𝑓 ∈ P−𝑟 Λ𝑑−𝑘−2( 𝑓 ′) for all 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ) (cf. [7, Lemma 4]) to
use (12) (with (𝑘 + 1, 𝜎

𝑓 ′), for 𝑓 ′ ∈ Δ𝑑−1(Mℎ (𝜕 𝑓 )), instead of (𝑘, 𝜔
𝑓
)). Since 𝜁 𝑓 ∈ P−𝑟+1Λ𝑑−𝑘−2( 𝑓 ),

we can apply the link between discrete exterior derivatives on subcells [7, Lemma 22] to find

⟨★d𝑘
𝑟 , 𝑓 𝜏 𝑓

, d𝜁 𝑓 ⟩ 𝑓 = (−1)𝑘+1⟨★d𝑘
𝑟 ,𝜕 𝑓

𝜏
𝜕 𝑓︸    ︷︷    ︸

𝜎𝜕 𝑓

, tr𝜕 𝑓 𝜁 𝑓 ⟩𝜕 𝑓
(68)
= ⟨★𝜎 𝑓 , d𝜁 𝑓 ⟩ 𝑓 , (69)
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where the equality d𝑘
𝑟 ,𝜕 𝑓

𝜏
𝜕 𝑓

= 𝜎𝜕 𝑓 comes from the induction hypothesis and the link [7, Eq. (3.31)]
between the potential reconstruction and the local discrete exterior derivative. Since P−𝑟 Λ𝑑−𝑘−1( 𝑓 ) =
d(𝜅P𝑟−1Λ𝑑−𝑘−1( 𝑓 )) + 𝜅P𝑟−1Λ𝑑−𝑘 ( 𝑓 ) (see, e.g., [7, Eq. (2.16)] and recall that 𝑑 ≥ 𝑘 + 2 here), adding
together (66) and (69) shows that 𝜋−,𝑑−𝑘−1

𝑟 , 𝑓
★d𝑘

𝑟 , 𝑓
𝜏
𝑓
= 𝜋
−,𝑑−𝑘−1
𝑟 , 𝑓

★𝜎 𝑓 , i.e., that d𝑘
𝑟 , 𝑓 𝜏ℎ and 𝜎

ℎ
have the

same component on 𝑓 (see (7)).

(iv) Proof that |||𝜏
ℎ
|||ℎ ≲ |||𝜎

ℎ
|||ℎ. Let 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ∈ {𝑘 + 1, . . . , 𝑛}. By (64) we have

★𝜏 𝑓 ∈ dP𝑟Λ𝑑−𝑘−1( 𝑓 ) = d𝜅P𝑟−1Λ𝑑−𝑘 ( 𝑓 ) (see [7, Eq. (2.8)]). We can therefore use Lemma 16 to find
𝜇 𝑓 ∈ 𝜅P𝑟−1Λ𝑑−𝑘 ( 𝑓 ) such that d𝜇 𝑓 = ★𝜏 𝑓 and

∥𝜇 𝑓 ∥ 𝑓 ≲ ℎ 𝑓 ∥ ★ 𝜏 𝑓 ∥ 𝑓 . (70)

Using this 𝜇 𝑓 in (65) and applying Cauchy–Schwarz inequalities, we have

∥ ★ 𝜏 𝑓 ∥2𝑓 ≲ ∥ ★𝜎 𝑓 ∥ 𝑓 ∥𝜇 𝑓 ∥ 𝑓 +
∑︁

𝑓 ′∈Δ𝑑−1 (Mℎ (𝜕 𝑓 ) )
∥ ★ 𝑃𝑘

𝑟 , 𝑓 ′𝜏 𝑓 ′ ∥ 𝑓 ′ ∥𝜇 𝑓 ∥ 𝑓 ′

(84)
≲ ∥ ★𝜎 𝑓 ∥ 𝑓 ∥𝜇 𝑓 ∥ 𝑓 + ℎ

1
2

𝑓

∑︁
𝑓 ′∈Δ𝑑−1 (Mℎ (𝜕 𝑓 ) )

∥ ★ 𝑃𝑘
𝑟 , 𝑓 ′𝜏 𝑓 ′ ∥ 𝑓 ′ ℎ

−1
𝑓 ∥𝜇 𝑓 ∥ 𝑓

(70)
≲ ©­«ℎ 𝑓 ∥ ★𝜎 𝑓 ∥ 𝑓 + ℎ

1
2

𝑓

∑︁
𝑓 ′∈Δ𝑑−1 (Mℎ (𝜕 𝑓 ) )

∥ ★ 𝑃𝑘
𝑟 , 𝑓 ′𝜏 𝑓 ′ ∥ 𝑓 ′

ª®¬ ∥ ★ 𝜏 𝑓 ∥ 𝑓 .

Using (13) (with 𝑓 ′ instead of 𝑓 ) together the fact that ★ is an isometry, squaring the result and using
card(Δ𝑑−1(Mℎ (𝜕 𝑓 ))) ≲ 1 by mesh regularity assumption, we infer

∥𝜏 𝑓 ∥2𝑓 ≲ ℎ2𝑓 ∥𝜎 𝑓 ∥2𝑓 + ℎ 𝑓

∑︁
𝑓 ′∈Δ𝑑−1 (Mℎ (𝜕 𝑓 ) )

|||𝜏
𝑓 ′ |||

2
𝑓 ′ . (71)

Let us now use this relation to show by induction on 𝑑 ∈ {𝑘 + 1, . . . , 𝑛} that, for all 𝑓 ∈ Δ𝑑 (Mℎ),

|||𝜏
𝑓
|||2𝑓 ≲ ℎ2𝑓 |||𝜎 𝑓

|||2𝑓 + ℎ
𝑑−𝑘
𝑓

∑︁
𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )

∥𝜏 𝑓 ′ ∥2𝑓 ′ . (72)

For 𝑑 = 𝑘 + 1, this relation is a straightforward consequence of (71), since |||𝜏
𝑓 ′ ||| 𝑓 ′ = ∥𝜏 𝑓 ′ ∥ 𝑓 ′ for all

𝑓 ′ ∈ Δ𝑘 (Mℎ) (see (8)). Assuming now that (72) holds for some 𝑑 ∈ {𝑘 + 1, . . . , 𝑛 − 1}, we establish it
for (𝑑 + 1)-cells. By definition (9) of the local triple norm we have, for all 𝑓 ∈ Δ𝑑+1(Mℎ),

|||𝜏
𝑓
|||2𝑓 = ∥𝜏 𝑓 ∥

2
𝑓 + ℎ 𝑓

∑︁
𝑓 ′∈Δ𝑑 (Mℎ (𝜕 𝑓 ) )

|||𝜏
𝑓 ′ |||

2
𝑓 ′

(71)
≲ ℎ2𝑓 ∥𝜎 𝑓 ∥2𝑓 + ℎ 𝑓

∑︁
𝑓 ′∈Δ𝑑 (Mℎ (𝜕 𝑓 ) )

|||𝜏
𝑓 ′ |||

2
𝑓 ′

≲ ℎ2𝑓 ∥𝜎 𝑓 ∥2𝑓 + ℎ
3
𝑓

∑︁
𝑓 ′∈Δ𝑑 (Mℎ (𝜕 𝑓 ) )

|||𝜎
𝑓 ′ |||

2
𝑓 ′ + ℎ

𝑑+1−𝑘
𝑓

∑︁
𝑓 ′′∈Δ𝑘 (Mℎ ( 𝑓 ) )

∥𝜏 𝑓 ′′ ∥2𝑓 ′′

≲ ℎ2𝑓 |||𝜎 𝑓
|||2𝑓 + ℎ

𝑑+1−𝑘
𝑓

∑︁
𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )

∥𝜏 𝑓 ′ ∥2𝑓 ′ ,

where the second inequality follows from (72) applied to each 𝑓 ′ ∈ Δ𝑑 (Mℎ (𝜕 𝑓 )), together with ℎ 𝑓 ′ ≤
ℎ 𝑓 and

∑
𝑓 ′∈Δ𝑑 (Mℎ (𝜕 𝑓 ) )

∑
𝑓 ′′∈Δ𝑘 (Mℎ ( 𝑓 ′ ) ) • ≲

∑
𝑓 ′′∈Δ𝑘 (Mℎ ( 𝑓 ) ) • (since each the number of occurrences

of each 𝑓 ′′ in the sum on the left is uniformly bounded by mesh regularity assumption). To conclude
we have used the definition of |||𝜎

𝑓
||| 𝑓 . This concludes the induction and therefore the proof of (72).
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Summing (72) over 𝑛-cells, we get

|||𝜏
ℎ
|||2ℎ ≲

∑︁
𝑓 ∈Δ𝑛 (Mℎ )

ℎ2𝑓 |||𝜎 𝑓
|||2𝑓 +

∑︁
𝑓 ∈Δ𝑛 (Mℎ )

ℎ𝑛−𝑘𝑓

∑︁
𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )

∥𝜏 𝑓 ′ ∥2𝑓 ′ . (73)

The definition (63) of 𝜏
ℎ

on 𝑘-cells and the fact that ★ is an isometry yields, for all 𝑓 ′ ∈ Δ𝑘 (Mℎ),

∥𝜏 𝑓 ′ ∥2𝑓 ′ =
𝜆2
𝑓 ′

| 𝑓 ′ | ≲ ℎ−𝑘𝑓 ′ 𝜆
2
𝑓 ′ ,

where the inequality is obtained by invoking the mesh regularity assumption to infer | 𝑓 ′ | ≃ ℎ𝑘
𝑓 ′ .

Plugging this relation into (73) and recalling that (𝜆 𝑓 ′) 𝑓 ′∈Δ𝑘 (Mℎ ) satisfies (21) with (𝜉 𝑓 ′) 𝑓 ′∈Δ𝑘+1 (Mℎ ) =
(
∫
𝑓 ′
𝜎 𝑓 ′) 𝑓 ′∈Δ𝑘+1 (Mℎ ) , we obtain

|||𝜏
ℎ
|||2ℎ ≲

∑︁
𝑓 ∈Δ𝑛 (Mℎ )

ℎ2𝑓 |||𝜎 𝑓
|||2𝑓 +

∑︁
𝑓 ∈Δ𝑛 (Mℎ )

ℎ𝑛−2𝑘𝑓

∑︁
𝑓 ′∈Δ𝑘 (Mℎ ( 𝑓 ) )

𝜆2𝑓 ′

≲
∑︁

𝑓 ∈Δ𝑛 (Mℎ )
ℎ2𝑓 |||𝜎 𝑓

|||2𝑓 +
∑︁

𝑓 ∈Δ𝑛 (Mℎ )
ℎ
𝑛−2(𝑘+1)
𝑓

∑︁
𝑓 ′∈Δ𝑘+1 (Mℎ ( 𝑓 ) )

∥𝜎 𝑓 ′ ∥2𝑓 ′ | 𝑓
′ |

≲
∑︁

𝑓 ∈Δ𝑛 (Mℎ )
ℎ2𝑓 |||𝜎 𝑓

|||2𝑓 +
∑︁

𝑓 ∈Δ𝑛 (Mℎ )
ℎ
𝑛−(𝑘+1)
𝑓

∑︁
𝑓 ′∈Δ𝑘+1 (Mℎ ( 𝑓 ) )

∥𝜎 𝑓 ′ ∥2𝑓 ′

≲ |||𝜎
ℎ
|||2ℎ

where we used a Cauchy–Schwarz inequality on the second line, and | 𝑓 ′ | ≃ ℎ𝑘+1
𝑓

(by mesh regularity)
for all 𝑓 ′ ∈ Δ𝑘+1(Mℎ ( 𝑓 )) in the third line. The conclusion follows from the definition (10) of |||𝜎

ℎ
|||ℎ

using the equivalent formulation (11) of the local norm. □
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A Results on local polynomial spaces
Some of the results established in this appendix on polynomial forms have already been proved in [15,
17] for polynomial functions and in the vector calculus setting.

For 𝑑 ∈ {1, . . . , 𝑛}, we denote by 𝐵𝑑 (𝑥, 𝑟) the ball in R𝑑 of radius 𝑟 centered at 𝑥, and set
𝐵𝑑 ≔ 𝐵𝑑 (0, 1) for the sake of brevity. For any 𝑓 ∈ Δ𝑑 (Mℎ), we define the function 𝜓 𝑓 : 𝑥 → 𝑥 𝑓 +ℎ 𝑓 𝑥.
Denoting by 𝜌 the mesh regularity parameter, we have 𝜓 𝑓 (𝐵𝑑 (0, 𝜌)) = 𝐵𝑑 (𝑥 𝑓 , 𝜌ℎ 𝑓 ) ⊂ 𝑓 ⊂ 𝜓 𝑓 (𝐵𝑑) =
𝐵𝑑 (𝑥 𝑓 , ℎ 𝑓 ). We recall that, if 𝑔 is an 𝑙-form, 𝜓★

𝑓
𝑔 denotes the pullback of 𝑔 by 𝜓 𝑓 , that is, the 𝑙-form

such that (𝜓★𝑔)𝑥 (𝑣1, . . . , 𝑣𝑙) = 𝑔𝜓 𝑓 (𝑥 ) (𝐷𝜓 𝑓 (𝑥)𝑣1, . . . , 𝐷𝜓 𝑓 (𝑥)𝑣𝑙).

Lemma 14 (Norm equivalence). For any 𝑔 ∈ 𝐿2Λ𝑙 (𝜓 𝑓 (𝐵𝑑)), it holds

∥𝜓★
𝑓 𝑔∥𝐵𝑑 (0,𝜌) ≤ ℎ

𝑙− 𝑑
2

𝑓
∥𝑔∥ 𝑓 ≤ ∥𝜓★

𝑓 𝑔∥𝐵𝑑
. (74)

Proof. Let 𝑔 ∈ 𝐿2Λ𝑙 (𝜓 𝑓 (𝐵𝑑)). By definition of the pullback, and since 𝐷𝜓 𝑓 = ℎ 𝑓 Id, we have, by
linearity of 𝑔𝜓 𝑓 (𝑥 ) , (𝜓★

𝑓
)𝑔𝑥 = ℎ𝑙

𝑓
𝑔𝜓 𝑓 (𝑥 ) . Moreover, |𝐷𝜓 𝑓 | = ℎ𝑑

𝑓
. Therefore, using the change of variable
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formula and denoting by ∥·∥Alt𝑙 (R𝑑 ) the canonical norm (induced by the canonical inner product) on the
space Alt𝑙 (R𝑑) of alternating 𝑙-linear forms on R𝑑 , we have

∥𝜓★
𝑓 𝑔∥

2
𝐵𝑑

=

∫
𝐵𝑑

∥(𝜓★
𝑓 𝑔)𝑥 ∥

2
Alt𝑙 (R𝑑 ) d𝑥 = ℎ−𝑑𝑓

∫
𝐵𝑑

ℎ2𝑙𝑓 ∥𝑔𝜓 𝑓 (𝑥 ) ∥2Alt𝑙 (R𝑑 ) |𝐷𝜓 𝑓 | d𝑥

= ℎ2𝑙−𝑑𝑓

∫
𝜓 𝑓 (𝐵𝑑 )

∥𝑔𝑥 ∥2Alt𝑙 (R𝑑 ) d𝑥 = ℎ2𝑙−𝑑𝑓 ∥𝑔∥2
𝜓 𝑓 (𝐵𝑑 ) = ℎ2𝑙−𝑑𝑓 ∥𝑔∥2

𝐵𝑑 (𝑥 𝑓 ,ℎ 𝑓 ) .

Likewise, we have ∥𝜓★
𝑓
𝑔∥2

𝐵𝑑 (0,𝜌) = ℎ2𝑙−𝑑
𝑓
∥𝑔∥2

𝐵𝑑 (𝑥 𝑓 ,𝜌ℎ 𝑓 ) . We conclude by using 𝐵𝑑 (𝑥 𝑓 , 𝜌ℎ 𝑓 ) ⊂ 𝑓 ⊂
𝐵𝑑 (𝑥 𝑓 , ℎ 𝑓 ) to write

∥𝜓★
𝑓 𝑔∥

2
𝐵𝑑 (0,𝜌) = ℎ2𝑙−𝑑𝑓 ∥𝑔∥2

𝐵𝑑 (𝑥 𝑓 ,𝜌ℎ 𝑓 ) ≤ ℎ2𝑙−𝑑𝑓 ∥𝑔∥2𝑓 ≤ ℎ2𝑙−𝑑𝑓 ∥𝑔∥2
𝐵𝑑 (𝑥 𝑓 ,ℎ 𝑓 ) = ∥𝜓

★
𝑓 𝑔∥

2
𝐵𝑑

. □

If 𝑃 ∈ P𝑟Λ𝑙 (R𝑑), then the equivalence of norms in finite dimension ensures that ∥𝑃∥𝐵𝑑 (0,𝜌) ≃
∥𝑃∥𝐵𝑑

, with hidden constants depending only on the space involved, that is, on 𝑟 , 𝑙 and 𝑑. Taking
𝜔 ∈ P𝑟Λ𝑙 (R𝑑) and applying this remark to 𝑃 = 𝜓★

𝑓
𝜔 ∈ P𝑟Λ𝑙 (R𝑑) (since 𝜓 𝑓 is linear), we see that (74)

yields
ℎ
𝑙− 𝑑

2

𝑓
∥𝜔∥ 𝑓 ≃ ∥𝜓★

𝑓𝜔∥𝐵𝑑
∀𝜔 ∈ P𝑟Λ𝑙 (R𝑑). (75)

In the following lemmas, when 𝐴 is a mapping between spaces of polynomial forms on some 𝑓 ∈
Δ𝑑 (Mℎ), we denote by |||𝐴||| the norm of 𝐴 induced by the 𝐿2( 𝑓 )-norms on its domain and co-domains.

Lemma 15 (Discrete inequalities ford and 𝜅). For any 𝑓 ∈ Δ𝑑 (Mℎ), the differentiald : P𝑟Λ𝑑−𝑘−1( 𝑓 ) →
P𝑟−1Λ𝑑−𝑘 ( 𝑓 ) and the Koszul operator 𝜅 : P𝑟Λ𝑑−𝑘+1( 𝑓 ) → P𝑟+1Λ𝑑−𝑘 ( 𝑓 ) satisfy

|||d||| 𝑓 ≲ ℎ−1𝑓 , (76)

|||𝜅 ||| 𝑓 ≲ ℎ 𝑓 . (77)

Proof. The proof of (76) hinges on the fact that the exterior derivative commutes with pullbacks. The
operator d is continuous on the finite dimensional space P𝑟Λ𝑑−𝑘−1(R𝑑), with a continuity constant that
only depends on 𝑟, 𝑘 and 𝑑. Hence,

∥d𝜇∥𝐵𝑑
≲ ∥𝜇∥𝐵𝑑

∀𝜇 ∈ P𝑟Λ𝑑−𝑘−1(R𝑑). (78)

We then write, for all 𝜔 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ) and since d𝜔 ∈ P𝑟−1Λ𝑑−𝑘 ( 𝑓 ),

∥d𝜔∥ 𝑓
(75)≃ ℎ

𝑑
2 −(𝑑−𝑘 )
𝑓

∥𝜓★
𝑓 (d𝜔)∥𝐵𝑑

= ℎ
𝑘− 𝑑

2

𝑓
∥d(𝜓★

𝑓𝜔)∥𝐵𝑑

(78)
≲ ℎ

𝑘− 𝑑
2

𝑓
∥𝜓★

𝑓𝜔∥𝐵𝑑

(75)≃ ℎ
𝑘− 𝑑

2

𝑓
ℎ
𝑑−𝑘−1− 𝑑

2

𝑓
∥𝜔∥ 𝑓 , (79)

which concludes the proof of (76) since 𝑘 − 𝑑
2 + 𝑑 − 𝑘 − 1 − 𝑑

2 = −1.
The same approach can be applied to the Koszul operator, once we notice that it has a similar

commutation property with the considered pullbacks. Specifically, recalling that 𝜅 = 𝑖𝑥−𝑥 𝑓
is the Koszul

operator on 𝑓 , and defining the Koszul operator at 0 by 𝜅0 ≔ 𝑖𝑥 , the relation

(𝜓★
𝑓 𝜅)𝑥 =

(
𝑖ℎ−1

𝑓 (𝑥 𝑓 +ℎ 𝑓 𝑥−𝑥 𝑓 )𝜓
★
𝑓

)
𝑥
=

(
𝜅0𝜓

★
𝑓

)
𝑥

(80)

comes from the generic formula 𝜙★ (𝑖𝑌 𝜇) = 𝑖𝜙★𝑌𝜙
★𝜇, where (𝜙★𝑌 ) (𝑥) ≔ (𝐷𝜙(𝑥))−1𝑌 (𝜙(𝑥)). Equipped

with this commutation and using the continuity of 𝜅0 on P𝑟Λ𝑑−𝑘+1(R𝑑), namely

∥𝜅0𝜇∥𝐵𝑑
≲ ∥𝜇∥𝐵𝑑

∀𝜇 ∈ P𝑟Λ𝑑−𝑘+1(R𝑑), (81)

we can reproduce the same arguments as in (79) to prove (77), the change of scaling from ℎ−1
𝑓

to ℎ 𝑓

coming from the fact that, in (79), the form degree of d𝜔 is one more than that of 𝜔, while it is one less
for 𝜅𝜔. □
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Lemma 16 (Local discrete Poincaré inequality). For any 𝑓 ∈ Δ𝑑 (Mℎ), the inverse of the differential
d−1 : d𝜅P𝑟Λ𝑘 ( 𝑓 ) → 𝜅P𝑟Λ𝑘 ( 𝑓 ) and the inverse of the Koszul operator 𝜅−1 : 𝜅dP𝑟Λ𝑘 ( 𝑓 ) →
dP𝑟Λ𝑘 ( 𝑓 ) satisfy

|||d−1 ||| 𝑓 ≲ ℎ 𝑓 , (82)
|||𝜅−1 ||| 𝑓 ≲ ℎ−1𝑓 . (83)

Proof. The proof uses the same arguments as the proof of Lemma 15, using this time the continuity
of d−1 : d𝜅0P𝑟Λ𝑘 (𝐵𝑑) → 𝜅0P𝑟Λ𝑘 (𝐵𝑑), and of 𝜅−10 : 𝜅0dP𝑟Λ𝑘 (𝐵𝑑) → dP𝑟Λ𝑘 (𝐵 𝑓 ) (with norms
only depending on 𝑟 , 𝑘 and 𝑑). Let 𝜇 ∈ d𝜅P𝑟Λ𝑘 ( 𝑓 ) and set 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ) such that 𝜇 = d𝜅𝜔. Then
d−1𝜇 = 𝜅𝜔 and

ℎ
𝑘−1− 𝑑

2

𝑓
∥d−1𝜇∥ 𝑓

(75)≃ ∥𝜓★
𝑓 𝜅𝜔∥𝐵𝑑

(80)
= ∥d−1d𝜅0𝜓★

𝑓𝜔∥𝐵𝑑

≲ ∥d𝜅0𝜓★
𝑓𝜔∥𝐵𝑑

(78),(81)
≲ ∥𝜓★

𝑓𝜔∥𝐵𝑑

(75)≃ ℎ
𝑘− 𝑑

2

𝑓
∥𝜔∥ 𝑓 .

Simplifying by ℎ
𝑘−1− 𝑑

2

𝑓
concludes the proof of (82). The proof of (83) follows from similar arguments.

□

Lemma 17 (Topological decomposition). The decomposition

P𝑟Λ𝑘 ( 𝑓 ) = dP𝑟+1Λ𝑘−1( 𝑓 ) ⊕ 𝜅P𝑟−1Λ𝑘+1( 𝑓 )

is topological: For all (𝜇 𝑓 , 𝜈 𝑓 ) ∈ dP𝑟+1Λ𝑘−1( 𝑓 ) × 𝜅P𝑟−1Λ𝑘+1( 𝑓 ),

∥𝜇 𝑓 ∥ 𝑓 + ∥𝜈 𝑓 ∥ 𝑓 ≃ ∥𝜇 𝑓 + 𝜈 𝑓 ∥ 𝑓 .

Proof. The inequality ≳ directly follows from a triangle inequality, so we focus on ≲. We have

∥𝜇 𝑓 ∥ 𝑓 = ∥𝜅−1𝜅𝜇 𝑓 ∥ 𝑓
(83)
≲ ℎ−1𝑓 ∥𝜅𝜇 𝑓 ∥ 𝑓 = ℎ−1𝑓 ∥𝜅(𝜇 𝑓 + 𝜈 𝑓 )∥ 𝑓

(77)
≲ ∥𝜇 𝑓 + 𝜈 𝑓 ∥ 𝑓 ,

where we have used the fact that 𝜅𝜈 𝑓 ∈ 𝜅2P𝑟−1Λ𝑘+1( 𝑓 ) = {0} in the third passage. We also have

∥𝜈 𝑓 ∥ 𝑓 = ∥d−1d𝜈 𝑓 ∥ 𝑓
(82)
≲ ℎ 𝑓 ∥d𝜈 𝑓 ∥ 𝑓 = ℎ 𝑓 ∥d(𝜈 𝑓 + 𝜇 𝑓 )∥ 𝑓

(76)
≲ ∥𝜈 𝑓 + 𝜇 𝑓 ∥ 𝑓 ,

where we have used d𝜇 𝑓 ∈ d2P𝑟+1Λ𝑘−1( 𝑓 ) = {0} in the third passage. Combining these two relations
yields the required estimate. □

Lemma 18 (Discrete trace inequality). For all 𝑓 ∈ Δ𝑑 (Mℎ) and all 𝜔 𝑓 ∈ P𝑟Λ𝑘 ( 𝑓 ) it holds

∥𝜔 𝑓 ∥𝜕 𝑓 ≲ ℎ
− 1

2

𝑓
∥𝜔 𝑓 ∥ 𝑓 . (84)

Proof. We introduce the notations

𝔄𝑑
𝑙 ≔

{
𝛼 ∈ N𝑑 :

𝑑∑︁
𝑖=1

𝛼𝑖 = 𝑙

}
, 𝔅𝑑

𝑘 ≔

{
𝛽 ∈ {0, 1}𝑑 :

𝑑∑︁
𝑖=1

𝛽𝑖 = 𝑘

}
,

for the sets of multi-indices corresponding to the set of monomials of degree 𝑙, and to a basis of 𝑘-forms.
Specifically, letting 𝑦𝛼 ≔ 𝑦

𝛼1

1 · · · 𝑦
𝛼𝑑

𝑑
and, if 𝑖1 < . . . < 𝑖𝑘 are the indices such that 𝛽𝑖 = 1 if and only

if 𝑖 ∈ {𝑖1, . . . , 𝑖𝑘}, d𝑥𝛽 ≔ d𝑥𝑖1 ∧ · · · ∧ d𝑥𝑖𝑘 , the set of monomials
{
(𝑥 − 𝑥 𝑓 )𝛼d𝑥𝛽

}
𝑙∈{0,...,𝑟 },𝛼∈𝔄𝑑

𝑙
,𝛽∈𝔅𝑑

𝑘
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forms a basis of P𝑟Λ𝑘 (R𝑑). Any 𝜔 𝑓 ∈ P𝑟Λ𝑘 ( 𝑓 ) can thus be evaluated at a point 𝑥 according to the
following formula:

(𝜔 𝑓 )𝑥 =

𝑟∑︁
𝑙=0

∑︁
𝛼∈𝔄𝑑

𝑙
,𝛽∈𝔅𝑑

𝑘

𝜆𝑙,𝛼,𝛽 (𝑥 − 𝑥 𝑓 )𝛼d𝑥𝛽

and, using the equivalence of norms in finite dimension and the fact that
{
𝑥𝛼d𝑥𝛽

}
𝑙∈{0,...,𝑟 },𝛼∈𝔄𝑑

𝑙
,𝛽∈𝔅𝑑

𝑘

is a basis of P𝑟Λ𝑘 (R𝑑), we can write

∥𝜔 𝑓 ∥2𝑓
(75)≃ ℎ−2𝑘+𝑑𝑓 ∥𝜓★

𝑓𝜔 𝑓 ∥2𝐵𝑑
= ℎ−2𝑘+𝑑𝑓







 𝑟∑︁
𝑙=0

∑︁
𝛼∈𝔄𝑑

𝑙
,𝛽∈𝔅𝑑

𝑘

𝜆𝑙,𝛼,𝛽 (ℎ 𝑓 𝑥)𝛼ℎ𝑘𝑓 d𝑥
𝛽








2

𝐵𝑑

≃ ℎ−2𝑘+𝑑𝑓

𝑟∑︁
𝑙=0

∑︁
𝛼∈𝔄𝑑

𝑙
,𝛽∈𝔅𝑑

𝑘

ℎ2𝑙+2𝑘𝑓 𝜆2𝑙,𝛼,𝛽 = ℎ𝑑𝑓

𝑟∑︁
𝑙=0

∑︁
𝛼∈𝔄𝑑

𝑙
,𝛽∈𝔅𝑑

𝑘

ℎ2𝑙𝑓 𝜆
2
𝑙,𝛼,𝛽 .

(85)

Let 𝑓 ′ ∈ Δ𝑑−1(Mℎ ( 𝑓 )). We define 𝑥 𝑓 𝑓 ′ as the orthogonal projection of 𝑥 𝑓 onto the tangent plane to 𝑓 ′,
so that 𝑥 𝑓 = 𝑥 𝑓 𝑓 ′ + 𝑐𝑛 𝑓 ′ for some 𝑐 ∈ R such that |𝑐 | ≤ ℎ 𝑓 and with 𝑛 𝑓 ′ a unit normal vector to 𝑓 ′ in the
space spanned by 𝑓 . Assuming, without loss of generality, that 𝑛 𝑓 ′ is along the 𝑑-th basis vector, we
notice that, for any multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ N𝑑 , ((𝑥 − 𝑥 𝑓 )𝛼) | 𝑓 ′ = (𝑥 | 𝑓 ′ − 𝑥 𝑓 𝑓 ′) (𝛼1,...,𝛼𝑑−1 )𝑐𝛼𝑑 .
Therefore, denoting by

(𝜔 𝑓 ) | 𝑓 ′ =
𝑟∑︁
𝑙=0

∑︁
𝛼′∈𝔄𝑑−1

𝑙
,𝛽′∈𝔅𝑑−1

𝑘

𝜆′𝑙,𝛼′ ,𝛽′ (𝑥 | 𝑓 ′ − 𝑥 𝑓 𝑓 ′)𝛼
′
d𝑥𝛽

′

the trace of 𝜔 𝑓 on 𝑓 ′, we have

𝜆′𝑙,𝛼′ ,𝛽′ =
𝑟∑︁

𝑙′=𝑙

𝑐𝑙
′−𝑙𝜆𝑙′ , (𝛼′ ,𝑙′−𝑙) ,𝛽′ .

Proceeding as in (85), we have

∥(𝜔 𝑓 ) | 𝑓 ′ ∥2𝑓 ′ ≃ ℎ𝑑−1𝑓 ′

𝑟∑︁
𝑙=0

∑︁
𝛼′∈𝔄𝑑−1

𝑙
,𝛽′∈𝔅𝑑−1

𝑘

ℎ2𝑙𝑓 ′𝜆
′2
𝑙,𝛼′ ,𝛽′

≲ ℎ𝑑−1𝑓 ′

𝑟∑︁
𝑙=0

∑︁
𝛼′∈𝔄𝑑−1

𝑙
,𝛽′∈𝔅𝑑−1

𝑘

𝑟∑︁
𝑙′=𝑙

ℎ2𝑙𝑓 ′𝑐
2(𝑙′−𝑙)𝜆2

𝑙′ , (𝛼′ ,𝑙′−𝑙) ,𝛽′

|𝑐 | ≤ℎ 𝑓≃ ℎ𝑑−1𝑓

𝑟∑︁
𝑙=0

∑︁
𝛼′∈𝔄𝑑−1

𝑙
,𝛽′∈𝔅𝑑−1

𝑘

𝑟∑︁
𝑙′=𝑙

ℎ2𝑙
′

𝑓 𝜆2
𝑙′ , (𝛼′ ,𝑙′−𝑙) ,𝛽′

(85)
≲ ℎ−1𝑓 ∥𝜔 𝑓 ∥2𝑓 ,

where, in the conclusion, we have used the mesh regularity assumption to write ℎ 𝑓 ′ ≃ ℎ 𝑓 . □

B Whitney forms
The proof of the Poincaré inequality in the lowest order case (Lemma 6) relies on the use of a conforming
basis of polynomial forms on a simplicial mesh, given by the Whitney forms. We recall here their
definition and key properties.

Any simplex 𝑇 of dimension 𝑛 is the convex hull of some vertices 𝑣0, . . . , 𝑣𝑛 not contained in a
hyperplane. We denote by 𝜆0, . . . , 𝜆𝑛 the barycentric coordinates associated to these vertices. The

27



exterior derivatives d𝜆0, . . . d𝜆𝑛 are constant 1-forms spanning the space of 1-forms on R𝑛. They satisfy
the relations

𝑛∑︁
𝑖=0

𝜆𝑖 = 1 and
𝑛∑︁
𝑖=0

d𝜆𝑖 = 0. (86)

For any 𝑘 ∈ {0, . . . , 𝑛}, we denote by Σ(𝑘) the set of strictly increasing maps {0, . . . , 𝑘} ↦→
{0, . . . , 𝑛}. For 𝜎 ∈ Σ(𝑘), we denote the range of 𝜎 by [𝜎] ≔ {𝜎(𝑖)}0≤𝑖≤𝑘 , and, for 𝑝 ∉ [𝜎],
we set 𝜖 (𝑝, 𝜎) ≔ (−1)card({𝑞∈[𝜎 ] : 𝑝>𝑞}) . For 𝑝 ∈ [𝜎], we denote by 𝜎 − 𝑝 the unique element
of Σ(𝑘 − 1) whose range is [𝜎] \ 𝑝, and conversely, for 𝑝 ∉ [𝜎], 𝜎 + 𝑝 is the unique element of
Σ(𝑘 + 1) with range [𝜎] ∪ {𝑝}. There is a one-to-one correspondence between Σ(𝑘) and the 𝑘-skeleton
Δ𝑘 (Mℎ (𝑇)) of 𝑇 , associating each 𝜎 ∈ Σ(𝑘) with the convex hull of {𝑣𝑙}𝑙∈[𝜎 ] ; so, depending on the
context, the notation 𝜎 may also be used to indicate the latter. We also define the basic 𝑘-alternator
d𝜆𝜎 ≔ d𝜆𝜎 (0) ∧ · · · ∧ d𝜆𝜎 (𝑘 ) .

For all 𝑘 ∈ {0, . . . , 𝑛}, and all 𝜎 ∈ Σ(𝑘), we define the Whitney form 𝜙𝑘
𝑇,𝜎
∈ P−1 Λ𝑘 (𝑇) associated

to 𝜎 by
𝜙𝑘
𝑇,𝜎 ≔

∑︁
𝑝∈[𝜎 ]

𝜖 (𝑝, 𝜎 − 𝑝)𝜆𝑝d𝜆𝜎−𝑝 . (87)

We recall the following result from [23, Eq. (III.8)]: For all 𝜎, 𝜌 ∈ Σ(𝑘),∫
𝜎

𝜙𝑘
𝑇,𝜌 =

{
1
𝑛! if 𝜎 = 𝜌,
0 if 𝜎 ≠ 𝜌.

(88)

Lemma 19. For all 𝑘 ∈ {0, . . . , 𝑛} and all 𝜎 ∈ Σ(𝑘), we have

∥𝜙𝑘
𝑇,𝜎 ∥2𝑇 ≃ ℎ𝑛−2𝑘𝑇 . (89)

Moreover, for any family {𝜇𝜎}𝜎∈Σ (𝑘 ) of real numbers,





 ∑︁
𝜎∈Σ (𝑘 )

𝜇𝜎𝜙
𝑘
𝑇,𝜎








2

𝑇

≃
∑︁

𝜎∈Σ (𝑘 )
𝜇2𝜎 ∥𝜙𝑘

𝑇,𝜎 ∥2𝑇 . (90)

Proof. Let 𝑈 ∈ R𝑛×𝑛 be the matrix whose 𝑖-th column is 𝑣𝑖 − 𝑣0. The barycentric coordinates
associated with 𝑇 of a point 𝑥 are given by the relation 𝑥 = 𝑈𝜆 + 𝑣0. Let 𝜓 : R𝑛 ∋ 𝑥 ↦→ 𝑈𝑥 + 𝑣0 ∈ R𝑛,
so that 𝜓−1 : R𝑛 ∋ 𝑥 ↦→ 𝑈−1 (𝑥 − 𝑣0) ∈ R𝑛. We notice that, for 𝑝 ≠ 0, 𝜆𝑝 =

(
𝜓−1

)★
𝑥𝑝 and

d𝜆𝑝 =
(
𝜓−1

)★
d𝑥𝑝. For 𝑝 = 0, these relations still hold defining 𝑥0 to satisfy the linear dependency

(86). Taking the pullback of (87) by 𝜓 and using the second relation, above, we infer

𝜓★𝜙𝑘
𝑇,𝜎 =

∑︁
𝑝∈[𝜎 ]

𝜖 (𝑝, 𝜎 − 𝑝)𝑥𝑝d𝑥𝜎−𝑝,

which is the definition of the Whitney forms on the reference 𝑛-simplex 𝑆0. The relation (88) shows that
the family {𝜙𝑘

𝑇,𝜎
}𝜎∈Σ (𝑘 ) is linearly independent, since it shows that the integrals over the sub-simplices

of 𝑇 form a dual basis to the Whitney forms. Therefore, we infer from the equivalence of norms in
finite dimension that, for all 𝜇𝜎 ∈ R and with a hidden constant depending only on 𝑆0 (which, in turn,
depends only on 𝑛) and 𝑘





𝜓★

∑︁
𝜎∈Σ (𝑘 )

𝜇𝜎𝜙
𝑘
𝑇,𝜎








2

𝑆0

≃
∑︁

𝜎∈Σ (𝑘 )
𝜇2𝜎 ∥𝜓★𝜙𝑘

𝑇,𝜎 ∥2𝑆0 and ∥𝜓★𝜙𝑘
𝑇,𝜎 ∥2𝑆0 ≃ 1. (91)
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We now want to compare, for 𝜇 ∈ span{𝜙𝑘
𝑇,𝜎
}𝜎∈Σ (𝑘 ) , the norms of 𝜓★𝜇 and 𝜇. To this end, we need

an estimate of the pointwise norm ∥(𝜓★𝜇)𝑥 ∥Alt𝑘 , which is equivalent to the operator norm of (𝜓★𝜇)𝑥
viewed as a multilinear form since Alt𝑘 is a finite-dimensional space. In the following, we denote by
triple bars these operator norms. For any vectors 𝑌1, . . . , 𝑌𝑘 , we have

| (𝜓★𝜇)𝑥 (𝑌1, . . . , 𝑌𝑘) | = | (𝜙𝑘
𝑇,𝜎)𝜓 (𝑥 ) (𝑈𝑌1, . . . ,𝑈𝑌𝑘) | ≤ |||𝜇𝜓 (𝑥 ) |||∥𝑈𝑌1∥ . . . ∥𝑈𝑌𝑘 ∥

≤ |||𝜇𝜓 (𝑥 ) ||| |||𝑈 |||𝑘 ∥𝑌1∥ . . . ∥𝑌𝑘 ∥.

Applying the same argument to 𝑈−1𝑌1, . . . ,𝑈−1𝑌𝑘 , we infer

|||𝑈−1 |||−𝑘 |||𝜇𝜓 (𝑥 ) ||| ≤ ||| (𝜓★𝜇)𝑥 ||| ≤ |||𝑈 |||𝑘 |||𝜇𝜓 (𝑥 ) |||.

The shape regularity assumption on the simplex 𝑇 ensures that

|||𝑈−1 |||−1 ≃ |||𝑈 ||| ≃ ℎ𝑇 .

Therefore, ∥(𝜓★𝜇)𝑥 ∥2
Alt𝑘
≃ ℎ2𝑘

𝑇
∥𝜇𝜓 (𝑥 ) ∥2Alt𝑘

, and a change of variable yields

∥𝜓★𝜇∥2𝑆0 =

∫
𝑆0

∥(𝜓★𝜇)𝑥 ∥2Alt𝑘
d𝑥

≃
∫
𝑆0

ℎ2𝑘𝑇 ∥𝜇𝜓 (𝑥 ) ∥2Alt𝑙
ℎ−𝑛𝑇 |𝐷𝜓 | d𝑥

= ℎ2𝑘−𝑛𝑇

∫
𝑇

∥𝜇𝑥 ∥2Alt𝑘
d𝑥 = ℎ2𝑘−𝑛𝑇 ∥𝜇∥2𝑇 .

(92)

Both relations (89) and (90) follow by combining (91) with (92). □

C Construction of a basis of 𝑍c
𝑘
(Sℎ ( 𝑓 ))

We assume in this section the complement 𝑍c
𝑘
(Sℎ ( 𝑓 )) in (25) given and we show how to construct a

suitable basis.

Algorithm 1 Algorithm to construct a basis of of 𝑍c
𝑘
(Sℎ ( 𝑓 )) on a given 𝑑-cell 𝑓 ∈ Mℎ.

1: procedure ConstructBasis(𝑘, 𝑓 )
2: B𝑘 := ∅
3: F𝑘 := ∅
4: V𝑘 := Δ𝑘 (Sℎ (𝜕 𝑓 )) ⊲ set of visited 𝑘-simplices
5: for 𝐹 ∈ Δ𝑘 (Sℎ ( 𝑓 )) \ Δ𝑘 (Sℎ (𝜕 𝑓 )) do ⊲ loop over 𝑘-simplices that are not contained in the

boundary 𝜕 𝑓

6: if ∃𝑧 ∈ 𝑍c
𝑘
(Sℎ ( 𝑓 )) \ {0} such that supp(𝑧) ⊂ V𝑘 ∪ {𝐹} then

7: F𝑘 ← F𝑘 ∪ {𝐹}
8: B𝑘 ← B𝑘 ∪ {𝑧}
9: else

10: V𝑘 ←V𝑘 ∪ {𝐹}
11: end if
12: end for
13: return (B𝑘 , F𝑘)
14: end procedure

Algorithm 1 eventually terminates since the set Sℎ ( 𝑓 ) is finite. Accordingly, let B𝑘 , F𝑘 ,V𝑘 be the
sets obtained at the end.
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Let X ⊂ V𝑘 , and let 𝑍c
𝑘
(X) := {𝑧 ∈ 𝑍c

𝑘
(Sℎ ( 𝑓 )) : supp(𝑧) ⊂ X}. Observe that the “if” statement

at line 6 in Algorithm 1 checks exactly whether 𝑍c
𝑘
(V𝑘 ∪ {𝐹}) ≠ {0}. Accordingly, each 𝑘-simplex

𝐹 ∈ Δ𝑘 (Sℎ ( 𝑓 )) \ Δ𝑘 (Sℎ (𝜕 𝑓 )) is added to F𝑘 if 𝑍c
𝑘
(V𝑘 ∪ {𝐹}) ≠ {0} and toV𝑘 otherwise and, thanks

to the initialization ofV𝑘 at line 4, we infer the partition

Δ𝑘 (Sℎ ( 𝑓 )) = F𝑘 ⊔V𝑘 . (93)

We now prove the correctness of Algorithm 1 via a sequence of elementary lemmas.

Lemma 20 (Acyclicity property). It holds 𝑍c
𝑘
(V𝑘) = {0}.

Proof. In the beginning, V𝑘 := Δ𝑘 (Sℎ (𝜕 𝑓 )), and it holds 𝑍c
𝑘
(V𝑘) = {0}, otherwise there would exist

a non-zero simplicial chain 𝑧 ∈ 𝑍c
𝑘
(V𝑘) = 𝑍c

𝑘
(Δ𝑘 (Sℎ (𝜕 𝑓 ))) supported in Sℎ (𝜕 𝑓 ), contradicting (25).

Next, during execution, a 𝑘-simplex 𝐹 is added toV𝑘 precisely when 𝑍c
𝑘
(V𝑘 ∪ {𝐹}) = {0}, therefore at

termination this condition still holds true. □

Let F𝑘 = {𝐹1, . . . , 𝐹𝑝} be an enumeration of the set F𝑘 based on the order in which 𝑘-simplices
are added to it during the execution of Algorithm 1, and let B𝑘 = {𝑧1, . . . , 𝑧𝑝} be a corresponding
enumeration of the setB𝑘 such that 𝑧𝑖 ∈ 𝑍c

𝑘
(V𝑘∪{𝐹𝑖}) for each 𝑖 ∈ {1, . . . , 𝑝} (observe 𝑍c

𝑘
(V𝑘∪{𝐹𝑖}) ≠

{0} since 𝐹𝑖 ∈ F𝑘).

Lemma 21 (Orthogonality property). The following orthogonality property holds:

⟨𝐹𝑖 , 𝑧 𝑗⟩ = 𝛿𝑖 𝑗 ∀𝑖, 𝑗 ∈ {1, . . . , 𝑝}, (94)

where we have assumed, without loss of generality, a suitable orientation for each 𝑘-simplex 𝐹𝑖 and
normalization of 𝑧 𝑗 .

Proof. If 𝑖 = 𝑗 , (94) is a direct consequence of the definition of F𝑘 and B𝑘 , of the chosen enumeration
of their elements, and of the normalization of 𝑧 𝑗 . Let us consider the case 𝑖 ≠ 𝑗 . Suppose, for the sake
of contradiction, that ⟨𝐹𝑖 , 𝑧 𝑗⟩ ≠ 0 for some indices 𝑖, 𝑗 ∈ {1, . . . , 𝑝} with 𝑖 ≠ 𝑗 , so that 𝐹𝑖 ∈ supp(𝑧 𝑗).
Then, 𝑧 𝑗 ∈ 𝑍c

𝑘
(V𝑘 ∪ {𝐹𝑗}), and, since 𝐹𝑖 ≠ 𝐹𝑗 , we infer 𝐹𝑖 ∈ V𝑘 . This gives the desired contradiction

since it would imply 𝐹𝑖 ∈ F𝑘 ∩V𝑘
(93)
= ∅. □

Lemma 22 (Basis property). The set B𝑘 = {𝑧1, . . . , 𝑧𝑝} is a basis of 𝑍c
𝑘
(Sℎ ( 𝑓 )).

Proof. To start with, observe that if 𝑧 ∈ 𝑍c
𝑘
(Sℎ ( 𝑓 )) and 𝑧 ≠ 0, then supp(𝑧) ⊄ Sℎ (𝜕 𝑓 ), for otherwise

𝑧 ∈ 𝑍𝑘 (Sℎ (𝜕 𝑓 )) by (25). It follows easily that dim 𝑍c
𝑘
(Sℎ ( 𝑓 )) > 0 if and only if B𝑘 ≠ ∅.

Assume B𝑘 ≠ ∅. The set B𝑘 consists of 𝑘-cycles of 𝑍c
𝑘
(Sℎ ( 𝑓 )), hence it generates a subspace of

it. Let us show that B𝑘 is indeed a basis. The family F𝑘 = {𝐹1, . . . , 𝐹𝑝} is composed by pairwise
distinct 𝑘-simplices and, by Lemma 21, this implies that the elements of B𝑘 are linearly independent.
To show that B𝑘 generates 𝑍c

𝑘
(Sℎ ( 𝑓 )), let 𝑧 ∈ 𝑍c

𝑘
(Sℎ ( 𝑓 )) \ {0}. By Lemma 20, supp(𝑧) ∉ V𝑘 , and

thus supp(𝑧) ∩ F𝑘 ≠ ∅ by (93). Rearranging the indices 𝑖 ∈ {0, . . . , 𝑝} if necessary, let {𝐹1, . . . , 𝐹𝑞} =
supp(𝑧) ∩ F𝑘 with 𝑞 ∈ {1, . . . , 𝑝}. Let

𝑧∗ := 𝑧 −
𝑞∑︁
𝑖=1

⟨𝐹𝑖 , 𝑧⟩𝑧𝑖

recalling that 𝑧𝑖 ∈ 𝑍c
𝑘
(V𝑘 ∪ {𝐹𝑖}) for each 𝑖 ∈ {1, . . . , 𝑞}. By (94) and (93), it follows easily that 𝑧∗ is a

𝑘-cycle such that supp(𝑧∗) ⊂ V𝑘 . By Lemma 20, 𝑧∗ = 0, and we thus conclude 𝑧 =
∑𝑞

𝑖=1⟨𝐹𝑖 , 𝑧⟩𝑧𝑖 . □
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meshes: Exactness, Poincaré inequalities, and consistency”. In: Found. Comput. Math. 23 (2023),
pp. 85–164. doi: 10.1007/s10208-021-09542-8.

[16] D. A. Di Pietro and J. Droniou. “An arbitrary-order method for magnetostatics on polyhedral
meshes based on a discrete de Rham sequence”. In: J. Comput. Phys. 429.109991 (2021). doi:
10.1016/j.jcp.2020.109991.

31

https://doi.org/10.1137/1.9781611975543
https://doi.org/10.1017/S0962492906210018
https://doi.org/10.1137/18M1169886
https://doi.org/10.1007/s00211-015-0746-1
https://doi.org/10.1007/978-3-319-02663-3
https://arxiv.org/abs/2303.11093
https://arxiv.org/abs/2303.11093
https://doi.org/10.1016/j.cagd.2015.03.015
https://doi.org/10.1051/m2an/2013104
https://doi.org/10.1007/s10543-019-00784
https://doi.org/10.1016/j.jcp.2010.06.023
https://doi.org/10.1016/j.jcp.2010.06.023
https://doi.org/10.1093/imanum/drad045
https://doi.org/10.1093/imanum/drad045
https://doi.org/10.1007/s10208-021-09542-8
https://doi.org/10.1016/j.jcp.2020.109991


[17] D. A. Di Pietro and J. Droniou. The Hybrid High-Order method for polytopal meshes. Design,
analysis, and applications. Vol. 19. Modeling, Simulation and Application. Springer International
Publishing, 2020. doi: 10.1007/978-3-030-37203-3.

[18] D. A. Di Pietro, J. Droniou, and J. J. Qian. “A pressure-robust Discrete de Rham scheme for
the Navier–Stokes equations”. In: Comput. Meth. Appl. Mech. Engrg. 421.116765 (2024). doi:
10.1016/j.cma.2024.116765.

[19] D. A. Di Pietro, J. Droniou, and F. Rapetti. “Fully discrete polynomial de Rham sequences of
arbitrary degree on polygons and polyhedra”. In: Math. Models Methods Appl. Sci. 30.9 (2020),
pp. 1809–1855. doi: 10.1142/S0218202520500372.

[20] D. A. Di Pietro and M.-L. Hanot. “Uniform Poincaré inequalities for the Discrete de Rham
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