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Abstract

To enhance accuracy of robot state estimation, active sensing (or perception-aware) methods
seek trajectories that maximize the information gathered by the sensors. To this aim, one
possibility is to seek trajectories that minimize the (estimation error) covariance matrix output by
an extended Kalman filter (EKF), w.r.t. its control inputs over a given horizon. However, this is
computationally demanding. In this article, we derive novel backpropagation analytical formulas
for the derivatives of the covariance matrices of an EKF w.r.t. all its inputs. We then leverage
the obtained analytical gradients as an enabling technology to derive perception-aware optimal
motion plans. Simulations validate the approach, showcasing improvements in execution time,
notably over PyTorch’s automatic differentiation. Experimental results on a real vehicle also
support the method.

Keywords: perception-aware, extended Kalman filter, trajectory optimization, backpropaga-
tion.

1 Introduction
In robotics, perception-aware (PA) approaches, [1, 2, 3, 4], or active sensing approaches, seek
trajectories that maximize information gathered from sensors so as to perform robotic tasks safely.
Notably, in the context of ground vehicles, when localization is based on ranging or bearing
measurements relative to beacons, the efficiency of active sensing has been shown by [5, 6]. In
[7], trajectories are generated to perform optimal online calibration between GPS and inertial
measurement unit (IMU), see also [8]. In [3], for visual-inertial navigation systems, the authors
have optimized the duration in which landmarks remain within the field of view. In the context of
simultaneous localization and mapping (SLAM), those methods pertain to active SLAM, see [9].



One way to attack active sensing is through the use of Partially Observable Markov Decision
Processes (POMDPs) [10], see [11], which offer a proper mathematical framework, but whose
complexity is often prohibitory [12]. Sampling-based planners [13, 14] may be subject to the same
issues. A more tractable option, that we presently adopt, is to work with the widespread extended
Kalman filter (EKF). It estimates in real time the state xn from various sensor measurements, and
(approximately) conveys the associated extent of uncertainty through the state error covariance
matrix Pn. The magnitude of Pn may then be used as an objective to minimize, as advocated in, e.g.,
[15].

To derive trajectories that minimize Pn, a first step is to compute the gradients of Pn with respect
to the control inputs. To this aim, several approaches are possible. One can use a brute force approach
(in the vein of [16]) or numerical differentiation, that may be ill-conditioned and intractable, owing
to the complexity of the EKF’s equations. To get around those problems, [15] advocates using
backpropagation, through automatic differentiation, and argues that deriving analytical expressions
would be difficult.

We fill a gap in this paper, by providing novel closed-form analytical expressions over a horizon
for the derivatives of any smooth function of the covariance matrices of an EKF, w.r.t. all control
inputs, leveraging the powerful backpropagation method. Those equations partly extend our recent
results for the linear Kalman filter [17] to the nonlinear case, using an EKF. Besides being analytical,
these equations lead to further speedups even over automatic differentiation, as we will show in this
paper. We will then use those gradients to solve perception-aware optimal motion planning.

Note that some active sensing methods revolve instead around the Observability Gramian (OG),
used to elicit observability as in [5], or as a surrogate for Pn, as advocated in [18, 5, 6, 7, 19]. Although
the covariance matrix and the OG may be related, see [5], or see the probabilistic interpretation of
the OG in [20], we prefer to focus on the covariance matrix, as advocated in [5, 6, 7, 19], that more
realistically captures the noise characteristics, see [21].

The main contributions of this paper are as follows:

• Deriving novel analytical backpropagation equations for the gradient of the covariance of an
EKF with respect to all inputs of the filter, including control variables, thus partly extending
[17] to the relevant nonlinear context;

• Hence providing a computationally efficient and general method whose cost to compute the
gradients w.r.t. all control inputs at once, over an N-step horizon, is similar to that of running
one EKF over this horizon, i.e., of complexity O(Nd3) with d the dimension of the state.

• Applying the technique to derive a computationally efficient perception-aware method;

• Validate and compare the technique through simulations, and real experiments on a car-size
ground vehicle.

Section 2 introduces the considered problems. Section 3 establishes backpropagation equations
for computing this gradient. In Section 4, our path planning formulation is introduced. Finally, we
demonstrate the benefits of our approach in simulations (Section 5) and real experiments (Section 6).



2 Considered problems
For partially observed linear dynamical systems affected by white Gaussian noise, the Kalman filter
(KF) computes the statistics of the state given past observations, namely p(xn|y0, . . . ,yn), in real
time. The Kalman filter (KF) relies on parameters such as the process noise with covariance Qn
and the observation covariance Rn. There exists various approaches to compute the derivatives of
the KF’s outputs w.r.t. those parameters. The early sensitivity equations [22], see also [23], allow
for computing the derivative of the likelihood L := log p(y0, . . . ,yn) w.r.t. the noise parameters.
A much faster approach is to use backpropagation, either using numerical auto-differentiation, as
advocated in [15], or closed-form formulas as very recently derived in [17].

In this paper, we target closed-form backpropagation formulas for computing the gradients of an
EKF’s final covariance w.r.t. its inputs, including the control inputs. This will provide a nontrivial
(partial) extension of the results of [17] to nonlinear systems. We start with a few primers.

2.1 The extended Kalman filter (EKF)
Let us consider a nonlinear discrete-time system:{

xn = f (xn−1,un,wn) , x0 = x0 ,

yn = h(xn)+ vn .
(1)

where xn ∈Rp is the system’s state, un ∈Rq is the control input, wn ∈Rr represents the process noise
which follows a Gaussian distribution with zero mean and covariance matrix Qn. The measured
output is denoted by yn ∈ Rl , corrupted by a Gaussian measurement noise vn with zero mean and
covariance matrix Rn. Owing to unknown noises corrupting the equations, and to the state being
only partially observed through yn, one needs to resort to a state estimator.

The Extended Kalman Filter (EKF) provides a joint estimation of the state, denoted as x̂n, and
its covariance matrix, denoted as Pn, consisting of two steps.

At the propagation step, the estimated state is evolved through the noise-free model, that is,

x̂n|n−1 = f (x̂n−1|n−1,un,0), (2)

and the covariance of the state error is evolved as

Pn|n−1 = FnPn−1|n−1FT
n +GnQnGT

n . (3)

At the update step, the estimated state and the covariance matrix are updated in the light of observa-
tion yn as

Sn = HnPn|n−1HT
n +Rn , (4)

Kn = Pn|n−1HT
n S−1

n , (5)

x̂n|n = x̂n|n−1 +Kn(yn−h(x̂n|n−1)) , (6)

Pn|n = (I−KnHn)Pn|n−1. (7)

The Riccati update step (7) proves equivalent to the following update in so-called information form:

P−1
n|n = P−1

n|n−1 +HT
n R−1

n Hn. (8)



In these equations, matrices Fn, Gn and Hn are all jacobians that depend on state estimation x̂n and
control inputs un:

Fn =
∂ f
∂x

(x̂n−1|n−1,un,0) , Gn =
∂ f
∂w

(x̂n−1|n−1,un,0) ,

Hn =
∂h
∂x

(x̂n|n−1).

(9)

Through the Jacobians, the control inputs affect the covariance matrices, which is in contrast with
the linear case where all trajectories are equivalent. It thus makes sense to compute the sensitivity of
covariance matrices w.r.t. control inputs.

2.2 Backpropagation based gradient computation
The final covariance computed in the EKF PN|N over a fixed window, say n = 0, . . . ,N, is the result
of an iterative algorithm (2)-(9), and can thus be viewed as a composition of many functions from
n = 0 up to N, as layers in a neural network. As a result, it lends itself to backpropagation, a way of
computing the chain rule backwards. Backpropagation (“backprop”) is very efficient when there
are numerous inputs and the output is a scalar function (as opposed to the more intuitive method
of applying the chain rule forward). In [24], in the context of linear Kalman filtering, it is used to
compute the gradient of the negative logarithm of the marginal likelihood (NLL) w.r.t all observations
y1, . . . ,yN . In [15], perception-aware trajectory generation is performed using an optimisation-based
method where gradients are computed using an automatic differentiation algorithm.

2.3 Optimal motion planning problem
Let L be a scalar function that reflects the magnitude of its argument. The considered minimum
uncertainty (or active sensing) motion planning problem writes

min
u1,...,uN ,x1,...,xN

L (PN|N)

subject to
∀n≤ N xn = f (xn−1,un,0), x0 = xI,

∀n≤ N Pn|n−1 = FnPn−1|n−1FT
n +GnQnGT

n ,

∀n≤ N Pn|n = (I−KnHn)Pn|n−1,

∀n≤ N umin ≤ un ≤ umax

with Fn =
∂ f
∂xn

(xn−1,un,0),

Gn =
∂ f

∂wn
(xn−1,un,0) , Hn =

∂h
∂xn

(xn).

(10)

where N is the time horizon. The most common choices for L to reflect the final uncertainty are the
trace L = Tr(PN|N), used in [21, 7, 15], or the maximum eigenvalue, which has to be regularized
using Schatten’s norm, see [5]. As Tr(PN|N) sums the diagonal terms, which are variances expressed
in possibly different units and choice of scales, we renormalize the matrix, as suggested in [7],
leading to the objective L = Tr

(
P−1

0 PN|N
)
.



The difficulty of the (optimal control) problem above stems from the complicated relationship
between the controls u1, . . . ,uN and the final covariance matrix. The rationale in the present paper is
to derive an efficient method to compute the gradients ∂L

∂un
, and then to perform gradient descent.

Although we focus on PN|N , our method seamlessly applies to a loss that also depends on
matrices Pn|n, n≤ N.

3 Novel sensitivity equations for the EKF
We consider a fixed window, say, n = 0 . . .N, and we seek to differentiate a function L (PN|N) of
the final uncertainty PN|N , w.r.t. all the previous EKF inputs, that are, the noise parameters Rn,Qn,
the control inputs un, for n = 1 . . .N, and the initial values x̂0,P0|0. They all affect L (PN|N) in a
complicated manner, through the EKF equations (2) to (9). For instance a modification of u1, namely
u1+δu1 affects initial Jacobians R0,G0,H0 in (9), that in turn affect all subsequent quantities output
by the EKF through eq. (2) to (8), finally affecting L (PN|N) in a non-obvious manner.

To analytically compute the derivatives, there are two routes. The historical one is to forward
propagate a perturbation, say δun, n ≤ N, through the equations. It is known as the sensitivity
equations, and has been done–at least–for the linear Kalman filter in [22], essentially for adaptive
filtering. The other route is to compute derivatives backwards, using the backprop method. It is
far less straightforward, and has been proposed only very recently, leading to drastic computation
speedups, see [17], in the context of linear systems. In this paper we heavily rely on our prior work
[17] to go a step further, by accommodating nonlinear equations, that is, going from the Kalman
Filter to the EKF, with the additional difficulty that the Jacobians depend on the estimates. Our end
goal being active sensing, though, we restrict ourselves to losses of the form L (PN|N). We show this
additional dependency lends itself to the backprop framework too. We also extend the calculations
to get the derivatives w.r.t. the control inputs (which would not make sense in the linear case as they
are null).

3.1 Matrix derivatives
We now explain the methodology, the main steps, and provide the final equations. As deriving closed-
form formulas through backward computation is non trivial and lengthy, a full-blown mathematical
proof can be found in the appendix.

Our method heavily relies on two ingredients. First, the notion of derivative of a scalar function
w.r.t. a matrix (More detailed can be found in Appendix A), and the associated formulas based on
the chain rule. Then, dependency diagrams which encapsulate how the functions are composed.

Consider L (M), a scalar function of a matrix defined as M = f (X ,Y ), where X and Y are also
matrices. ∂L

∂M denotes the matrix defined by (∂L
∂M )i j =

∂L
Mi j

. We write ∂L
∂X to denote ∂L ◦ f

∂X , otherwise
notation would become impractical.

The chain rule provides rules of calculus for matrix derivatives. We have the following formulas



[25]:

M = XY XT ⇒ ∂L

∂X
= 2

∂L

∂M
XY T ,

M = Y XY T ⇒ ∂L

∂X
= Y T ∂L

∂M
Y ,

M = X−1 ⇒ ∂L

∂X
=−MT ∂L

∂M
MT ,

(11)

In the particular case where X and M are vectors, we have:

M = f (X)⇒ ∂L

∂X
= JT ∂L

∂M
, (12)

with J the Jacobian matrix of f w.r.t. X .
When the matrix X depends on a scalar variable s, we have the following formula:

M = X(s)⇒ dL

ds
= Tr

(
dXT

ds
∂L

∂M

)
. (13)

3.2 Backprop equations for the involved matrices
The graph in Figure 1 shows the relationships involved in the calculation of the state’s error
covariance, which is our variable of interest.

Pn−1|n−1 Pn|n−1 Pn|n

Fn,Gn Rn,Hn

Figure 1: Dependencies of EKF’s variables in Riccati equations (3) and (8). Each variable (node) is
a function of its predecessors.

The backprop method consists in running an EKF until time N, to fix the values of all variables,
and then compute gradients backwards to get the derivatives. Let us assume we have computed an
expression for ∂L

∂PN|N
(initialization step) at final covariance PN|N . It gives how a small variation in

PN|N affects the objective, ignoring all the other variables. Starting with n = N, we go backwards as
follows. As Pn|n is a function of Pn|n−1 which is a function of Pn−1|n−1 in turn, through (3) and (8),
we can use formulas (11) to assess how a small perturbation in Pn|n−1 and Pn−1|n−1 affects the loss
in turn (as they affect subsequent quantities, whose variation on L has been computed). This yields

∂L

∂Pn|n−1
= (I−KnHn)

T ∂L

∂Pn|n
(I−KnHn) , (14)

∂L

∂Pn−1|n−1
= FT

n
∂L

∂Pn|n−1
Fn . (15)



In the same way, we apply formula (11) to (3) and (8) to obtain the following relationships:

∂L

∂Fn
= 2

∂L

∂Pn|n−1
FnPn−1|n−1 , (16)

∂L

∂Gn
= 2

∂L

∂Pn|n−1
GnQn , (17)

∂L

∂HT
n
=−2Pn|n

∂L

∂Pn|n
Pn|nHT

n R−1
n , (18)

∂L

∂Rn
= R−1

n HnPn|n
∂L

∂Pn|n
Pn|nHT

n R−1
n . (19)

Knowing ∂L
∂Pn|n

and ∂L
∂Pn|n−1

, these equations allow in passing to calculate the partial derivative of the
loss with respect to the intermediate variables Fn, Gn, Hn and Rn at each step.

3.3 Backprop equations for the vector variables
We can now compute the derivatives w.r.t. the state estimates x̂ and the control inputs u, which are
vectors. However, a remark is necessary. Our end goal is to derive optimal controls u1, . . . ,uN that
minimize loss L (PN|N). As this is performed ahead of time, the (noisy) observations yn in (6) are
not available. The most reasonable choice is then to plan using the a priori value of the yn, i.e.,
yn = h(x̂n|n−1). We may thus alleviate notation writing x̂n|n = x̂n|n−1 := x̂n and x̂n−1|n−1 := x̂n−1.

The graph in Figure 1 only focuses on the covariance variables. If we step back, we see the
Jacobians depend on the linearization point x̂n−1 and the control inputs un, see (9). A bigger picture
encapsulating all the dependencies in the EKF is represented in Figure 2.

Pn−1|n−1 Pn|n−1 Pn|n

Rn−1,Hn−1 Fn,Gn un Rn,Hn

x̂n−1 x̂n

Figure 2: Dependency diagram of all the variables involved in an EKF.

First we compute ∂L
∂un

. There is a general rule, derived from the chain rule, which is that ∂L
∂un

is
the sum of all the derivatives w.r.t. the direct successors of un in the graph, see e.g., [17], provided
they have been already computed in a previous step of the backward calculation. Additionally using
(12) and (13), and computing w.r.t. to each scalar component uk

n of vector un, this yields

∂L

∂uk
n
= Tr

(
∂L

∂Fn

T
∂Fn

∂uk
n

)
+Tr

(
∂L

∂Gn

T
∂Gn

∂uk
n

)
+(Ju

n ek)
T ∂L

∂ x̂n
. (20)

where Ju
n := ∂ f

∂u

∣∣∣
x̂n−1,un,0

with x̂n−1,un computed when running the EKF forward, and ek the k-th

vector of the canonical basis (details are given Appendix B).



Similarly, we compute the derivative w.r.t. the k-th scalar component of the system’s state xk
n−1,

by adding terms corresponding to each successor in the graph:

∂L

∂ x̂k
n−1

= Tr

(
∂L

∂Hn−1

T
∂Hn−1

∂ x̂k
n−1

)
+Tr

(
∂L

∂Rn−1

T
∂Rn−1

∂ x̂k
n−1

)

+(Jx
nek)

T ∂L

∂ x̂n
+Tr

(
∂L

∂Fn

T
∂Fn

∂ x̂k
n−1

)
+Tr

(
∂L

∂Gn

T
∂Gn

∂ x̂k
n−1

)
.

(21)

where Jx
n := ∂ f

∂x

∣∣∣
x̂n−1,un,0

, which is equal to Fn.

3.4 Backprop initialization

To initialize the backward process, one needs to compute
∂L (PN|N)

∂PN|N
. In the case of the normalized

trace, we have [25]
∂L (PN|N)

∂PN|N
=

∂Tr
(
P−1

0 PN|N
)

∂PN|N
= P−1

0 . (22)

In the case where one targets the maximum eigenvalue of PN|N as a minimization objective, the loss
must be chosen consequently. To handle the non differentiability of this cost function, we resort to
its regularized version using Schatten’s norm, see [5] (details are given in our online preprint [26]).

Note also that at n = N, (21) needs to be adapted, as x̂N only has two successors in the graph,
thus:

∂L

∂ x̂k
N
= Tr

(
∂L

∂HN

T
∂HN

∂ x̂ j
N

)
+Tr

(
∂L

∂RN

T
∂RN

∂ x̂k
N

)
(23)

3.5 Final equations
The gradients may be obtained as follows. We first run the EKF forward, to get all the EKF variables
given a sequence of inputs. Then, we may compute the derivative of the loss w.r.t. PN|N at the
obtained final covariance matrix. Letting n = N, (18)-(19), provide the derivatives w.r.t. HN and RN ,
and (14) w.r.t. PN|N−1. In turn (23) provides the derivative w.r.t. x̂N , so that (20) yields the gradient
w.r.t. control input uN . Continuing the process backward and using the equations above, we get the
derivatives w.r.t. to all control inputs. A summary of the equations is given in Appendix D.

The process allows for drastic computation speedups, as the backward equations yield derivatives
w.r.t. all control inputs in one pass only. By contrast, forward propagating perturbations would
demand running an entire EKF-like process from scratch for k = n to N to derive the derivative w.r.t.
un. Akin to dynamic programming, backpropagation allows for reusing previous computations at
each step.

4 Application to perception-aware planning
The computation of the gradients w.r.t. all the EKF’s variables is a contribution in itself that
may prove useful beyond active sensing. However, our present goal is to leverage it to address



the perception-aware optimal path planning problem (10). This approach is known as partial
collocation, as in [15], i.e., we explicitly include states as optimization variables and implicitly
compute the covariance. A commonly employed method for solving this problem involves a
first-order optimization algorithm, the main steps of which are outlined in Algorithm 1. From
a computational perspective, the gradient computation stands out as the most computationally
demanding step, hence the interest for the method developed above.

While (10) seeks trajectories that minimize the accumulated uncertainty on the robot state over
a given horizon, we note that it is easy to add constraints or another term in the loss to perform a
specific task. For example, adding the constraint xN = xF allows for reaching a specific state while
being perception-aware. Note it is also easy to make L depend on previous Pn|n, n < N, as in [7].

4.1 Algorithm
With known gradients, a first order nonlinear optimization algorithm such as Sequential Quadratic
Programming (SQP) may be brought to bear. This leads to Algorithm 1.

Algorithm 1 Path planning algorithm
Require: x0, P0, N,L

u← (u0, . . . ,uN)
while L (PN|N) not converge do

g← gradient computation(u)
α ← line search(u,g)
u← update(u,g,α) ▷ Using SQP for example

end while
Return: (u0, . . . ,uN)

The process involves computing the gradient g of the cost function w.r.t. the control variables
using forward and backward passes through the EKF. Additionally, we compute the gradient of the
constraints with respect to decision variables. Subsequently, line search is conducted to determine
an appropriate step size α for efficient convergence. However, line search requires evaluating the
cost function, which corresponds to running a full EKF in our case. The decision variables are then
updated using SQP. Further details are given in the experimental sections.

4.2 Discussion
In prior work, it proved difficult to use a loss L depending on the state’s covariance PN|N . Indeed,
the gradient computation of the loss w.r.t each control variable is expensive when using forward
difference [7, 21], as explained in Section 3.5. This has motivated [15] to use backpropagation,
through automatic differentiation (AD). [15] also argues deriving analytical formulas would be
difficult.

The interest of our work, that provides analytical formulas, is twofold in this regard. First, it is
often preferable to have closed-form formulas when possible, to rule out many numerical errors and
keep better control over the calculation process (possibly opening up for some guarantees about the
execution). Then, it leads to computation speedups, as it will be shown experimentally in the sequel.



5 Simulation results
We now apply our results to the problem of wheeled robot localization. We consider a car-like robot
modelled through the unicycle equations, and equipped with a GPS returning position measurements.
There are two difficulties associated with this estimation problem. First, the heading is not directly
measured. Then, and more importantly, we assume that the position of the GPS antenna in the
robot’s frame (we call lever arm) is unknown, or inaccurately known, or may slightly vary over
time. The resulting problem pertains to simultaneous self-calibration and navigation, in the vein
of [7] but in a simpler context. In straight lines, for instance, the lever arm is not observable, so
perception-aware trajectories should lead to more accurate robot state estimation.

In this section we present the model, and we assess and compare our method through simulations.
In the next section, we apply it to a real world off-road vehicle.

5.1 Bicycle model
The system state consists of the orientation (heading) θn ∈ R in 2D, the position of the vehicle
pn ∈ R2, and the lever arm ln ∈ R2. The control inputs are the steering angle νn and the forward
velocity µn. The kinematic equations based on a roll-without-slip assumption are as follows:

θn = θn−1 +
dt
L
(µn +wµ

n ) tan(νn +wν
n ),

pn = pn−1 +dtΩ(θn−1)(µn +wµ
n )e1,

ln = ln−1

(24)

where Ω(θ) =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, L is the distance between the front and the rear wheels,

e1 = (1,0)T indicates that the velocity is aligned with the robot’s heading, and dt is the sampling
time. A Gaussian white noise wn = (wµ

n ,wν
n )

T with covariance matrix Q corrupts the forward
velocity µn and steering angle νn to account for actuators’ imperfections, and the mismatch with
idealized kinematic model, i.e., slip.

Letting ln ∈ R2 be the position of the GPS antenna in the vehicle’s frame w.r.t. to its center (the
midpoint of the rear axle), the position measured by the GPS is

yn = pn +Ω(θn)ln + εn (25)

where εn is a 2D white noise with covariance matrix Rn.
In the simulations, we let L = 4m, dt = 1s. In terms of noise parameters, we let Q =

diag(0.1,π/180)2, and Rn be the identity matrix, i.e., a standard deviation of 1 m for the GPS
position measurements. To account for actuator physical limits, we assume |νn| ≤ 30π/180 rad
and 0≤ µn ≤ 5 m.s−1. To account for acceleration limits, we add the constraints |∆νn| ≤ 15π/180
rad.s−1 and |∆µn| ≤ 1 m.s−2.

5.2 Simulation results
We start by sampling admissible control inputs over a horizon N = 150s. Then, the corresponding
trajectory is obtained by integration. We then use the sequential least-squares programming (SLSQP)



Figure 3: On the left, an example of an initial random guess in blue. The other two trajectories are
solutions to the perception-aware problem where the loss is the trace (in orange) and the Schatten
norm (in green). The right plot shows the expected trace of the covariance evolution for each
trajectory.

algorithm from Scipy [27] to optimize the sequence of controls to apply. The calculation of the
gradient of the loss with respect to the control inputs is performed using the equations detailed in
Section 3. An example of the initial random trajectory and the solution of the perception-aware
problem can be found in Figure 3. The optimal trajectory for the Schatten norm and for the trace are
quite similar in this case, and both oscillate around the initial random trajectory. These oscillations
are manoeuvres that increase the observability of the lever arm. They lead to an actual reduction of
the expected theoretical error covariance.

To demonstrate that the final covariance minimization translates into an actual reduction of the
average state estimation error, we simulate 200 trials of each optimal trajectory by adding process
noise and observation noise. During the simulation, the state is estimated with an EKF based on
(24), (25). The evolution of the absolute estimation error of the lever arm is displayed on Figure
4. For PA trajectories, the error decreases and converges more rapidly, illustrating the benefit of
perception-aware optimal trajectory generation.

5.3 Computation time
We compared the computation times for the gradient of the loss w.r.t. control inputs with three
different methods. The first method uses (forward) finite differences to compute the gradient, as in
[28]. The second method is an automatic differentiation method, which adopts the backpropagation



Figure 4: Absolute estimation error of the lever arm during the trajectory. On the left the error for
the lever arm in x and on the right in y. One-σ envelope illustrates the dispersion of errors over
trials.

paradigm, but through a numerical tool, akin to [15]. Namely, we used the state-of-the-art PyTorch
automatic differentiation (AD) [29]. Finally, the last method uses our backpropagation analytical
formulas of Section 3. The code was executed on computer with an Intel Core i5-1145G7 at 2.60
GHz.

Table 1: Average and standard deviation of gradient calculation time (over 100 calculations) using
different methods.

Method Execution time
Finite differences 26.92 ± 8.45s
PyTorch Autograd 0.55 ± 0.19s
Ours 0.19 ± 0.07s

Table 1 shows that gradient calculation using backpropagation (Autograd and ours) leads to large
speedups. Indeed, when using a finite difference based method, optimization is computationally
expensive, as mentioned in [7], where optimizing the trace of the sum of all covariances is reported to
take 13 hours for a 3D inertial navigation system. Even when compared to state-of-the-art PyTorch
Autograd, our closed-form formulas are much faster, and more stable in terms of variability of
computation time.

The computation time for the complete resolution of the optimization problem (10) using our
gradient calculation method and Algorithm 1 is 351s. Although this perfectly suits off-line trajectory



generation, it means the robot should stop for a few minutes to plan in a real-time context.

5.4 Discussion
A few remarks are in order. First, we see that, by replacing state-of-the-art autograd differentiation
with our formulas, one may (roughly speaking) double the planning horizon for an identical
computation budget. Besides, analytical formulas better suit onboard implementation. It is interesting
to note that they are totally akin to the EKF equations, which must be implemented on the robot
anyway. Finally, analytical formulas–when available–may be preferable to numerical methods,
as one keeps a better control over what is being implemented, possibly opening up for some
guarantees (the behavior of autograd may be harder to anticipate, and leads to higher computation
time variability). Moreover, we anticipate that coding them in C++ may lead to further speedups.

Note that the overall computation time of the path planning algorithm could be significantly
reduced. First, we may obviously optimize over a shorter horizon. Then, the optimizer currently
uses a line search algorithm to determine the descent step size. In our case, evaluating the objective
function is computationally expensive because it requires running the EKF. Therefore, finding a
method that reduces the number of calls to the objective function should prove efficient. Finally,
another option to reduce computation time is to decrease the number of decision variables, by for
instance parameterizing trajectories using B-splines, as in [5].

We may also comment on the obtained trajectories. As the optimization problem is highly
nonlinear, non-convex, and constrained, one should expect an optimization method to fall into a
close-by local minimum. In Figure 3, the local nature of the optimum proves visible, as the obtained
trajectory oscillates around the initial trajectory. Methods to step out of local minima go beyond the
scope of this paper. However, it is worth noting that albeit a (close-by) local minimum, the obtained
trajectory succeeds in much reducing state uncertainty. It reduces the final average error on the lever
arm, which is the most difficult variable to estimate, by a factor 3, see Figure 4.

In the context of real-time online planning, this suggests a sensible way to use the formulas of
the present paper would be to compute a real-time trajectory that optimizes a control objective, and
then to refine it in real time, by performing a few gradient descent steps. This shall (much) increase
the information gathered by the sensors.

6 Real-world experiments
Real experiments were conducted jointly with the company Safran, a large group that commercializes
(among others) navigation systems. With the help from its engineers, we used an experimental
off-road car owned by the company, which is approximately 4m long and 2.1m wide1.

6.1 Experimental setting
The vehicle is equipped with a standard GPS, odometers, and a RTK (Real Time Kinematic) GPS,
which is not used by the EKF, but serves as ground-truth for position owing to its high accuracy.

1Because of confidentiality requirements, the company has not wished to publish a picture of its experimental
vehicle.



The lever arm between the GPS and the RTK is denoted by lGPS/RT K , and has been calibrated (it is
only used for comparison to the ground-truth).

To further test our method, we conducted localization experiments on both ordinary and PA
trajectories and compared their performance. We used the model described in Section 5.1, and
devised an EKF that fuses odometer data (dynamical model) with GPS position measurements. The
vehicle state is represented by a 5-dimensional vector: two dimensions for position, one for the
orientation, and two for the lever arm between the GPS and the center of the vehicle frame (midpoint
of the rear axle).

Initially, we generated ordinary trajectories at two different speeds (5 km/h, 10 km/h). Sub-
sequently, we employed our PA path planning Algorithm 1 initialized with those trajectories, to
address optimization problem (10), using the final covariance trace as the loss. The constraints
used were those relative to the actuators. To demonstrate the ability of optimization-based planning
methods to handle further constraints, we also constrained the distance between the initial trajectory
and the PA trajectory to be less than 1.5m. Then, we used local tangent plane coordinates computed
near the experiment locations to convert 2D planning to world frame coordinates. Then, we followed
each trajectory and computed the localization error committed by the EKF.

To measure localization accuracy, we utilized the RTK-GPS system as a ground-truth, since its
uncertainties are of the order of a few centimeters. The position error of the vehicle was computed
as follows:

en =
∥∥pRT K

n −
(

p̂n +Ω(θ̂n)(l̂n + lGPS/RT K)
)∥∥ (26)

6.2 Results
The off-road experiment was performed in a field. It consists of 4 runs: 2 reference runs and 2
perception-aware runs (at 5 km/h and 10 km/h). Trajectories returned by RTK-GPS over the first
run are displayed in Figure 5. We note the oscillations of the PA trajectory around the reference
trajectory, enhancing state observability.

Figure 6 shows the trajectories for the second run, along with the evolution of the trace of Pn|n
output by the EKF (on the first run, the latter is wholly similar and was not included owing to space
limitations, to improve legibility of Fig. 5). We see the improvement in terms of trace through the
optimized trajectories. The visible wiggling of the covariance corresponds to the correction steps of
the EKF. Indeed, the dynamical model is run at 100Hz, corresponding to the odometer frequency,
while corrections are made when GPS data are available, at approximately 1Hz.

Table 2: Estimation error according to (26) for all trajectories
Speed (km/h) Type Mean error (m)

5
Ref 3.32
PA 2.88

10
Ref 4.73
PA 4.34

Although the trace of the covariance is smaller along the PA trajectory, it doesn’t necessarily
guarantee that the error with respect to ground truth is reduced. The uncertainty calculated by the
filter assumes all random variables are Gaussian, and the EKF is based on approximations. For each



Figure 5: Off-road trajectories of the RTK-GPS in a local tangent plane coordinates oriented East-
North-Up of the scenario at 5 km/h.

trial, we calculated the average error obtained for each type of trajectory. The results, presented in
Table 2, point out that PA trajectories enhance localization accuracy. Indeed, in the scenario at 5
km/h, the error decreases by 13.24% between the reference and the PA trajectory, and by 8.25% in
the scenario at 10 km/h.

6.3 Analysis
When compared with results from simulations, the improvements are smaller. Several factors may
explain this difference. Firstly, in simulations, we calculated an average result using the Monte
Carlo method, whereas here we have a single trial. Additionally, in simulations, model and noises
are perfectly known, whereas in reality, they are not. The roll-without-slip assumption is especially
challenged when using an off-road vehicle. This also makes the trajectory tracking quite imperfect.
Finally, due to the limited area, we explicitly constrained the optimized trajectory to stay around the
reference one, producing a trajectory that optimally “refines” the reference trajectory, limiting the
accuracy increase.



Figure 6: On the left, trajectories of the RTK-GPS in local tangent plane coordinates at 10 km/h. On
the right, the evolution of the covariance trace along each trajectory in the scenario at a speed of 10
km/h.

7 Conclusion
Our first contribution has been to introduce novel backpropagation analytical equations to compute
the gradient of any loss based on the covariance of an EKF, w.r.t all its inputs. Beyond the theoretical
contribution, they lead to actual numerical speedups. Our second contribution has been to leverage
those formulas to address PA path planning, and to test the method in simulation and on real-world
experiments over large off-road trajectories over a span of more than 50 meters. In future work,
we would like to apply the method to more challenging problems, such as inertial navigation [7],
and to improve its scalability, notably by improving the line search. We also would like to combine
the method with other objectives such as reaching a desired goal, collision avoidance, or energy
consumption.
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[9] J. S. Willners, S. Katagiri, S. Xu, T. Łuczyński, J. Roe, and Y. Petillot, “Adaptive Heading for
Perception-Aware Trajectory Following,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), May 2023, pp. 3161–3167.

[10] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observ-
able stochastic domains,” Artificial Intelligence, 1998.

[11] S. Candido and S. Hutchinson, “Minimum uncertainty robot path planning using a POMDP
approach,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct.
2010, pp. 1408–1413.

[12] C. H. Papadimitriou and J. N. Tsitsiklis, “The Complexity of Markov Decision Processes,”
Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450, 1987.

[13] R. He, S. Prentice, and N. Roy, “Planning in information space for a quadrotor helicopter
in a GPS-denied environment,” in 2008 IEEE International Conference on Robotics and
Automation (ICRA), May 2008, pp. 1814–1820.

[14] S. Prentice and N. Roy, “The Belief Roadmap: Efficient Planning in Belief Space by Factoring
the Covariance,” The International Journal of Robotics Research, vol. 28, no. 11-12, pp.
1448–1465, Nov. 2009.

[15] S. Patil, G. Kahn, M. Laskey, J. Schulman, K. Goldberg, and P. Abbeel, “Scaling up gaussian
belief space planning through covariance-free trajectory optimization and automatic differen-
tiation,” in Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh
International Workshop on the Algorithmic Foundations of Robotics, H. L. Akin, N. M. Amato,
V. Isler, and A. F. van der Stappen, Eds. Cham: Springer International Publishing, 2015, pp.
515–533.

[16] P. Abbeel, A. Coates, M. Montemerlo, A. Ng, and S. Thrun, “Discriminative Training of
Kalman Filters,” in Robotics: Science and Systems, Jun. 2005, pp. 289–296.



[17] C. Parellier, A. Barrau, and S. Bonnabel, “Speeding-Up Backpropagation of Gradients Through
the Kalman Filter via Closed-Form Expressions,” IEEE Transactions on Automatic Control,
vol. 68, no. 12, pp. 8171–8177, Dec. 2023.

[18] M. Cognetti, P. Salaris, and P. Robuffo Giordano, “Optimal Active Sensing with Process and
Measurement Noise,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), May 2018, pp. 2118–2125.
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A Matrix derivatives
First, we provide an example of how to derive matrix derivative equations. Then, we will list
all the matrix derivative equations we have used in the paper. We consider a scalar function
L : Rn×n→ R and we define ∂L (X)

∂X as the matrix of the derivative of L w.r.t each component

of X (i.e.
(

∂L (X)
∂X

)
i, j

= ∂L (X)
∂xi, j

). Using only matrix multiplication, we can express first-order

Taylor expansion in the following form (which can alternatively be considered as a definition of the
gradient):

L (X +δX) = L (X)+Tr

((
∂L

∂X

)T

δX

)
+o(δX) (27)

Now, let’s compute ∂L ◦ϕ(X)
∂X when ϕ(X) = XY XT = M expressed as a function of ∂L

∂M .

L ◦ϕ(X +δX) = L ((X +δX)Y (X +δX)T )

= L (XY XT +XY δXT +δXY XT +δXY δXT )

= L (M)+Tr

((
∂L

∂M

)T

(XY δXT +δXY XT )

)
+o(δX)

= L (M)+2Tr

(
Y XT

(
∂L

∂M

)T

δX

)
+o(δX)

= L (M)+Tr

((
2

∂L

∂M
XY T

)T

δX

)
+o(δX)

(28)

On the other hand, we express the Taylor expansion of L ◦ϕ:

L ◦ϕ(X +δX) = L ◦ϕ(X)+Tr

((
∂L ◦ϕ

∂X

)T

δX

)
+o(δX)

= L (M)+Tr

((
∂L ◦ϕ

∂X

)T

δX

)
+o(δX)

(29)

By identification we conclude that:

∂L ◦ϕ

∂X
= 2

∂L

∂M
XY T

which we write more economically as ∂L
∂X = 2∂L

∂M XY T , since writing explicitly all the functions



composed in an EKF would be impossible or extremely cluttered. Following the same proof structure,
we derive:

M = XY XT ⇒ ∂L

∂X
= 2

∂L

∂M
XY T

M = Y XY T ⇒ ∂L

∂X
= Y T ∂L

∂M
Y

M = X−1 ⇒ ∂L

∂X
=−MT ∂L

∂M
MT

(30)

Let A : Rq→Mn×n, and we want to compute ∂L (A(x))
∂x j (x j is the j-th component of vector x) as

a function of ∂L (A)
∂A . Employing the Chain rule, we have:

∂L ◦A
∂x j = Tr

(
∂A
∂x j

T
∂L

∂A

)
= ∑

k,l

(
∂A
∂x j

)
k,l

(
∂L

∂A

)
k,l

(31)

Computationally, we favour the first expression.

Now, consider a scalar function L : Rn → R and vector-valued function f : Rn → Rn with
jacobian Jx. We want to compute ∂L ◦ f (x)

∂x as a function of ∂L (m)
∂m with m = f (x). Note that ∂L ◦ f (x)

∂x
corresponds then to the usual (column) vector gradient ∇x(L ◦ f ). First, we write the first-order
Taylor expansion of L ◦ f :

L ◦ f (x+δx) = L ◦ f (x)+ ⟨∇L ◦ f ,δx⟩+o(δx) (32)

L ◦ f (x+δx) = L ( f (x)+ Jxδx+o(δx))
= L ( f (x))+ ⟨∇L ,Jxδx⟩+o(δx)

= L ◦ f (x)+ ⟨JT
x ∇L ,δx⟩+o(δx)

(33)

By identification we conclude that:

∇x(L ◦ f ) = JT
x ∇mL ⇔ ∂L ◦ f (x)

∂x
= JT

x
∂L (m)

∂m
(34)

B Backpropagation equations in an EKF
To compute the gradient w.r.t any variable using backpropagation, it is necessary to sum all contribu-
tions over the direct successors of this variable, see, e.g., [24]. The contribution of a direct successor
is indicated by an exponent in brackets. Thus, for the direct successors of x denoted by wi, the sum
over all contributions is computed as follows:

∂L

∂x
= ∑

wi direct successor of x

(
∂L

∂x

)(wi)

(35)

For the sake of simplicity, we begin by deriving equations w.r.t. the matrices involved in the
Riccati equation. Subsequently, we calculate the contributions w.r.t input control variables and state
vector variables.



B.1 Gradient backpropagation in Riccati equations
First we consider the propagation step:

Pn|n−1 = FnPn−1|n−1FT
n +GnQnGnT , (36)

followed by an update step (Riccati equation):

Sn = HnPn|n−1HT
n +Rn , (37)

Kn = Pn|n−1HT
n S−1

n , (38)

Pn|n = (I−KnHn)Pn|n−1 , (39)

⇔ P−1
n|n = P−1

n|n−1 +HT
n R−1

n Hn (40)

We start with a graph showing the relationship between variables to get a better understanding of the
dependencies between them.

Pn−1|n−1 Pn|n−1 Pn|n

Fn,Gn Hn,Rn

Figure 7: Dependencies of KF’s variables in Riccati’s equations

For the posterior covariance, we apply equation (30) to the Ricatti equation.

∂L

∂Pn−1|n−1
=

(
∂L

∂Pn−1|n−1

)(Pn|n−1)

= FT
n

∂L

∂Pn|n−1
Fn

(41)

For the posterior covariance, we depart from the information form of the Riccati equation (40) and
we find:

∂L

∂Pn|n−1
=−P−1

n|n−1

(
∂L

∂P−1
n|n−1

)(Pn|n)

P−1
n|n−1

= P−1
n|n−1Pn|n

∂L

∂Pn|n
Pn|nP−1

n|n−1

= (I−KnHn)
T ∂L

∂Pn|n
(I−KnHn),

(42)

where in the last line we have used (39). Then we have:

∂L

∂Fn
=

(
∂L

∂Fn

)(Pn|n−1)

= 2
∂L

∂Pn|n−1
FnPn−1|n−1 (43)



∂L

∂Gn
=

(
∂L

∂Gn

)(Pn|n−1)

= 2
∂L

∂Pn|n−1
GnQn (44)

(
∂L

∂Hn

)T

=

(
∂L

∂Hn

)(Pn|n)

= 2
∂L

∂P−1
n|n

HT
n R−1

n

=−2Pn|n
∂L

∂Pn|n
Pn|nHT

n R−1
n

(45)

∂L

∂Rn
=

(
∂L

∂Rn

)(Pn|n)

=−R−1
n

∂L

∂R−1
n

R−1
n

=−R−1
n Hn

∂L

∂P−1
n|n

HT
n R−1

n = R−1
n HnPn|n

∂L

∂Pn|n
Pn|nHT

n R−1
n

(46)

B.2 Gradient backpropagation with respect to the controls
Assume we have a nonlinear dynamical model:

xn = f (xn−1,un,wn), (47)
yn = h(xn)+νn. (48)

As before we can represent dependencies between variables using a graph:

un Fn,Gn Rn,Hn

xn−1 xn

Figure 8: Graph of dependencies of EKF’s variables involved propagation and linearization step

Returning to the Riccati equation, we are interested in using L (PN) as a cost function and we
would like to assess the sensitivity of L w.r.t. the controls un’s. The influence of the controls on L
is mediated through the parameters Fn, Gn Hn and Rn. Particularly, with non-linear dynamic, the
elements of matrices Fn and Gn may exhibit dependence on both xn−1 and un. Furthermore, Hn and
Rn depend on xn. Additionally, it is assumed that the remaining parameters in the Riccati equation
remain independent of xn and un.

Note that, it proves easier to ignore the relation between function f and matrices Fn. We just see
the Fn’s as arbitrary functions of the variables xn−1,un−1 for now, allowing for a generic use of the
notation of Jacobians that may avoid confusion.

By backpropagating the equations of the above subsection over the horizon, we have computed
the sensitivity of L w.r.t. the various matrices at play. We now view L as a function of these
matrices:

L (F1, . . . ,FN ,G1, . . . ,GN ,H1, . . . ,HN ,R1, . . . ,RN)



with previously computed (known) gradients ∂L
∂Fn

, ∂L
∂Gn

, ∂L
∂Rn

and ∂L
∂Hn

. Let us replace the dynamical
model above with a linearized model:{

xn = f (xn−1,un,wn)

x̃n = f (x̃n−1,un,0)
(49)

⇒ en = xn− x̃n = f (xn−1,un,wn)− f (x̃n−1,un,0)

≃ f (xn−1− ˜n−1+ x̃n−1,un,0)+Gnwn− f (x̃n−1,un,0)
≃ Jx

n(xn−1− x̃n−1)+Gnwn

= Jx
nen−1 +Gnwn

(50)

which is justified as all calculations are to the first order around a nominal trajectory. We denote by
Ju the jacobian w.r.t. u and Jx the jacobian w.r.t. x (albeit matrix F , but it is less confusing to derive
the gradients in the more general case where f is generic with generic jacobian Jx).

Using this linearization, we calculate the sensitivity of L w.r.t the component k of xn−1:

∂L

∂xk
n−1

=

(
∂L

∂xk
n−1

)(Fn)

+

(
∂L

∂xk
n−1

)(Gn)

+

(
∂L

∂xk
n−1

)(xn)

+

(
∂L

∂xk
n−1

)(Hn−1)

+

(
∂L

∂xk
n−1

)(Rn−1)

= Tr

(
∂L

∂Fn

T
∂Fn

∂xk
n−1

)
+Tr

(
∂L

∂Gn

T
∂Gn

∂xk
n−1

)
+(Jx

nek)
T ∂L

∂xn
+Tr

(
∂L

∂Hn−1

T
∂Hn−1

∂xk
n−1

)

+Tr

(
∂L

∂Rn−1

T
∂Rn−1

∂xk
n−1

)
(51)

where ek the k-th base vector.

In the same way, we calculate the derivative of L w.r.t the component k of un:

∂L

∂uk
n
=

(
∂L

∂uk
n

)(Fn)

+

(
∂L

∂uk
n

)(Gn)

+

(
∂L

∂xk
n−1

)(xn)

= Tr

(
∂L

∂Fn

T
∂Fn

∂uk
n

)
+Tr

(
∂L

∂Gn

T
∂Gn

∂uk
n

)
+(Ju

n ek)
T ∂L

∂xn

(52)

C First backpropagation step
After the forward pass, the backpropagation begins by computing gradients at the last time step
N. In this initial backpropagation step, dependencies between variables exhibit some differences,
implying distinct equations. To analyze all dependencies, we refer to the graph in Figure 9.



PN−1|N−1 PN|N−1 PN|N L

RN−1,RN−1 FN ,GN uN RN ,HN

xN−1 xN

Figure 9: Graph of dependencies of EKF’s variables involved in the last step N

At the last step, PN|N has only L as a sucessor and xN has HN and RN (at the step n, xn has 5
successors : Hn, Rn, Fn+1, Gn+1 and xn+1). The partial derivative ∂L

∂PN|N
depends on the L chosen.

For example if we use the trace then ∂L
∂PN|N

= Id .
For the normalized trace we have:

∂L (PN|N)

∂PN|N
=

∂Tr
(
P−1

0 PN|N
)

∂PN|N
= P−T

0
∂Tr

(
PN|N

)
∂PN|N

= P−1
0 . (53)

For the Schatten’s norm defined by:

||PN|N ||µ =

(
∑

i
λ

µ

i

)1/µ

=

(
∑

i
(vT

i λivi)
µ

)1/µ

(54)

where λi(P) is the i-th eigenvalue of PN|N associated with the eigenvector vi. When the parameter
µ ≫ 1, then Schatten’s norm approximates the highest eigenvalue of the matrix P. Then the gradient
is computed by:

∂ ||PN|N ||µ
∂PN|N

=
∂
(
∑i λ

µ

i
)1/µ

∂PN|N
=

1
µ

(
∑

i
λ

µ

i

) 1−µ

µ
∂ ∑i λ

µ

i
∂PN|N

=
1
µ

(
∑

i
λ

µ

i

) 1−µ

µ
∂ ∑i λ

µ

i
∂PN|N

=
1
µ

(
∑

i
λ

µ

i

) 1−µ

µ

µ ∑
i

(
λ

µ−1
i

∂λi

∂PN|N

)

=

(
∑

i
λ

µ

i

) 1−µ

µ

∑
i

(
λ

µ−1
i

∂vT
i PN|Nvi

∂PN|N

)
=

(
∑

i
λ

µ

i

) 1−µ

µ
(

∑
i

λ
µ−1vivT

i

)
(55)

Using ∂L
∂PN|N

we can compute ∂L
∂xN

by using the 3 following equations:

(
∂L

∂HN

)T

=−2PN|N
∂L

∂PN|N
PN|NHT

N R−1
N (56)

∂L

∂RN
= R−1

N HNPN|N
∂L

∂PN|N
PN|NHT

N R−1
N (57)

∂L

∂x j
N

= Tr

(
∂L

∂HN

T
∂HN

∂x j
N

)
+Tr

(
∂L

∂RN

T
∂RN

∂x j
N

)
(58)



D Summary
The gradient computation using backpropagation consists of two parts. The first part named forward
pass computes all quantities involved in an Extended Kalman Filter, such as xn, Pn|n, Pn|n−1, Fn, Gn
etc. running the filter equations. At each iteration, we set the innovation zn = 0 corresponding to the
measurement having its predicted value. This justifies our notation of xn only, in place of xn|n or
xn|n−1, or even x̂n|n or x̂n|n−1. Additionally, during this forward step, we may compute derivatives of
direct functions of the variables at play, such as ∂Fn

∂uk
n

or ∂Fn
∂xk

n
etc.

Then, in the backward step, gradients are computing recursively. To initialize the gradients, we

first compute ∂L
∂PN|N

and ∂L
∂x j

N
= Tr

(
∂L
∂HN

T ∂HN

∂x j
N

)
+Tr

(
∂L
∂RN

T ∂RN

∂x j
N

)
as explained in Section 3.4. Then,

we recursively use the equations derived in Section 3.2 to backpropagate gradients.

∂L

∂Pn−1|n−1
= FT

n
∂L

∂Pn|n−1
Fn (59)

∂L

∂Pn|n−1
= (I−KnHn)

T ∂L

∂Pn|n
(I−KnHn) (60)

∂L

∂xk
n−1

= Tr

(
∂L

∂Fn

T
∂Fn

∂xk
n−1

)
+Tr

(
∂L

∂Gn

T
∂Gn

∂xk
n−1

)
+(Jx

nek)
T ∂L

∂xn
(61)

+Tr

(
∂L

∂Hn−1

T
∂Hn−1

∂xk
n−1

)
+Tr

(
∂L

∂Rn−1

T
∂Rn−1

∂xk
n−1

)
(62)

∂L

∂Fn
= 2

∂L

∂Pn|n−1
FnPn−1|n−1 (63)

∂L

∂Gn
= 2

∂L

∂Pn|n−1
GnQn (64)(

∂L

∂Hn

)T

=−2Pn|n
∂L

∂Pn|n
Pn|nHT

n R−1
n (65)

∂L

∂Rn
= R−1

n HnPn|n
∂L

∂Pn|n
Pn|nHT

n R−1
n (66)

Finally :

∂L

∂uk
n
= Tr

(
∂L

∂Fn

T
∂Fn

∂uk
n

)
+Tr

(
∂L

∂Gn

T
∂Gn

∂uk
n

)
+(Ju

n ek)
T ∂L

∂xn


