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PROPAGATION OF COHERENT STATES IN THE

LOGARITHMIC SCHRÖDINGER EQUATION

RÉMI CARLES AND FANGYUAN DONG

Abstract. We consider the logarithmic Schrödinger equation in a semiclassi-
cal scaling, in the presence of a smooth, at most quadratic, external potential.
For initial data under the form of a single coherent state, we identify the no-
tion of criticality as far as the nonlinear coupling constant is concerned, in the
semiclassical limit. In the critical case, we prove a general error estimate, and
improve it in the case of initial Gaussian profiles. In this critical case, when
the initial datum is the sum of two Gaussian coherent states with different
centers in phase space, we prove a nonlinear superposition principle.

1. Introduction

We consider the logarithmic Schrödinger equation in the semiclassical régime
ε ∈ (0, 1],

(1.1) iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + λεαψε log |ψε|2 ; ψε

|t=0 = ψε
0,

where ψε = ψε(t, x) is complex-valued, x ∈ Rd with d > 1, λ ∈ R\{0}, and α > 1
(see the discussion below). Throughout this paper, the external potential V = V (x)
satisfies the following assumption:

Assumption 1.1. The external potential V is smooth, real-valued, and at most
quadratic:

V ∈ C∞(Rd;R) and ∂βV ∈ L∞
(
R

d
)
, ∀|β| > 2.

To lighten notations, we consider t > 0 only, which is no restriction as the
equation is time reversible.

The logarithmic Schrödinger equation was introduced in [5], and has been used
since in various physical fields, such as quantum mechanics [29], quantum optics
[5, 21], nuclear physics [23], Bohmian mechanics [26], effective quantum gravity [30],
theory of superfluidity and Bose-Einstein condensation (BEC) [4]. As proposed in
[30, 31], the logarithmic nonlinearity may extend quantum mechanics thanks to a
nonlinear model, likely to help understand quantum gravity. In [6], the presence of
an harmonic trap was considered, in order to describe logarithmic BEC.

We mention two mathematical properties associated with the logarithmic non-
linearity in Schrödinger equations. First, and this is the main reason why this
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2 R. CARLES AND F. DONG

model was introduced in [5], it is the only nonlinearity that provides a tensoriza-
tion property in the multidimensional setting. Suppose d > 2 and that V separates
coordinates, in the sense that

V (x) =
d∑

j=1

Vj(xj).

If the initial datum ψε
0 is a tensor product,

ψε
0(x) =

d∏

j=1

ϕε
j(xj),

then the solution to (1.1) is given by

ψε(t, x) =

d∏

j=1

ψε
j (t, xj),

where each ψε
j solves a one-dimensional equation,

i∂tψ
ε
j +

1

2
∂2xj

ψε
j = Vj(xj)ψ

ε
j + λεαψε

j log |ψε
j |2 ; ψε

j|t=0 = ϕε
j .

The second property, unusual in a nonlinear setting as well, is that the size of the
solution is somehow irrelevant, in the sense that if, for k ∈ C, Ψε

k denotes the
solution to (1.1) with initial datum kψε

0 instead of ψε
0, then we have

Ψε
k(t, x) = kψε(t, x)e−iλεα−1t log |k|2 .

We will meet this property later, when considering the semiclassically critical case
for (1.1).

The semiclassical limit ε → 0 for (1.1) was addressed by Ferriere [17] for ψε
0 a

WKB state (also known as Lagrangian state), ψε
0(x) = a0(x)e

iφ0(x)/ε, in the case
V = 0 with α = 0 (which corresponds to a supercritical case as far as WKB analysis
is concerned). In the case where V is a bounded potential, α = 0, λ < 0, and ψε

0 is
a concentrating Gausson,

ψε
0(x) = eix·p0/εR

(
x− q0
ε

)

, R(x) = e
1+d
2 eλ|x|

2

,

Ardila and Squassina [2] proved that, locally uniformly in time, the solution remains
concentrated on the Gausson, and the center in phase space evolves according to
classical mechanics:

ψε(t, x) = eix·p(t)/ε+iθε(t)R

(
x− q(t)

ε

)

+ wε(t, x), ε−d/2‖wε(t)‖L2(Rd) = O(ε),

where θε(t) ∈ R and

q̇(t) = p(t), ṗ(t) = −∇V (q(t)) ; q(0) = q0, p(0) = p0.

The above Hamilton system also plays a crucial role in the propagation of coherent
states considered in the present paper. Indeed, we assume that the initial data ψε

0

is a localized wave packet of the form

(1.2) ψε
0(x) = ε−d/4u0

(
x− q0√

ε

)

ei(x−q0)·p0/ε, q0, p0 ∈ R
d,
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and so the parameter α measures the strength of the nonlinear interaction as ε→ 0.
Our goal is to describe the behavior of ψε as ε → 0, according to the value of α.
Note that this initial datum is such that ‖ψε

0‖L2 = ‖u0‖L2 is independent of ε > 0.
In view of the above remark, replacing the factor ε−d/4 with any other power of ε
leads to an explicit change in the expression of ψε(t, x) by a gauge transform.

In the linear case λ = 0, the mathematical study of the semiclassical limit ε→ 0
in (1.1)–(1.2) goes back to [25], then developed in [20] and many other contributions;
we refer to [27] for a comprehensive presentation of the propagation of coherent
states in the linear case. The propagation of coherent for nonlinear Schrödinger
equations begins in [10] (power nonlinearity) and [3, 7] (Hartree type nonlinearity).
In this nonlinear setting, the size of the initial data or, equivalently, the size of the
parameter in front of the nonlinearity, in terms of ε, is a crucial parameter in the
leading order behavior of ψε as ε → 0. Below, we make this discussion precise in
the case of the logarithmic nonlinearity, and derive the notion of criticality for the
parameter α.

1.1. Notion of criticality. First, we proceed formally, and we seek an approxi-
mate solution of the equation(1.1)

ψε
app(t, x) =

1

εd/4
u

(

t,
x− q(t)√

ε

)

eiφ(t,x)/ε,

where

(1.3) φ(t, x) = φlin(t, x) := S(t) + p(t) · (x− q(t)),

and the rescaled space variable is

y =
x− q(t)√

ε
.

Classically, we consider the Taylor expansion of V (x) in terms of the new space
variable y (see e.g. [9]):

V (x) = V
(
y + q(t)

√
ε
)
= V (q(t))+

√
εy ·∇V (q(t))+

ε

2

〈
y,∇2V (q(t))y

〉
+O

(

ε3/2
)

.

Plugging this expansion into (1.1), we can measure how close ψε
app is to solve (1.1),

by computing

(1.4)
iε∂tψ

ε
app +

ε2

2
∆ψε

app − V (x)ψε
app − λεαψε

app log |ψε
app|2

=
1

εd/4

(

b0 +
√
εb1 + εb2 + bnl +O

(

ε3/2
))

eiφ/ε,

where φ is defined in (1.3), and

b0 = −u
(

Ṡ(t)− p(t) · q̇(t) + |p(t)|2
2

+ V (q(t))

)

,

b1 = −i(q̇(t)− p(t)) · ∇u− y · (ṗ(t) +∇V (q(t)))u,

b2 = i∂tu+
1

2
∆u− 1

2

〈
y,∇2V (q(t))y

〉
u,

bnl = −λεαu log |u|2 + λ
d

2
uεα log ε.

As indicated by the notations, the nonlinear contribution is present only in the
term bnl.
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When α > 1, bnl is incorporated into the reminder term, and we write

iε∂tψ
ε
app +

ε2

2
∆ψε

app − V (x)ψε
app − λεαψε

app log |ψε
app|2

=
1

εd/4

(

b0 +
√
εb1 + εb2 +O

(

εmin(3/2,α)
))

eiφ/ε.

Due to the presence of the parameter ε in front of the factor ∂tψ
ε
app, the contribution

of the remainder is expected to be O
(
εmin(1/2,α−1)

)
in L2, and we expect ψε to be

well approximated by the linear solution

(1.5) iε∂tϕ
ε +

ε2

2
∆ϕε = V (x)ϕε ; ϕε

|t=0 = ψε
0.

We cancel out, successively, b1, b0 and b2. Setting b1 = 0, we impose

q̇(t) = p(t), ṗ(t) = −∇V (q(t)).

To agree with the initial coherent state (1.2), we impose q(0) = q0 and p(0) = p0,
so that (q, p) is given by the classical Hamiltonian flow,

(1.6) q̇ = p, ṗ = −∇V (q) ; q(0) = q0, p(0) = p0,

Setting b0 = 0 and S(0) = 0, we obtain the classical action (the action of classical
mechanics).

(1.7) S(t) =

∫ t

0

( |p(s)|2
2

− V (q(s))

)

ds,

Finally, setting b2 = 0 and changing the notation u to v yields

(1.8) i∂tv +
1

2
∆v =

1

2

〈
y,∇2V (q(t))y

〉
v ; v|t=0 = u0.

To make notations consistent, and for future reference, we thus introduce

(1.9) ϕε
app(t, x) =

1

εd/4
v

(

t,
x− q(t)√

ε

)

eiφlin(t,x)/ε,

where v solves (1.8).
In the case α = 1, the contribution of bnl is comparable with that of b2. The

second term in bnl may be viewed as a constant (in (t, x)) potential, and is removed
by a gauge transform. This is a manifestation of the effect of the size in logarithmic
nonlinearity described above. We therefore modify the phase φ and now write

(1.10) ψapp(t, x) =
1

εd/4
u

(

t,
x− q(t)√

ε

)

eiφnl(t,x)/ε,

where

φnl(t, x) := φlin(t, x)− λ
d

2
tε log ε = S(t) + p(t) · (x− q(t)) − λ

d

2
tε log ε.

Since we have not modified the expression of b0 and b1, q, p and S are still given
by (1.6) and (1.7). On the other hand, the envelope equation becomes

(1.11) i∂tu+
1

2
∆u =

1

2

〈
y,∇2V (q(t))y

〉
u+ λu log |u|2 ; u|t=0 = u0.

The above potential is quadratic in y. This implies, as we will see in the sequel,
that, like in the linear case (1.8) (as noticed initially in [24], see also [20, 27]),
the flow of this equation preserves Gaussian structures: if a is a Gaussian, then
so is u(t, ·) for all t ∈ R. In a nonlinear context, this property is a feature of the
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logarithmic nonlinearity. We note that this is also a feature of the coherent states
approximation, that even if V is not quadratic (in space), the potential in (1.11) is.
The potential in (1.11) depends on time precisely when V is not exactly quadratic,
and the explicit computation for Gaussian data can be viewed as a feature of the
coherent states approximation.

The case α > 1 will therefore be referred to as subcritical, and the case α = 1
as critical. We note that the case α < 1 seems to be out of reach in this setting
(as well as the supercritical case α < αc in [10] for power-like nonlinearity; the case
of Hartree type nonlinearity is different, as pointed out in [7] and [9], and some
supercritical cases can be described in the case of a smooth, bounded kernel).

We emphasize that for a power-like nonlinearity εα|ψε|2σψε, σ > 0, with initial
data like in (1.2), the critical case is given by αc = 1 + dσ

2 ,

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + ε1+dσ/2|ψε|2σψε ; ψε

|t=0 = ψε
0,

so the critical case α = 1 in (1.1) may be viewed as a natural candidate for the
limit σ → 0 (see also [28, 18] for other evidences in this direction). In the case of
Hartree equation with a homogeneous kernel (γ > 0), the critical case is ([7])

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + λε1+γ/2

(
1

|x|γ ∗ |ψε|2
)

ψε ; ψε
|t=0 = ψε

0.

On the other hand, for Hartree type equations with a smooth kernel K (bounded
as well as its derivatives), the critical case is ([7]), like for (1.1),

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + λε

(
K ∗ |ψε|2

)
ψε ; ψε

|t=0 = ψε
0.

1.2. Main results. Denote

Σk = Hk ∩ F
(
Hk
)
=
{
f ∈ Hk

(
R

d
)
, x 7→ |x|kf(x) ∈ L2

(
R

d
)}
,

endowed with natural norm. When k = 1, we simply denote Σ1 by Σ.
Our first result shows that indeed, the case α > 1 is subcritical, in the sense that

ψε is well approximated by the linear solution ϕε, up to some Ehrenfest time (a
time of order log 1

ε ). The solution ϕ
ε is also well approximated by ϕε

app up to some
Ehrenfest time.

Proposition 1.2 (Subcritical case). Suppose that α > 1. If u0 ∈ Σ, then for any
0 < δ < α − 1, there exists C > 0 independent of ε such that, with ϕε solution to
the linear equation (1.5), we have

‖ψε(t)− ϕε(t)‖L2(Rd) . εα−1−δeCt, t > 0.

In particular, there exists c0 > 0 independent of ε such that

sup
06t6c0 log 1

ε

‖ψε(t)− ϕε(t)‖L2(Rd) −→
ε→0

0.

If in addition u0 ∈ Σ2, there exists C > 0 independent of ε such that, with ϕε
app

defined in (1.9), v given by (1.8) and φlin by (1.3), we have

‖ϕε(t)− ϕε
app(t)‖L2(Rd) . ε1/4eCt, t > 0.

Finally, if u0 ∈ Σ3, there exists C > 0 independent of ε such that

‖ϕε(t)− ϕε
app(t)‖L2(Rd) .

√
εeCt, t > 0.
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We now come to critical phenomena, and set α = 1. The case of Gaussian initial
profiles turns out to be more convenient, even though we consider a nonlinear
setting.

Theorem 1.3 (Critical case). Suppose that α = 1.
(1) If u0 ∈ Σ2, then with ψε

app defined in (1.10) (u is given by (1.11)), there exists
C > 0 independent of ε such that,

‖ψε(t)− ψε
app(t)‖L2(Rd) . ε1/4ee

Ct

, t > 0.

In particular, there exists c independent of ε such that

sup
06t6c log log 1

ε

‖ψε(t)− ψε
app(t)‖L2(Rd) −→

ε→0
0.

(2) Suppose that V decouples variables,

V (x) =
d∑

j=1

Vj(xj).

If u0 is a Gaussian of the form

u0(y) = b0 exp



−1

2

d∑

j=1

a0jy
2
j



 , a0j , b0 ∈ C, Rea0j > 0,

then there exists C > 0 independent of ε such that,

‖ψε(t)− ψε
app(t)‖L2(Rd) .

√
εeCt, t > 0.

We remark that in the second case, Assumption 1.1 implies that each Vj satisfies
(the one-dimensional version of) Assumption 1.1. If V does not decouple variables,
the computations presented in Section 4.2 become more involved, as one has to
deal with time dependent matrices instead of scalars, since even if u0 decouples
variables like above, this property is lost for t > 0 in general. We choose to present
this simplified setting to keep notations as light as possible.

Theorem 1.4 (Nonlinear superposition). Suppose that α = 1, that V decouples
variables,

V (x) =

d∑

j=1

Vj(xj),

and that the initial datum in (1.1) is the sum of two coherent states,

(1.12) ψε
0(x) = ε−d/4

2∑

j=1

u0j

(
x− q0j√

ε

)

ei(x−q0j)·p0/ε, q0j , p0j ∈ R
d,

with different centers in phase space, (q01, p01) 6= (q02, p02). If u01 and u02 are
two Gaussian functions like in the second part of Theorem 1.3, then uniformly
on bounded time intervals, a nonlinear superposition holds: if ψε

j,app denotes the

approximate solution associated with u0j, then for any T > 0 and any γ < 1/2,

sup
t∈[0,T ]

∥
∥ψε(t)− ψε

1,app(t)− ψε
2,app(t)

∥
∥
L2 . εγ .

If in addition d = 1, and E1 6= E2, where

Ej =
p20j
2

+ V (q0j) ,
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then for all γ < 1/2, there exists C > 0 independent of ε ∈ (0, 1) such that
∥
∥ψε(t)− ψε

1,app(t)− ψε
2,app(t)

∥
∥
L2 . εγeCt, ∀t > 0.

In particular, there exists c > 0 independent of ε such that

sup
06t6c log 1

ε

∥
∥ψε(t)− ψε

1,app(t)− ψε
2,app(t)

∥
∥
L2 −→

ε→0
0.

The above result is readily generalized to the case of finitely many initial Gauss-
ian coherent states, with pairwise distinct centers in phase space. We restrict the
presentation to the case of two coherent states, to make notations as light as pos-
sible.

1.3. Content. In Section 2, we recall several general estimates, address the Cauchy
problems for (1.1) and (1.11), proving new estimates in the case of (1.11), in Sec-
tion 2.3. Proposition 1.2 is proven in Section 3, Theorem 1.3 in Section 4, and
Theorem 1.4 in Section 5.

1.4. Notations. Throughout the paper, C denotes a constant independent of t
and ε ∈ (0, 1], which may change from one line to the other.

For f, g > 0, we write f . g whenever there exists a constant C independent of
t > 0, x ∈ Rd, and ε ∈ (0, 1), such that f 6 Cg.

2. Preliminary results

2.1. Some technical tools. We recall that under Assumption 1.1, Cauchy-Lipschitz
Theorem implies:

Lemma 2.1. Let (q0, p0) ∈ R
d × R

d. Under Assumption 1.1, (1.6) has a unique
global, smooth solution (q, p) ∈ C∞(R;Rd)2. It grows at most exponentially:

∃C0 > 0, |q(t)|+ |p(t)| . eC0t, ∀t > 0.

The following lemma, originating in [15], is crucial in the study of Schrödinger
equations with a logarithmic nonlinearity, and will be used several times in the
sequel:

Lemma 2.2 (From Lemma 1.1.1 in [15]). There holds
∣
∣
∣Im

((

z2 log |z2|2 − z1 log |z1|2
)

(z2 − z1)
)∣
∣
∣ 6 2 |z2 − z1|2 , ∀z1, z2 ∈ C.

We recall the Gagliardo-Nirenberg inequality and a standard inequality (see e.g.
(2.3) and its proof in [12]),

‖v‖Lp . ‖v‖1−θ(p)
L2 ‖∇v‖θ(p)L2 , for 2 6 p <

2d

(d− 2)+
,(2.1)

‖v‖Lp . ‖v‖1−θ(p′)
L2 ‖yv‖θ(p

′)
L2 , for max

(

1,
2d

d+ 2

)

< p 6 2,(2.2)

where

θ(p) = d

(
1

2
− 1

p

)

,
1

p
+

1

p′
= 1.
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2.2. Cauchy problem. In the case without potential, V = 0, the Cauchy problem
for (1.1) was addressed initially in [15] in the case λ < 0, then resumed in [19] in the
case λ ∈ R, with a generalization in [12], using compactness methods. The space
in which the Cauchy problem is solved was further enlarged in [13, 22], using more
constructive methods. In the case where λ < 0 and V is a harmonic potential, the
Cauchy problem for (1.1) was solved in Σ in [1], by adapting the approach from [15].
In the framework considered in the present paper (V satisfying Assumption 1.1 and
λ ∈ R), the Cauchy problem was solved in Σ in [11]:

Proposition 2.3 (Proposition 1.3 in [11]). Let d > 1, λ, α ∈ R, ε > 0, and
V satisfying Assumption 1.1. For ψε

0 ∈ Σ, (1.1) has a unique solution ψε ∈
L∞
loc(R; Σ) ∩ C(R;L2(Rd)). Moreover, the following quantities are independent of

time:

Mass: M ε(t) = ‖ψε(t)‖2L2(Rd) ≡M ε(0),

Energy: Eε(t) =
1

2
‖ε∇ψε(t)‖2L2(Rd) +

∫

Rd

V (x)|ψε(t, x)|2dx

+ λεα
∫

Rd

|ψε(t, x)|2 log |ψε(t, x)|2dx ≡ Eε(0).

We recall the main steps of the proof, to show that the above result is readily
extended to the case of a time dependent potential like in (1.11). Since the role of
ε > 0 is absent at this level of discussion, we set ε = 1 in order to lighten notations.
In view of the singularity of the logarithm at the origin, we consider the family of
regularized equations, for δ > 0,

(2.3) i∂tψ
δ +

1

2
∆ψδ = V (x)ψδ + λψδ log

(
δ + |ψδ|2

)
; ψδ

|t=0 = ψ0.

For fixed δ > 0, the nonlinearity is smooth, with moderate growth as |ψδ| → ∞ (the
nonlinearity is L2-subcritical in any dimension), so under Assumption 1.1, global
existence in Σ follows for instance from [8] (where a dependence of V upon time is
allowed, like in (1.11)): ψδ,∇ψδ, xψδ ∈ C(R;L2(Rd)).

The sequence (ψδ)0<δ61 converges, thanks to compactness arguments based
on uniform a priori estimates. First, the L2-norm of ψδ is independent of time,
‖ψδ(t)‖L2 = ‖ψ0‖L2 . For 1 6 j 6 d, differentiating (2.3) with respect to xj yields

i∂t∂jψ
δ +

1

2
∆∂jψ

δ = V (x)∂jψ
δ + ∂jV (x)ψδ + λ log

(
δ + |ψδ|2

)
∂jψ

δ

+ 2λ
1

δ + |ψδ|2 Re(ψδ∂jψ
δ)ψδ.

By Assumption 1.1, |∂jV (x)| . 1 + |x|, so the standard L2 estimate yields

d

dt
‖∇ψδ(t)‖2L2 6 C

(
‖ψδ(t)‖2L2 + ‖xψδ(t)‖2L2 + ‖∇ψδ(t)‖2L2

)
,

where C is independent of δ. Similarly,

i∂t
(
xjψ

δ
)
+

1

2
∆(xjψ

δ) = ∂jψ
δ + V (x)xjψ

δ + λ ln
(
δ + |ψδ|2

)
xjψ

δ,

hence

d

dt
‖xψδ(t)‖2L2 6 2

∫

Rd

|xψδ(t, x)||∇ψδ(t, x)|dx 6 ‖xψδ(t)‖2L2 + ‖∇ψδ(t)‖2L2 .
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In view of the conservation of the mass, Grönwall lemma implies that there exists
C independent of δ such that

‖xψδ(t)‖2L2 + ‖∇ψδ(t)‖2L2 6 C
(
‖u0‖2L2 + ‖xu0‖2L2 + ‖∇u0‖2L2

)
eCt, t > 0.

Therefore, we have compactness in space for the sequence (ψδ)0<δ61. Compactness
in time follows from (2.3). Arzela-Ascoli theorem yields a converging subsequence,
hence the existence part of Proposition 2.3.

Uniqueness follows from the remark that any solution ψ ∈ L∞
loc(R; Σ) to (1.1)

actually belongs to C(R;L2(Rd)). The standard L2-estimate for the difference of
two solutions ψ and φ (with a common initial datum ψ0) yields

d

dt
‖ψ − φ‖2L2 6 2

∣
∣
∣
∣
Im

∫
(
(ψ̄ − φ̄)

(
ψ log |ψ|2 − φ log |φ|2

))
∣
∣
∣
∣
.

Lemma 2.2 and Grönwall lemma then imply ψ ≡ φ. The conservations of mass and
energy are justified by the same arguments as in [14], for instance.

Repeating the above arguments, we have a similar result in the case of (1.11).
The fact that the potential may depend on time implies that the energy is no longer
conserved, but, as we do not use the notion of energy here, we leave out the adapted
statement regarding this aspect:

Lemma 2.4. Let d > 1, V satisfying Assumption 1.1, and λ ∈ R. For any
u0 ∈ Σ, (1.11) has a unique solution u ∈ L∞

loc(R; Σ) ∩ C(R;L2(Rd)). In addition,
‖u(t)‖L2 = ‖u0‖L2 for all t ∈ R, and there exists C > 0 such that

‖∇u(t)‖L2 + ‖yu(t)‖L2 . eCt, ∀t > 0.

We note that in this statement, we say nothing about q(t): this is due to the
fact that Assumption 1.1 implies ∇2V ∈ L∞(Rd)), which is the only relevant piece
of information in the argument of the proof.

2.3. Further estimates in the critical case. To prove Theorem 1.3, we will need
higher localization property than in Lemma 2.4, namely |y|2u ∈ L∞

loc(R;L
2(Rd)).

Due to the presence of the quadratic potential in (1.11), the regularity is expected
to be the same in space and frequency, so it is natural to work in Σ2.

Unlike in the case without potential ([12]), it is not clear that the flow associated
to (1.11) preserves the H2 regularity. Indeed, the argument of [12] consists in
adapting the proof from [14] in the case of power-like nonlinearities, where one first
proves that ∂tu ∈ L∞

loc(R;L
2(Rd)), and then uses the equation to infer that ∆u

enjoys the same regularity. Here, we face two new difficulties. First, even if we
know that ∂tu ∈ L∞

loc(R;L
2(Rd)), the possible lack of ellipticity of the operator

−1

2
∆+

1

2

〈
y,∇2V (q(t)) y

〉

makes it difficult, if not impossible, to infer that ∆u, |y|2u ∈ L∞
loc(R;L

2(Rd)). Typ-
ically, one can think of V (x) = −ω2|x|2/2, a case where ∇2V (q(t)) = −ω2Id is
constant. In the case where ∇2V (q(t)) is not constant, we also have to deal with
the time derivative of this term, which appears in the equation satisfied by ∂tu,
leading to a term behaving like q̇(t)|y|2u, and so estimating ∂tu and |y|2u are two
connected questions. It is actually the presence of this term, and the possible
exponential growth of q̇, which explains the double exponential in the following
statement.
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Proposition 2.5. Let u0 ∈ Σ2. The solution to (1.11), u ∈ L∞
loc(R; Σ), enjoys the

extra regularity u ∈ L∞
loc(R; Σ

2). In addition, there exists C independent of t > 0
such that

∫

Rd

〈y〉4 |u(t, y)|2dy +
∫

Rd

|∆u(t, y)|2dy 6 Cee
Ct

, ∀t > 0.

Proof. We recall that u is constructed as the limit of the family (uδ)0<δ61 as δ → 0,
where uδ solves

(2.4) i∂tu
δ +

1

2
∆uδ =

1

2

〈
y,∇2V (q(t)) y

〉
uδ + λuδ log

(
δ + |uδ|2

)
, uδ|t=0 = u0.

We prove that there exists C independent of t > 0 and δ ∈ (0, 1) such that

(2.5)

∫

Rd

〈y〉4 |uδ(t, y)|2dy +
∫

Rd

|∆uδ(t, y)|2dy 6 Cee
Ct

.

The equation satisfied by |y|2uδ is

i∂t(|y|2uδ) +
1

2
∆(|y|2uδ) = 1

2

[
∆, |y|2

]
uδ +

1

2

〈
y,∇2V (q(t)) y

〉
|y|2uδ

+ λ|y|2uδ log
(
δ + |uδ|2

)
.

By direct computations,
[
∆, |y|2

]
= 4y · ∇+ 2d,

so the standard energy estimate for Schrödinger equations yields

(2.6)
d

dt
‖|y|2uδ‖L2 . ‖y · ∇uδ‖L2 + ‖uδ‖L2 .

We therefore examine the equation satisfied by y · ∇uδ. First, ∇uδ solves

i∂t∇uδ +
1

2
∆∇uδ =

(
∇2V (q(t)) y

)
uδ +

1

2

〈
y,∇2V (q(t)) y

〉
∇uδ

+ λ
(
∇uδ

)
log
(
δ + |uδ|2

)
+ 2λ

uδ Re
(
uδ∇uδ

)

δ + |uδ|2 .

Taking the inner product with y yields

i∂ty · ∇uδ +
1

2
∆
(
y · ∇uδ

)
=

1

2
[∆, y] · ∇uδ +

〈
y,∇2V (q(t)) y

〉
uδ

+
1

2

〈
y,∇2V (q(t)) y

〉
y · ∇uδ

+ λ
(
y · ∇uδ

)
log
(
δ + |uδ|2

)
+ 2λ

uδ Re
(
uδy · ∇uδ

)

δ + |uδ|2 ,

and we note that
1

2
[∆, y] · ∇uδ = ∆uδ,

so by energy estimate, recalling that ∇2V ∈ L∞(Rd),

(2.7)
d

dt
‖y · ∇uδ‖L2 . ‖∆uδ‖L2 + ‖|y|2uδ‖L2 + ‖y · ∇uδ‖L2 .

To bound the term ∆uδ, we note that differentiating the (regularized) logarithmic
nonlinearity makes it impossible to get estimates which are uniform in δ ∈ (0, 1),
so we use directly the information given by (2.4),

(2.8) ‖∆uδ‖L2 . ‖∂tuδ‖L2 + ‖|y|2uδ‖L2 +
∥
∥uδ log

(
δ + |uδ|2

)∥
∥
L2 .
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Note the inequality
∣
∣uδ log

(
δ + |uδ|2

)∣
∣
2
. |uδ|2

((
δ + |uδ|2

)η/2
+
(
δ + |uδ|2

)−η/2
)

. |uδ|2+η + |uδ|2−η,

for any η > 0, where the implicit multiplicative constant depends on η > 0 but not
on δ ∈ (0, 1). For η > 0 sufficiently small, this implies, in view of (the proof of)
Lemma 2.4, since Σ →֒ L2+η ∩ L2−η provided that η > 0 is sufficiently small (see
(2.1) and (2.2)),

(2.9)
∥
∥uδ log

(
δ + |uδ|2

)∥
∥
L2 . eCt, t > 0.

To close the system of estimates (2.6)-(2.7), we estimate ∂tu
δ in L2. For u0 ∈ Σ2,

∂tu
δ solves an equation rather similar to the one satisfied by ∇uδ, but we must pay

attention to the initial data, given by (2.4) at t = 0:

i∂t
(
∂tu

δ
)
+

1

2
∆
(
∂tu

δ
)
=

1

2

〈
y,∇2V (q(t)) y

〉
∂tu

δ +
1

2

(
∇3V (q(t)) · y · y · q̇(t)

)
uδ

+ λ∂tu
δ log

(
δ + |uδ|2

)
+ 2λ

uδ Re
(
uδ∂tu

δ
)

|δ + |uδ|2 ,

∂tu
δ
|t=0 =

i

2
∆u0 −

i

2

〈
y,∇2V (q0)y

〉
u0 − iλu0 log

(
δ + |u0|2

)
.

Recalling that the third derivatives of V are bounded and that q̇(t) = p(t) grows
at most exponentially in time (Lemma 2.1), energy estimate yields

(2.10)
d

dt
‖∂tuδ‖L2 . eCt‖|y|2uδ‖L2 + ‖∂tuδ‖L2.

We also note that in view of (1.11), ‖∂tuδ|t=0‖L2 6 C (‖u0‖Σ2). Summing (2.6),

(2.7) and (2.10), we find, using (2.8) and (2.9),

d

dt

(
‖|y|2uδ‖L2 + ‖y · ∇uδ‖L2 + ‖∂tuδ‖L2

)
. eCt‖|y|2uδ‖L2 + ‖∂tuδ‖L2

+ ‖y · ∇uδ‖L2 + eCt.

Grönwall lemma yields

‖|y|2uδ‖L2 + ‖y · ∇uδ‖L2 + ‖∂tuδ‖L2 6 C (‖u0‖Σ2) ee
Ct

,

and invoking (2.8) and (2.9), (2.5) follows. Since we already know that uδ converges
to u, the proposition stems from Fatou’s lemma. �

3. Subcritical case

In this section, we prove Proposition 1.2. We start by recalling some properties
of the solution ϕε to (1.5).

3.1. Properties of ϕε
app and ϕε. We resume the approximate solution of the

linear case,

ϕε
app(t, x) =

1

εd/4
v

(

t,
x− q(t)√

ε

)

eiφlin(t,x)/ε,

where φlin is defined in (1.3), and infer that for any 1 < p <∞,

‖ϕε
app(t)‖Lp

x
= ε

d
2 (

1
p−

1
2 )‖v(t)‖Lp

y
.

In the linear case, it is easy to prove (see e.g. [9]):
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Lemma 3.1. Let k > 1. If u0 ∈ Σk, there exists C > 0 such that the solution
v ∈ L∞

loc(R; Σ
k) to (1.8) satisfies ‖v(t)‖L2 = ‖u0‖L2 and, for all β ∈ Nd with

1 6 |β| 6 k,

‖∂βy v(t)‖L2(Rd) + ‖yβv(t)‖L2(Rd) . eCt, t > 0.

We infer from (2.1) and (2.2) that if u0 ∈ Σ, for 0 < η < min
(

1, 4
d+2

)

, there

exists C > 0 such that,

(3.1) ‖ϕε
app(t)‖2−η

L2−η . ε
dη
4 eCt ; ‖ϕε

app(t)‖2+η
L2+η . ε−

dη
4 eCt, t > 0.

We now show that the exact linear solution ϕε satisfies similar estimates. Define
vε by the same rescaling as the one relating ϕε

app and v,

ϕε(t, x) =
1

εd/4
vε
(

t,
x− q(t)√

ε

)

eiφlin(t,x)/ε.

Direct computations (see e.g. [9]) show that vε solves

(3.2) i∂tv
ε +

1

2
∆vε = V ε(t, y)vε,

where

V ε(t, y) =
1

ε

(
V
(
q(t) + y

√
ε
)
− V (q(t)) −√

εy · ∇V (q(t))
)
.

We classically have ‖vε(t)‖L2(Rd) = ‖u0‖L2(Rd) for all t ∈ R. Taylor formula yields

V ε(t, y) =

∫ 1

0

(1− θ)
〈
y,∇2V

(
q(t) + θy

√
ε
)
y
〉
dθ.

In view of Assumption 1.1, there exists C > 0 independent of ε ∈ (0, 1) and t ∈ R

such that

|∇V ε(t, y)| 6 C (1 + |y|) .
Applying the operator ∇ to (3.2), we get:

(

i∂t +
1

2
∆

)

∇vε = V ε(t, y)∇vε + vε∇V ε(t, y),

and the energy estimate yields

‖∇vε(t)‖L2 . ‖∇u0‖L2 +

∫ t

0

‖vε(s)∇V ε(s)‖L2ds

. ‖∇u0‖L2 +

∫ t

0

‖(1 + |y|)vε(s)‖L2ds.

Applying the multiplication operator y to (3.6), we get similarly:
(

i∂t +
1

2
∆

)

(yvε) = V εyvε +∇vε,

and, by energy estimate,

‖yvε(t)‖L2 . ‖yu0‖L2 +

∫ t

0

‖∇vε(s)‖L2ds.

Summing these two inequalities, Grönwall lemma yields

(3.3) ‖∇vε(t)‖L2 + ‖yvε(t)‖L2 . ‖u0‖ΣeCt, t > 0.

Resuming the computations presented in the case of ϕε
app, we infer:
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Lemma 3.2. Let d > 1, 0 < η < min
(

1, 4
d+2

)

, and u0 ∈ Σ. There exists C > 0

independent of ε ∈ (0, 1) and t > 0 such that

‖ϕε(t)‖2−η
L2−η . ε

dη
4 eCt ; ‖ϕε(t)‖2+η

L2+η . ε−
dη
4 eCt, t > 0.

3.2. Linear approximation in the subcritical case. In this subsection, we
prove the first part of Proposition 1.2. We assume u0 ∈ Σ, and set wε = ψε − ϕε.
This error satisfies

iε∂tw
ε +

ε2

2
∆wε =V (x)wε + λεα

(
ψε log |ψε|2 − ϕε log |ϕε|2

)

+ λεαϕε log |ϕε|2 ; wε
|t=0 = 0.

Recall the strategy for the energy estimate: multiply both sides by wε, integrate,
and take the imaginary part,

ε

2

d

dt
‖wε‖2L2 = λεα Im

∫

ψε − ϕε
(
ψε log |ψε|2 − ϕε log |ϕε|2

)
+ λεα Im

∫

w̄ϕε log |ϕε|2

6 2|λ|εα‖wε‖2L2 + |λ|εα‖wε‖L2‖ϕε log |ϕε|2‖L2 ,

where we have used Lemma 2.2 and Cauchy-Schwarz inequality. Grönwall lemma
yields

(3.4) ‖wε‖L2 ≤ εα−1

∫ t

0

eCεα−1(t−s)‖ϕε log |ϕε|2(s)‖L2ds.

We estimate ϕε(t, ·) log |ϕε(t, ·)|2 in L2
(
R

d
)
: for 0 < η < min(1, 4

d+2 ) arbitrarily
small,

(3.5) |ϕε|2
(
log |ϕε|2

)2
. |ϕε|2−η + |ϕε|2+η,

and so, in view Lemma 3.2,

‖ϕε(t) log |ϕε(t)|2‖2L2 . ε−
dη
4 eCt, t > 0.

Plugging this estimate into (3.4) yields the first part of Proposition 1.2.

3.3. Error estimate in the linear case. We prove the end of Proposition 1.2.
Recall that ϕε solves the linear equation (1.5). Its standard approximation is ϕε

app,
see e.g. [27] or [9]. Denote the error for the envelope by δεv = vε − v. It satisfies

(3.6) i∂tδ
ε
v +

1

2
∆δεv = V ε(t, y)δεv +

(

V ε(t, y)− 1

2

〈
y,∇2V (q(t))y

〉
)

v.

Taylor expansion yields the uniform in time pointwise estimate
∣
∣
∣
∣
V ε(t, y)− 1

2

〈
y,∇2V (q(t))y

〉
∣
∣
∣
∣
.

√
ε|y|3,

hence, by energy estimate, since δεv = 0 at t = 0,

(3.7) ‖δεv(t)‖L2 .
√
ε

∫ t

0

‖|y|3v(s)‖L2ds .
√
εeCt,

where we have invoked Lemma 3.1 with k = 3.
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The intermediary regularity assumption u0 ∈ Σ2 will be useful in the critical
case α = 1, and consists in resuming the energy estimate: multiply (3.6) by δεv,
integrate in space, and take the imaginary part: Cauchy-Schwarz inequality yields

1

2

d

dt
‖δεv‖2L2 .

√
ε‖|y|δεv‖L2‖|y|2v‖L2 .

For u0 ∈ Σ2, Lemma 3.1 guarantees that

||y|2v(t)‖L2 . eCt, t > 0.

On the other hand, triangle inequality yields, for any t > 0,

‖|y|δεv(t)‖L2 6 ‖|y|vε(t)‖L2 + ‖|y|v(t)‖L2 . eCt,

where we have used (3.3) too. We infer

1

2

d

dt
‖δεv‖2L2 .

√
εeCt,

hence the announced error estimate.

4. Critical case: single coherent state

This section is dedicated to the proof of Theorem 1.3. From now on, and in the
next section as well, we assume α = 1.

The approximate solution is

ψε
app(t, x) =

1

εd/4
u

(

t,
x− q(t)√

ε

)

ei(S(t)+p(t)·(x−q(t)))/ε−iλ d
2 t log ε.

Here, as before, (q, p) is given by the Hamiltonian flow (1.6), the classical action is
given by (1.7), but now the envelope u satisfies (1.11).

4.1. General case. In this subsection, we assume u0 ∈ Σ2. The Cauchy problem
for (1.11) was addressed in Lemma 2.4, complemented by Proposition 2.5. With
these preliminaries at hand, we can follow essentially the same strategy as in Sec-
tion 3. We denote by wε = ψε − ψε

app the error. It solves

iε∂tw
ε +

ε2

2
∆wε = V (x)wε + λε

(
ψε log |ψε|2 − ψε

app log |ψε
app|2

)

+
(

V (x)− T 2
q(t)

)

ψε
app ; wε

|t=0 = 0,

where T 2
q(t) denote the Taylor expansion of V at order two about q(t),

T 2
q(t)(x) = V (q(t))+(x− q(t)) ·∇V (q(t))+

1

2

〈
x− q(t),∇2V (x− q(t)) (x− q(t))

〉
.

Multiply the equation in wε by wε, integrate in space, and take the imaginary part:
using Lemma 2.2 to estimate the logarithmic term, we find

ε
d

dt
‖wε‖2L2 . ε‖wε‖2L2 +

∫

Rd

∣
∣
∣V (x)− T 2

q(t)

∣
∣
∣ |wε(t, x)||ψε

app(t, x)|dx.

Taylor formula yields the pointwise estimate
∣
∣
∣V (x) − T 2

q(t)

∣
∣
∣ . |x− q(t)|3 ,
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and we balance these three powers like in the previous subsection:
∫

Rd

∣
∣
∣V (x)− T 2

q(t)

∣
∣
∣ |wε(t, x)||ψε

app(t, x)|dx

. ‖|x− q(t)|wε(t)‖L2

∥
∥|x− q(t)|2ψε

app(t)
∥
∥
L2 .

Introduce the exact envelope uε defined by

ψε(t, x) =
1

εd/4
uε
(

t,
x− q(t)√

ε

)

ei(S(t)+p(t)·(x−q(t)))/ε−iλ d
2 t log ε.

We first remark that ‖uε(t)‖L2 = ‖ψε(t)‖L2 = ‖u0‖L2 for all t ∈ R. We readily
check that the arguments presented in Sections 2 and 3 show that there exists C > 0
independent of ε and t such that, like in Lemma 2.4,

‖∇uε(t)‖L2 + ‖yuε(t)‖L2 . eCt, t > 0.

In view of the triangle inequality and Lemma 2.4, this yields

‖|x− q(t)|wε(t)‖L2 .
√
εeCt, t > 0.

Invoking now Proposition 2.5, we find
∥
∥|x− q(t)|2ψε

app(t)
∥
∥
L2 . εee

Ct

, t > 0,

and thus

ε
d

dt
‖wε‖2L2 . ε‖wε‖2L2 + ε3/2ee

Ct

.

The first part of Theorem 1.3 then follows from Grönwall lemma.

4.2. Gaussian case. The main remark is that the potential in (1.11) being qua-
dratic in y, Gaussian initial data lead to a solution u which is Gaussian at all
time. Solving the partial differential equation (1.11) thus reduces to solving or-
dinary differential equations that describe the time-dependent coefficients of the
Gaussian u(t, ·). We present computations in the one-dimensional case for clarity.
If V decouples variables, we can use the tensorization property to address higher
dimension.

4.2.1. Approximate solution in the Gaussian case. Suppose d = 1, and

u0(y) = b0e
−a0y

2/2, a0, b0 ∈ C, Re a0 > 0.

The solution to (1.11) is sought under the form

u(t, y) = b(t)e−a(t)y2/2.

We compute

i∂tu+
1

2
∂2yu− 1

2
V ′′(q(t))y2u− λu log |u|2

∣
∣
u=b(t)e−a(t)y2/2

=
(
A1(t) +A2(t)y

2
)
e−a(t)y2/2.

where

A1(t) = iḃ− 1

2
ab− λb log |b|2,

A2(t) = −1

2
iȧb+

1

2
a2b− 1

2
V ′′ (q(t)) b+ λbRe a.

We thus cancel A1 and A2,

(4.1) iḃ =
1

2
ab+ λb log |b|2,



16 R. CARLES AND F. DONG

(4.2) iȧ = a2 − V ′′ (q(t)) + 2λRe a.

Equation (4.1) is integrated like in [12]. Multiplying both sides of (4.1) by b̄,

(4.3) iḃb̄ =
1

2
a|b|2 + λ|b|2 log |b|2.

Taking the imaginary part, we find

d

dt
|b|2 = |b|2 Im a,

hence

|b(t)|2 = |b0|2 exp (ImA(t)) , where A(t) :=

∫ t

0

a(s)ds.

Plugging this expression into (4.1), we have

iḃ =
1

2
ab+ λb log |b0|2 + λb ImA(t),

which we directly integrate,

(4.4) b(t) = b0 exp

(

−iλt log |b0|2 −
i

2
A(t) − iλ Im

∫ t

0

A(s)ds

)

.

Like in [12], we seek a under the form

(4.5) a(t) =
α0

τ(t)2
− i

τ̇(t)

τ(t)
, with Re a0 = α0.

If β0 = Im a0, we check that (4.2) becomes

τ̈ =
α2
0

τ3
+ 2λ

α0

τ
− V ′′ (q(t)) τ ; τ(0) = 1, τ̇ (0) = −β0.

Since V ′′ is bounded, the following lemma applies to this τ :

Lemma 4.1. Let λ ∈ R and Ω ∈ L∞(R;R). For any τ0 > 0 and τ1 ∈ R, consider
the ordinary differential equation

(4.6) τ̈ =
2λ

τ
+

1

τ3
− Ω(t)τ ; τ(0) = τ0, τ̇(0) = τ1.

It has a unique, global solution τ ∈ C1(R;R), and it obeys the exponential bound

∃C > 0,
1

τ(t)2
+ τ(t)2 + τ̇ (t)2 . eCt, ∀t > 0.

Proof. Local existence follows from the Cauchy-Lipschitz Theorem, and by conti-
nuity, τ > 0 at least near t = 0. By symmetry, we now focus on positive time,
t > 0. Since the right hand side of (4.6) is smooth away from the origin, either the
solution is global, or there exists T > 0 such that

1

τ(t)
+ τ(t) + |τ̇(t)| −→

t→T
+∞.

(The presence of τ̇ follows when turning (4.6) into a first order equation, to apply
the Cauchy-Lipschitz Theorem.) We first show that as long as τ is bounded, so are
1/τ and |τ̇ |. We then prove the a priori bound on τ stated in the lemma, which
implies that the solution is global.
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Multiply (4.6) by τ̇ , and integrate between 0 and t:

(4.7) τ̇(t)2 = τ21 + 4λ ln τ0 +
1

τ20
︸ ︷︷ ︸

=:C0

+4λ ln τ(t) − 1

τ(t)2
− 2

∫ t

0

Ω(s)τ(s)τ̇ (s)ds.

For any ε > 0 there exists Cε > 0 such that

(4.8) | ln τ | 6 Cε +
ε

τ2
+ ετ2, ∀τ > 0.

For t bounded and η > 0, estimate the integral by

2

∣
∣
∣
∣

∫ t

0

Ω(s)τ(s)τ̇ (s)ds

∣
∣
∣
∣
6 2t‖Ω‖L∞ sup

s∈[0,t]

|τ(s)||τ̇ (s)|

6 t‖Ω‖L∞ sup
s∈[0,t]

(
1

η
|τ(s)|2 + η|τ̇ (s)|2

)

6 t
‖Ω‖L∞

η
sup

s∈[0,t]

|τ(s)|2 + tη‖Ω‖L∞ sup
s∈[0,t]

|τ̇(s)|2,

where we have used Young inequality. Taking ε and η sufficiently small, we infer

(4.9) sup
s∈[0,t]

(

τ̇(s)2 +
1

τ(s)2

)

6 C(t)

(

1 + sup
s∈[0,t]

|τ(s)|2
)

.

In particular, if τ is bounded on [0, T ], so is 1/τ . Introduce

y(t) = τ(t)2 + τ̇(t)2 > 0.

We compute

ẏ = 2τ τ̇ + 2τ̇ τ̈ = 2τ τ̇ + 2λ
τ̇

τ
+

τ̇

τ3
− Ωτ τ̇ .

Integrating between 0 and t, and using Young inequality (for the term
∫ t

0
τ τ̇ ),

y(t) 6 C +

∫ t

0

y(s)ds+ 2λ ln τ(t) − 1

2τ(t)2
−
∫ t

0

Ω(s)τ(s)τ̇ (s)ds.

Using (4.8) again, and Young inequality in the last integral,

y(t) 6 C +

∫ t

0

y(s)ds+ 2|λ|
(

Cη +
η

τ(t)2
+ ητ(t)2

)

− 1

2τ(t)2
+ ‖Ω‖L∞

∫ t

0

y(s)ds.

For 2|λ|η < 1/2, the factor of 1/τ2 on the right hand side is negative, and the term
2|λ|ητ2 is absorbed by the left hand side, so we get

y(t) . 1 +

∫ t

0

y(s)ds.

In view of the above discussion, Grönwall lemma then yields global existence and
the exponential bound for τ and τ̇ . The exponential bound for 1/τ then follows
from (4.7) and (4.8). �

We infer the analogue of Lemma 3.1 in the nonlinear case for Gaussian data:
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Lemma 4.2. Let d > 1. Suppose that V decouples variables,

V (x) =

d∑

j=1

Vj(xj),

and that u0 is a Gaussian of the form

u0(y) = b0 exp



−1

2

d∑

j=1

a0jy
2
j



 , a0j , b0 ∈ C, Rea0j > 0.

For any k > 1, there exists Ck > 0 such that the solution u ∈ L∞
loc(R; Σ

k) to (1.11)
satisfies ‖u(t)‖L2 = ‖u0‖L2 and, for all β ∈ Nd with 1 6 |β| 6 k,

‖∂βy u(t)‖L2(Rd) + ‖yβu(t)‖L2(Rd) . eCkt, t > 0.

Proof. First, we note that the above one-dimensional computation is readily adapted,
by seeking u(t, y) under the form

u(t, y) = b(t) exp



−1

2

d∑

j=1

aj(t)y
2
j



 .

Equation (4.1) becomes

iḃ =
1

2

d∑

j=1

ajb+ λb log |b|2,

and (4.2) becomes a family of d uncoupled equations, since ∇2V is diagonal,

iȧj = a2j − V ′′
j (qj(t)) + 2λRe aj ,

so we can use directly the one-dimensional analysis. For β ∈ Nd, we readily compute

‖yβu(t)‖L2 = |b(t)|
d∏

j=1

‖yβj

j e−aj(t)y
2
j/2‖L2 = |b(t)|

d∏

j=1

(Re aj(t))
−βj/2−1/4 µ(βj),

where the coefficients µ(βj) stand for the momenta of the Gaussian in L2,

µ(β) =

(∫

R

z2βe−z2

dz

)1/2

,

whose precise value is irrelevant here. As

|b(t)|2 = |b0|2 exp





d∑

j=1

∫ t

0

Im aj(s)ds





= |b0|2 exp



−
d∑

j=1

∫ t

0

τ̇j(s)

τj(s)
ds



 = |b0|2
d∏

j=1

τj(t)
−1/2,

with notations inherited from the one-dimensional case, we have

‖yβu(t)‖L2 .

d∏

j=1

τj(t)
−1/2 (Re aj(t))

−βj/2−1/4
.

d∏

j=1

τj(t)
−1/2+βj+1/2.
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Lemma 4.1 yields 0 < τj(t) . ecjt for some cj > 0, hence the announced bound for
the momenta. The bound for the derivative proceeds similarly, by considering the
Fourier transform of u(t, ·). �

4.2.2. Error estimate in the Gaussian case. We can now resume the notations and
computations from Section 4.1. The energy estimate for wε implies

‖wε(t)‖L2 .
1

ε

∫ t

0

eC(t−s)
∥
∥|x− q(t)|3ψε

app(s)
∥
∥
L2 ds .

√
ε

∫ t

0

eC(t−s)
∥
∥|y|3u(s)

∥
∥
L2 ds,

so Lemma 4.2 completes the proof of Theorem 1.3.

5. Superposition in the Gaussian case

In this section, we prove Theorem 1.4. A similar result was proven in [10] in
the case of a smooth power nonlinearity (εαc |ψε|2σψε, with σ an integer), and we
resume the same strategy here. The major difference however lies in the estimate of
interaction terms. Typically, if ψε

1,app and ψε
2,app have difference centers in physical

space, q1 6= q2, the error term

|ψε
1,app + ψε

2,app|2
(
ψε
1,app + ψε

2,app

)
− |ψε

1,app|2ψε
1,app − |ψε

2,app|2ψε
2,app

involves only cross terms, where the factor ψε
1,app×ψε

2,app (leaving out the conjugacy

to simplify the discussion) is present: since ψε
j,app is centered in qj at scale

√
ε, these

cross terms can be shown to be small. In the case of a logarithmic nonlinearity,
we cannot use the same sort of expansion: instead, we rely on a lemma proven by
Ferriere in [16], which measures precisely the analogue of this decomposition, in the
case of Gaussian functions (see Lemma 5.2 below).

We examine the superposition principle in (1.1), and distinguish two regions.
When the trajectories (in physical space) of the two centers intersect, or are close
to each other, we keep the nature of the nonlinear interaction as a black box, and
use the fact such an event is sufficiently rare for the nonlinear interaction to be
negligible. This step is an adaptation of computations from [10] to the case of a
logarithmic nonlinearity. Conversely, when the centers of the two coherent states
are far from each other, we apply the method of Ferriere [16], which shows the
absence of interaction at leading order.

5.1. Preparation of the proof. As announced above, the scheme of the proof
is the same as in [10], and we resume the same notations as much as possible.
Under the assumptions of Theorem 1.4, denote wε = ψε −ψε

1,app −ψε
2,app the error

function. It solves

(5.1) iε∂tw
ε +

ε2

2
∆wε = V (x)wε + Lε +N ε ; wε

|t=0 = 0,

where we have now

Lε(t, x) =
(

V (x)− T 2
q1(t)

(x)
)

ψε
1,app(t, x) +

(

V (x) − T 2
q2(t)

(x)
)

ψε
2,app(t, x),

and, like in Section 4, T 2
z stands for the Taylor second order polynomial of V about

z,

T 2
z (x) = V (z) + (x− z) · ∇V (z) +

1

2

〈
x− z,∇2V (x− z)x− z

〉
.
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The approximate functions associated with each Gaussian are given by

ψε
j,app(t, x) =

1

εd/4
uj

(

t,
x− qj(t)√

ε

)

ei(Sj(t)+pj(t)·(x−qj(t)))/ε−iλ d
2 t log ε,

where qj , pj and Sj are defined by (1.6) (with initial data q0j and p0j) and (1.7),
while uj solves (1.11) with initial datum u0j . Denote by g the function

g(z) = λz log |z|2, z ∈ C.

The nonlinear source term is given by

N ε = ε
(
g
(
wε + ψε

1,app + ψε
2,app

)
− g

(
ψε
1,app

)
− g

(
ψε
2,app

))
.

We decompose N ε as the sum of a semilinear term and an interaction source term:
N ε = N ε

S +N ε
I , where

N ε
S = ε

(
g(wε + ψε

1,app + ψε
2,app)− g(ψε

1,app + ψε
2,app)

)
,

N ε
I = ε

(
g(ψε

1,app + ψε
2,app)− g

(
ψε
1,app

)
− g

(
ψε
2,app

))
.

Multiply (5.1) by wε, integrate over Rd, and take the imaginary part: we get

ε

2

d

dt
‖wε‖2L2 6 ‖wε‖L2 (‖Lε‖L2 + ‖N ε

I ‖L2) + Im

∫

Rd

wεN ε
S .

The linear source term Lε is handled like in the case of a single coherent state
(Section 4):

‖Lε(t)‖L2 .
∑

j=1,2

∥
∥|x− qj(t)|3ψε

j,app(t)
∥
∥
L2 = ε3/2

∑

j=1,2

∥
∥|y|3uj(t)

∥
∥
L2

In view of Lemma 4.2, we infer

‖Lε(t)‖L2 . ε3/2eCt, t > 0.

Also, in view of Lemma 2.2,

Im

∫

Rd

wεN ε
S 6 2|λ|‖wε‖2L2 ,

so this term will be handled by Grönwall lemma. Therefore the core of the proof
lies in the control of Nε

I . Like in [10], we separate the time interval that we consider
into two parts: when the trajectories q1 an q2 are close to each other, and when
they are not, each case being treated with different arguments.

5.2. Crossing of coherent states. The analysis of the set where trajectories are
close to each other was performed in [10]:

Proposition 5.1 (Lemma 6.2 and Proposition 6.3 in [10]). For j = 1, 2, let (qj , pj)
be the solutions to (1.6) associated with initial data (q01, p01) 6= (q02, p02). Let
0 < γ < 1/2. For T > 0, set

Iε(T ) = {t ∈ [0, T ], |q1(t)− q2(t)| 6 εγ} .
• If T is independent of ε, we have

|Iε(T )| = O (εγ) .

• If in addition d = 1 and E1 6= E2, where

Ej =
p20j
2

+ V (q0j) ,
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then there exist C,C0 > 0 independent of ε ∈ (0, 1) such that

|Iε(t)| . εγeC0t|E1 − E2|−2, 0 6 t 6 C log
1

ε
.

In the region Iε, nonlinear interaction may occur; however, Proposition 5.1 im-
plies that the effects of such interaction remain negligible at leading order. Indeed,

we argue like in Section 3, and write, for 0 < η < min
(

1, 4
d+2

)

, using (3.5),

‖N ε
I ‖2L2(R2) . ε2

∑

j=1,2

(

‖ψε
j,app‖2+η

L2+η + ‖ψε
j,app‖2−η

L2−η

)

.

Like in Section 3, and now referring to Lemma 4.2 in the nonlinear case for Gaussian
profiles, this implies

‖N ε
I (t)‖L2(R2) . ε1−

dη
8 eCt, t > 0.

Proposition 5.1 then implies

(5.2)

∫

Iε(T )

‖N ε
I (t)‖L2 dt .

∫

Iε(T )

ε1−
dη
8 eCtdt . εγ+1−dη

8 eCT .

We emphasize the fact that in view of Proposition 5.1, the above estimate is valid
in general for T > 0 independent of ε ∈ (0, 1), and, when d = 1, for T 6 C log 1

ε for
some C > 0 independent of ε.

5.3. Separation of coherent states. The complement of the set Iε(T ) is the set
of times is when the trajectories of two coherent states are sufficiently far apart. We
recall a crucial result from [16], which shows some orthogonality phenomenon in the
case of Gaussian functions for the logarithmic nonlinearity. We state a simplified
version of the result from [16], in the sense that the assumptions considered there
are more general.

Lemma 5.2 (From Lemma 3.2 in [16]). For any d > 1, there exists Cd > 0 such
that the following holds. Let N ∈ N∗ and consider, for k = 1, . . . , N , qk ∈ Rd,
ωk ∈ R, λk > 0 and θk : Rd → R a real measurable function. Define, for all
x ∈ Rd,

ϕ(x) =
N∑

k=1

ϕk(x), ϕk(x) = eiθk(x)+ωk−λk|x−qk|
2

.

If

ρ :=

(

min
k 6=j

|qj − qk|
)−1

< ρ0 := min

( √
λ+

max(
√
δω + 1,

√
lnN)

,

√

λ−
d+ 2

)

,

where λ= = max
k

λk, λ− = min
k
λk, and δω := max

j,k
|ωk − ωj |, then

∥
∥
∥
∥
∥
g

(
N∑

k=1

ϕk

)

−
N∑

k=1

g (ϕk)

∥
∥
∥
∥
∥
L2(Rd)

6 CdN
3
2

λ+

ρ
d
2+1
√

λ−
e
−

λ
−

4ρ2
+maxj ωj .

We apply this lemma with N = 2,

θk(t, x) = arg bk(t) +
φnl(t, x)

ε
− Im ak(t)

|x− qk(t)|2
2ε

,

ωk(t) = log |bk(t)| −
d

4
log ε, λk(t) =

Re ak(t)

2ε
.
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For t ∈ [0, T ] \ Iε(T ), we have
(
e−Ct .

)
ρ 6 ε−γ .

On the other hand, in view of (4.4) and (4.5), Lemma 4.2 yields λk(t) & ε−1e−Ct

and

ρ0 &
1√
ε
e−Ct,

so the condition from Lemma 5.2 is fulfilled provided that eCt . εγ−1/2, which is
granted with 0 6 t 6 c log 1

ε for some c > 0 independent of ε ∈ (0, 1), since γ < 1/2.
Lemma 5.2 then implies, for t ∈ [0, T ] \ Iε(T ), and recalling Lemma 4.1 to bound
Reak from above,

(5.3)
1

ε
‖N ε

I (t)‖L2 . ε−
d
4−

1
2 eCt exp

(
−Cε2γ−1e−Ct

)
, t ∈ [0, T ] \ Iε(T ).

5.4. Conclusion. Putting (5.2) and (5.3) together, for any 0 < η < min
(

1, 4
d+2

)

,

1

ε

∫ T

0

‖N ε
I (t)‖L2dt . εγ−

dη
8 eCT + ε−

d
4−

1
2 eCT exp

(
−Cε2γ−1e−CT

)
.

In view of the preliminary estimates from Section 5.1, we get

d

dt
‖wε(t)‖L2 . ‖wε(t)‖L2 +

1

ε
‖Lε(t)‖L2 +

1

ε
‖N ε

I (t)‖L2

. ‖wε(t)‖L2 +
√
εeCt +

1

ε
‖N ε

I (t)‖L2 ,

hence from Grönwall lemma and the above estimate, for any 0 < η < min
(

1, 4
d+2

)

,

sup
t∈[0,T ]

‖wε(t)‖L2 .
√
εeCT +

1

ε

∫ T

0

eC(T−t)‖N ε
I (t)‖L2dt

.
√
εeCT + εγ−

dη
8 eCT + ε−

d
4−

1
2 eCT exp

(
−Cε2γ−1e−CT

)
.

Recall that this estimate is always true for T > 0 independent of ε ∈ (0, 1), and
that if d = 1, then it holds more generally for 0 < T 6 c1 log

1
ε for some c1 > 0

independent of ε. Up to decreasing c1, the last term is always O(εγ) (this is obvious
for T independent of ε). This yields the conclusion of Theorem 1.4, by replacing γ

with γ − dη
8 . But since the condition 0 < γ < 1/2 is open, and η > 0 is arbitrarily

small, γ − dη
8 is arbitrarily close to 1/2, hence the result.
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[19] P. Guerrero, J. López, and J. Nieto. Global solvability of the 3d logarithmic schrödinger
equation. Nonlinear Analysis: Real World Applications, 11(1):79–87, 2010.

[20] G. A. Hagedorn. Semiclassical quantum mechanics. I. The ~ → 0 limit for coherent states.
Comm. Math. Phys., 71(1):77–93, 1980.

[21] T. Hansson, D. Anderson, and M. Lisak. Propagation of partially coherent solitons in sat-
urable logarithmic media: A comparative analysis. Phys. Rev. A, 80(3):033819, 2009.

[22] M. Hayashi and T. Ozawa. The Cauchy problem for the logarithmic Schrödinger equation
revisited. Ann. Henri Poincaré, 2025. To appear.

[23] E. F. Hefter. Application of the nonlinear Schrödinger equation with a logarithmic inhomo-
geneous term to nuclear physics. Phys. Rev. A, 32:1201–1204, 1985.

[24] E. J. Heller. Time dependent approach to semiclassical dynamics. J. Chem. Phys., 62(1):1544–
1555, 1975.

[25] K. Hepp. The classical limit for quantum mechanical correlation functions. Comm. Math.
Phys., 35:265–277, 1974.

[26] S. D. Martino, M. Falanga, C. Godano, and G. Lauro. Logarithmic Schrödinger-like equation
as a model for magma transport. Europhys. Lett., 63:472–475, 2003.

[27] D. Robert and M. Combescure. Coherent states and applications in mathematical physics.
Springer, 2021.

[28] Z.-Q. Wang and C. Zhang. Convergence from power-law to logarithm-law in nonlinear scalar
field equations. Arch. Ration. Mech. Anal., 231(1):45–61, 2019.

[29] K. Yasue. Quantum mechanics of nonconservative systems. Annals Phys., 114(1-2):479–496,
1978.

[30] K. G. Zloshchastiev. Logarithmic nonlinearity in theories of quantum gravity: Origin of time
and observational consequences. Grav. Cosmol., 16:288–297, 2010.

[31] K. G. Zloshchastiev. Spontaneous symmetry breaking and mass generation as built-in phe-
nomena in logarithmic nonlinear quantum theory. Acta Phys. Polon. B, 42(2):261–292, 2011.

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Email address: Remi.Carles@math.cnrs.fr

School of Mathematics and Physics, University of Science and Technology Beijing,

Xueyuan Road 30, Haidian, Beijing 100083, China

Email address: math.dongfy@gmail.com

https://arxiv.org/abs/2411.01614

	1. Introduction
	1.1. Notion of criticality
	1.2. Main results
	1.3. Content
	1.4. Notations

	2. Preliminary results
	2.1. Some technical tools
	2.2. Cauchy problem
	2.3. Further estimates in the critical case

	3. Subcritical case
	3.1. Properties of app and 
	3.2. Linear approximation in the subcritical case
	3.3. Error estimate in the linear case

	4. Critical case: single coherent state
	4.1. General case
	4.2. Gaussian case

	5. Superposition in the Gaussian case
	5.1. Preparation of the proof
	5.2. Crossing of coherent states
	5.3. Separation of coherent states
	5.4. Conclusion

	References

