
HAL Id: hal-04914365
https://hal.science/hal-04914365v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Maquette Monad
Carlos Agon, Karim Haddad, Gonzalo Romero-García

To cite this version:
Carlos Agon, Karim Haddad, Gonzalo Romero-García. The Maquette Monad. 12th edition of the
ACM SIGPLAN International Workshop on Functional Art, Music, Modelling and Design (FARM),
Sep 2024, Milan, Italy. �hal-04914365�

https://hal.science/hal-04914365v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Maquette Monad ∗

Carlos Agon Karim Haddad Gonzalo Romero-Garcı́a
Sorbonne Université, CNRS, IRCAM, STMS, Paris, France

{agonc,karim.haddad,romero}@ircam.fr

Abstract
This article defines the semantics of maquettes in the visual
programming language OpenMusic (OM) using monads. A
maquette can be seen as a sequencer of functions. Although
maquettes have been widely used, their semantic have never
been formalized. Formalizing maquettes has multiple ben-
efits; primarily, we aim to provide a better understanding
for composers through the use of a mathematical language
rather than discursive semantics. In this work, we use a par-
ticular case of the state monad and show with examples how
this monad is visualized in OpenMusic. The use of these ad-
vanced concepts in the field of music and their availability
to composers aligns with our intention to bridge the gap be-
tween the theoretical and practical aspects of the intersection
between mathematics and music.

CCS Concepts • Software and its engineering → Gen-
eral programming languages; • Theory of computation
→ Program analysis

Keywords computer music, functional programming, mon-
ads.

1. Introduction
A sequencer called maquette was introduced since the begin-
ning of the OpenMusic (OM) programming language (Agon
C. 1998). The main idea behind the maquette was to con-
struct a sequencer not only for temporal objects but also to
allow the inclusion of programs (functions) in time. Mu-
sically, this sequencer allows to combine the temporal ar-
rangement of musical structures with their specification in
the form of musical algorithms. For a description of how
maquettes work, see (Bresson J. et al. 2011). For examples

∗ This research is supported by European Research Council ERC-ADG-
883313 REACH, and Agence Nationale de la Recherche ANR-19-CE33-
0010 MERCI.

[Copyright notice will appear here once ’preprint’ option is removed.]

of musical pieces composed with maquettes, see (Agon C. et
al. 2006).

Maquettes are highly efficient and widely used; however,
unlike the rest of OM where a formal semantics is given for
programs, maquettes were never formally defined and were
always seen as a sequencer with a complex behavior difficult
to understand. Thirty years after its computer implementa-
tion, this article provides a formal definition of what ma-
quettes are by separating their calculative and constructive
behaviors.

The semantic of the maquettes defined in this article is
based on the notion of monads, and in particular, the state
monad. The use of monads in music is not new; a pedagogi-
cal approach can be found in (Hudak P. et al. 2018). A more
practical application, which considers the passage of time as
a side effect taken in account by the Timed IO monad, is
defined in (Janin D. 2020).

This article is organized as follows. Section 2 provides
a quick overview of functional programming from the per-
spective of category theory, since the monad is a concept
originating from this theory. In this section, we also provide
a description of visual programs in OM from the perspec-
tive of functional programming. Additionally, we informally
show how maquettes work and particularly its dual function
as both a program and a sequencer.

In Section 3, we provide a definition of the monad from a
computer science perspective, which will serve as the basis
for defining the semantics of the maquettes. In particular,
we will attempt to argue for the necessity of the monad
to address the question: what does it mean to evaluate a
program over time?

Section 4 properly defines the semantics of the maque-
tte using the state monad. Section 5 presents some examples
illustrating how the different components of the monad are
visualized within the OpenMusic environment. In particular,
we will illustrate how the inclusion of a state allows for cer-
tain peculiarities inherent to the maquette, which materialize
the temporal and computational aspects of a musical piece.

Finally, in the conclusion, we analyze how the integra-
tion of advanced functional programming paradigms, such
as monads, with musical composition tools offers new per-
spectives and methodologies for understanding and manipu-
lating the temporal aspects of musical pieces.

1 2024/7/16



(a) (b)

Figure 1. Two programs in OM.

2. Preliminaries
In category theory, a category consists of a collection of ob-
jects and arrows between them, such that these arrows can
be composed. Each object in a category has a unique arrow
from itself to itself called the identity. For a precise definition
of a category, see (S. MacLane 1991). Programs in OM are
functions and they live in the ”category of types”. In the con-
text of functional programming objects in this category are
types, and the arrows are functions that transform elements
of one type into elements of another type.

The program transp def in Figure 1 (a) has the type
List Int → Int → List Int. It tells us that this program
has two inputs: a list of integers and an integer, and it pro-
duces a list of integers as a result. Graphically, the inputs
and the output of the program are represented as boxes, with
midics and tones for the inputs, and midilist for the out-
put.

Programs can be composed with other programs, yield-
ing new programs. Composition is at the core of functional
programming. We denote the composition of two functions
f and g by g ◦ f . If f has type a → b (noted f : a → b) and
g : b → c, then g ◦ f : a → c. In Figure 1 (b), the program
transp def is called with arguments (60 64 67) and 4, pro-
ducing a list of numbers that are interpreted as MIDI pitches
to create a chord. Informally, the program trans def takes a
list of MIDI notes midics and a number of semitones tones
and produces a new list midilist as a result of transposing
midics by n semitones.

The original idea behind maquettes is to position those
programs and their eventual compositions on a timeline to
construct a temporal musical structure from their evaluation.
Figure 2 shows a maquette in which we have placed the
program from Figure 1 (b) at two onsets of 1 and 3 seconds.

The issue with the maquette arises from the fact that when
we incorporate functions into a temporal sequencer, it leads
us to abandon the traditional semantics of functional pro-
gramming. This change implies that our programs cease to
be “pure” functions. Placing functions in a temporal con-
text introduces two main side effects: time can influence

Figure 2. A maquette with two programs.

the computation; computation can change the temporal po-
sitions of the programs.

Monads come to the rescue for separating the pure func-
tional part of maquettes from the aforementioned side ef-
fects. The concept of monad originates from category the-
ory, (M. Barr et al. 1966). Its use in functional programming
is due to (E. Moggi. 1991).

3. Monads
The main idea of monads is to change the output type of
all functions to a new type that sets the original type in a
new context where extra functional aspects can be taken into
acocunt. This change of type is made by the help of a functor.

A functor m from a category C to another category D
takes objects x from C and produces object m x in D. More-
over, for every arrow f : a → b, the functor produces a new
arrow m f : m a → m b. In the case of functional program-
ming, beacuse the categories C and D are the same (i.e., the
category of types) we use endofunctors. A classic example
of an endofunctor in programming is the List functor, (P.
Wadler. 1989), which for every type a produces a new type
List a and for every function f : a → b produces a new
function fmap : a → b → List a → List b.

A monadic function is a function whose output type is
modified to enrich the function with ”extra-functional” ac-
tions. A functor m will transform all functions f : a → b
into new functions f ′ : a → m b. These new functions are
called monadic functions. The problem with this transfor-
mation is that it breaks functional composition. If before we
could compose two functions f and g we can no longer do
this for the two correspondant monadic functions f ′ and g′.
We can not compose g′ ◦ f ′ because f ′ : a → m b and g′

: b → m c. The problem here is that g′ expects a b but f ′

provides it with a m b. Therefore, we need to define a new
composition operator called bind and denotated as >>=. The
type of >>= is m b → b → m c → m c. The role of >>=
is to take a monadic value, that is, a value of type m b, a
function f : b → m c; to extract a value x of type b from
the monadic value and apply the function f to x, in order to
return a monadic value of type m c.

To construct monadic values, we define an operator called
return : a → m a. For example, in the case of the List

2 2024/7/16



monad, if we define return as return x = [x] we can
create monadic values such as return (3) = [3]; return
(true) = [true], and so on.

DEFINITION 1. A monad is defined by a triplet consisting
of:

• a functorm to define new monadic types,
• a bind operator for the composition of monadic func-

tions,
• a return operator for the construction of monadic val-

ues.

To be a true monad, return and bind must satisfy the
following three laws:

• (return x) >>= f = f (x),
• mv >>= return = mv,
• (mv >>= f) >>= g = mv >>= λx.f(x) >>= g.

The following section defines the semantic of the maque-
ttes by using a particular case of the state monad.

4. Maquette as a monad
In order to introduce programs in a maquette, we will use
a particular kind of the state monad. The state monad

allows reading and writing data which can be used and
modified during the evaluation of a program. The minimal
informations we need to put a program into a maquette are
its onset and its duration. In our monad, which we call Maq
the state is given by a pair (Int, Int) where the first element
correspond to the onset and the second one to the duration.

The idea is to transform any function of type a → b
into a function of type (a × (Int, Int)) → (b, (Int, Int)),
it is, a function that, in addition to performing a calcula-
tion, can read an onset and a duration as inputs and return
a result along with a new onset and a new duration, po-
tentially modified. The type thus obtained is not a monadic
type, but we can easily write it in the following way: a →
(Int, Int) → (b, (Int, Int)). Thus, the functor that con-
structs our monadic functions, called Maq, can be defined
as follows:

Maq b = (Int ,Int) → (b,(Int ,Int)).

Maq transforms any type b into a functional type that,
given a pair (onset : Int, duration : Int) returns a type b
along with a new pair (onset : Int, duration : Int).

Once the functor Maq is defined, all that remains is to
define the return and bind operators to obtain our monad.

For return, which has type a → Maq a , we give the
following definition:

return x = Maq λ(o,d).(x,(o,d))

For example, (return 5) = Maq λ(o,d).(5,(o,d)). To
evaluate the function inside this monadic value, we use
the operator runState of type Maq a → (Int, Int) →
(a, (Int, Int)). runState takes a monadic value of the

Maq monad and an initial pair (onset, duration), and
returns a pair containing a result of type a and a new pair
(onset, duration).

Thus, for example, runState ((return 5), (0,1))

will return (5,(0,1)).
For bind (>>=), which has type Maq a → (a →

Maq b) → Maq b , we give the following definition:

x >>= g =

Maq λ(o,d).
let (x’,(o’,d’)) = runState x (o,d) in

runState (g x’) (o’,d’’)

Take for instance x = (return 5) and g : Int →
Maq List Int defined as:

g n = Maq λ(o,d).([n*2],o+2,d+2)

And now let’s execute the expression runState (x >>=

g, (2,4)) which is equivalent to executing the following
program:

let(x’,(o’,d’))= runState(return 5)(2 ,4) in

runState (g x’) (o’,d’’)

The result of runState (return 5) (2,4) returns
x’=5; o’=2 et d’=4. With these values

(g 5) = Maq λ(o,d).([5*2] ,o+2,d+2)

Finally, runState (g 5) (2,4) = ([10], (4,6))

which is of type (List Int, (Int, Int)) as we expected.
We also define 2 functions that allow manipulating the

state of monadic values in Maq:

• get : Maq (Int, Int) which return the state value (o,d)
being passed around,

• put : (Int, Int) → Maq () to replace the current state
value with a new (o,d) state.

The Maq monad is a special case of the state monad where
the state is fixed to a pair (onset, duration). For this reason,
we do not prove monad laws for Maq; a proof that state
monad satisfies the three monad laws can be found in (B.
O’Sullivan. et al. 1991).

5. Graphical Representation of the Maquette
monad

In OM, a temporal program is a standard program extended
with a default input called state. Temporal programs are
the graphic representation of Maq monadic functions. The
program in Figure 1 (b) has been extended in Figure 3 (a),
where we can see the ”state” box with three outputs. The
first one return the state of the program, which is the graphic
equivalent of the get operator. The second and third outputs
respectively retrieve the onset and the duration of this state.

A maquette proposes two main relationships between the
temporal program it contains: a causality relationship and a
temporal relationship. The causality between two temporal
programs is defined with respect to the order of evaluation.

3 2024/7/16



(a)

(b)

Figure 3. The onset changes the computation.

Similarly, the temporal line of the maquette allows the com-
parison of temporal program based on their onset. The fol-
lowing examples show possible combinations of these two
relationships.

Figure 3 (b), shows the temporal program of Figure 3 (a)
situated at three different onsets: 0, 2000, and 4000 mil-
liseconds. Each time the program is evaluated (by using
runState), a state is given as an argument containing a pair
(onset,duration). Since the program has access to this state
each time and because the program uses the onset to cal-
culate the number of semitones by which the chord will be
transposed, the three results will be different (i.e., transposed
by 0, 2, and 4 semitones). In this example, we would say that
the calculation result depends on the position of the tempo-
ral program. To quote (V. R. Pratt. 1996), one could say that
“[temporal programs] bear time and change information”.

Figure 4 (c) shows a maquette where two temporal pro-
grams are composed. The temporal program located at the
top is shown in Figure 4 (a) (we will call it, program 1). This
produces a chord but also sends as a result the list of MIDI
notes of the chord as well as the state with which the tempo-
ral program is called.

The lower temporal program in Figure 4 (b) which we
will call Program 2, receives the MIDI notes and creates a

(a)

(b)

(c)

Figure 4. The computation changes the onset.

chord where notes are transposed by 7 semitones. Addition-
ally, the state of the Program 1 is modified; its onset is set
immediately after the onset plus the duration given by Pro-
gram 2. It doesn’t matter where the Program 2 is placed,
after the evaluation, Program 1 will change its onset to be
immediately after it. In this case, we will say that the calcu-
lation conditions the temporal organization. Or, quoting (V.
R. Pratt. 1996), again,“states bear information and change
time”.

Another feature found in this last example consists of
a kind of dichotomy between the two orders defined by
time and composition. From the composition perspective,
Program 1 takes place before Program 2. However, from the

4 2024/7/16



temporal perspective, it is the opposite. This implies that the
construction of one chord depends on another that is situated
in the future. In other words, the second program, despite
being evaluated later, actually runs earlier in time, creating a
relationship where the outcome of one chord is conditioned
by an event that has not yet occurred in the standard temporal
flow. This inversion of orders opens up new possibilities for
modeling how events can interrelate in a context where time
and composition do not follow the same conventions.

6. Conclusions
Through the formalization of maquettes in OM with the help
of monads, this article provides an example of the multiple
possibilities of using functional programming paradigms as
tools for musical composition. In particular, we aim to offer
new perspectives and methodologies for understanding and
manipulating the temporal aspects of musical pieces. The
primary characteristic of a maquette comes from the possi-
bility of combining computations and representations within
the same object. Regarding computation, a maquette as the
fonctional composition of temporal functions. However, un-
like classical functional composition, in a maquette, the on-
set and the duration of these temporal programs, can play a
determining role in the computation.

This formalization reflects our commitment to popularize
access to advanced musical tools, thereby promoting a more
inclusive musical landscape. Category theory is a discipline
extensively studied by expert musicologists. Mazola’s pio-
neering book,(G. Mazzola 2002), has given rise to many
other publications and various applications focusing on the-
ory and analysis. Few studies are based on the use of cat-
egory theory for compositional purposes, although we can
cite the works of (A. Popoff. et al. 2016). With this article,
we wanted to show that the concept of monad, specific to
category theory and known for its difficulty in understand-
ing, can be explained through a generative application.

For this, we took a detour and first looked at how a monad
is used in functional programming. In category theory, a
monad is defined as a triplet (T, µ, η) where T is an end-
ofunctor and µ and η are two natural transformations called
join and return, see Figue 5.

Natural transformations in category theory find their
equivalent in generic functions in functional programming;
thus, µ and η play the roles of bind and return, respectively.

Despite this first abstraction reduction, the monad in
functional programming remains an abstract concept dif-
ficult to grasp without resorting to a real application. We
have attempted to explain in Section 3 the general utility
of a monad in the context of functional programming, but
we believe it is important to provide a concrete application,
such as in the case of maquettes, which might further moti-
vate composers to engage in this type of study.

We conclude this article by arguing that the monad, is
above all, an abstraction of functional composition. That

Figure 5. Monad diagram.

is, the monad makes the compositional operator ◦ variable.
Understood in this way, the use of monads allows for the
definition of spaces where functional composition can be
arbitrarily defined (while respecting the laws, of course).
This opens a door to the creation of novel relationships
between musical components.

OM is open source; it can be downloaded at https:

//openmusic-project.github.io

References
C. Agon .OpenMusic : Un langage visuel pour la composition

musicale assistée par ordinateur”. PhD Paris 6 University, 1998.

C. Agon, Assayag G., Bresson J. The OM Composer’s Book 1.
Éditions Delatour France / Ircam-Centre Pompidou, 2006.

M. Barr, J. Beck. Acyclic models and triples. Proc. Conf.
Categorical Algebra. Springer-Verlag, Berlin (1966), 336–343.

Bresson J., Agon C. Visual Programming and Music Score
Generation with OpenMusic”. IEEE Symposium on Visual
Languages and Human-Centric Computing. Pittsburgh, 2011.

P. Hudak, D. Quick. The Haskell School of Music : From signals
to Symphonies. Cambridge University Press, 2018.

D. Janin. A Timed IO monad. Practical Aspects of Declarative
Languages (PADL), New Orleans, United States, 2020.

S. MacLane. Categories for the Working Mathematician. Springer-
Verlag, New York, Graduate Texts in Mathematics, Vol. 5. 1971.

G. Mazzola. The topos of music. Birkhäuser Verlag ed. 2002.

E. Moggi. Notions of computation and monads. Information and
Computation, 1991.

B. O’Sullivan, et al. Real World Haskell. O’Reilly Media, 2008.

A. Popoff , C. Agon , M. Andreatta , A. Ehresmann. From K-
Nets to PK-Nets: A Categorical Approach. Perspectives of New
Music. Volume 54, Number 2, Summer 2016.

V. R. Pratt. The Duality of time and information. Stanford
University, 1996.

P. Wadler. Computational lambda calculus and monads. In IEEE
Symposium on Logic in Computer Science 1989.

5 2024/7/16

https://openmusic-project.github.io
https://openmusic-project.github.io

	Introduction
	Preliminaries
	Monads
	Maquette as a monad
	Graphical Representation of the Maquette monad
	Conclusions

