
HAL Id: hal-04914353
https://hal.science/hal-04914353v1

Submitted on 10 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Programming for Logic controller Synthesis
Mathieu Roisin, Pierre-Alain Yvars, Bernard Riera

To cite this version:
Mathieu Roisin, Pierre-Alain Yvars, Bernard Riera. Constraint Programming for Logic controller
Synthesis. 2024 10th International Conference on Control, Decision and Information Technolo-
gies (CoDIT), Jul 2024, Vallette, Malta. pp.1843-1848, �10.1109/codit62066.2024.10708360�. �hal-
04914353�

https://hal.science/hal-04914353v1
https://hal.archives-ouvertes.fr

Abstract—This article deals with the use of a constraint

satisfaction problem (CSP) modeling with a constraint

programming (CP) solver to support the synthesis of logical

controllers for Programmable Logic Controller (PLC). In this

work, manufacturing systems are considered and are seen as

Discrete Event Systems (DES) with logical inputs (sensors) and

logical outputs (actuators). The controller is seen as a scheduler

of operative (or functional) independent tasks. The methodology

is based on the definition of constraints. The solver will indicate,

based on the previous PLC variables state, the possible tasks

which could be activated. In addition, it is proposed a solution to

get only one solution, enabling, in the future, a possible

implementation in a PLC.

I. INTRODUCTION

Logic controllers are used in a very large number of systems

that often are critical systems. Today, Programmable Logic

Controllers (PLC) are the most popular hardware in the

industrial world to support logic controller programs. The

operation of an industrial programmable logic controller can

be broken down into several sequential steps: data acquisition

from sensors (using a I/O memory map), program execution

which calculates the state of actuators, actuators update. This

process repeats in a continuous loop (PLC scan time),

allowing the PLC to effectively control and automate

industrial processes according to the specific needs of the

application.

To improve the reliability of logic controllers, many formal

methods have been proposed over the last thirty years [3]. The

method presented in this paper belongs to the class of formal

synthesis approaches of which goal is to produce automatically

a correct by construction logic controller by using the

specifications and the properties to be satisfied. In this paper,

to achieve this goal, we propose to use a constraint

programming (CP) approach. The main idea is to express the

properties from the specification that the controller must

necessarily satisfy to support the design of the logical

controller having to be programmed in the PLC. The main idea

is, from the definition of constraints, knowing the cyclic

behavior of a PLC, to use a CP solver, to know the possible

actions being able to be performed at the current state. To do

this, we propose a taxonomy of constraints to be satisfied by a

logic controller and then a formalization using a problem

modelling language associated with a CP solver on mixed

domains. The approach is illustrated by a case study of the

discrete control [1] of a manufacturing system [2].

1 ISAE-Supmeca, Quartz, EA7393, 3 rue Fernand Hainaut, 93407 Saint Ouen
Cedex, France (e-mail : mathieu.roisin@isae-supmeca.fr, pierre-

alain.yvars@isae-supmeca.fr)
2 CReSTIC, University of Reims Champagne-Ardenne Reims, Moulin de la
Housse, Chem. des Rouliers, 51100 Reims, France (e-mail :

bernard.riera@univ-reims.fr)

The paper is organized as follows. Section 2 describes the

different works that already exist. In section 3, constraint

programming is detailed. In section 4, the methodology to

model the problem is explained. In section 5, we use the

methodology on a study case. In section 6, concluding

remarks are discussed.

II. RELATED WORKS

A. Logic Controller Design

Designing logical controllers is a complex task that requires

great rigor. Indeed, dysfunctions of controlled systems can be

dangerous for operators and the environment. This is why it

is essential to apply rigorous and proven design

methodologies [3] to ensure the safety and reliability of

control systems. The Evaluation Assurance Level (EAL), ISO

15408 [4] standard provides a recognized framework for

evaluating the security of critical applications.

B. Algebraic synthesis for logic controllers

Research on algebraic function has led to the definition of a
way to formalize each requirement and determine whether the
set of requirements is coherent [5]. A logic filter was then built
using this approach [6] in order to secure existing PLC
programs. This has led to the development of an algebraic
synthesis and logic filter approach to the control of cyber-
physical manufacturing systems [7] that can synthesize a logic
controller.

C. Integrating a solver inside a PLC

The synthesis of a logic controller can be equivalent to a
Boolean Satisfaction Problem (SAT). Integration of a SAT
solver inside a PLC has been achieved [6]. Nevertheless, the
performance achieved with the proposed algorithms may not
be satisfactory enough for complex industrial applications.
The development of an efficient local search algorithm that
can be implemented in an API therefore remains an open
problem.

III. CONSTRAINT PROGRAMMING

A. Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a

triplet (X, D, C) such that [8]:

- X = {𝑥1, 𝑥2, … , 𝑥𝑛} is a finite set of n variables which we

call constrained variables.

- D = {𝑑1, 𝑑
2

, … , 𝑑𝑛} is a finite set of n variable value

domains of X such that: ∀ 𝑖 ∈ {1, … , 𝑛}, 𝑥𝑖 ∈ 𝑑𝑖

Constraint Programming for Logic controller Synthesis

Mathieu Roisin1, Pierre-Alain Yvars1 and Bernard Riera2

 - C = {𝑐1, 𝑐2, … , 𝑐𝑝} is a finite set of p constraints, such

that ∀ 𝑖 ∈ {1, … , 𝑝}, ∃! 𝑋𝑖 ⊆ 𝑋 / 𝑐𝑖 (𝑋𝑖)
A constraint is any type of mathematical relation (linear,

quadratic, non-linear, logical…) covering the values of a set of

variables. A CSP is declarative and constraints can be defined

in extension as well as in intension.

The variable domains can be:

• Discrete: in the form of sets of possible values.

• Continuous: in the form of intervals on real numbers

Solving a CSP boils down to instantiating each of the

variables of X while meeting the set of problem constraints C.

B. Solving a discrete CSP

In the case of logic controller synthesis, we are interested in
discrete CSP, also known as CSP on finite domains [9]. A
solution to a finite-domain CSP is an assignment of a value to
each variable such that the constraints are satisfied whenever
possible. Otherwise, the CSP has no solution, especially if the
CSP is over-constrained. The main way to solve CSP is called
Constraint Programming. The resolution principle alternates
the choice of a non-instantiated variable and a value for this
variable in its domain and the propagation of this choice
through the problem's constraint network C. Propagation
algorithms (called propagate() in Algorithm 1) allow the
solver to reduce the domain of each variable in such a way that
values that do not satisfy the constraints are removed. CP is a
global and admissible method: on the one hand the domains of
the variables are iteratively reduced until finding the
solution(s) and on the other hand, all the given solutions
necessarily respect the constraints of C. Moreover, a CSP is a-
causal and the whole set of solutions can be generated via
constraint programming solving mechanisms. Finally, if a
problem has no solution, this means that the CSP becomes
inconsistent and this is detected by the resolution algorithm (cf
Algorithm 1).

Algorithm 1: Solving a discrete CSP
function CSPSolve (X, D, C, stack=[D])

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑓𝑎𝑙𝑠𝑒

while (𝑛𝑜𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∧ 𝑋 ← 𝑝𝑜𝑝(𝑠𝑡𝑎𝑐𝑘)) do

 𝑠 ← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒()

 if s 𝐭𝐡𝐞𝐧

 𝐢𝐟 (∀𝑥𝑖 ∈ 𝑋 , 𝑥𝑖 ∈ 𝑑𝑖𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛))

 then 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑡𝑟𝑢𝑒

 else Choose 𝑥𝑖 ∈ 𝑋 , 𝑥𝑖 ∈ 𝑑𝑖 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛

 Choose one 𝑣𝑖𝑗 ∈ 𝑑𝑖

 push(stack, {𝑑1, … , 𝑑𝑖\{𝑣𝑖𝑗}, … , 𝑑𝑛})

 push(stack, {𝑑1, … , {𝑣𝑖𝑗}, … , 𝑑𝑛})

 end if

 end if

end while

if solution then return 𝐷 else return ∅

end function

The advantages of constraint programming compared with

solution engines based on the SAT problem [10] are:

• the possibility of directly using non-Boolean domains

(integers, floats)

• the possibility of mixing Boolean, integers and float

variables on a same constraint

• the existence of algorithms dedicated to particular

sub-problems also called global constraints.

C. Global constraints

A global constraint is a union of simple constraints. The

advantage is twofold: better expressiveness and more efficient

propagation thanks to a propagation method specific to each

global constraint. Many global constraints have been defined

and developed by the CP community [11, 12]. A global

constraint that we will be using in the remainder of this article

is the table constraint, also known as the catalogue constraint

[13]. The table constraints is used to make a set of variables

subject to compliance with combinations of values expressed

in the form of a set of tuples. Very efficient propagation

algorithms dedicated to this type of constraint exist in the

literature. They can be used to remove tuples that have become

impossible during the solving process. In term of solving, table

constraints are more efficient than a flat representation of the

list of tuples as a disjunction of conjunctions.

CSP on finite domains can be used to deal with Boolean

variables and Boolean algebra. The Boolean operators and, or,

not can be represented in {0,1} as shown in Table 1. Note that

several representations are possible for the ‘and’ and ‘or’

operators. Moreover, table constraints can theoretically encode

any constraints and more precisely any constraints on binary

domains.

TABLE 1: EQUIVALENCE BETWEEN BOOLEAN DOMAIN OPERATOR AND

FINITE DOMAIN OPERATOR

Operator Boolean variables

in {false, true}

Integer variables

 in {0, 1}

x and y 𝑥 ∗ 𝑦 𝑥 ∗ 𝑦 , min (𝑥, 𝑦)

x or y 𝑥 + 𝑦 min(1, 𝑥 + 𝑦),
max (𝑥, 𝑦)

not x 𝑥 ̅ 1 − 𝑥

x xor y 𝑥 ∗ �̅� + �̅� ∗ 𝑦 |𝑥 − 𝑦|

Several libraries exist for constraint programming on finite

domains. These include the free libraries Choco [14] or ACE

[15] with Java and Gecode [16] with C++. These libraries

require mastery of a host programming language such as C++

or Java, depending on the case. Some initiatives propose to

separate modelling and resolution by providing a flat CSP

modeling language and a resolution tool. Examples include

minizinc [17] and pyCSP3 [18]. A few rare projects offer a

structured modelling language combined with a resolution tool

on mix domains (finite domains and intervals). These include

the DEPS language [19] and the DEPS Studio IDE[20]. The

work described in this article has been implemented in DEPS

and under the DEPS Studio IDE and solver.

IV. TAXONOMY OF DESIGN CONSTRAINTS FOR LOGIC

CONTROL SYSTEM SYNTHESIS

In this paper, we consider that a manufacturing system

controller must schedule operative tasks. In other words, the

logic controller must authorize or not the activation of tasks,

which could be in two different states: idle or busy.

For the rest of the article, we will assume these hypotheses:

• Operative tasks are independent from each other.

• During its execution, a task does not require any

external conditions.

• If a task is authorized to start, it starts.

• Achievement of one or several operative tasks are

necessary conditions to authorize an operative task.

• An operative task stops only when it reaches its final

condition.

• The system can be expressed with discrete values.

All variables in this section are Boolean variable with the

usual equivalence {𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒} ⇔ {0, 1}

One can notice that task authorization conditions and task

final conditions are events.

A. State representation

A manufacturing system has uncontrollable and

controllable variables.

Uncontrollable variables are sensors and observers. We will

note the state of those variables with the following notation:

• 𝑆𝑖: State of the sensor i

• 𝑂𝑖: State of the observer i

Controllable variables in this system are tasks. We will note

the state of a task with the following notation:

• 𝑇𝑖: State of the task i (1 for busy and 0 for idle)

Considering the PLC feature, we use and note the previous

state of a variable we will use the prefix “𝑝_” in front of the

variable. For example: 𝑝_𝑇𝑖 is the value of the variable 𝑇𝑖 in

the previous state.

B. Structural invariants of the synthesis problem

By its very nature, the field of automatic engineering

introduces a set of structural invariants internal to each task. A

task begins when it is authorized and ends when it reaches his

final condition. A task cannot be authorized and reached his

final condition at the same time. The final condition of a task

has value 0 if the task is not active.

So, we defined 2 variables for each task:

• 𝐴𝑢𝑡_𝑇𝑖: Authorization to start task i

• 𝐹𝑖𝑛𝑎𝑙_𝑇𝑖: the task i is achieved.

The relation between the previous state of a task and the

current state of a task is defined by (1):

𝑇𝑖 = 𝐴𝑢𝑡_𝑇𝑖 𝑜𝑟 𝑝_𝑇𝑖 𝑎𝑛𝑑 𝑛𝑜𝑡 𝐹𝑖𝑛𝑎𝑙_𝑇𝑖 (1)
An authorization of a task depends on different variables

that will depend on the last and current state of the problem.

We can identify different variables that will impact the value

of the authorization:

• 𝐼𝑛𝑖𝑡_𝑇𝑖: Initial condition of the Task i. This variable

has a value of 1 if all the requirements that imply

sensors or observers allow the task to be authorized.

• 𝑆𝑦𝑛𝑐_𝑇𝑖: Synchronization condition of the Task i.

This variable has a value of 1 if all the necessary tasks

to authorize the task i has been performed before.

• 𝐼𝑛𝑐𝑜_𝑇𝑖: Incompatibility condition of the Task i. This

variable has a value of 1 if all the requirements that

imply the mutual exclusion between tasks allow the

task i to start.

• 𝑃𝑟𝑖𝑜_𝑇𝑖: Priority conditions of the Task i. This

variable has a value of 1 if all priority expressions

allow the task i to start. This condition is useful only

if we want to have a deterministic solution.

In the case of only one solution is desired, a task is authorized

as soon as possible if the initial, synchronization, safety, and

priority conditions are satisfied, and the task was not active in

the last state as in (2):
𝐴𝑢𝑡_𝑇𝑖 =

𝑆𝑦𝑛𝑐_𝑇𝑖 𝑎𝑛𝑑 𝐼𝑛𝑖𝑡_𝑇𝑖 𝑎𝑛𝑑 𝐼𝑛𝑐𝑜_𝑇𝑖 𝑎𝑛𝑑 𝑃𝑟𝑖𝑜_𝑇𝑖 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑝_𝑇𝑖 (2)

Otherwise, if all the possible solutions for task activation are

expected, we would have (3):
𝐴𝑢𝑡_𝑇𝑖 ≤

𝑆𝑦𝑛𝑐_𝑇𝑖 𝑎𝑛𝑑 𝐼𝑛𝑖𝑡_𝑇𝑖 𝑎𝑛𝑑 𝐼𝑛𝑐𝑜_𝑇𝑖 𝑎𝑛𝑑 𝑃𝑟𝑖𝑜_𝑇𝑖 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑝_𝑇𝑖 (3)

In this case, if an authorization could have a value of 1, we will

have 2 different solutions, one with authorization value 1 and

another with authorization value 0.

C. Task synchronization

To define the constraints, we propose to fill in a

“Synchronization Table” (Table 2). This one contains all the

necessary information: initial condition, previous tasks,

subsequent tasks, final conditions and incompatibility with

tasks. The behavior of each task, because the tasks are

independent, can be easily modelled using for instance a Petri

net or a Grafcet [21]. From these task models initial and final

conditions are known. We suppose in this paper, that tasks do

not need more information to be authorized.
TABLE 2: EXEMPLE OF SYNCHRONIZATION TABLE

Task
Initial

Condition

Previous

Tasks

Sub

sequent

tasks

Final

Condition

Incompatibility

with task

𝑖 𝐼𝑛𝑖𝑡_𝑇𝑖 Task j Task k 𝐸𝑛𝑑_𝑇𝑖 Task y

𝑥 𝐼𝑛𝑖𝑡_𝑇𝑥
Task y
and
Task z

Task y
and
Task m

𝐸𝑛𝑑_𝑇𝑥
Task z and
Task m

𝑎 𝐼𝑛𝑖𝑡_𝑇𝑎
Task b or

Task c

Task b
or
Task c

𝐸𝑛𝑑_𝑇𝑎

To determine if a task has all its previous tasks performed,

tokens are used. When a task is performed, a token for each

subsequent task is created. Each task that starts (i.e.

authorized) will consume each token that allows this task to

start.

We define a variable for each token:

• 𝐺𝑇𝑖_𝑗: Token created by task i for the task j

• 𝐺𝑇𝑖_𝑗𝑘: Token created by task i for the task j or k

Therefore, the synchronization condition of a task is a

combination of tokens that allows the task to start (is 1 if all

the tokens needed to start the task are available, otherwise it is

0).

The evolution of the value of a token can be expressed by

(3) with the task i that uses the token and the task y that creates

the token:

𝐺𝑇𝑦_𝑖 = 𝐹𝑖𝑛𝑎𝑙_𝑇𝑦 𝑜𝑟 𝑝_𝐺𝑇𝑦_𝑖 𝑎𝑛𝑑 𝑛𝑜𝑡 𝐴𝑢𝑡_𝑇𝑖 (4)

D. Priority between tasks

The domain of solutions that satisfies the requirements can

have multiple degrees of freedom. Thus, for a unique previous

state, we can have multiple possible valid current states. The

number of possible valid current states is two to the power of

the number of degrees of freedom. At least one degree of

freedom is created by each incompatibility condition and token

that can be consumed by more than one task. These degrees of

freedom involve tasks in the constraint that created that degree.

Some of these degrees of freedom may already be constrained

by the synchronization table. However, without analyzing the

problem, we cannot be sure that all of these degrees of freedom

are constrained. If we want a deterministic solution (i.e. one

solution), we need to constrain each of these degrees of

freedom. To constrain them, we defined an equation for the

value of priority of each task. The way we constrain each of

them depends on how we want the system to function.

V. CASE STUDY

This section is a proof of concept to show in more detail

how the proposed methodology works, as well as to

demonstrate its effectiveness and current limitations. The

model is implemented in the DEPS Studio IDE with the DEPS

language.

A. Study system

The study system is a system for packaging liquids in
bottles (Fig. 1). This problem is taken from [2]. The operating
part of this system consists of a turntable around which four
separate stations are located:

• At station 1: A robot manipulator is used to load

bottles onto the turntable from an empty bottle feed

chute.

• At station 2: The bottles are filled.

• At station 3: The bottles are capped and sealed.

• At station 4: The same robot manipulator is used to

unload the bottles from the turntable into an

evacuation chute.
To ensure the smooth operation of this production system, the
system is divided into 6 operational tasks as listed in Table 3.

Fig. 1. Study system [2]

TABLE 3: TASKS DESCRIPTION

Task Component Description

0 Turntable Rotate the rotary table by a quarter turn

1 Robot manipulator Place bottle on the turntable at station 1

2 Filling station Fill the bottle at station 2

3a Sealing station Grab a cap at station 3

3b Sealing station Cap the bottle at station 3

4 Robot manipulator Evacuate bottle from turntable at station 4

The available sensors in this system are:

• Auto: Automatic mode is activated.

• EndRot: Turntable has finished his rotation.

• BottleStandby: A bottle is waiting to be grabbed and

loaded on the turntable.

• BottlePlaced: A bottle is place on the turntable at

station 1.

• BottleFilled: The bottle at station 2 is full.

• CapWaiting: A cap is waiting to be grab.

• CapGrabbed: A cap is grabbed at station 3.

• BottleCapped: The bottle at station 3 is capped.

• EmptyChute: The evacuation chute is empty.

• BottleEvacuated: The bottle at station 4 is evacuated

in the evacuation chute.
Table 4 indicates for each task initial conditions, previous

tasks, subsequent tasks, final conditions, and incompatibility
with other tasks.

TABLE 4: SYNCHRONIZATION TABLE

Task
Initial

Condition

Previous

tasks

Sub

sequent

tasks

Final

Condition

Incompatibility

with task

0 Auto
1, 2, 3b
and 4

1, 2, 3b
and 4

EndRot 1, 2, 3b, 4

1 Bottle
Standby

0 0 Bottle
Placed

0, 4

2 0 0 Bottle
Filled

0

3a Cap
Waiting

3b 3b Cap
Grabbed

3b

3b 0 and 3a 0 and 3a Bottle
Capped

0, 3a

4 Empty
Chute

0 0 Bottle
Evacuated

0, 1

B. DEPS Model creation

The model is implemented in the DEPS Studio IDE with the

DEPS language. Each of the variables that will appear in this

section is initialized as Boolean variable in {0,1}.

1) Structural invariants of the synthesis problem

We have a total of six tasks that we need to set up the

invariant expression between variable of these tasks.

Invariants expressions are the same as explain in part IV.

These expressions are:

• The one that defined the value of the state of the task
with the previous state and the authorization and the
final condition that is (1).

• The second one is the expression of the authorization
value in function of the previous state of the task and
the synchronization, initial, incompatible and priority
condition that is (2).

Fig. 2 shows how these expressions are integrated for the
task 0 in the DEPS Studio IDE.

Fig. 2. DEPS Invariants expression for variable for task 0 of the system

(*-------------------Problem invariant expression--------------------*)

T0=Aut_T0 or (p_T0 and not (Final_T0));
AutT0=Sync_T0 and Init_T0 and Prio_T0 and Inco_T0 and not (p_T0);

2) Task synchronization
 To implement the synchronization requirement between
tasks, we use the tokens to create relationships between
synchronization conditions and tokens. Fig.3 show how we
implement this expression for the synchronization of the task
0 in DEPS Studio IDE.

Fig. 3. DEPS Synchronization condition for task 0 of the system

Then we need to create the relation that will make token
change. Therefore, we create a relation between tokens, the
previous state of the token, task authorization and final
condition. To implement how tokens change at each PLC cycle
in DEPS we decide to use an extension constraint, named as
catalog. This takes as arguments, variables that this constraint
must constrained and the data table describing the different
possible tuples (Fig.4). This table is equivalent to (4).

Fig. 4. DEPS Token Creation and Usage table for extension constraint

Then we can constrain each token using a catalog constraint to
follow the constraints of that table. Fig. 5 shows the constraint
created in the DEPS for each token created by the end of the
task 0.

Fig. 5. DEPS Catalog constraint to change token’s value created by task 0.

3) Initial, final and incompatibility conditions

Using the synchronization table, we set the value of each

initial condition and final condition (Fig.6.).
Fig. 6. DEPS model of system Initial Condition and final Condition

Then we express the incompatibility requirements (Fig.7.).

All incompatibility requirements are defined in the Task

Synchronization table. There are three incompatibility

conditions:

• Task 0 with task 1,2,3b and 4

• Task 1 with task 4

• Task 3a with task 3b

We will use a suffix “_ni” to indicate the sub-variable number

i of a variable A such that the variable A is equal to the

conjunction (and operator) between each A_ni.

Fig. 7. DEPS Incompatibly Requirements between task 1 and 4

4) Priority between tasks

Each of these incompatibility requirements creates one

degree of freedom for a total of three. If we want to have a

deterministic behavior, we must constrain these degrees of

freedoms. By analyzing the order in which tasks are

performed, two of the three degrees of freedom are already

constrained. However, we will still constrain these degrees,

even if they are already constrained, to show that the method

works without analyzing the order in which the task is

performed.

Here is how we will constrain them:

• T1 has priority over T4 (From T1 incompatible with

T4).

• T1 and T2 and T3b and T4 has priority over T0

(already constrained) (From T1 and T2 and T3b and

T4 incompatible with T0).

• T3b has priority over T3a (already constrained)

(From T3a incompatible with T3b).

To do this, we use the equation derived from the requirement

that created this degree of freedom. We replace the

initialization value of this variable with its priority value, and

we replace the value of the other task that constrains this value

with the value of the authorizations of those tasks without the

impact of that requirement (Fig. 8).
Fig. 8. DEPS System Task Priority

C Result

If the system has incoherent requirements, then the solver will

immediately return no solution. By setting the previous state

of the system and the value of each sensor, the solver will give

us the next state of the system. If the initial state violates at

least one requirement the solver return no solution. If we use

Table TokenModification

Attributes

Token : Boolean ;

p_Token : Boolean ;

AutT : Boolean ;
FinalT : Boolean ;

Tuples

[0,0,0,0],
[1,0,0,1],

[0,0,1,0],

[0,0,1,1],
[1,1,0,0],

[1,1,0,1],

[0,1,1,0],
[1,1,1,1]

End

(*Token Created by T0*)

Catalog([GT0_1, p_GT0_1, Aut_T1, Final_T0], TokenModification);

Catalog([GT0_2, p_GT0_2, Aut_T2, Final_T0], TokenModification);
Catalog([GT0_3b, p_GT0_3b,Aut_T3b,Final_T0], TokenModification);

Catalog([GT0_4, p_GT0_4, Aut_T4, Final_T0], TokenModification);

(* T4 cannot start if T1 can start*)

PrioT4=not (SyncT1 and PrioT1 and InitT1 and IncoT1n1);

(*T0 cannot start if T1 or T2 or T3b or T4 can start*)

PrioT0=not ((Sync_T1 and Prio_T1 and Init_T1 and Inco_T1_n2) or
(Sync_T2 and Init_T2 and Prio_T2) or (Sync_T3b and Prio_T3b and

Init_T3b and Inco_T3b_n2) or (Sync_T4 and Prio_T4 and Init_T4 and

Inco_T4_n2));

(* T3a cannot start if T3b can start*)

PrioT3a=not (Sync_T3b and Prio_T3b and Init_T3b and Inco_T3b_n1);

(*Each Priorty variable that has not been given a value are equal to 1*)

PrioT1=1; PrioT2=1; PrioT3b=1;

(*---------------------------------FinalsOfTasks--------------------------------*)

Final_T4=BottleEvacuated and p_T4; Final_T0=EndRot and p_T0;
Final_T3a=CapGrabbed and p_T3a; Final_T2=BottleFilled and p_T2;

Final_T3b=BottleCapped and p_T3b; Final_T1=BottlePlaced and p_T1;

(*-------------------------------Initial Condition -------------------------------*)
Init_T0=Auto; Init_T1 =BottleWaiting;

Init_T2 =1; Init_T3a =CapWaiting;

Init_T3b =CapWaiting; Init_T4 =EmptyChute;

Sync_T0=p_GT1_0 and p_GT2_0 and p_GT3b_0 and p_GT4_0;

(*T1 incompatible with T4, Create 1 Degree of Liberty*)

T1 and T4=0; (*To tolerate invalid initial state and return no solution*)
Inco_T1n2=not (T4); Inco_T4_n2=not (T1);

Inco_T1=Inco_T1_n1 and Inco_T1_n2;

IncoT4=Inco_T4_n1 and Inco_T4_n2;

the priority with coherent requirements and a valid initial

state, the solver will always give us only one valid solution

(Table 5). The time to compute this solution is less than 1

millisecond on an Intel Core I7- 2.8GHz – 16 Go Ram

computer configuration. This model allows to reverse the

resolution. By fixing the current state of the system, the solver

will give us all the previous states of the system that will

resolve into that next state.

TABLE 5: RESULT TABLE FOR A PARTICULAR PREVIOUS STATE

Task Previous state of task Current state of task

0 0 0

1 0 1

2 1 0

3a 0 0

3b 0 1

4 0 0

Token

Previous

state of

token

Current

state of

token

 Sensor

Current

state of

sensor

GT0_1 1 0 Endrot 0

GT0_2 0 0 Auto 1

GT0_3b 1 0 BottleCapped 0

GT0_4 1 1 BottlePlaced 0

GT1_0 0 0 BottleWaiting 1

GT2_0 0 1 BottleEvacueted 0

GT3a_3b 1 0 BottleFilled 1

GT3b_3a 0 0 CapWaiting 1

GT3b_0 0 0 EmptyChute 1

GT4_0 0 0 CapGrabbed 1

VI. CONCLUSION

We have presented in this paper a new requirement

typology for designing logical controllers using constraint

programming. Each requirement can be expressed by an

equation or a truth table with a variable in the range {0,1} at

the engineer’s convenience. The whole requirements can be

solved with a CP solver that handles both types of constraints.

Using the priority condition, the proposed method allows us

to obtain a unique safe solution if needed. The

implementation on the case-study shows the viability of the

methodology to create a constraint based logical controller.

Currently, this work is limited to using Boolean domain for

the variable. Each task is represented by a set of Boolean

variables. Future prospects will study the capability of

representing the state of each task and the state of actions on

a task by integer variables. Then, the number of variables will

be reduced which will make the model smaller and more

readable. This work paves the way for structured model

constraint base programming, where the automation engineer

does not need to write equations, but instead, creates instances

of models and establishes links between these models. This

will require the development of design patterns and will allow

for a more modular approach to the synthesis of logical

controllers. The approach will be tested on other case studies.

VII. ACKNOWLEDGMENT

This research was funded by l’Agence Nationale de la

Recherche (ANR) for the Digital Twins for Cyber-Physical

Systems project (ANR-23- CE10-0010-01). The authors

would like to thank the ANR. They also thank the DEPS Link

non-profit organization for the availability of the DEPS

Studio software.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event

systems. Boston, MA: Kluwer Academic Publishers. 1999.

[2] Y. Hietter, “Synthèse algébrique de la loi de commande d’un système à

évènement discrets logique”, Phd thesis, ENS Cachan, Cachan, 2009.

[3] J. Zaytoon and B. Riera, “Synthesis and implementation of logic

controllers – A review”, Annual Reviews in Control, vol. 43, pp. 152–

168, 2017, doi: 10.1016/j.arcontrol.2017.03.004.

[4] ISO, “ISO/IEC 15408-1:2022 Information security, cybersecurity and

privacy protection”. Geneva, Switzerland, 2022. Accessed: Feb. 15,

2024. [Online]. https://www.iso.org/standard/72891.html Available

[5] Y. Hietter, J. M. Roussel, J. J. Lesage, “Algebraic synthesis of

dependable logic controllers”, IFAC-PapersOnLine, vol. 41, pp. 4132–

4137, ENS Cachan, Cachan, 2008.

[6] R. Pichard, N. Ben Rabah, V. Carre-Menetrier and B. Riera “CSP

solveur for Safe PLC Controller: Application to manufacturing

systems”, IFAC-PapersOnLine, vol. 49, pp. 402–407, Université de

Reims Champagne-Ardenne, Reims, 2016.

[7] T. Ranger, A. Philippot, B. Riera “Algebraic Synthesis of Safety Logica

Filter on Manufacturing Systems”, IFAC-PapersOnLine, vol. 55, pp.

169–174, Université de Reims Champagne-Ardenne, Reims, 2022.

[8] U Montanari. “Networks of constraints: fundamental properties and

applications to picture processing”. Information Science, 7:95–132,

mar 1974.

[9] E. P. K. Tsang. “Foundations of constraint satisfaction. Computation in

cognitive science”. Academic Press,1993.

[10] N.Een, M.Sheeran, “SAT-solving in practice, proc of 9th International

Workshop On Discrete Event System”, WODES, 2008.

[11] N. Beldiceanu, “Introduction to the special issue on global constraints”,

Constraints, 12(1):1–2, mar 2007.

[12] N. Beldiceanu, M. Carlsson, and J. X. Rampon. “Global constraint

catalog”, online (https://sofdem.github.io/gccat/gccat/index.html),

2014.

[13] K. M. Thanh, “Algorithms for table constraints and soft-regular

constraints”, Phd Thesis, Louvin University, 2019.

https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A222553

[14] X Lorca, C Prud’homme, and Jean-Guillaume Fages. “Choco3

documentation”(https://usermanual.wiki/Document/userguide331.860

520537.pdf),

[15] C. Lecoutre, “ACE , a generic constraint solver”, 2023.

https://doi.org/10.48550/arXiv.2302.05405

[16] C. Schulte, G. Tack, and M. Z. Lagerkvist, “Modeling and

programming with gecode” online (https://www.gecode.org/doc-

latest/MPG.pdf), 2019.

[17] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G

Tack. “Minizinc: Towards a standard cp modelling language”. In

Proceedings of the 13th International, 2007.

[18] PyCSP3 . https://pycsp.org/

[19] P.A. Yvars and L. Zimmer, “DEPS: A model- and property-based

language for system synthesis problems”, International Journal of

Software and Systems Modeling (SoSyM), 2023.

[20] P.A. Yvars and L. Zimmer, “Integration of constraint programming and

model-based approach for system synthesis”, 2021 IEEE International

Systems Conference, 2021.

[21] IEC 60848, “GRAFCET specification language for sequential function

charts”, 3rd edition, 2012.

