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ABSTRACT

This article introduces OMM, a new OpenMusic library
based on Mathematical Morphology. After conducting sev-
eral years of research on the potential usages of Mathemat-
ical Morphology operators in composition, musical analy-
sis, and music education, we are convinced that it is now
opportune to develop computer tools for music creation,
analysis, and education based on Mathematical Morphol-
ogy concepts. Our primary objective is to demonstrate the
relevance of these techniques in the musical domain. In
pursuit of this goal, we present one illustrative example
based on rhythmical transformations. OMM represents an
initiative aimed at bridging the gap between theoretical
ideas and practical applications in the musical domain.
This contribution reflects our commitment to democratiz-
ing access to advanced musical tools, thereby promoting a
more inclusive musical landscape.

1. INTRODUCTION

This article introduces OMM, an OpenMusic [1] library
which applies Mathematical Morphology to music. Math-
ematical Morphology (MM) is a domain at the intersection
of mathematics and computer science. It was originally
formulated in the mid-1960s in [2] and [3].

MM has been highly successful in the field of image pro-
cessing. We argue that MM can also be relevant in the
musical domain, without the need to represent music as
an image. The paper [4] suggested for the first time a
possible strategy to approach musical information research
by combining tools and ideas belonging to MM. More re-
cently, two doctoral theses [5] and [6] have improved this
research domain proposing relevant representations both in
the symbolic and signal processing domains.

We argue that the application of MM to the musical do-
main is advantageous, mainly because its algebraic char-
acteristics. The fundamental idea is to define abstract op-
erators for the generation and analysis of musical mate-
rials in general. Once these operators are defined, it is
crucial to find suitable representations where these tools
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can be applied in a musically relevant manner. OMM pro-
vides a graphical interface for connecting various math-
ematical morphology operators to musical objects. We
present in this paper one specific application case concern-
ing rhythms. Furthermore, OMM establishes the necessary
conditions to apply mathematical morphology operators to
new musical materials, thereby offering users the opportu-
nity to pursue new musical research.

This article is organized as follows: in Section 2, we de-
fine the basics of MM 1 , specifically its two fundamental
operators: dilation and erosion. Then we show how these
operators combine to define two other fundamental ones:
opening and closing. These four operators, which may
seem abstract initially, will gain meaning through their ap-
plications in the following sections. In Section 3, we in-
troduce a first application domain: rhythmic canons. In
this section, we employ what is known as binary morphol-
ogy. Section 4 is dedicated to outlining the protocol nec-
essary for extending applications to other types of repre-
sentations, provided that they adhere to the conditions im-
posed by MM. We quickly showcase in this section an ap-
plication concerning melodies by using what is known as
grayscale morphology. The last section allow us to draw
conclusions and envision other potential scenarios for fu-
ture research.

2. MATHEMATICAL MORPHOLOGY

Lattice structures are at the basis of MM. We start by giv-
ing the definition of complete lattices (see [8] to know
more about lattice theory).

[Poset : partially ordered set] A poset is a pair ⟨P,≤⟩
where P is a set equipped with a binary relation ≤, called
the order of P , with ≤ being reflexive, antisymmetric and
transitive.

We focus on a particular class of posets, namely lattices.
[Lattice] A poset ⟨L,≤⟩ is a lattice if every pair of ele-

ments x, y ∈ L has both a least upper bound and a greatest
lower bound.

[Upper and lower bounds] Let ⟨L,≤⟩ be an ordered set
and S ⊆ L. Then

• x ∈ L is a lower bound of S if ∀y ∈ S,x ≤ y,

• x ∈ L is the greatest lower bound of S if
∀y ∈ Sℓ, x ≥ y.

when Sℓ denotes the set of all the lower bounds of S.

1 For a real introduction to MM, we recommend [7].

Proceedings of the 49th International Computer Music Conference – ICMC 2024 – Seoul

202

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


The (least) upper bound and the set of all upper bounds
Su are defined dually by reversing the order (using ≥ in-
stead of ≤).

[Complete lattice] A lattice ⟨L,≤⟩ is complete if every
subset of S ⊆ L has both a least upper bound and a greatest
lower bound, called supremum and infimum. A complete
lattice is always bounded: there is a greatest element ⊺ ∈ L
such that ∀x ∈ L.x ≤ ⊺ and a least element � ∈ L such that
∀x ∈ L.� ≤ x.

A lattice is an algebraic structure ⟨L,⊔,⊓⟩ where the bi-
nary operation ⊔ is called the join and ⊓ the meet. The
join x⊔ y is the least upper bound of the set {x, y} and the
meet x⊓ y is its greatest lower bound. We use the notation
⊔S (resp. ⊓S) to compute the least upper bound (resp.
greatest lower bound) of the set S.

Let (L,≤) and (L′,≤′) be any two arbitrary lattices, the
two basic operations of MM, erosion and dilation, are de-
fined as follows:

[Dilation] δ ∶ L→ L′ is a dilation if ∀xi ∈ L,
δ(⊔xi) = ⊔′ δ(xi).

[Erosion] ε ∶ L→ L′ is a erosion if ∀xi ∈ L,
ε(⊓xi) = ⊓′ ε(xi).

In other words, an operator δ (resp. ε) is a dilation (resp.
erosion) if it commutes with the supremum (resp. the infi-
mum).

In this paper, we will define these two operators in a sim-
plified framework called deterministic MM with structur-
ing element. The main idea is to transform an element
A ∈ L using another element B ∈ L called the structur-
ing element. It is to note that in our case, the domain and
codomain of erosion and dilation are the same lattice, i.e.
L = L′.

We define algorithms for dilation and erosion using struc-
turing element as follows:

-For dilation, we take the origin of the structuring ele-
ment B, and translate it to occupy successively all posi-
tions within the space A. For each position, if B intersects
A then this position is part of the dilation. We will note the
dilation of A by B as A⊕B.

-For erosion, we take the origin of the structuring ele-
ment B, and translate it to occupy successively all posi-
tions within the space A. For each position, if B is com-
pletely included within A then this position is part of the
erosion. We will note the erosion of A by B as A⊖B.

The problem with these algorithms is that the notions
of translation, intersection, inclusion and the origin of the
structuring element depend entirely on the lattice that we
use. In the following section, we will provide a specific
example using what is called binary morphology.

Before concluding this section, we define two new oper-
ators based on erosion and dilation: opening and closing.

[Opening] A ○B = (A⊖B)⊕B.
[Closing] A ●B = (A⊕B)⊖B.
In image processing it is said that opening removes nar-

row parts of the object and deforms convex corners of the
object while closing fills narrow parts of the background
and deforms concave corners of the object [7]. If we want
to apply MM to music, it is necessary that we can make
similar assertions about the application of these operators
to musical structures.

The next section will provide specific examples of these
four operators applied to rhythmical structures.

(a)N =60

nKX nKnKnKnKnKX nKnKnKX nKnKnKnKnKX nKnKnKnKnKnK248
(b)=60

N =60

N =60

nKX nKX X nKnKX X X nKX nKX X nKnKX nKnK208

X X X nKX nKX X nKnKX X X nKX nKX X nKnKX nKnK238

X X X X nKX nKX X nKnKX X X nKX nKX X nKnKX nKnK248
(c)

Figure 1. Dilation of one rhythm by another one.

3. RHYTHM

In this section, we work on what is called binary morphol-
ogy. Binary morphology is often referred too as morphol-
ogy on sets because it uses the lattice (P(E),⊆) with E a
set and P(E) the power set of E.

The lattice that we will use here is defined by (P(Z),⊆).
Intuitively, we interpret a set X as a rhythmic pattern. For
instance, {0,2,4,5} corresponds to the following rhythmN =60

nK X nK X nK nK68 . In this example, we have taken the
quarter note as the beat. There is a quarter note at posi-
tion e for each element e in our set, and a rest otherwise.

In this context, we define the dilation of a rhythm A by a
structuring rhythm B by the equation:
A⊕B = {a + b ∣ a ∈ A, b ∈ B} with the usual addition in
Z.

Figure 1 (a) illustrates a program that performs the dila-
tion computation of a rhythm R1 = {0,2,5,6,10,12,15,16,
18,19} by a structuring rhythm R2 = {0,3,4}.

Analyzing the result in Figure 1 (b), we observe that it
arises from the flattening of a rhythmic canon with inter-
nal rhythm R1 and external rhythm R2. This canon is
shown in Figure 1 (c). Dilation proves to be a straight-
forward method for constructing rhythmic canons, as de-
fined in [9]. This observation is not surprising, given that
we have defined binary dilation using the Minkowski addi-
tion in Z. Rhythmic canons have been widely employed as
techniques in various compositions, see [10].

Let us now see if we can attribute a rhythmic meaning to
erosion. We define the erosion of a rhythm A by a struc-
turing rhythm B by the equation:
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(a)N =60
X X nKX X X X X X X X X nKX X nK168

(b)N =60

nKX nKX X nKnKX X X nKX nKX X nKnKX nKnK208
————— ——————————

(c)

Figure 2. Erosion of one rhythm by another one.

A⊖B = {p ∈ A ∣ Bp ⊆X}, where Bp = {x + p ∣ x ∈X}.
Figure 2 (a) shows a program that calculates the erosion

of the rhythm R1 by the structuring rhythm R2.
Erosion computes a new rhythm, displayed in Figure 2

(b), wherein the attack points align with the starting mo-
ments in R1 where one can find the rhythmic motif R2.
From a musical analysis standpoint, this is comparable to
seeking occurrences of R2 within R1, similarly to search-
ing for a word in a text (see Figure 2 (c)).

Let us now examine the rhythmic opening and closing op-
erations. Figure 3 (a) illustrates a program that calculates
the opening of R1 by R2.

The result, depicted in Figure 3 (b), is equivalent to the
flattening of the rhythmic canon in Figure 3 (c). This canon
is obtained by taking as internal rhythm R2. The external
rhythm is determined by the positions of R2 within R1,
that is, R1⊖R2.

The opening removes the attacks from the original rhythm
that do not belong to any instantiation of the structuring
rhythm. These can be thought of as a kind of rhythmic
noise.

Figure 4 (a) illustrates a program that calculates the clos-
ing of R1 by R2. Unlike opening, closing adds new attacks
to the original rhythm (see Figure 4 (b)). This is due to the
fact that the rhythmic space is first saturated by the con-
struction of the rhythmic canon R1⊕R2 (Figure 4 (c)).

Experimentally, OMM incorporates additional operators
specific to MM (e.g., hit-and-miss, area opening, area clos-
ing, see [7]). However, since their musical relevance is not
evident, we have chosen not to present them in this article.

4. WORKING WITH OTHER LATTICES

OpenMusic is written in Common Lisp. For a user ea-
ger to extend OMM to other musical domains, the proce-
dure consists in defining methods for the following generic
functions:

(a)N =60
X X nKX X nKnKX X X X X nKX X nKnKX nKnK208

(b)N =60

N =60

N =60

X X nKX X nKnK78
X X X X X X X X X X X X nKX X nKnK178
X X X X X X X X X X X X X X X nKX X nKnK208

(c)

Figure 3. Opening of one rhythm by another one.

(a)N =60

nKX nKX X nKnKX X nKnKX nKX X nKnKX nKnK208
(b)N =60

nKX nKnKnKnKnKX nKnKnKX nKnKnKnKnKX nKnKnKnKnKnK248 _______________
_______________

_______________
_____
_____

(c)

Figure 4. Closing of one rhythm by another one.
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(a)

(b) (c)

Figure 5. Opening and closing of melodies.

(defgeneric supremum ((obj1 t) (obj2 t)))
(defgeneric infimum ((obj1 t) (obj2 t)))
(defgeneric minus ((obj t)))
(defgeneric translate ((obj t) (x t)))

For instance, the binary morphology used for rhythms in
Section 3 was defined by the following code:

(defmethod supremum ((obj1 list) (obj2 list))
(union obj1 obj2))

(defmethod infimum ((obj1 list) (obj2 list))
(intersect obj1 obj2 ))

(defmethod minus ((obj list))
(loop for item in obj collect (* item -1)))

(defmethod translate ((obj list) (x integer))
(loop for item in obj collect (+ item x)))

OMM also implements the protocol for working in grayscale
morphology, that is, morphology where the lattice used
is made of functions. Musically, this allows us to work
with melodies if we model them as functions from time to
pitches. For instance, in Figure 5 (a), we see a program
that performs the opening and the closing of one melody
by another one. We observe that the results produce new
melodies where the range of the melodic contour has been
modified depending on the structuring melody, a fifth in
this example. To better understand these new melodies, let
us note that in the case of the opening (Figure 5 (b)), the
narrow peaks of the melodic contour were removed and
the slope of jumps at the top reduced. In turn, the closing
operation (Figure 5 (c)) eliminated narrow valleys and re-
duced the slope of jumps at the bottom. The generation of
new melodies using MM operators remains highly experi-
mental and heavily depends on the structuring melody. We
have noticed a loss of control when the number of notes
increases (i.e., from 4 notes onwards).

5. CONCLUSIONS

We have provided an overview of a new OpenMusic li-
brary called OMM and argued for the utility of mathemat-
ical morphology in the analysis and generation of musical
structures. In this article, we have primarily highlighted the
relevance of MM operators for the analysis and generation
of rhythmic structures. Integrating these techniques into
the OpenMusic computer-assisted composition language
allows for testing the theoretical results stemming from this
algebraic formalization while also providing composers or
analysts with the opportunity to interact at various levels
of the calculation process.

The quest for a unified method to create and transform
any musical material represents, in our point of view, one
of the most stimulating challenges of this musical formal-
ization. In addition to rhythmic canons and melodies, OMM
defines methods for working with lattices of rhythmic trees
[11]. Details on implementations and experiments will be
the subject of future work.
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