
HAL Id: hal-04914102
https://hal.science/hal-04914102v1

Submitted on 3 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Research to Teaching Formal Methods: The B
Method - TFM-B’2009

Christian Attiogbe, Henri Habrias

To cite this version:
Christian Attiogbe, Henri Habrias. From Research to Teaching Formal Methods: The B Method -
TFM-B’2009. Journées Scientifiques de l’Université de Nantes, Université de Nantes, pp.134, 2009,
2-9512461-0-2. �hal-04914102�

https://hal.science/hal-04914102v1
https://hal.archives-ouvertes.fr

Colloque

From Research to Teaching Formal Methods:
The B Method (TFM-B’2009)

Nantes, Cité Internationale des Congrès, 8 juin 2009
Nantes, International Convention Center, 8th June 2009

ACTES / PROCEEDINGS

C. Attiogbé, D. Mery (Eds.)

Juin 2009

imprimé par IUT de Nantes, (Université de Nantes), juin 2009
Publié par APCB

ISBN 2-9512461-0-2
EAN 9782951246102

Journées scientifiques - Université de Nantes (FR) - 2009

Actes/Proceedings

Christian Attiogbé, Dominique Mery (Eds.)

From Research to Teaching Formal Methods:
The B Method

Organisation : COLOSS Team - LINA UMR 6241

Site : www.lina.sciences.univ-nantes.fr/apcb/, Pascal André

imprimé par IUT de Nantes (Université de Nantes), juin 2009
Publié par APCB

ISBN 2-9512461-0-2
EAN 9782951246102

Présentation

”Or certains n’admettent qu’un langage mathématique ; d’autres ne veulent que des exem-
ples ; d’autres entendent qu’on recoure à l’autorité de quelque poète ; d’autres, enfin, exigent
pour toutes choses une démonstration rigoureuse, tandis que d’autres jugent cette rigueur ex-
cessive, soit par impuissance à suivre la châıne du raisonnement, soit par crainte de se perdre
dans les futilités.”
de Aristote, La métaphysique, tome 1, Vrin

La première édition des journées scientifiques, multidisciplinaires, de l’Université de Nantes a eu
lieu en juin 2008. Fort du succès, l’Université recommence cette année 2009, nous donnant aussi
l’occasion de rééditer avec l’association de pilotage des conférences B (APCB) notre colloque sur le
lien entre la Recherche et l’Enseignement des méthodes formelles, en particulier la méthode B. Ce
colloque vient compléter la série de conférences internationales sur B qui a débuté à Nantes en 1996.

La première conférence B a eu lieu à Nantes les 25-26-27 novembre 1996, après la conférence ZB
de Nantes les 10-15 octobre 1995. Elle a été suivie des conférences de Montpellier, York, Grenoble,
Turku, Guilford, Besançon et Londres en 2008 ; la prochaine aura lieu en 2010 au Canada (ABZ’2010).
Ces conférences ont donné lieu des fois à des sessions éducation où les questions et expériences sur
l’enseignement sont abordées. Le fait de lier la recherche en tant que telle et l’introduction des concepts,
méthodes et techniques dans l’enseignement, n’est pas encore systématique, pourtant il est admis que
les travaux de recherche en génie logiciel doivent conduire à la pratique. Pour cela, il faut passer par
l’enseignement, enseignement qui doit allier les fondamentaux et la pratique. Voici trois arguments en
faveur de l’enseignement de la méthode B entre autres méthodes formelles :

• La méthode B et ses concepts ont un intérêt pédagogique essentiel même si la méthode n’est
pas appliquée jusqu’à l’obtention de code.

• La méthode B est une méthode industrielle qui passe l’échelle de l’industrialisation en allant de
la spécification au programme y compris pour des applications de très grande taille. Il existe
plusieurs exemples d’applications concrètes.

• Les environnements de travail avec B sont maintenant très élaborés, disponibles dans le domaine
public et font le lien avec diverses autres technologies (simulation, test, évaluation de modèle
(model checking)).

La méthode B a montré comment mettre en œuvre les enseignements fondamentaux en informa-
tique : la construction correcte d’algorithmes et de logiciels. Nous pensons qu’il faut continuer dans
cette voie, comme cela a été fait dans plusieurs autres domaines d’ingénierie où le ”formel” est naturel.

Dans cette deuxième édition du colloque, le comité de programme a sélectionné une série d’articles
qui abordent, la construction de modèles formel avec Event B, la comparaison de la méthode B
avec d’autres techniques formelles du point de vue de la pratique par les étudiants, des expériences
d’enseignement dans différentes Universités, etc. Nous espérons que les lecteurs trouveront pleine
satisfaction et matière à réflexion ou discussion autour de l’enseignement de la méthode B et des
autres méthodes formelles en général.

Nous remercions le Professeur M. Leuschel, qui a bien voulu accepter notre invitation pour parler
de ses travaux de recherche et d’enseignement de la méthode B avec l’outil ProB. Nous remercions la
société ClearSy qui, par sa politique de mise à disposition gratuite de l’Atelier B, favorise et facilite
son utilisation par les étudiants.

Nous remercions aussi ceux qui ont participé à l’organisation et à la tenue de la conférence :

• Les auteurs qui ont soumis leurs travaux à ce colloque ;

• Les membres du comité de programme qui ont fait le travail de relecture, de sélection et de
correction des articles proposés ;

• Les membres de l’équipe Coloss du LINA-CNRS ; Pascal André (qui a préparé le site web),
Gilles Ardouel, Henri Habrias, Isabelle Condette ;

• L’Université de Nantes qui a organisé les Journées Scientifiques de l’Université de Nantes dans la
prestigieuse Cité Internationale des Congrès de Nantes. Notre colloque est un des 21 colloques
de ces Journées.

• L’IUT de Nantes qui a effectué l’édition des actes.

Enfin, nous remercions très chaleureusement nos collègues Henri Habrias qui a initié la série des
conférences B et la série des journées sur l’enseignement de B et qui malgré sa retraite nous a beaucoup
aidé et n’a pas ménagé son temps ; Dominique Mery président de APCB, pour son animation de la
communauté B et plus généralement des méthodes formelles.

Christian Attiogbé, mai 2009

Presentation

”Or certains n’admettent qu’un langage mathématique ; d’autres ne veulent que des exem-
ples ; d’autres entendent qu’on recoure à l’autorité de quelque poète ; d’autres, enfin, exigent
pour toutes choses une démonstration rigoureuse, tandis que d’autres jugent cette rigueur ex-
cessive, soit par impuissance à suivre la châıne du raisonnement, soit par crainte de se perdre
dans les futilités.”
Aristote, La métaphysique, tome 1, Vrin

The first edition of the multisciplinary scientific days of the University of Nantes took
place in June 2008. Due to its success, the University reconducts the manifestation, giving
to us the opportunity to reconduct, with the cooperation of the APCB (the B conferences
Steering Comittee), our colloquim on the link between research and teaching formal methds
and more particularly the B method. This colloquim follows a series of conferences started
in 1996 in Nantes. The first B conference took place in Nantes on the 25th, 26th and 27th
of November 1996, after the Nantes Z2B conference, from 10th to 15th October 1995. It was
followed by the Montpellier, York, Grenoble, Turku, Guilford and Besancon conferences and
London (September 2008) ; the next edition (ABZ’2010) will take place at Orford, Canada.
During some of these conferences, education sessions were held and questions on teaching and
experiments was discussed.

Linking research results and the teching of formal methods is not yet systematically prac-
ticised but it is widely admitted that research in software engineering and computer science
should lead to good practices. For that purpose, teaching is one vehicle ; it should embrace
fundaments and practices.

Here are three principal arguments in favour of teaching the B method :

• The B method and his concepts can be considered as having an essential pedagogical
interest even if this method is not used until code generation.

• The B method is an industrial method which reaches the industrialisation level going from
specification to programming. There are several examples of concrete applications.

• Practical develpment frameworks with the B method are now publicly available ; they are
also integrated with other technologies (simulation, test, model checking).

The method have enabled one to put into practice the teaching of fundamental topics:
correct program construction, correct software development, etc. We think that it is the right
way to go, as it is the case in other engineering area, where using formal methods is rather
natural and the word ”formal” is not used anymore.

For this second edition of the colloquim, the program committee has selected works that
address: the construction of models with Event B, the comparison of the B method with
other formal methods on the setting of student experiments and of teaching experiments in
Universities; We hope that the reader will find in this proceeding satisfaction and matters for
thinking and discussion about the teaching of the B Method and other formal methods.

We thank Professor M. Leuschel for accepting our invitation to present his work on research
and teaching with the ProB tool. We thank the ClearSy company, for putting some B tools in
public domain and making it easy their use by students and others.

We also thank those who was involved in the organization and the outcome of the conference:

• The authors who submitted their work;

• The programme committee members who reviezed the submitted papers;

• The members of the Coloss team at LINA-CNRS; Pascal André has prepared the Web
site, Gilles Ardourel, Henri Habrias, Isabelle Condette;

• The University of Nantes who organized the Journées Scientifiques de l’Université de
Nantes in the prestigious International Center of Congress in Nantes. Our conference is
one of 21 symposia of these ”Journées scientifiques”.

• The IUT Nantes who has made the printing of the proceedings.

Finally, we warmly thank our colleague Henri Habrias who initiated the series of the B confer-
ences and also this series of colloquia; he helped us without worrying about his time; we warmly
thank Dominique Mery chairman of APCB and an animator of the formal methods community,
and of B in particular.

Christian Attiogbé

Comité de programme / Program Committee

Rueda Camilo, Universidad Javeriana-Cali, Cali, Colombia
Lars-Henrik Eriksson, Uppsala Universitet, Sweden
Marc Frappier, Université de Sherbrooke, Canada
Marc Guyomard, ENSSAT, France
Jacques Julliand, Université de Besançon, France
Michael Leuschel, Heinrich-Heine-Universität , Germany
Dominique Mery, Loria, Nancy, France
Mike Poppleton, University of Southampton, UK
Ken Robinson, UNSW, Australia
Emil Sekerinski, McMaster University, Canada
Elena Troubitsyna, Abo Akademi University, Finland
Istenes Zoltàn, Elte University, Hungaria

Autres reviewers / Additional reviewers
Pascal André, Université de Nantes, FR
Gilles Ardourel Université de Nantes, FR
Jean-Paul Bodeveix Université de Toulouse, FR
Mamoun Filali Université de Toulouse, FR
Arnaud Lanoix Université de Nantes, FR

Thèmes / Topics

• Tool support for software engineering with the B method,

• Teaching environments for the B method,

• The B method in the software engineering curriculum,

• Combining the B method with other approaches

• Case studies and exercises featuring the B method,

• Use of the B method in disciplines other than software engineering

• New advances in the B method and their incorporation into the teaching curriculum.

Table des matières / Contents

Invited Conference
ProB for Research and Teaching: Lessons and Outlook . 1
Michael Leuschel (University of Düsseldorf, DE)

New features of Atelier B 4.0 . 5
Antoine Requet, ClearSy, France

Sculpturing Event-B Models with Rodin: Holes and Lumps in Teaching Refinement through
Problem-Based Learning . 7
J. Paul Gibson, Eric Lallet, Jean-Luc Raffy, Telecom& Management SudParis, France

Teaching the B Method at Oxford Brookes . 22
D. Lightfoot, C. Martin, Oxford Brookes University, UK

Twelve Years of B Teaching in an Engineer School : from a Correct by Design Approach to
Analysis Techniques and Tools .34
M-L. Potet, Verimag Grenoble, France

High-Level versus Low-Level Specifications: Comparing B with Promela and ProB with Spin 49
Mireille Samia, Harald Wiegard, Jens Bendisposto, Michael Leuschel, University of Düsseldorf,
DE

BiCoax, a Proof Tool Traceable to the BBook . 62
Samuel Colin, George Mariano, INRETS, France

Constructing a Formal Event Model of Linux File System Access Permissions: A Research-
Based Teaching Approach . 77
David Cumbor, Bill Stoddard, University of Teesside, UK

How to make mistakes .93
Stefan Hallerstede, University of Düsseldorf, DE

To structure, Realize and Prove: How and Why .109
Alain Couturier(1), Michel Gazeau(1), Gérald Jean-Baptiste(1), Gwenola Kerglonou(2), (1)
CNAM Pays-Loire and (2) ICAM Nantes, France

1

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

ProB for Research and Teaching:
Lessons and Outlook

Michael Leuschel

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de ?

In this invited talk we present our experiences in using the ProB validation
tool for research and teaching. ProB [6, 8] is an animator and model checker
for the B-method based on the constraint solving paradigm. Constraint-solving
is used to find solutions for B’s predicates. As far as model checking technology
is concerned, ProB is an explicit state model checker with symmetry reduction
[7, 12, 10]. While the constraint solving part of ProB is developed in Prolog, the
LTL model checking engine [2] is encoded in C.
Some of the distinguishing features of ProB are

– the support for almost full syntax of B, integration into Atelier B and Rodin,
– the support for Z [11] and Event-B, building on the same kernel and inter-

preter as for “classical” B,
– the support for other formalisms such as CSP [9] via custom Prolog inter-

preters which can be linked with the B interpreter [3].

In this talk, we also present recent developments around ProB and show their
importance for research and teaching B:

– a new datastructure for dealing with large sets and relations,
– an improved constraint solving algorithm,
– a new parser [4], being able to deal with almost the complete syntax of

Atelier B,
– a new unification-based type checker, which is more flexible than other ex-

isting type checkers, and provides support for type checking definitions,
– a completely redeveloped plugin for Rodin [1], providing full support for

Event-B (see Figure 1),
– multi-level animation of Event-B models,
– proof directed model checking, whereby proof information is used to improve

the performance of the model checker, and finally
– an editor and framework for generating visual animations for Event-B models

called BMotion Studio [5] (see Figure 1).

We also present an outlook of future developments around ProB, such as
directed model checking, linking with SAT and SMT solvers, parallelisation as
well as validation of ProB.
? This research is being carried out as part of the DFG funded research project

GEPAVAS and the EU funded FP7 research project 214158: DEPLOY (Industrial
deployment of advanced system engineering methods for high productivity and de-
pendability).

2

Leuschel

ProB Perspective State View History View

Operations View Evaluate Expression View

Fig. 1. The interface of the ProB plugin for Rodin

WYSIWYG editor Outline View

Properties View

Tool bar

Fig. 2. The interface of the BMotion Studio tool

3

Leuschel

Acknowledgements Some of the recent developments of ProB mentioned in this
talk have been developed and implemented by Jens Bendisposto, Fabian Fritz,
Lukas Ladenberger, and Daniel Plagge. My thanks also go to the many people
of have helped develop the ProB toolset, some of which are Michael Butler,
Michael Jastram, Marc Fontaine, Corinna Spermann, and Edward Turner.

References

1. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment
for Event-B. In ICFEM06, LNCS 4260, pages 588–605. Springer, 2006.

2. Y. A. Ameur, F. Boniol, and V. Wiels, editors. ISoLA 2007, Workshop On
Leveraging Applications of Formal Methods, Verification and Validation, Poitiers-
Futuroscope, France, December 12-14, 2007, volume RNTI-SM-1 of Revue des Nou-
velles Technologies de l’Information. Cépaduès-Éditions, 2007.

3. M. Butler and M. Leuschel. Combining CSP and B for specification and property
verification. In Proceedings of Formal Methods 2005, LNCS 3582, pages 221–236,
Newcastle upon Tyne, 2005. Springer-Verlag.

4. F. Fritz. An object oriented parser for B specifications. Master’s thesis, Institut
für Informatik, Universität Düsseldorf, 2008. Bachelor’s Thesis.

5. L. Ladenberger. A visual editor for B-animations. Master’s thesis, Institut für
Informatik, Universität Düsseldorf, 2009. Bachelor’s Thesis.

6. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

7. M. Leuschel, M. Butler, C. Spermann, and E. Turner. Symmetry reduction for B by
permutation flooding. In Proceedings B2007, LNCS 4355, pages 79–93, Besancon,
France, 2007. Springer-Verlag.

8. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

9. M. Leuschel and M. Fontaine. Probing the depths of CSP-M: A new FDR-
compliant validation tool. In Proceedings ICFEM 2008, LNCS, pages 278–297.
Springer-Verlag, 2008.

10. M. Leuschel and T. Massart. Efficient approximate verification of B via symmetry
markers. In Proceedings International Symmetry Conference, pages 71–85, Edin-
burgh, UK, January 2007.

11. D. Plagge and M. Leuschel. Validating Z Specifications using the ProB Animator
and Model Checker. In J. Davies and J. Gibbons, editors, Proceedings IFM 2007,
LNCS 4591, pages 480–500. Springer-Verlag, 2007.

12. E. Turner, M. Leuschel, C. Spermann, and M. Butler. Symmetry reduced model
checking for B. In Proceedings Symposium TASE 2007, pages 25–34, Shanghai,
China, June 2007. IEEE.

4

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

5

Requet

New features of Atelier B 4.0

Antoine Requet

ClearSy, Aix en Provence, France
antoine.requet@clearsy.com

Atelier B is a tool supporting the use of the B method for specification and
software development. The last version has been released in January 2009, and
introduces some new major features. This talk presents the most important new
features: the new GUI, that provides an improved interactive prover and an
editor, the support of the event-B language, and the BART refinement tool,
that allows to automatically generate implementations using refinement rules.
Apart from those technical improvement, this new version also introduce a new
licensing policy, that provides a free version of the tool, and releases some of the
components as ”Open Source”.

6

Requet

7

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

Sculpturing Event-B Models with Rodin:
Holes and Lumps in Teaching Refinement

through Problem-Based Learning

J. Paul Gibson, Eric Lallet, Jean-Luc Raffy

Le département Logiciels-Réseaux (LOR), Telecom & Management SudParis,
9 rue Charles Fourier, 91011 Évry cedex, France

(L’Unité Mixte de Recherche -SAMOVAR- UMR 5157)
pgibson@it-sudparis.eu

Abstract. We present a Problem-Based Learning (PBL) approach to
teaching formal methods, using Event-B and the Rodin development
environment. This approach has arisen out of a gradual adoption, over
a period of 3 years, of Rodin as the main teaching tool. Just as the
concept of refinement is fundamental to what we are trying to teach, we
demonstrate that it is also fundamental to the teaching process. Through
analysis of a small number of PBL case-studies we argue that the changes
to our teaching, supported by Rodin, have started to have a positive
impact on our students meeting the specified learning objectives (course
requirements). However, we also argue that much more work needs to
be done in order to improve our teaching of formal methods. Inspired
by the analogy between software design and sculpture, we conclude by
proposing that formality holds the key to mastering the harmony between
the “holes” and the “lumps” in our models.

Sculpture is the art of the hole and the lump.
[Auguste Rodin, 1840 – 1917]

1 Background: teaching Event-B with Rodin

The Event-B Rodin development environment[1] is central to our teaching of
formal methods. The openness of the platform, combined with our research ex-
perience, motivated us to adopt it as early as possible in our teaching. Before
Rodin, we had experience of teaching a variety of formal methods; with more
recent teaching using B[2] and the Atelier-B tools. Another motivating factor is
that our students are all familiar with the Eclipse[3] platform, on which Rodin is
built, and this helps them overcome initial feelings of unfamiliarity which often
arise from using formal methods tools for the first time.

In this paper we focus our discussion on the impact of our adoption of Rodin
within a single optional module called Langages formels et applications. (We note
that the problems have also been used with other student groups and in other
institutions.) Within this module, 21 hours of teaching (direct contact between
lecturer and students) is programmed specifically for teaching Event-B, and the

8

Gibson, Lallet, Raffy

students are also required to carry out a similar amount of self-study in their
own time. The class is small — typically between 8 and 16 students. All students
have already studied at least 1 year of computer science/software engineering,
including foundational mathematics and programming.

In figure 1, we show how we have gradually adopted Rodin over a period of
three years. In the first year, we prepared lecture slides based on Event-B case
studies and tutorials that were available at the Rodin website. We also incor-
porated case studies inspired by formal methods research in different problem
domains, for example: E-voting systems[4, 5], Distributed reference counting al-
gorithms[6], Tree-structured File Systems[7] and the IEEE 1394 leader election
protocol[8].

Fig. 1. The Gradual Introduction of Rodin for teaching Event-B

We re-wrote previous practical work (moving from B to Event-B in the pro-
cess) so that our models could better demonstrate the facilities provided by
Rodin. We did not expect students to be able to use the Rodin tool: we were
just becoming familiar with it ourselves. However, we did present Event-B mod-
els, refinement sequences, and proofs that had been prepared using Rodin. We
followed a traditional teaching model where fundamental theory was presented
before practical case studies. As a final step towards preparing for our second
year of teaching with Rodin, a single lecture was presented in a more interactive
style. The students were much more responsive to the lecturer “struggling to
bend the tool to their way of thinking about the problems” (as they described
it), rather than the lecturer presenting a solution that had been “baked earlier”.
Consequently, we decided that in the following year we would try to work on all
the case study problems in a more interactive way.

In our second year, we continued to start the module with traditional lec-
tures on foundational theory. However, the second half of the module was used to
let the students interact with the Rodin tools (indirectly through the lecturer).
Rather than the lecturer presenting models and proofs that had already been de-
veloped, the lecturer presented the problems to the students and then attempted
to show the students how they could “test their solutions” by modelling them in

9

Gibson, Lallet, Raffy

Event-B and analysing them using Rodin. At the end of the second year we ran
a single PBL session with the students. They were given a problem where they
had to design a solution in Event-B. They did not use the Rodin tool during the
design problem; but after they had submitted their designs the lecturer demon-
strated how the Rodin tool could have helped them to produce better (correct)
designs. The students enjoyed the PBL approach — rather than learning some
piece of theory from traditional lectures the students wrestled with a problem
and discovered that they lacked some fundamental understanding that would
help them to solve the problem. This approach is excellent for motivating the
students, when the problems are well suited to the students meeting the learning
objective. However, there is a great risk that the students do not learn simply
from being exposed to the problem. Based on our previous work with PBL, we
decided that the potential rewards of more fully adopting PBL outweighed the
risk.

In the third year we did not start with any traditional lectures. On the
first day the students installed Rodin and started to experiment with the tool.
Initially, they built very simple models following the directions of the lecturer.
However, quite quickly they stopped asking questions of the form “what would
happen if we did this instead” to trying to find out, using Rodin, the answers
themselves. At the end of each class (of duration 3 hours) the students would be
advised to read material that would explain how/why the tool was reacting to
their experimentation. They would also be given (optional) practical work that
forced them to reflect on what they had learned during the session.

As we write this paper, we are half-way through the 3rd year of teaching
Rodin. It is too early to analyse the global impact of our pedagogic changes: B
to Event-B, using Rodin and PBL. In fact, as the three changes are very much
interdependent — and there are many other more noisy parameters to take into
account — it will be difficult to draw specific conclusions as to what causes any
improvement (or deterioration) in our students’ learning.

2 The PBL Teaching Method

Although there are many different definitions of PBL, the common factor in ev-
ery one of them is that the problem acts as the catalyst that initiates the learning
process. It is said that this way of learning encourages a deeper understanding of
the material, rather than surface learning. As the problem is such a critical com-
ponent of the learning process it is imperative that one uses good problems. In
2001, Duch identified five characteristics of what makes a PBL problem good[9]:
(1) Effective problems should engage the students’ interest and motivate them to
probe for deeper understanding. (2) PBL problems should have multiple stages.
(3) Problems should be complex enough that group co-operation will be neces-
sary in order for them to effectively work towards a solution. (4) Problem should
be open-ended. (5) Learning objectives of the course should be incorporated into
the problems.

One of the major stumbling blocks to the implementation of PBL within any
discipline is the lack of a good set of problems[10]. However, the discipline of soft-

10

Gibson, Lallet, Raffy

ware engineering and formal methods has many well-understood problems that
have arisen out of industrial and research projects. Lecturers must be encouraged
to use these problems (or parts of them) in their teaching. A recent proposal
for weaving formal methods, through a software engineering programme, using
problem-based learning (PBL)[11] provides good background and motivation for
such a teaching approach in a software engineering programme, based on obser-
vations on how students solve problems using foundational software engineering
techniques[12].

We note that the 5th of Duch’s characteristics for a good PBL problem is
defined in terms of learning objectives. Without explicit statement of learning
objectives it is difficult, if not impossible, to evaluate and analyse the effective-
ness of PBL, in general, and specific problems, in particular.

3 Learning Objectives

A main weakness when teaching design is that students fail to understand that
design is a dynamic process and not just a sequence of models. This is particularly
important when teaching formal methods through design problems.

Fig. 2. Design as A Dynamic Process: The Learning Objectives

Figure 2 provides a graphical view of our main learning objectives when
treating design as a process: (1) to be able to build models at different levels of
abstraction, (2) to be able to prove that models at all stages of development are
well defined, (3) to be able to validate that models capture precisely the needs
of the client, (4) to be able to verify that each design step (from abstract to
concrete) is correct, and (5) to be able to manage the process of rolling back a
design decision.

We note that these objectives are generic in the sense that the modelling
language and modelling tools are unspecified. Our secondary learning objectives
are that the students are able to meet the main objectives when modelling with
Event-B, and that they are able to use the Rodin tool for (automated) support.

11

Gibson, Lallet, Raffy

3.1 Model at different levels of abstraction

Students are expected to already know about nondeterminism. We expect them
to be able to build requirements models that use nondeterminism to facilitate
implementation freedom. Our main objective is for them to be able to remove
such nondeterminism through refinement. Further, they should learn how to
reverse engineer a concrete model to something more abstract.

3.2 Well-defined Models

Students are expected to already know, in general, how theorem provers work.
They are also expected to be able to carry out simple mathematical proofs by
hand. Our learning objective is for them to be able to apply this knowledge when
using the automated theorem proving support provided by Rodin. Our goal is
to provide a problem through which the students learn about well-definedness
and also learn, through experimentation, how Rodin can be used to prove that
Event-B models (and parts of the models) are well-defined.

3.3 Validation — testing understanding of requirements (formally)

Students are expected to already understand that many problems occur in soft-
ware engineering because of poorly understood requirements[13]. They are also
expected to know that most common validation techniques involve testing an
executable system (often a prototype) with the client; and that there are weak-
nesses to this approach. Our goal is to show that formal models offer an approach
to validation that is complementary to executing code. We aim to provide them
with a problem where the students quite naturally test their understanding of
requirements through the formulation of theorems to be proved.

3.4 Correct Design

Students are expected to already have studied design (usually with a modelling
language like the UML1). They must understand the role of design in bridging
the gap between the problem (requirements) and the solution (implementation).
Our goal is that students learn what it means for a design to be correct[14], and
that they can use RODIN to prove three fundamental properties of a machine:
(1) Invariants are respected. (2) Termination (where required). (3) Deadlock
freeness (for interactive systems).

3.5 Design As A Process

A key objective is that students understand that design is a dynamic process,
represented by a tree of decisions and compromises. (We also hope that the

1 It is pleasing to note, for potential future exploitation in our teaching, the research
and development of a Rodin plug-in for integrating Event-B and the UML[1]

12

Gibson, Lallet, Raffy

students see that this tree representation is an abstraction of what happens
in real software development.) The design documentation should not just be a
record of the sequential final path in this tree that links the problem to the
particular chosen solution: it should be a record of every design decision that
was taken and why (including the decisions that were changed, i.e. rolled back).
Further, the students must learn that there is as much value in the links in the
design tree (which represent the correctness of the design steps) as there is in
the nodes (the models).

4 Problems Presented

In this section we review a subset of the problems that have been presented to the
students in order to meet specific learning objectives. We comment on students’
behaviour whilst interacting with the problems, with particular emphasis on
their use of the Rodin tools.

4.1 Well-defined Models: The Purse Problem

In our search for interesting problems, it was noted that the notion of a wallet
(of money) had proven to be a good pedagogic case study[15]. This inspired us to
consider a purse as the basis for our PBL case study. The following requirements
were presented to the students:

1. A purse contains coins.
2. Coins are positive integers, but not all integers have a corresponding coin.
3. We wish to start with an empty purse, containing no coins.
4. We allow 3 operations: (a) initialise a purse to being empty (containing no

coins), (b) add a coin, and (c) pay a certain (integer) sum by removing an
appropriate number of coins from the purse.

Figure 3 shows a graphical representation of the problem that was presented to
the students to complement the textual requirements.

It is interesting to note how the students tried to model the Purse using
Event-B. Firstly, we witnessed the problem of confusing sets with bags as dis-
cussed by Habrias[15]. Once students realised that the problem required more
than a set of coins (represented as integers) most of them they quickly defined
a Purse to be a total function from coins to integers. (Some students also chose
to specify Purse as a partial function from coins to integers, arguing that if a
coin was not in the domain then there were no coins of that value in the Purse.)
The students struggled to specify a generic Purse, parameterised by any set of
coins. They knew that this type of specification should be possible but had to be
shown how to specify this using an abstract COIN set. It was pleasing to see that
many of the students then specified the notion of an empty purse in a similar,
generic fashion, as shown in figure 4.

Most students then thought about the operation for paying a certain sum
and decided that it was too difficult to specify directly. They were encouraged to

13

Gibson, Lallet, Raffy

Fig. 3. The Purse pay sum Behaviour

Fig. 4. A generic specification of an empty purse

think about it in an abstract, nondeterministic, fashion. However, most of them
thought that this meant decomposing the payment into component parts. One
of the most common ways of doing this was for students to specify the notions
of “total” and “remove” (two key terms found in the textual requirements). An
example of how a student specified total is shown in figure 5.

Fig. 5. The introduction of a function to calculate the total

At this stage, the lecturer pointed out that the Rodin tool was generating
proof obligations with regard to the well-definedness of their total specifications,
as shown in figure 6.

The students experimented with the Rodin tool in order to see which proofs
were discharged automatically and which required interaction. Although they did
not know how the prover worked (and had received no lectures on the subject)

14

Gibson, Lallet, Raffy

Fig. 6. The proof obligation generated for the specification of total

they were able to carry out some proofs simply by “randomly” clicking and
instantiating.

By encouraging students to examine different specifications of total it often
arises that students ask how they can test that their specifications “really work”.
In essence, they are asking how they can validate that the meaning of total
corresponds to the requirements. At this stage the lecturer suggests that they
formulate simple use cases. The students are able to express the fact that they
want to test, for example: (1) the total of any empty purse must be 0, and (2)
the total of a purse containing two 1c coins should be 2. It was surprising (to
us) that, in general, students manage to express these as theorems only after
receiving help from the lecturer, as in figure 7. The main problem was due to
us not having yet covered the foundational material explaining fundamental
concepts such as axiom, theorem, proof, completeness, consistency, etc . . .

Fig. 7. Using theorems to validate understanding and specification

In the next example, of the family tree, we expect the students to follow a
similar validation process.

4.2 Validation: The Family Tree Problem

The problem of specifying relations between people in order to identify families
has been used by a large number of lecturers. Our goal is to use the same
example but to force the students to work within a particular view that needs
to be validated: we consider only relations between humans that are alive, and

15

Gibson, Lallet, Raffy

we wish to enforce that each person can have 0,1 or 2 parents that are still alive.
We present the problem by the tree shown in figure 8.

Fig. 8. Graphical representation of the required Parent behaviour

The students, having learned from their experience of the Purse problem
validate their parent specifications — an example is given in figure 9 — with
simple theorems.

Fig. 9. Formal Specification of Parent Requirements

It was interesting to note that the students went on to specify relations like
brother, cousin, aunt, etc However, none of them validated (or attempted
to validate) that their family tree did not contain any cycles!

4.3 Correct Design: The Purse Revisited

In the process of specifying the Purse behaviour we noted that the first design
step — of pairing a machine with a context — led to some interesting design
decisions. For example, we saw two different specification styles — see figure 10
— for events that update the state of the purse, by adding and removing coins.
Some students used a style where the state updates of the machine were specified

16

Gibson, Lallet, Raffy

axiomatically in the context, for example: the add coin event uses an add func-
tion that has been specified in the context Purse ctx0 (see figure 11). Whilst
others used a more operational style (as for event remove).

Fig. 10. Adding and Removing a coin from a Purse

Fig. 11. The add function defined in the Purse context

Without going into details, this approach requires additional work when prov-
ing the correctness of the context, but leads to a simple proof that the invari-
ant is respected by the add coin event (in the machine). Contrastingly, the
remove coin event’s action is specified directly (without an additional “worker”
function from the context). This approach means that the proof that remove coin
respects the invariant cannot re-use any properties of remove that could have
been specified in the context.

4.4 Design As A Process: The OddEven Problem

We present the students with the problem of specifying Odd and Even numbers.
We tell them that these specifications will be required in a later machine, but do
not tell them precisely how. Even for such a simple problem, students typically
produce different specifications. For example, see figures 12, 13 and 14.

We observed that the students, whilst in the process of proving properties
of the subsequent machine, chose to change the way in which they specified Odd
and Even. When asked about this, one of the more interesting replies was: “We

17

Gibson, Lallet, Raffy

Fig. 12. A first specification of Odd and Even

Fig. 13. A second specification of Odd and Even

have learned the importance of structuring our code to make it easier to test; so
why not restructure our specifications to make them easier to verify?”.

4.5 Refinement and Design: The “Centralised Leader Election”
Problem

The very last problem that we presented to the students had the objective of
testing whether they were able to reason about the correctness of different de-
signs through refinement of an abstract machine. The problem presented to them
was a simplification of leader election:

Given a team of players, there must be a single unique captain. There
is a single event which corresponds to changing the captain. Propose
alternative designs to implementing this simple system. Use the Rodin
toolset to reason about the correctness of the designs.

We have observed four different types of “solution” to the problem: (i) Initial
Machine too concrete and no refinement, (ii) Initial Machine too concrete and a
correct refinement, (iii) Initial Machine at appropriate level of abstraction but
unable to specify design as a refinement, and (iv) Initial Machine at appropriate
level of abstraction and alternative correct designs specified as refinements.

18

Gibson, Lallet, Raffy

Fig. 14. A third specification of Odd and Even

Approximately half the class started with machines that were too concrete in
the sense that they precluded some reasonable implementations. In all but one
of these cases, the students who started with a concrete design were unable to
refine it. Consequently, they reasoned about the design correctness informally.
None attempted to reverse engineer a more abstract machine.

In a single case, the students started with a team of players where each player
had an integer counting the number of times they had been selected as captain.
They specified the (invariant) requirement that no player could have a count
more than 1 larger than any other player’s count. Then, in the abstract machine
they specified that the change captain event never picked a captain whose count
was already bigger than any other player’s count. They then refined this event by
introducing a captain queue where selecting a new captain popped the current
captain from the front of the queue and pushed this player onto the back of
the queue — so that the sequence in which captains were chosen would follow
a repetitive cycle. This machine is a refinement of the first as it removes the
nondeterminism in the event which chooses the captain (after the first cycle).

The remainder of the class specified the initial abstract machine at an appro-
priate level of abstraction. Two groups chose to specify simple solutions where
the position of captain always alternated between the same 2 team members.
Although this is, perhaps, the simplest design, neither of these groups were able
to demonstrate that this design is correct. They attempted to prove the more
concrete machine to be a refinement of the abstract machine, but failed.

The best solutions offered alternative designs and demonstrated their cor-
rectness. None of these offered a sequence of refinement steps (but this was not
explicitly asked of the students). It was disappointing that only about one third
of the students were able to address the problem in this way.

5 Refining our Teaching: what needs to be changed?

In order to improve our teaching formal methods2 it is important that we learn
from the students[16]. With PBL, in particular, one must take great care when
2 More generally, student feedback is crucial in improving the teaching in any disci-

pline.

19

Gibson, Lallet, Raffy

using quantitative and qualitative analysis to evaluate the effectiveness of the
problems[17].

Much like software engineers who refine their models for implementation,
formal methods lecturers need to refine their teaching models. When there is a
mismatch between what is required and a proposed solution then there are three
possibilities: (1) the solution is correct with respect to the requirements specifica-
tion yet the specification misrepresents the requirements, or (2) the specification
correctly represents the requirements but the solution is not correct with re-
spect to the specification, or (3) a combination of the two previous possibilities.
In general, when a solution is acceptable it is because the initial requirements
were correctly specified and the implementation was correct with respect to these
requirements. (In theory, it may be possible that the solution meets the require-
ments despite the fact that the specification is incorrect. However, this situation
is not desirable even though the client may be happy in the short term!)

There are several options when a problem is not meeting a specific learning
objective: (1) Replace the problem with something completely different. (2) Fix
the problem by making minor changes. (3) Change the learning objective.

This feedback into our teaching is critical in PBL but it is problematic be-
cause: (1) The frequency of change is usually tied to the academic calendar. (2)
The mapping relation between learning objectives and problems is not (usually)
a bijection, though it should be a total surjection. (3) Analysis of the effectiveness
of problems should be done using more than 1 class of students. (4) Developing
new problems is time-consuming. The simplest way to overcome these issues is
to share and re-use problems between different lecturers and programmes.

Once a problem has been developed that is deemed to be effective, it is
very important that one does not break its effectiveness through making change.
Lecturers would greatly appreciate a formal notion of refinement with respect to
their teaching material. Thus, they could make (verifiable) changes to existing
problems knowing that such changes do not compromise their effectiveness (at
meeting the learning objectives). Of course, this is currently beyond the state-of-
the-art in educational research! However, as teachers we must aspire to achieving
such refinements of our problem designs: it will improve our teaching and reduce
our workload.

6 Holes and Lumps in our Event-B Models

Event-B models can be judged on a number of different criteria: (1) Well-
definedness, which can be checked without knowing the intended purpose of the
model. (2) Fitness for purpose, which can be checked against required behaviour.
(3) Level of abstraction, which reflects whether design decisions are being taken
too early/late in the development process. (4) Maintainability/Reusability, which
represents how much of the modelling work (including the proofs) can be re-used
if requirements change.

Design is not a prescriptive process. Students need to learn that building
good designs (in Event-B) requires experience, good judgement and good for-
tune. Many of the students produce poor designs because their models are too

20

Gibson, Lallet, Raffy

rich in detail. They miss the importance of keeping things simple. A key insight is
that the best students are quite comfortable with leaving details to later stages
in the development process. These “holes” correspond to abstraction. Subse-
quent refinements may (partially) fill in the holes. The most valuable Event-B
designs are those that bridge the gap between the requirements specifications
that are relatively easy to model, using lots of nondeterminism, and the deter-
minisitic models that are directly implementable, using traditional programming
languages. Our experience shows that students can quite easily produce Event-B
models at these extremes of the abstraction continuum but find it very difficult
to produce the intermediate design steps (that are necessary in establishing cor-
rectness).

A second issue that needs to be addressed is one of composition. Event-B, due
to its refinement mechanism, has proven to be successful in teaching correctness-
by-construction. However, we have fears that it is not so well-suited to reasoning
about composition of systems. In fact, our students often commented on having
difficulties in adding functionality (features) to already developed (and verified)
machines. Further, they observed that they would like to be able to synchro-
nise machines3 through some form of shared events. They also claimed to miss
the high level composition mechanisms that they were used to having in their
favourite OO programming languages.

Design is also about knowing what needs to be added and where. Modelling
and managing these “lumps” is a learning objective that we have yet to try and
meet (when teaching Event-B with Rodin). There has been research in extending
Event-B with richer composition mechanisms, but we are not yet ready to use
them in the classroom.

7 Conclusions

We believe that our PBL case-studies, using Rodin, are improving the way in
which we teach formal methods: (1) Students are happy to experiment with their
models and proofs. (2) Students are more motivated by working on problems —
and often spend much more time than required on self-study. (3) The students
were able to better understand the foundational material presented to them (in
traditional lecture format) as they could relate the theoretical concepts to the
operation of the Rodin tools — with particular interest in how the provers work
when discharging obligations automatically, and how to best carry out proofs
interactively.

However, we need to build a more extensive problem set, and improve our
feedback mechanisms for evaluating and improving problems. A major issue is
the specification of our learning objectives: if we want to share problems then
we need to be able to find common agreement on learning objectives. Such
agreement would be complementary to the development of a formal methods
body of knowledge[19]. Inspired by the analogy between software design and
sculpture, we conclude by proposing that formality holds the key to mastering
the harmony between the “holes” and the “lumps” in our models.
3 This is similar to the integration of CSP and B[18].

21

Gibson, Lallet, Raffy

References

1. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: A roadmap for the Rodin
toolset. In: Abstract State Machines, B and Z, First International Conference
ABZ 2008. Volume LNCS 5238. (September 2008) 347–351

2. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge Univ.
Press (1996)

3. des Rivières, J., Wiegand, J.: Eclipse: A platform for integrating development
tools. IBM Systems Journal 43(2) (2004) 371–383

4. Cansell, D., Gibson, J.P., Méry, D.: Formal verification of tamper-evident storage
for e-voting. In: Software Engineering and Formal Methods (SEFM 2007), IEEE
Computer Society (2007) 329–338

5. Cansell, D., Gibson, J.P., Méry, D.: Refinement: A constructive approach to formal
software design for a secure e-voting interface. Electr. Notes Theor. Comput. Sci.
183 (2007) 39–55

6. Cansell, D., Méry, D.: Formal and incremental construction of distributed algo-
rithms: On the distributed reference counting algorithm. Theor. Comput. Sci.
364(3) (2006) 318–337

7. Damchoom, K., Butler, M., Abrial, J.R.: Modelling and proof of a tree-structured
file system. In: ICFEM 2008. Volume LNCS 5256., Springer (October 2008) 25–44
Springer LNCS 5256.

8. Rehm, J., Cansell, D.: Proved development of the real-time properties of the ieee
1394 root contention protocol with the event b method. In Ameur, Y.A., Boniol, F.,
Wiels, V., eds.: ISoLA. Volume RNTI-SM-1 of Revue des Nouvelles Technologies
de l’Information., Cépaduès-Éditions (2007) 179–190

9. Duch, B. In: Writing Problems for Deeper Understanding. Stylus Publishing, Ster-
ling, Virginia (2001) 47–53

10. Tien, C., Chu, S., Lin, Y.: Four phases to construct problem-based learning in-
struction materials. In: PBL In Context: Bridging work and Education, Tampere
University Press (2005) 117–133

11. Gibson, J.P.: Weaving a formal methods education with problem-based learning.
In: 3rd Int. Symposium on Leveraging Applications of Formal Methods, Verification
& Validation. Volume 17., Springer-Verlag, Berlin Heidelberg (2008) 460–472

12. Gibson, J.P., O’Kelly, J.: Software engineering as a model of understanding for
learning and problem solving. In: ICER’05: Proceedings of the 2005 international
workshop on Computing Education Research, ACM (2005) 87–97

13. Gibson, J.P.: Formal requirements engineering: Learning from the students. In:
Australian Software Engineering Conference, IEEE Comp. Soc. (2000) 171–180

14. Gibson, J.P., Lallet, E., Raffy, J.L.: How do I know if my design is correct? In:
Formal Methods in Computer Science Education (FORMED). (March 2008) 59–69

15. Habrias, H.: Teaching specifications, hands on. In: Formal Methods in Computer
Science Education (FORMED). (March 2008) 5–15

16. Gibson, J.P., Méry, D.: Teaching formal methods: Lessons to learn. In Flynn, S.,
Butterfield, A., eds.: IWFM. Workshops in Computing, BCS (1998)

17. O’Kelly, J., Gibson, J.P.: PBL: Year one analysis — interpretation and validation.
In: PBL In Context — Bridging Work and Education. (2005)

18. Butler, M.J., Leuschel, M.: Combining csp and b for specification and property
verification. In Fitzgerald, J., Hayes, I.J., Tarlecki, A., eds.: FM. Volume 3582 of
Lecture Notes in Computer Science., Springer (2005) 221–236

19. Oliveira, J.N.: A survey of formal methods courses in European higher educa-
tion. In Dean, C.N., Boute, R.T., eds.: TFM’04. Volume 3294 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 235–248

22

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

Teaching the B Method at Oxford Brookes

David Lightfoot and Clare Martin

Oxford Brookes University, UK

Abstract. The B Method has been taught to MSc students at Oxford
Brookes University for over a decade. This year it has been introduced
into the undergraduate curriculum for the first time, partly because of
the recent advances in tool support for the language. In this paper we
reflect on our teaching experiences and briefly describe how we would
like to use the B Method in future to mechanise proofs in one of our
research areas.

1 Introduction

Formal methods have formed an integral part of both the undergraduate and
postgraduate curriculum at Oxford Brookes University for many years. Whilst
much of the theoretical material taught has remained static during this time,
changes in tool support, and in computer applications have continued to keep
the relevant modules fresh and challenging to teach. Student feedback has shown
that students enjoy learning about formal methods, and this has been reflected
by their results, and in some cases, their chosen careers.

2 The B Method in the Software Engineering Curriculum

Until recently, the B Method has only been included in the postgraduate cur-
riculum, as one of the optional modules on a number of MSc courses, including
Software Engineering. This year, however, it will also appear in the undergrad-
uate curriculum for the first time, as part of the Formal Specification module,
which has previously been restricted to teaching Z. This module is optional for
a number of the undergraduate degree courses, including Software Engineering
and it is compulsory for the Computer Science (Mathematical) degree.

3 Textbooks

The main textbook is the one by Schneider, [S01], which is used in conjunction
with some of the teaching resources from the associated website. Students are
also referred to the B-Book [A06], which is in the library along with various
other textbooks on B.

23

Lightfoot, Martin

4 Prerequisites

Much of the mathematical content has been removed from the MSc course, and
the only knowledge that can be assumed is that given during a brief maths
primer at the start of the course. Many students do have a strong mathematics
background, but it is still necessary to include a revision of basic set theory and
logic at the start of the B module for the benefit of the weaker students. It is
therefore useful to include a variety of simple and motivating exercises in B,
using very restricted notation, in order to keep the stronger students interested
and to help them understand the difficulty of capturing requirements precisely
using mathematics.

5 Syllabus

In common with other modules in the department, the B module consists of
eleven two-hour lectures, each followed by a one-hour practical. A typical sched-
ule of topics is as follows:

Week Topic
1 Introduction to module; Introduction to B
2 Specification using B
3 Fragile and robust operations
4 Worked example with audience participation
5 Relations
6 Functions and Sequences
7 Proof Obligations
8 Case Study
9 Refinement
10 Implementation
11 Revision

6 Tool support for software engineering with the B
method

For the past thirteen years, the B module has been taught at Brookes using the
B Toolkit [B], but this has always been slightly problematic, partly because most
of the computer rooms do not run Unix. So this year we decided to experiment
both with Rodin [R] and Atelier B [A]. Of these two tools, Atelier B seemed
much easier to get to grips with, so this was the tool we chose for this year’s
run of the module. Both tools have the advantage of running under Windows as

24

Lightfoot, Martin

well as Unix, so Atelier B has now been installed in all of the university pooled
computer rooms, thus facilitating its use for undergraduates.

The transition from the B Toolkit to Atelier B has been almost seamless. Only
minor changes have been made to the standard practical exercises and solutions
because of some of the differences listed below. These differences were found,
among others, on a website at Uppsala University [U], which was extremely
useful:

– In the B-Toolkit, implementations assign values to deferred sets and (con-
crete) constants using the PROPERTIES clause. In Atelier B, the VALUES
clause is used instead.

– Atelier B requires that the parameter list of an abstract machine is repeated
in any refinements of that machine, including an implementation. However,
the CONSTRAINTS clause should not be repeated.

– Atelier B does not allow parameters to be used in the PROPERTIES clause.

Two features of the B Toolkit that are missing from Atelier B are animation
and Latex output of machines, proof obligations and proofs. These features are
useful for teaching, but their loss is outweighed by the other benefits of Atelier
B.

7 Experiences with Formal Methods teaching using B

The group of students who have chosen to take the B module has usually been
quite small, partly because of timetabling restrictions. This has contributed to
the pleasure of teaching the module, but inevitably raises questions about its
viability in the future.

Teaching Methods

The primary teaching method is the traditional lecture, and all notes and prac-
tical exercises are supplied prior to the lecture, with model answers being dis-
tributed subsequently, after the students have attempted the exercises. The prac-
tical class is usually scheduled immediately after the lecture, which is convenient,
but has the disadvantage that the students do not have time to go away and
work through the exercises before discussing them with a tutor. All of the course
materials are stored on the module website, which includes

– lecture notes
– practical exercises
– model answers to exercises
– past exam papers

25

Lightfoot, Martin

– resources, such as the B reference card and the interactive prover manual
– links to associated websites
– articles on formal methods

The lectures tend to be quite interactive, in order to sustain interest from the
students. For example, the basic exercise in Section 9 is sometimes used during
a lecture at the start of the course, as an interactive modelling exercise. If time
permits, the practical exercises are attempted in groups during the lecture, using
only pencil and paper, and then discussed, before moving on to the computing
laboratory to test them out on the tool. For example, the exercise on refine-
ment in Section 9 might be discussed in class before the practical because the
refinements of the operations might not initially be obvious to the students.

Although the main emphasis of the course is on mathematical modelling, the
topic of proof is also covered in some depth. The mixed mathematical ability
of the students means that it is not feasible to assess complicated handwritten
proofs, but instead the students are taught to understand the two fundamental
concepts:

– the initialisation must establish the invariant
– every operation must preserve the invariant

These principles are explained in the context of weakest preconditions, following
[S01]. Students are shown some simple proofs in the lecture, and required to
complete some short in-class exercises on proof, but the main objective is to
make them understand what they are supposed to prove, rather than how to
prove it. This is where the use of a tool becomes essential, since it is relied upon
to generate the detailed proof obligations and discharge them. If the tool fails
to prove anything, then the students should be able to recognise whether this
is because of an error in the specification, or because it is necessary to use the
interactive prover. They are given practical exercises to test their ability with
this, and it is also assessed through their coursework. In general, students seem
to begin to fully appreciate the value of a tool once they have experienced its
ability to locate the kind of errors that result in the correctness of a system not
being provable.

Guest Lectures

One novel feature of the course over the years has been the inclusion of guest
lectures given by experts in the field. Experience has shown that the students
find these highly motivating. Some examples from recent years are listed below:

– Yann Bruere: Real Life B - how specification is used to develop safety critical
systems

– Michael Butler: Combining UML and B
– Ib Sorenson: The Specification of an Automatic Train Control System

26

Lightfoot, Martin

Difficulties

In general the course runs quite smoothly, but it is not without its difficulties.
Some of the problems listed below are common both to the B and Z modules.

– The main problem has been recruitment of students to the module. It is not
seen to be as essential as the more practical modules, and but the students
who do take it usually appreciate its value and give positive feedback.

– The mixed mathematical ability of the students can make some aspects of
the module difficult to teach. Many students are overwhelmed by the volume
of notation associated with relations and functions, and find it difficult to
express constraints mathematically. The solution to this is to provide them
with a large variety of exercises on which to practise. Supplementary exer-
cises are often added to the module website to allow them to broaden their
knowledge.

– It can be difficult to make the module seem relevant to the modern world,
but this problem is usually addressed by explaining the importance of safety
critical systems. The guest lectures also help. Some of the exercises are chosen
to feature modern applications with which the students are familiar, such as
the facebook example in Section 9. Other examples have included popular
websites like Amazon and ebay.

– There are also problems with implementation machines because it is beyond
the scope of the course to cover them in any depth, and students can be frus-
trated by the simplicity of the examples that they are taught to implement.

Assessment

Students are assessed by 30% coursework and 70% exam. For the coursework,
the students are asked to produce a specification and refinement of a system of
their own choice. This freedom both increases their motivation and eliminates
plagiarism. Students are expected to run their specification through the tool
and try to discharge all the proof obligations. The exam tests their knowledge
of the B language as well as their understanding of proof obligations and their
awareness of formal methods in general. It is a written exam, and therefore does
not test their practical ability with the tool.

Results

Students find the module interesting and well structured, and the average mark
is typically high, as is the pass rate:

27

Lightfoot, Martin

Year Number of students Average Mark % Pass rate %
2009 5 - -
2008 5 71 100
2007 4 76 100
2007 13 68 85

Careers

Three students in particular have chosen to continue to work with B after com-
pleting their degrees:

– Christine Poerschke (1998) went on to do a Phd at Brookes, where she
used the B notation to specify formally an existing medical decision support
system. The system helped patients with insulin-dependent diabetes decide
on a dose of insulin to inject and the results were presented at the ZB
conference in 2003 [PLN03].

– Beeta Vagar (2005) went on to do a Phd at Surrey University, under the
supervision of Steve Schneider.

– Yann Bruere (2008) went on to work for Siemens Transportation Systems in
Paris where he now uses the B method to verify railway systems.

8 Combining the B method with other approaches

This year we have decided to incorporate B into the undergraduate Formal
Specification module, which used to include only Z. There are two reasons for
this. First, the module has been upgraded to a third year module, and therefore
needs more content, and second, the module has previously relied on Z/EVES
for tool support, but this tool is no longer supported by its manufacturers. Proof
obligations will be covered in greater depth this year than in the past, and they
will be analysed using Atelier B. Students will be examined on their knowledge of
B; a sample exam question which requires students to translate a B specification
into Z and supply missing preconditions is included in Section 9.

9 Exercises featuring the B method

Basic Exercise

This exercise is used right at the start of the module to encourage students to
think about how to capture constraints using only basic set theory. Students
are given the basic machine below, which describes some of the requirements
on a degree programme at a university. Here compulsory denotes the set of

28

Lightfoot, Martin

modules that are compulsory for this degree, and acceptable denotes the set of
modules which are acceptable for it. staff and students represent the sets of
staff and students at the university respectively, and min is the minimum number
of modules necessary to obtain an Honours degree. The students are asked to
supply the following constraints:

– No person can be both a staff member and a student
– Every compulsory module must be acceptable
– The number of compulsory modules must not exceed min
– There must be at least min acceptable modules

Whilst these constraints are quite simple to formulate, examples like these help
students to understand the importance of precise mathematical descriptions of
systems that they are familiar with.

MACHINE degree

SETS MODULE; PERSON

CONSTANTS min

PROPERTIES min : NAT1

VARIABLES compulsory, acceptable, staff, students

INVARIANT compulsory <: MODULE & acceptable <: MODULE &
staff <: PERSON & students <: PERSON & ...

INITIALISATION compulsory,acceptable,staff,students:={},{},{},{}

OPERATIONS ...
END

Refinement Exercise

The following machine describes a collection of aircraft at an airport. Some of
the aircraft are waiting to be assigned gates for take off, and the rest are already
in their gates. There are three operations: arrive adds a new aircraft to the set of
those waiting, assign moves an aircraft from the waiting set to one of the gates,
and leave removes an airport from a gate when it takes off.

29

Lightfoot, Martin

MACHINE Airport(limit)

CONSTRAINTS limit : NATURAL

SETS PLANE; GATE

ABSTRACT_VARIABLES waiting, assignment

INVARIANT waiting <: PLANE
& assignment : GATE >+> PLANE
& card(waiting) <= limit
& waiting /\ ran(assignment) = {}

INITIALISATION waiting := {} || assignment := {}

OPERATIONS

arrive(pp) =
PRE
pp : PLANE & pp /: waiting & pp /: ran(assignment) & card (waiting) < limit

THEN
waiting := waiting \/ {pp}

END;

assign(pp,gg) =
PRE
pp : PLANE & gg : GATE & pp : waiting & gg /: dom(assignment)

THEN
waiting := waiting - {pp} || assignment(gg) := pp

END;

leave(pp) =
PRE
pp : PLANE & pp : ran(assignment)

THEN
assignment := assignment |>> {pp}

END

END

The refinement below uses injective sequences to represent both the set of planes
waiting to be assigned gates and the allocation of gates to planes. Some of the
refined operations are quite lengthy, and could alternatively be written using a
LET statement if preferred.

30

Lightfoot, Martin

REFINEMENT
Airport_r(limit)

REFINES
Airport

ABSTRACT_VARIABLES
waitList, gatesUsed, planesAt

INVARIANT
waitList : iseq(PLANE) & size(waitList) <= limit &
gatesUsed : iseq(GATE) & planesAt : iseq(PLANE) &
size(gatesUsed) = size(planesAt) &
ran(waitList) = waiting &
(gatesUsed~;planesAt) = assignment &
ran(waitList) /\ ran(planesAt) = {}

INITIALISATION
waitList := [] || planesAt := [] || gatesUsed := []

OPERATIONS
arrive (pp) =
PRE

pp : PLANE & pp /: ran(waitList) & pp/: ran(planesAt) & size (waitList) < limit
THEN

waitList := waitList ^ [pp]
END;

assign (pp , gg) =
PRE

pp : PLANE & gg : GATE & pp : ran(waitList) & gg /: ran (gatesUsed)
THEN

waitList := waitList /|\ (waitList~(pp)-1) ^ waitList \|/ waitList~(pp) ||
gatesUsed := gatesUsed ^ [gg] ||
planesAt := planesAt ^ [pp]

END;

leave (pp) =
PRE

pp : PLANE & pp : ran (planesAt)
THEN

planesAt := planesAt /|\ (planesAt~(pp)-1) ^ planesAt \|/ planesAt~(pp) ||
gatesUsed := gatesUsed /|\ (planesAt~(pp)-1) ^ gatesUsed \|/ planesAt~(pp)

END
END

31

Lightfoot, Martin

Sample Exam Question

The following specification in B partially represents a specification of a web
based social networking system. The set members is the set of all members of
the system, and nets is the set of all social networks in the system. The relation
friends relates each person to all of his/her friends and belongsto maps each
person to a social network. id denotes the identity relation which maps each
person to themselves.

MACHINE facebook

SETS NETWORK; PERSON

VARIABLES members, nets, friends, belongsto

INVARIANT members <: PERSON & nets <: NETWORK &
friends : PERSON <-> PERSON &
belongsto : PERSON +-> NETWORK &
dom(belongsto) = members & ran(belongsto) <: nets &
dom(friends) <: members & ran(friends) <: members &
id(PERSON) /\ friends = {} & friends = friends~

INITIALISATION members, nets, friends, belongsto := {},{},{},{}

OPERATIONS

addFriend(pp,qq) =
PRE
pp : PERSON & qq : PERSON & pp : members & qq : members &
{pp} /\ {qq} = {} & (pp,qq) /: friends

THEN
friends := friends \/ {(pp,qq), (qq,pp)}

END;

nn <-- numFriends(pp,qq) =
PRE
pp : PERSON & qq : PERSON & pp : members &
qq : members & (pp,qq) : friends

THEN
nn := card (friends[{pp}] /\ friends[{qq}])

END
END

1. Explain the purpose of each part of the invariant of this machine
2. Write down the state schema in Z corresponding to this machine

32

Lightfoot, Martin

3. The operation addFriend creates a friendship between two members who
were not previously friends. Explain the purpose of its precondition.

4. Translate the addFriend operation to Z
5. What is the proof obligation associated with the addFriend operation? Ex-

plain informally how it is discharged.
6. Write an operation removeMember in B, to remove a member mm from the

system, together with all of that person’s friendships, and their network
membership.

7. The operation numFriends outputs the number of mutual friends of two
distinct people. It is missing a precondition. What is it?

8. How would you modify the invariant to record the fact that some friends are
also relatives?

10 Use of the B method in disciplines other than software
engineering

One area of research that we are currently pursuing is the development of a
calculus of multirelations [MCR04]. This formalism has applications to game
theory and voting protocols among other things. The research has involved a
large volume of proof, all of which has so far been carried out by hand. We
are currently considering mechanising the proofs, both the save time and to
increase confidence in their correctness. The B method has been used in the
past for proving results in a very closely related relational calculus [CM07], and
so we would like to explore the possiblity of using it for verifying the calculus of
multirelations.

11 Conclusion

It has been a huge privilege for both authors to teach formal methods at Brookes
for over ten years now, on both the Z and B modules, and also on various
other ones which have now been discontinued. We are delighted with the recent
advances in tool support for B that continue to make the course feel modern and
worthwhile. Moreover, the constantly changing world of computer applications
never fails to bring fresh inspiration for examples that motivate students. The
art of capturing requirements precisely using mathematics never fails to please,
and we hope to be able to continue teaching it long into the future.

12 Acknowledgements

The authors are very grateful for the comments of the anonymous referees.

33

Lightfoot, Martin

13 References

References

[A06] Jean-Raymond Abrial The B-Book: Assigning programs to meanings Cam-
bridge University Press, 1996.

[CM07] Dominique Cansell, Dominique Mery: Incremental Parametric Development
of Greedy Algorithms Electronic Notes in Theoretical Computer Science
(ENTCS) archive Vol 185, p47-62, 2007.

[MCR04] Martin, C. E. , Curtis, S. A. and Rewitzky, I. (2007) Modelling angelic and
demonic nondeterminism with multirelations Science of Computer Program-
ming 65(2) : 140-158

[PLN03] Christine Poerschke, David E. Lightfoot, John L. Nealon: A Formal Specifi-
cation in B of a Medical Decision Support System. ZB 2003: 497-512.

[S01] Steve Schneider The B Method: An Introduction Palgrave, 2001.
[B] http://www.b-core.com/btoolkit.html

[R] http://www.event-b.org/

[A] http://www.atelierb.eu/index-en.php

[U] http://www.it.uu.se/edu/course/homepage/bkp/vt07/differences

34

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

Twelve years of B Teaching in an engineer

school: from a correct by design approach to
analysis techniques and tools.

Marie-Laure Potet

Vérimag, centre équation, 2 avenue de Vignate – F-38610 Gières,
Marie-Laure.Potet@imag.fr

Abstract. Twelve years ago I introduced a B course at Ensimag, a well-
known french Mathematics and Computer Science engineer school. In this paper
I describe this experiment and the evolution of the contents of this course. In
particular I present a set of fundamental concepts that can be easily illustrated
with the help of the B framework. I also present some unpublished examples and
theoretical results.

1 Introduction

Twelve years ago I introduced a B course at Ensimag, a well-known french
Mathematics and Computer Science engineer school. In company of Didier Bert,
I also gave lectures to the ” Ecole des jeunes chercheurs en programmation ”,
dedicated to PhD students in the domain of programming1.

During this long period, these courses had been subject to many evolutions,
due first to my better understanding and knowledge of the domain and, more
important, to my perception of notions that students are able to acquire and
master and finally of notions that are intrinsically very challenging to under-
stand. Furthermore, during the last two decades, the context had changed :
formal techniques have acquired a new status in industry and in the every day
life of programmers. Due to safety and security constraints, a lot of tools and
approaches have been developed, allowing to verify some dedicated classes of
program properties. Then teaching formal methods, and more importantly the
underlying concepts, are no more considered as an esoteric idea. Due to this
evolutive context, the Ensimag B lectures had been subject to some evolutions,
that could be described in the form of three periods:

– First period: B studied as a whole method from specification to correct code
(correctness by construct).

– Second period: B used as a well-adapted support to introduce a set of fun-
damental aspects of programming science.

– Next period: B will be presented as a part of existing techniques for program
analysis for a larger public.

1 This school is supported by the GPL french working group.

35

Pottet

Despite of these changes, I am convinced that the B method offers a very nice
and solid framework to present a set of interesting concepts, from methodological
aspects to theoretical foundations of programming. Furthermore, the existence of
robust tools taking into account the global process from abstract specifications to
executable code is a very attractive argument with respect to students. During
these twelve years I have compiled some experiences, practical exercises and
theoretical results which will be presented here.

In section 2, I present the first period of the Ensimag B teaching, with an
evaluation of how some notions have been introduced with which efficiency in
regard of students. I also present small and well-targeted modelling examples.
In section 3 I introduce some semantical aspects that illustrate the underly-
ing concepts relative to programming reasoning. I conclude in describing a new
cursus relative to static analysis techniques, including the weakest precondition
approach.

2 The B method studied as a whole

The Ensimag course dedicated to the formal aspects of programming takes place
in the second year of the curriculum, corresponding to the first year of a Master
degree. This course was proposed as an optional cursus, attracting students
interested by theoretical aspects of computer science.

The audience is composed of future engineers having the taste for techni-
cal and fundamental aspects and with some abilities with abstraction, due to a
solid background in Mathematics (issued from the very French cursus “classes
préparatoires aux grandes écoles”). That means that our students have no par-
ticular difficulty with mathematical notions such as set theory. More important,
they are also able to manipulate several levels of formalization such as syntax, se-
mantics and reasoning about semantics, without too difficulty. Finally Ensimag
students have some background in logic, compiling (realization of a small object
oriented language compiler) and rigorous algorithmics.

2.1 The objectives

The first version of the B method course has been proposed as the successor
of lectures relative to formal specifications, in which many approaches was pre-
sented (algebraic specifications, model based specifications, refinement notions
as in VDM and Z, . . .). At this stage the choice was to focus on the B method
which integrates the main steps of formal development into a single framework.
Furthermore, due to the fact that this method was supported by robust tools,
the challenge was to conciliate practice with a fine understanding of theoretical
concepts.

During this period, despite the fact that the aim was not to produce B
specialists, I followed the top-down approach preconized by the B-method in [1].
The aim was to initiate students into formalization and modelling activities and
into the top-down “correct by design” paradigm. Then the ambitious aim of this
course recovers three objectives, according to students skills:

36

Pottet

– ability to formalize behaviours and properties with the help of abstract lan-
guages;

– ability to understand the semantics of programming languages and ability
to reason about programs in a formal way;

– ability to understand the theoretical concepts underlying correctness by de-
sign principle, for real programming language.

I list below the different concepts that are tackled and their understanding
by students.

2.2 Modelling aspects

This part concerns the ability of students to:
– state properties with the set theory notations
– describe behaviours with the generalized substitution language (GS)
– apply weakest precondition calculus (WP)
– understand proof obligations relative to invariant properties (PO)

Notions Students ability
use of set theory not a problem

use of GS notation difficulty with non-determinism
WP calculus not really a problem

PO understanding not easy to be exact
and proof argumentation with logical reasoning

Let here some examples illustrating data structure modelling, non determinism
and properties.

Examples Used notions
a memory allocator non-determinism
a dynamic class loader formalisation of trees to specify a class hierarchy
a RBAC security policy specification based on relations and

search of inductive invariants
a simple elevator how expected properties can be formalized with the

help of type properties, invariant and dynamic behaviours

The allocator and the RBAC examples are given below. The dynamic class
loader is described in [8] and the lift example is extracted from the course of
EJCP072.

The memory allocator example. Let MEM be a given set, null a dis-
tinguished constant of this set and used ⊆ MEM , the set of addresses that
have been allocated. This subset is initialized with the set {null}. Here is the
specification of the allocator operation:
2 http://www-lsr.imag.fr/users/Didier.Bert/enseignement.html

37

Pottet

r ←− allocate =
choice

any v where v ∈MEM − used
then used := used ∪ {v} || r := v
end

or r := null
end

In this example two forms of non-determinism are used: the choice substi-
tution corresponds to the fact that the allocator can, or not, supply a memory
cell. The second form of no-determinism (substitution any) corresponds to the
fact that the address that is returned is chosen by the allocator. Then the user
of such a component has a priori no information about the behaviour of the
allocator. In particular he systematically must test if the returned value is null
or not. This example illustrates non-determinism.

The RBAC security policy example. We consider below a general model
for role-based security policies in which roles are attached to subjects and per-
missions are attached to roles. As in RBAC[5], some roles can be declared in
conflict. In this case a safety invariant states that a subject can not own two
roles in conflict. This example illustrates how invariant properties could be en-
forced during the proof process in order to obtain an inductive invariant. Here
is the declaration part of this model.

machine RBAC
sets

SUBJECT, ROLE, PERMISSION
variables
subject2role, role2permission, conflict

invariant
subject2role ∈ SUBJECT ↔ ROLE ∧
role2permission ∈ ROLE ↔ PERMISSION ∧
conflict ∈ ROLE ↔ ROLE ∧
subject2role ∩ (subject2role ; conflict)= ∅

end

The last part of this invariant states that nobody can own two roles which
are in conflict. Now we consider the operation AddRole that adds a new role r
for a given subject s.

AddRole(r, s) =
pre r ∈ ROLE ∧ s ∈ SUBJECT ∧ r 6∈ conflict[subject2role[{s}]]
then subject2role := subject2role ∪ {s 7→ r}
end

In order to establish the invariant preservation we have to prove:

38

Pottet

(subject2role ∪ {s 7→ r}) ∩ ((subject2role ∪ {s 7→ r}) ; conflict) = ∅
under the hypothesis subject2role∩ (subject2role ; conflict) = ∅ (the invariant
initially holds) and r 6∈ conflict[subject2role[{s}]] (the precondition). This
proof obligation can be split into for cases:

{s 7→ r} ∩ (subject2role ; conflict) = ∅ comes from the precondition
{s 7→ r} ∩ ({s 7→ r} ; conflict) = ∅ missing hypothesis (irreflexivity)
subject2role ∩ (subject2role ; conflict) = ∅ comes from the invariant hypothesis
subject2role ∩ ({s 7→ r} ; conflict) = ∅ missing hypothesis (symmetry)

For the second case the invariant must be enforced by the irreflexivity prop-
erty of the relation conflict (conflict ∩ id(ROLE) = ∅). For the last case, the
symmetry of conflict have to be added (conflict−1 = conflict). With these two
further properties the proof obligation attached to the operation AddRole can
now be proved.

Finally an interesting exercise, in term of modelling and properties state-
ment, is to add hierarchical roles (a tree) and the property that this hierarchy
is compatible with the relation conflict (it is not possible to inherit of two roles
which are in conflict).

2.3 Formal development process

In this part we discuss how the notions relative to formal development process
are understood by our students. We focus on the following notions:
– notion of refinement (its intuitive definition and its proof obligations)
– refinement properties like transitivity and monotonicity
– implementation constraints and proof obligations (bounded integers and

overflow detection for instance)
– practical aspects (practice of the AtelierB : firstly with demos and after

through exercises.)

Notions Students understanding
refinement principle familiar with data representation

Refinement PO intrinsically hard to appropriate
Refinement properties very very abstract

practical work difficulties due to syntactic restrictions

Refinement proof obligations are intrinsically hard to integrate. Let S be
an abstract substitution relative to variables x, T be a concrete substitution
relative to variables y and let L be the refinement relationship between x and y.
Refinement proof obligations can be presented using two forms:

First form L ∧ trm(S)⇒ [T]¬[S]¬L
Second form L ∧ trm(S) ∧ prd(T)⇒ trm(T) ∧ ∃x′(prd(S) ∧ [x, y := x′, y′]L)

39

Pottet

The first form is a bit disturbing for students due to the double negation.
The second form is a little bit intuitive but requires to introduce trm and prd
predicates which are again new abstract notions to integrate. I now systemati-
cally use the first form because it does not require new concepts. Furthermore
the following intuitive formulation can be used: for any concrete behaviour (T)
it is not true that any abstract behaviour (S) does not establish L. Then, for each
concrete behaviour, there exists at least one abstract behaviour that establishes
L.

Finally the development of examples, with the help of a robust tool such
as the AtelierB, is very interesting because students can precisely understand
the correctness by design approach. Furthermore they formalize informal rea-
sonings used in algorithmics (such as invariant and variant of a while statement
for instance). Furthermore practical exercises are generally motivating, even so
students are generally disturbed by the semi-decidability of proofs. Here are
examples we used:

Examples Notions that are used
gcd program proofs of iteration and absence of overflows
element research in an array a sophisticated iteration invariant
modelling and controlling a lock simple data refinement
a booking service example a global development

The three first examples are available at www-verimag.imag.fr/~potet/Page-
B. They are tailored to be used in practical labs: components are partially spec-
ified and, if students state the right formulae, proofs are automatically estab-
lished3. The last example is developed in several documents (in french) (web
pages of Didier Bert or Marie-Laure Potet). It is also used to illustrate proof
obligations relative to iteration and how these proof obligations depend on the
initial specification. We develop this part of this example below.

Let SEAT be the set 1..maxseat and let taken be the subset of SEAT
that has been already assigned. The operation booking can be specified in the
following way:

place←− booking =
pre card(taken) 6= maxseat
then

any p where p ∈ SEAT − taken
then taken := taken ∪ {p} || place := p
end

end

At the implementation level we represent the set taken by an array tab (tab ∈
1..maxseat→ BOOL ∧ tab−1[{TRUE}] = taken) and the booking operation
is implemented in the following way:

3 depending on the way the formula is written.

40

Pottet

place←− booking =
var ind in

ind := 1;
while tab(ind) = TRUE do

ind := ind + 1;
invariant . . .
variant maxseat− ind

end;
tab(ind) := TRUE ;
place := ind ;

end
The invariant part has to be completed by the formula:

ind ∈ 1..maxseat ∧ FALSE ∈ tab[ind..maxseat]

that means that a free seat appears at the current index (ind) or in the rest
of tab. Now if we modify the specification in order to choose the smaller free
number the where part of the specification becomes: p = min(SEAT − taken).
Then the invariant of the implementation has to be enforced in order to prove
that we always choose the seat with the minimal number:

ind ∈ 1..maxseat ∧ tab[1..ind− 1] ⊆ {TRUE}

2.4 Conclusion of the first period

In a top-down design process (from abstract models until implementations) stu-
dents become comfortable when implementations are tackled. They rediscover
known notions and a formalization of their usual practice.

Furthermore, it seems difficult for them to integrate in the same time many
theoretical notions such as a specification language, the weakest precondition
calculus and the refinement theory, in parallel of the methodological aspects of
formal development process. Then I choose to focus first on the proof of program
approach, using the substitution language in its whole (without distinction be-
tween generalized substitutions allowed at the different level of components). In
this way students practice proof of programs, learn how to state invariant prop-
erties and discover new notions as non-determinism. Practical exercises start
with classical programs with iteration (as gcd) to go towards specifications. Fi-
nally the refinement theory is introduced. This approach has proved to be more
attractive for students, because it starts from their background and knowledge.

3 B as a support to illustrate underlying concepts of
formal reasoning about programs

The B method is a well-adapted framework to visit some important concepts, like
semantics definition and properties underlying proofs of programs. Refinement
is then introduced as an extension of this approach. In this part the aim is that

41

Pottet

students understand some fine aspects of semantics definition and are able to
reason about it. We present here three aspects: an extension of the B weakest
precondition calculus taking into account a new feature (abnormally exit through
exceptions), the proof of the invariant preservation by operation call, that is
the base on incremental development and, finally, the theoretical framework
underlying B refinement proof obligations.

3.1 Weakest precondition for exception features

Here the aim is to extend the B language by exceptions, which is an already so-
phisticated feature. Some results presented here are borrowed from Lilian Burdy
work [2]. The original part is the proof of the correctness of this extension, based
on a mapping between programs with exception and without exception. In this
way students can discover that it is possible to formally reason at the semantics
level. We describe below this extension.

We extend the B language with the possibility to declare exceptions. We also
extend the generalized substitution language in the following way:

raise e raising exception e
begin S a block with exception handling
catch when e1 then S1

. . . the handling part
when en then Sn with i 6= j ⇒ ei 6= ej

end

The new weakest precondition calculus wpe(S, F). Let EXC be the set of
exception names with a distinguished constant no (no ∈ EXC) that corresponds
to normal behaviours. The weakest precondition calculus is now denoted by
wpe(S, F) with F a function relating an exceptional exit with a postcondition,
i.e.

F ∈ EXC →p Predicate

This calculus can be defined in the following way:

wpe(skip, F) F (no)
wpe(x := v, F) [x := v] F (no)
wpe(raise e, F) F (e)
wpe(P =⇒ S, F) P ⇒ wpe(S, F)
wpe(S1 [] S2, F) wpe(S1, F) ∧ wpe(S2, F)
wpe(S1 ; S2, F) wpe(S1, F ⊳− {no 7→ wpe(S2, F)})

where ⊳− denotes the overriding B operator. In the case of sequencing, if S1

stops abnormally with an exception e the expected postcondition is F (e) because
S2 is not executed. Otherwise S1 must establish the precondition issued from
the execution of S2, as in classical B. The weakest precondition of blocks with
handling is defined in the following way:

42

Pottet

wpe(
begin S wpe(S,
catch when e1 then S1 F ⊳− {e1 7→ wpe(S1, F),

. ,
when en then Sn en 7→ wpe(Sn, F)}

end, F))

An example. Let here the following program for which we want to establish
the postcondition F1 = {no 7→ x = 2, stop 7→ x = 1}, meaning that the post-
condition x = 2 is expected when the program terminates normally and the
postcondition x = 1 is expected when the exception stop is raised:

begin x := 1; if y > 0 then raise stop end ; x := 2 end

and here is now the same program enriched by the weakest precondition calculus
(must be read from the bottom to the top):

begin
(F4) {(y > 0⇒ true) ∧ (¬(y > 0)⇒ true) }
x := 1;
(F3) {no 7→ (y > 0⇒ x = 1) ∧ (¬(y > 0)⇒ true), stop 7→ x = 1}
if y > 0 then raise stop end ;

(F2) {no 7→ true, stop 7→ x = 1}
x := 2
(F1) {no 7→ x = 2, stop 7→ x = 1}

end

with:

Formula Its definition
F1 F1(no) = (x = 2), F1(stop) = (x = 1)
F2 F2(no) = [x := 2]F1(no) = true, F2(stop) = F1(stop)
F3 F3(no) = F2(stop) if y > 0, F3(no) = F2(no) if ¬(y > 0),

F3(stop) = F2(stop)
F4 F4 = [x := 1]F3(no) = true

Semantics Correctness. In this part we show how to establish the correct-
ness of the wpe definition with respect to the classical B weakest precondition
calculus, using a systematic transformation between programs with exceptions
and without exception. To do that we add a new variable exc (exc ∈ EXC).
Let C(S) be this transformation defined in the following way:

C(x := v) =̂ x := v ; exc := no
C(skip) =̂ exc := no
C(raise e) =̂ exc := e
C(S1 ; S2) =̂ C(S1) ; if exc = no then C(S2) end

and:

43

Pottet

C(begin S catch when e1 then S1 . . . when en then Sn end) =̂
C(S);
if exc 6= no then choice exc = e1 =⇒ exc := no ; C(S1)

or . . .or exc = en =⇒ exc := no ; C(Sn) end
end

Now the correctness of the wpe calculus can be established using the following
equivalence:

wpe(S, F) ⇔ [C(S)]
∧

ei∈dom(F)(exc = ei ⇒ F (ei))

An interesting exercise (not developed here) is to prove the correctness of
the raise and the catch block substitutions. Extending the weakest precondition
calculus for new features is an attractive exercise for students because they have
to build a formal definition. Furthermore, in this case, their solution can be
proved to be correct, thanks to the natural definition of the function C.

3.2 Semantics of operation calling

In this part we formally define operation calls and several modes of parameter
passing. In particular we show that by-reference parameters are not adapted for
verification, because invariant properties are not preserved. Results presented
here are extracted from [7, 3].

Operation call definition. Let r ← op(p) =̂ pre P then S end be the
definition of the operation op and let v ← op(e) be a call of op. In B, incremental
development is based on the encapsulation principle. That means that variables
v are disjointed from variables of the component in which op is defined. We define
here two parameter-passing modes: by copy (by value) mode or by reference (by
address) mode.
By copy semantics:

pre [p := e]P then var p, r then p := e ; S; v := r end end

By reference semantics:

pre [p := e]P then [p, r := e, v]S end

Semantics by substitution corresponds to by-reference parameters when the
effective parameters reduce to simple variables (as v in B). If any expressions
are admitted, substitution corresponds to the by name mode passing. For the
definition of substitution into substitution see [1].

In the B method, the semantics of operation calls uses the definition associ-
ated to the by-reference mode although it is a by-copy mode. This is due to the
fact that operation call semantics is only defined at the level of abstract machine
components in which sequentiality and while substitutions are prohibited. In the
general case these two modes of parameters differ.

44

Pottet

An example. For instance let consider the definition op(y)=̂ pre even(y) then
x:=x+1 ; x:=x+y+1 end and the piece of code x:=0 ; op(x) ; print(x). The by-
reference semantics produces the code x:=0 ; x:=x+1 ; x:=x+x+1 ; print(x)
that prints the value 3. On the contrary the by-copy semantics produces the
code x:=0 ; var y in y:=x ; x:=x+1 ; x:=x+y+1 end ; print(x) that prints the
value 2.

Invariant preservation by parameter passing. The by-reference parameter
does not preserve invariant. For instance we can establish that the operation op
above preserves the invariant even(x). But, as shown above, the call op(x) does
not preserves this property (3 is not an even value). On the contrary the by-copy
semantics has good properties for verification: invariants are preserved by calls.

Theorem 1 Invariant preservation by call
Let r ← op(p) =̂ pre P then S endbe the definition of an operation op and

let v ← op(e)be an operation call, as defined before. Let I be a property on x, the
set of variables of the component in which op is defined (x ∩ v = ∅). Then:

∀r, p (I ∧ P ⇒ [S]I)
⇒

(I ∧ [p := e]P ⇒ [var p, r in p := e ; S ; v := r end]I)

On one hand, by monotonicity of ⇒ with respect to substitution, we can
derive from I ∧ P ⇒ [S]I the formula: [p := e]I ∧ [p := e]P ⇒ [p := e][S]I (a).
On the other hand the conclusion reduces to I ∧ [p := e]P ⇒ ∀ p, r ([p :=
e][S][v := r]I). Because v does not appear in I (the encapsulation principle)
then the right part reduces to [p := e][S]I. Then the conclusion of the rule is
obtained from (a) because p is not free in I. Similar results can be established for
refinement, i.e. refinement proofs established at the level of operation definition
are preserved by by-copy operation call semantics. This property is harder to be
established (see [7] for a proof).

As before, formalization of parameter-passing modes is an attractive exercise
for students. On the contrary, property as invariant preservation by operation
calls is a less natural question for students. They generally do not really un-
derstand why such properties are important, even so we show some incremental
constructions, as the clause includes for instance.

3.3 Refinement theory

The B method gives a syntactic notion of refinement in term of proof obligations.
It is interesting to give a more semantic definition. Then as in the classical
theory of refinement developed by Willem-Paul de Roever and Kai Engelhardt
[4], refinement notion gives this semantic point of view and proofs are conducted
by the help of simulations.

45

Pottet

Although the notions that will be introduced here are a little bit complex they
are interesting according to several reasons. First they give a semantic definition
of refinement in term of component substitution principle. Second they introduce
how this definition can be implemented in several operational ways. And finally
they allow to illustrate the classical notions of correctness and completeness of
an operational procedure with respect to a semantic definition.

Semantic definition of refinement. Let M be a component refined by an-
other component R. As defined in the B-Book (chapter 11, p 511) a substitution
U is an external substitution for M and R if it contains no reference to the
variables of components M and R (vM or vR). Internal variables can only be
consulted or modified through operation calls. We denote by UM and UR the
generalized substitutions obtained by U in replacing operation calls respectively
by their definition in M and R. The definition below is issued from the B-Book
[1].

Definition 1 Semantic characterization of data refinement.
M can be substituted by R if components M and R propose the same set of

operations with the same interface and, for each external substitution U for M
and R, we have any vM in initM ; UM end ⊑ any vR in initR ; UR

end.

In this definition internal variables are encapsulated by the any substitution
and initialized by the init substitution of M and R component.

Simulations and proof obligations. Definition 1 characterizes refinement as
a substitution principle but gives no manner to establish refinements because
all external substitutions have to be considered. Then, as in B, simulations are
established with the help of a refinement relation α (the gluing invariant) and
describe commutations of the following diagram:

AS

CS
C

AA

C

α α
α α−1−1

In this diagram, AS and CS correspond to the before-after relation of the
abstract and concrete substitutions4. For simulations can be defined (named L,
L−1, U and U−1), depending how the diagram commutes:

4 Termination condition are not considered here.

46

Pottet

Simulations (notation X) Proof obligations (notation ⊑X
α)

L-simulation (forward/downward simulation) α−1 ; CS ⊆ AS ; α−1

L−1-simulation (backward/upward simulation) CS ; α ⊆ α ; AS
U -simulation α−1 ; CS ; α ⊆ AS
U−1-simulation CS ⊆ α ; AS ; α−1

Two important properties are attached to simulations: correctness and
completeness of their definition with respect to refinement definition (def. 1).
Let M and R be two components. A simulation X is correct if whereas there
exists α such that the proof obligations ⊑X

α hold then M is effectively refined
by R in the sense of definition 1. On the contrary, a simulation X is complete
if, for every components M and R respecting definition 1, it is possible to find
a relation α such that proof obligations ⊑X

α hold. Results are the following ones
[4]:

– correctness of L and L−1 simulations
– correctness of U simulation if α is total (α ∈ C ↔ A ∧ id(C) ⊆ α ; α−1)
– correctness of U−1 simulation if α is a function (α ; α−1 ⊆ id(A))

If α is a total function then U -simulation and U−1-simulation are two equiv-
alent notions. All stand-alone simulations are incomplete. On the contrary a
combination of L et L−1 is complete. We illustrate these results by an example.

Example. This example is borrowed from Steve Dunne [6]. Let’s consider the
two following B machines, that can be considered as equivalent ones: they both
admit the same set of external substitutions.

machine CASINO1
variables i
invariant i ∈ 0..36
initialisation i :∈ 0..36
operations

r1←− spin=̂ r1 := i || i :∈ 0..36
end

machine CASINO2

operations
r2←− spin=̂ r2 :∈ 0..36

end

There exists α (∅) such that CASINO2 ⊑L
α CASINO1 and CASINO1 ⊑L−1

α

CASINO2. On the contrary there exists no α such that CASINO1 ⊑L
α CASINO2.

Let’s show that CASINO2 ⊑L CASINO1:
i ∈ 0..36⇒ [r1 := i || i :∈ 0..36]¬[r2 :∈ 0..36]¬(r1 = r2)
i ∈ 0..36⇒ [r1 := i]∃r2 (r2 ∈ 0..36 ∧ r1 = r2)
i ∈ 0..36⇒ [r1 := i]r1 ∈ 0..36
true

CASINO1 6⊑L CASINO2:

47

Pottet

i ∈ 0..36⇒ [r2 :∈ 0..36]¬[r1 := i || ii :∈ 0..36]¬(r1 = r2)
i ∈ 0..36⇒ ∀r2 (r2 ∈ 0..36⇒ i = r2)
i ∈ 0..36 ∧ r2 ∈ 0..36⇒ i = r2
false

Using a logical form, proof obligations relative to L−1-simulation can be stated
as: ∀c, a′ (∃c′ (C ∧ [c, a := c′, a′]α) ⇒ ∃a (α ∧ A)). Let’s show that CASINO1
⊑L−1

CASINO2:

∀r1′(∃r2′(r2′ ∈ 0..36 ∧ r1′ = r2′)⇒ ∃i(i ∈ 0..36 ∧ r1′ = i))
∀r1′(r1′ ∈ 0..36⇒ ∃i (i ∈ 0..36 ∧ r1′ = i))
true

In general our students are interested by a formal definition of refinement
in term of component substitution because this characterization corresponds to
the classical notions of encapsulation and component contract. Without surprise,
they have some difficulties with the different forms of simulation and examples.

4 Conclusion

I present below some general conclusions about this twelve years of B teaching at
Ensimag and some propositions for a new course (under development) dedicated
to a larger audience and a larger spectrum.

4.1 Conclusion of my experiments

During this long period the B method has proved to be a solid framework for
teaching formal methods. First the underlying concepts (set theory, general-
ized substitution notation) are simple and expressive enough. That means that
students can easily and quickly write specifications and codes. Second, when ex-
amples are well-made, the AtelierB tool can be used successfully by students. Its
main advantage, among other tools dedicated to formal methods, is the support
of the global development process, from abstract specification until executable
programs. Even so the interactive prover is not very intuitive, with a few in-
troduction students are able to develop some simple proofs. Tractable examples
and their educational aims have been given section 2.

Nevertheless, the B method has been designed to be efficient and tractable
in an industrial context, encapsulating some complex notions and introducing a
set of restrictions that are not always easy to justify. Then teaching B, and using
it to study theory of programming, requires to break this framework in order to
enter into details of the internal machinery, as described section 3.

Finally, the main difficulties for students are relative to refinement theory
whereas the refinement process is intuitive enough. Nevertheless, this complexity
seems inherent to all formal methods.

48

Pottet

4.2 The future

The curriculum of Ensimag is under modification in order to be closer of the
LMD reform. In the Information System Engineering curriculum, it has been
decided to impose a course with some formal contents. The audience should now
be around 50-60 people.

Furthermore, as pointed in the introduction part, formal techniques have
acquired a new status in industry and in the every day life of programmers.
Due to safety and security constraints, a lot of tools and approaches have been
developed, allowing to verify some dedicated classes of program properties. Be-
cause our future engineers have to know the state-of-the-art technologies, we
have decided to study a larger set of formal approaches, from rapid and very
approximative tools to precise but interactive approaches, depending on the tar-
get of the verification process (bug finder, verification of some particular form
of properties, proof of assertions . . .). Depending on the chosen approach, some
questions as false-positives (a program is declared as erroneous whereas it is cor-
rect) and false-negatives (an incorrect program is not detected) can be studied,
with respect to a given notion of correctness.

Moreover some advanced features will be examined as object oriented pro-
grams, pointer and component oriented verification. On the contrary, some other
aspects will not be presented at all, such as refinement and modelling. It seems
more realistic to plan a new course (at the M2 level and as an optional one)
dedicated to these aspects. In this case a broader spectrum has to be targeted,
including temporal logic, communication models (automata, process algebra)
and refinement theory (data refinement as well as behaviour refinement).

References

1. J.R. Abrial. The B-Book. Cambridge University Press, 1996.
2. Lilian Burdy and Antoine Requet. Extending B with Control Flow Breaks. In ZB

2003: Formal Specification and Development in Z and B, volume 2651 of LNCS,
pages 513–527, 2003.

3. D.Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable Translator of
B Specifications to Embedded C programs. In FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science. Springer, 2003.

4. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge University Press, 1998.

5. Ferraiolo D.F. and Kuhn Richard. Role-Based Access Control. In Proceedings
of the 15th NIST-NSA National Computer Security Confe rence, pages 554–563,
Baltimore, MD, USA, October 1992. Nat’l Inst. Standards and Technology.

6. Steve Dunne. Introducing Backward Refinement into B. In ZB 2003: Formal Spec-
ification and Development in Z and B, volume 2651 of LNCS, pages 178–196, 2003.

7. M-L. Potet. Spécifications et développements formels: Etude des aspects composi-
tionnels dans la méthode B. Habilitation à diriger des recherches, Institut National
Polytechnique de Grenoble, 5 décembre 2002.

8. Nicolas Stouls. Systèmes de transitions symboliques et hiérarchiques pour la concep-
tion et la validation de modèles B raffinés. Thèse de doctorat, Institut Polytechnique
de Grenoble, 2007.

49

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

High-Level versus Low-Level Specifications:
Comparing B with Promela and ProB with Spin

Mireille Samia, Harald Wiegard, Jens Bendisposto, Michael Leuschel

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{samia|bendisposto|leuschel}@cs.uni-duesseldorf.de
harald.wiegard@uni-duesseldorf.de

Abstract. During previous teaching and research experience, we have
accumulated anecdotal evidence that using a high-level formalism such
as B can be much more productive than using a low-level formalism such
as Promela. Furthermore, quite surprisingly, it turned out that the use
of a high-level model checker such as ProB was much more effective in
practice than using a very efficient model checker such as Spin on the
corresponding low-level model.
In this paper, we try to put this anecdotal evidence on a more firm empir-
ical footing, by systematically comparing the development and validation
of B models with the development and validation corresponding Promela
models. These experiments have confirmed our previous experience, and
show the merits of using a high-level specification language such as B,
both in a teaching and in a research environment.

Key words: Model Checking, ProB, Spin, B-Method, Promela

1 Introduction

In the past, we have accumulated a variety of anecdotal evidence about using
high-level and low-level formalisms for formal modelling, both in the context of
teaching and in the context of academic or industrial applications.

For example, while teaching a formal methods course at the University of
Southampton1, on multiple occasions, the students were able to develop a B
model of a particular task and validate it using ProB, whereas attempts using
Promela and the model checker Spin turned out to be fruitless. A similar sit-
uation arose while teaching a course at the University of Düsseldorf2. On the
one hand, it is not surprising that the use of a high-level formalism makes the
model development easier. However, one would expect that using an extremely
well tuned model checker such as Spin would result in better validation.

In this paper, we present an empirical case study, which tries to provide a
more empirical foundation for these anecdotal evidences:

1 CM401: Formal Design of Systems, taught in 2003 and 2004 at master’s level
2 Softwaretechnik III, taught once, also at Master’s level

50

Samia, Wiegard, Bendisposto, Leuschel

– How much time does it take to develop a B model compared to an equivalent
low-level Promela model?

– How big is the B model compared to the Promela model?
– What is the performance of the model checkers ProB and Spin on these

models?

The methodology we adopted was the following:

– a student developed B and Promela models for a variety of tasks, ranging
from protocols to puzzles. The goal was to cover a wide variety of scenarios,

– the student carefully measures his time usage. In order to arrive at a more
just result, the student alternated between first developing the B model and
first developing the Promela model.

– The student also carefully measured the model checking performance, and
whether the tools were successful.

The student had a background in both B and Promela, and has had experi-
ence both with ProB and with Spin.

2 Background

The B-Method, originally developed by J.R. Abrial [1], is based on the notion of
abstract machines and refinement. In B, a system is seen as a set of states and
operations, which modify the state. In order to prove consistency of the system,
one has to prove, that each operation preserves the model’s invariant. B uses
the same notation for all the stages of the development of a system, which goes
on for successive refinement steps. There are several tools to support develop-
ing models with B, one of them is the model checker ProB [5]. Promela3 is a
formalism for the verification of models [3], in particular protocols. It is based
on concurrent communicating processes, that communicate via channels. The
message transmission can be immediate or with delay, i.e. a channel can have a
capacity of elements stored inside. The syntax and datatypes of the Promela lan-
guage are influenced by the high-level language C. Promela is supported by the
model checker Spin that is used and verifies the correctness of a model. It offers
the possibility to verify the validity of LTL formulas, which are automatically
converted into never claims.

3 Case Studies of Different Models

Figure 1 contains a summary of all the case studies that were conducted. The
column entitled “development time” describes how much more time consuming
the development of the Promela model was compared to the B model. Similarly,
the column entitled “source code length” describes how much longer the Promela
models were compared to the B models (counting the number of tokens). Finally,

3 Process or Protocol Meta Language

51

Samia, Wiegard, Bendisposto, Leuschel

the verification time using ProB for B and Spin for Promela are given. One can
see that in one instance (Needham-Schröder protocol) Spin was much more effi-
cient than ProB. Overall, however, the performance is comparable and despite
various attempts, the student was unable to verify the Promela versions of the
vehicle administration and the reservation system using Spin. The Promela ver-
sion of the “railway interlocking model” could not be completed in time.

 Development
Time

Source Code
 Length

Verification Time
(in sec.)

 (Promela / B) (Promela / B) ProB Spin
Prime Number Test using Random Numbers 1.3 1.0-3.5 1.0 1.0
The Bridge Puzzle 5.0 1.9 1.0 1.0
The Bier Glass Puzzle 2.0 1.7 0.1 0.1
Administration of a Vehicle 4.5 4.5 0.7 -
Parking Garage 6.0 1.0 0.5 0.5
Water Boiler 18.0 1.8 0.05 1.0
Reservation System 10.0 3.3 130.0 -
Needham-Schroeder Public Key Protocol 3.0 0.8 150.0 2.0
Echo Algorithm 1.4 1.4 1.0 1.0
Railway Interlocking Model - - 5 00.0 4 -

Fig. 1. The results of the comparison of ProB with Spin.

Below we provide more details about the individual experiments, except for
the “prime number test” and the “vehicle administration” examples, which are
two very simple specifications and which we do not elaborate on further.4 5

3.1 The Bridge Puzzle

Description of the Model In this puzzle, several persons are supposed to cross a
narrow bridge within a specified time. Each person moves at a different speed,
and at most two persons are allowed to cross simultaneously. To cross safely they
have to carry a torch, and the group has only one.

Source Code Size In the developed Promela model, a choice must be done for
every person in a nondeterministic if-statement, whether or not he/she crosses
the bridge. It is also necessary to query individually the time required to cross
the bridge. The result is, that the size of the Promela model depends on the

4 The vehicle administration problem did uncover one curious behaviour of Spin
though, where the use of a variable labeled auto lead to inexplicable errors when
model checking (but not simulation).

5 The models can be found in the student’s bachelor thesis in [8].

52

Samia, Wiegard, Bendisposto, Leuschel

number of persons. That means, that the model becomes inflexible, which is
based on the predefined number of people. 6

On the other hand, B allows the definition of sets. In the model, we define
a set that consists of an arbitrary number of persons. Adding another person
is as simple as adding it to the set and putting a tuple into a function that
links persons and the time they need to cross the bridge. The rest of the model
remains the same no matter how many elements the set contains. This results
in a very compact and flexible code.

The code of the Promela model, which is an example with four persons, is
about twice the size of the B model’s code. The more persons a model has, the
greater is the gap between the size of the two models. The reason is that for
each additional person, the Promela model requires more extra code than the B
model.

Verification Time To solve the puzzle, we need to find a trace of operations that
leads into a state, where the maximum time has not yet elapsed and all persons
crossed the bridge safely. ProB can automatically search for such a condition.
For a successful search for the defined goal in Figure 2, ProB needs significantly
less than one second. In Figure 3, History lists the steps of the successful search
for the bridge puzzle.

GOAL == time =< maximum_time & ran(person_pos)={dest}

Fig. 2. The GOAL-Definition in ProB.

Finding the solution with Spin also takes about one second. In order to find
it, the user has to encode the goal into a neverclaim that is less intuitive than
plain predicate logic.

Development Time The development time of the Promela model was five times
longer compared to the development time of the B model.

3.2 The Beer Glass Puzzle

Description of the Model The model treats — similar to the brigde puzzle —
the search for a solution for a given task. In this model, an amount of beer, such
as 400 ml, should be measured using a 500 ml large glass and a 300 ml small

6 An experience Promela user may be able to reduce the size of the model by mod-
elling each person as an individual process. This, however, also makes the model
development more tricky.

53

Samia, Wiegard, Bendisposto, Leuschel

Fig. 3. ProB found a solution for the bridge puzzle.

glass. Both glasses can be only entirely filled or fully emptied. Moreover, the
content of a glass can be decanted in the other glass till this glass is filled. Only
a maximum total amount of liquid can be used, which is defined by the constant
limit.

Source Code Length Similar to the bridge puzzle, the advantage of the high-level
mathematical B notation is also shown here. In the Promela model, many if-
statements are needed to select all possible cases. For instance, filling the big glass
with the content of the small one comes with a case distinction. It is necessary
to handle the two possible cases “content of the small glass fits completely in
the large glass” and “content of the small glass does not fit completely in the
large glass”, e.g., if the big glass already contains beer (cf. Figure 4).

However, in B, the minimum function can be used resulting in a much more
compact code (cf. Figure 5). The Promela code of the beer glass puzzle is 1.7
times longer than the B Code.

54

Samia, Wiegard, Bendisposto, Leuschel

if

:: atomic{((big+small)<=maxBig)

-> big=big+small; small=0

}

:: atomic{else

-> small=small-(maxBig-big);

big=maxBig

}

fi

Fig. 4. In Promela, the Else case should be treated separately.

big :=min({big+small,maxBig}) ||

small:=small-(min({big+small,maxBig})-big)

Fig. 5. The B Code is compact due to the use of the minimum function.

Verification Time The search for a solution with ProB is also easier than with
Spin. Using predicate logic, it is easy to specify a goal, which ProB should
find. We used the predicate (big = solution ∨ small = solution) ∧ used ≤ limit
as the goal. The goal is achieved, when a state is found, where the desired
quantity of liquid is either in the small or in the large glass, and the selected
limit is exceeded. ProB is able to find a solution in less than one second. In
Spin, no goal state can be defined. Instead, we need to use a NeverClaim. It
can be automatically generated from the LTL Formula G¬foundSolution. The
NeverClaim is a representation of the negation of the LTL formula. If a solution
exists, the LTL-formula is violated. Spin recognizes this case. Using a “guide
simulation”, it can display the executed steps which lead to the violation of the
formula. Spin can also find the solution in less than a second.

Development Time Although the model was first created in B and then in
Promela, the creation of the Promela model has taken twice the time compared
to the B model.

3.3 An Example of a Parking Garage

Description of the Model The example of a parking garage is a simple model: as
long as the parking garage is not full, a car can enter, and then can go out.

55

Samia, Wiegard, Bendisposto, Leuschel

Source Code Length In Promela and also in B, the model’s code is quite compact.
In both cases, the variable usedSpace is incremented or is decremented by the
actual number of the cars inside the parking garage.

Whenever the Promela model uses several independent processes (or a pro-
cess with multiple instances), the query of the actual value of the variables and
their changes must be included in an atomic. Otherwise, the variable can accept
an illicit value, whenever, for instance, between querying whether there is a car
park in the parking garage and the execution of usedSpace++, another process
increases the variable to its maximum allowed value. With a proper NeverClaims,
Spin finds the source of errors - with one exception.

If the type of usedSpace is byte and the value of the variables was previously
zero, then usedSpace-- sets the variable’s value to 255. Initially, the student’s
model used byte, meaning that the Promela model did not correspond to the
desired specification and that certain errors were not detected by Spin (e.g.,
overflowing as increasing 255 by 1 gives 0 or underflowing as decreasing 0 gives
255). This problem does not occur in B and ProB. If a variable, defined as
NATURAL and having the value zero, is decreased by one, then the variable
value is −1. Then, an invariant’s violation occurs.

Verification Time Taking into account these restrictions, the models with Spin
and ProB can be verified in a second.

Development Time The time spent on the B model is about fifteen minutes, and
on the Promela models 90 minutes.

3.4 The Water Boiler

Description of the Model We specified a simple water boiler. It may only be
turned on, if the lid is closed and water is filled. The lid may only be opened,
whenever the water boiler is turned off. When the lid is open, water can be filled
or distributed.

Source Code Length For each action of the water boiler model, the B model
offers an operation, which can be executable depending on the preconditions.
To ensure that no illicit condition occurs, the model has several invariants. The
Promela source code is around the factor 1.8 longer than the B code.

Verification Time In the modelling phase, due to the possibility of interactive
simulations, the student found it slightly easier to be convinced of the desired
functionality of the B model. For the verification, ProB requires 0.05 seconds.

The Promela-model consists of an active process “User”, which can execute
non-deterministically one of the possible actions. To ensure that the correspond-
ing preconditions remain unchanged before the end of their respective action,
every action was wrapped in an atomic statement. This, however, meant that
the Promela model was no longer verifiable using Spin. The reason is that, the

56

Samia, Wiegard, Bendisposto, Leuschel

actions “fill water” and “distribute water” both have a do-loop, whose termina-
tion is not guaranteed. It is possible to replace the do-loop by an if-construct
with an entry for every potential value of ii. This requires more work in pro-
gramming, but allows both a proper verification as well as a realistic simulation.
The verification of the model with Spin is then possible within about a second.

Development Time Because of this difficulty, the modelling in Promela took
about 18 hours. The creation of the model with ProB was possible within one
hour.

3.5 The Echo Algorithm

Description of the Model The Echo algorithm [2] is designed to find the short-
est paths in a network topology. A start node sends an explore-message to all
neighbors. Each node is marked with red, when it receives an explore-message
for the first time. Moreover, it memorizes the nodes, from which it received the
message, as a shortest path to the initialization node. It also sends, in turn,
explore-messages to its other neighbors. Whenever the node receives either an
explore-message or an echo-message from all its neighbors, to which it sent one
of such messages, the node will be marked green and sends an echo-message to
the nodes, from which it had first received an explore-message. When all nodes
are marked green, the cycle is finished.

In the B model, every type of message type has one corresponding operation.
The operations are active, as soon as a node sends the appropriate message.
The execution of the operation reflects the receipt of the message by the node’s
recipient. By the non-deterministic order, the selection of the active operations
is assured that any various long message runtime in the channel of the model
is taken into account. It is possible that many messages are simultaneously on
the channel. The edges are depicted as functions between the nodes. With the
proper invariants, it is easy to verify if a protocol ensures that all nodes are
marked green, when no message is in the channel. Furthermore, all shortest
paths must be known as soon as all nodes are marked green.

In addition, with ProB, it is also possible to verify the accuracy of an LTL-
formula. This example presents the LTL-formula "GF{ran(state)={GREEN}}",
i.e. the verification, to check whether there always exists a final state, in which
all nodes are marked green. The verification of the model with ProB is possible
within one second.

The Promela model offers a simple modelling of the message channels. As
in the B model, many messages can pass simultaneously in the channel. The
modelling of the message communications between the nodes is possible. For the
Echo Algorithm, the simulation of Spin provides a graphics of the protocol’s
execution (cf. Figure 6).

A clear disadvantage of the Promela model is the cumbersome modelling of
the edges between the nodes. Each node has an array, in which its neighbors’
nodes’ are defined. This is much more cumbersome and less compact than the
presentation of the edges as a function between the nodes as in the B model.

57

Samia, Wiegard, Bendisposto, Leuschel

Fig. 6. The Graphical Output of the Spin-Simulation.

Despite the simple simulation of the message channels, the Promela-model
is by a factor 1.4 longer than that of the B model. The same is true for the
time required to create the model. With Spin, the verification is possible within
about a second.

3.6 A Reservation System

Description of the Model This model specifies a reservation system for trains,
which makes it possible to book, in different wagons, different kinds of seats,
such as first class, second class, and so on.

The Promela model consists of a self-defined type of an array called train,
which contains different wagons. During the initialization, Spin lacks the op-

58

Samia, Wiegard, Bendisposto, Leuschel

portunity to assign the places a category. Hence, it requires much more time to
create the model.

During the creation of the Promela model, it is often useful to execute a
simulation with Spin in order to verify if the result is as expected. Due to the
use of arrays, in particular nested arrays, the simulation with Spin is extremely
slow. In this model, the Spin simulation requires, for every step of the test,
about 0.9 seconds. This is a very considerable testing time, since just one seat
reservation thus requires about five minutes.

For each of the reservation server, customers and vendors, there exists a pro-
cess in the Promela model. The communication between these processes is done
through the message channels. This is especially important for the communica-
tion between sellers and the reservation system. Another process exists, called
Watchdog process, which checks if every place is marked as reserved (cf. Fig-
ure 7). The statement assert(false) does not guarantee the detection of an
error, whenever a condition is not satisfied.

Due to high memory assignment and the considerable search needed, no
available verification method of Spin could verify the reservation system model.

active[1] proctype watchdog()

{

byte ii=0;

do

:: (ii<(MAXRESERVATIONS-1)) -> ii++

:: (ii>=(MAXRESERVATIONS-1)) -> ii=0

:: (reservations[ii].dest>0)

-> if

:: (train[reservations[ii].train]

.waggon[reservations[ii].waggon]

.compartment[reservations[ii].comp]

.place[reservations[ii].place].status==belegt)

:: else -> assert(false)

fi

od;

}

Fig. 7. A Watchdog process for the reservation system.

On the other hand, in the B model, each place is assigned a category. No
nested arrays and loop traversals are needed. ProB verifies the model within
130 seconds. The verification time depends on the size of the set seat. The more
seats exist, the longer the verification takes.

59

Samia, Wiegard, Bendisposto, Leuschel

The Promela model is longer by a factor of 3.3. While the B model was
developed and verified with ProB within a day, the Promela model took ten
days to develop.

3.7 Needham-Schroeder Public Key Protocol

Description of the Model The Needham-Schroeder public key protocol is an
authentication protocol for creating a secure connection over a public network [7].
The model consists of a network with the two normal users called Alice and Bob,
an attacker named Eve and the keyserver. The first version of this protocol,
developed in 1978, contains an error which was found in 1995 [6]. The error is
that Eve is allowed to communicate with Bob, where Bob thinks to communicate
with Alice. This error is found by ProB as well as Spin. In the corrected version
of the protocol [6], ProB and Spin find no error.

In the Promela model, a separate process is created for every network user
and the keyserver. The communication between the processes is easily described,
since Promela supports the modelling of message channels.

The following LTL formula was used to check whether the protocol can suc-
cessfully run to completion:
<>((okAlice && okBob && aliceTalksToBob && bobTalksToAlice)). In or-
der to validate the protocol, the LTL formula in Figure 8 has been checked.

[]((okAlice && okBob) -> (aliceTalksToBob <-> bobTalksToAlice))

Fig. 8. LTL-Formula violated by Needham-Schroeder-Protocol

A verification of the model with Spin was impossible, because high memory
was needed. A simpler version of the model, which reduces the messages sent
by Eve, was created. Spin verifies if the previous mentioned bug exists, within
about two seconds.

In the B model, the messages sent over the network are stored in global
variables. The actions executed by Alice, Bob and Eve are created as single
operations. The B model differs significantly from the Promela process-oriented
model. Instead of LTL formulas, the B model used invariants (ASSERT LTL
would have been also possible). Because the verification of the first model takes
several hours, similar to the Promela model, the new version of the B model was
simplified. ProB finds the well-known bugs of the Needham-Schroeder public
key protocol within about 150 seconds.

The Needham-Schroeder protocol is the only model, where the B source code
is longer than the Promela source code (factor 1.3). However, the creation of the
Promela model is about three times longer than the B model.

60

Samia, Wiegard, Bendisposto, Leuschel

3.8 A Railway Interlocking System

Description of the Model In this model, signals (such as slow or green) and
switches for the block sections are possible. No two trains can be on the same
block section. No two crossed block sections can be entered at the same time.

The B model, the signals and the switches are assigned to functions. Variables
include, for instance, the current status of the signals and the position of the
train.

The model fulfills the requirements of a railway system, since it is possible
to enter and move trains in the system. Moreover, invariants are formulated
as conditions to meet the correctness of the system. Within approximately 1.5
hours, ProB can verify a system with an initial example of two trains, seven
block sections, two switches, a crossing rail and eight signals. This complex
model was created within three weeks. The model is flexible, since within a few
minutes further block sections or trains can be added by changing the respective
initialization of the function variable.

In the Promela model, functions and sets cannot be used. The model consists
of individual processes for signals, switches, trains and the “Supervisor” in the
interlocking system. The communication is via message channels.

The dependencies between signals, switches and block sections are stored in
arrays, which makes the Spin simulation extremely slow. For the execution of
just one single command, Spin needs about a second. Hence, the simulation of
a small part of the model requires several minutes.

Despite the longer work, it was impossible to create a fully functional Promela
interlocking system. The Promela model contains more code than the B model.

For the railway interlocking system, the B method is most appropriate than
the Promela model.

4 Conclusion and Future Work

In summary, we have studied the elaboration of B-models for ProB and Promela
models for Spin on ten different problems. With one exception (the Needham-
Schroeder protocol), all B-models are more compact than the corresponding
Promela models. On average, the Promela models were longer by a factor of
1.85 (counting the number of symbols) and took roughly a factor of 2-3 more
time to develop than the B models. No model took less time in Promela, while
some models took up to 18 times more time in Promela. One Promela model
could even not be fully completed within the timeframe of this study.

More surprisingly, the study also found that ProB and Spin were comparable
in practical model checking performance as measured by the user. This is despite
the fact that ProB works on a much higher-level input language analysed via
a Prolog interpreter, and thus being much slower (when looking purely at the
number of individual states that can be stored and processed) than Spin which
is compiling to C.

This study confirms our own anecdotal evidence while teaching B and Promela,
as well as developing our own B and Promela models within research projects.

61

Samia, Wiegard, Bendisposto, Leuschel

We believe that this study shows the merits of using a high-level specification
language such as B, both in a teaching and in a research setting. Note that,
based on the findings in this study, we have tried to provide some explanations
for the model checking performance in this study in [4].

As far as teaching formal modelling, we believe that it is both easier for a
student to write models in a high-level specification language and easier to make
use of tool support to validate those models. We also believe that it maybe
appropriate to give students a first introduction to model checking using a high-
level language such as B, also because the high-level tools are more forgiving
and more helpful in locating errors.

References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

2. Ernest J.H. Chang. Echo algorithms: Depth parallel operations on general graphs.
IEEE Transactions on Software Engineering, 8(4), 1982.

3. Gerard J. Holzmann. The Spin model checker: primer and reference manual.
Addison-Wesley, Boston, 2004.

4. Michael Leuschel. The high road to formal validation. In ABZ, pages 4–23, 2008.
5. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for

the B method. STTT, 10(2):185–203, 2008.
6. Gavin Lowe. An attack on the Needham-Schroeder public key authentication pro-

tocol. Information Processing Letters, 56(3):131–136, November 1995.
7. Roger Needham and Michael Schroeder. Using encryption for authentication in

large networks of computers. 21(12):993–999, Dezember 1978.
8. Harald Wiegard. Vergleich des model checkers ProB mit Spin. 2008. Bachelor’s

Thesis, Institut für Informatik, Universität Düsseldorf.

62

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

BiCoax,
a proof tool traceable to the BBook ?

Samuel Colin1 & Georges Mariano2

1 Univ Lille Nord de France, UVHC
LAMIH, CNRS UMR 8530

F-59313 Valenciennes Cedex 9, France
scolin@hivernal.org

2 Institut National de Recherches sur les Transports et leur Sécurité
georges.mariano@inrets.fr

Abstract. We introduce BiCoax, a shallow embedding of B set-theoretic first-
order logic into the Coq proof assistant. This tool aims at validating the mathe-
matical foundations of B described in the BBook and providing the B community
a proof tool matching those foundations. While this is still a work in progress,
BiCoax has become usable for mundane proof work in B projects.

1 Introduction

BICOAX3 is a Coq[25] library for proving formulas defined in the first-order set-theore-
tic logic of the B formal method. This work is initially based upon similar efforts done
by Rocheteau [23] with another proof assistant named PhoX [22] and it is available as
part of the BRILLANT platform (https://gna.org/projects/brillant).

The original aim of this work was to provide a B proof tool based on a generic proof
assistant, for proving B Proof Obligations. This aim was completed with a secondary
objective of validating the mathematical foundations of B described in the BBook[1].
This book indeed introduces very precisely these mathematical foundations and claims
many of their properties, sometimes providing a proof along. Unfortunately, the number
of these proofs is reduced in comparison of the number of claimed properties.

Ideally, the design of any formal method shall be supported with tools when pos-
sible, e.g. for avoiding inconsistencies introduced by mere human errors. BiCoax sub-
scribes to this approach: the use of a tool helped with the discovery a few simple typo-
graphic errors as well as minor semantic mistakes in the BBook.

? The present work has been partially supported by the ANR-SETIN project: TACOS :
Trustworthy Assembling of Components: frOm requirements to Specification, the European
Community, the Délégation Régionale à la Recherche et à la Technologie, the Ministère de
l’Education Nationale, de la Recherche et de la Technologie, the Région Nord-Pas de Calais,
the Centre National de la Recherche Scientifique. The authors gratefully acknowledge the
support of these institutions.

3 BICOAX can be downloaded through Subversion (https://gna.org/svn/?group=
brillant) or through a tarball placed in http://download.gna.org/brillant/
snapshots/

63

Colin, Mariano

As for providing a proof tool for the B method, BiCoax implements all operators and
most theorems up to the middle of the third chapter of [1], namely the introduction of
integers. This means that the missing constructs are sequences and trees, which are not
as frequently used in B projects as function constructs, for instance. As a consequence,
we think that BiCoax is already mature enough for being used as a proof tool in the
development of mundane B projects.

After justifying the need for our implementation with respect to similar work in
Sec. 2, we give a short introduction to the involved formalisms in Sec. 3. We describe
our implementation choices in Sec. 4 and their consequences on the theoretical side in
Sec. 5. We present a feedback of some manual and automated experiments with our tool
in Sec. 6. We conclude with the various perspectives in Sec. 7.

2 Related work

2.1 Objectives

As stated in the introduction, the goal of BiCoax is to provide a proof tool for B based
on the first reference on B theory [1]. It is possible to try re-implementing a proof tool
in a given programming language, but using a generic proof assistant provides us with
the ability to double-check the theorems already established on paper. This gives us our
second goal of tracking the inconsistencies of the BBook. We left aside other objectives
such as the automation of proofs, although we hope that our choice of a proof tool will
help make our task easier when these objectives are given a higher priority.

Moreover, two additional parameters must be chosen when implementing through
another formalism: the kind of embedding and what levels of B will be implemented.
The embedding can be either shallow or deep. For B, an embedding usually will be
shallow if it reuses the logic of the target formalism directly (such as the first-order logic
of Coq) and it will be deep if the syntactic structure of B is modeled again in the target
formalism. The implementable levels of B can be divided into the following categories:
(i) mathematical foundations [1, chapters 1-3], (ii) generalized substitutions [1, chapters
4-5,9-10], (iii) theory of abstract machines [1, chapters 6-8] and (iv) refinement [1,
chapters 11-13].

For a proof tool, the sole mathematical foundations are sufficient and the embedding
is often, but not exclusively, a shallow one. With all the previous items we can now
characterize BiCoax: it is a shallow embedding of the B set-theoretic logic in Coq. As
such it reuses directly the first-order logic connectors of Coq with the axiom of excluded
middle and the axiom of choice. At the time of writing, BiCoax covers the first three
chapters of the BBook but the integers, the sequences and the trees, i.e. the last half of
the third chapter is yet to be implemented. Let us now describe more precisely similar
work.

2.2 Similar work

[23] presented a comprehensive view of other efforts directed at the validation of B or
the creation of a proof tool for B. We shall sum up here the description of these efforts
and amend this description with more recent work.

64

Colin, Mariano

Bow
en

[14]

Chart
ier

[16]

Bodeve
ix

[12]

Bodeve
ix

[13]

Berk
an

i [9]

Roch
ete

au
[23]

Jae
ger

[19]

BiC
oax

formalism HOL Isabelle/HOL PVS PVS Coq PhoX Coq Coq
embedding
Deep ? ? ? ?
Shallow ? ? ? ?

B level
Foundations ? ? ? ? ? ? ? ?
Language ? ?
Machines ? ?

Objectives
Validation ? ? ? ? ?
Tool ? ? ? ? ?

Table 1. B implementations at a glance

Table 1 sums up the existing implementations of B, what embedding they use, what
levels of B they implement and whether the implementation is proposed to validate the
semantics of B or to provide a proof tool. Note that we did not include “refinement”
because it is also taken care of at the “Machines” level.

We also included in Table 1 an implementation of Z, because the mathematical
foundations of B and Z are very similar. It turns out that the various implementations
are done with usually mature proof assistants: HOL, Isabelle/HOL, PVS and Coq. The
only exception is PhoX, which did not meet the same adoption despite an efficient
equational reasoning engine.

Let us firstly give more details at implementations that are more than five years old.
Bowen & Gordon [14] propose a shallow embedding of Z in HOL with HOL viewed
as a proof tool. They justify the choice of a shallow embedding for avoiding too com-
plex notations. The goal of Chartier [16] is the derivation of a predicate for defining
formally PO generation and its validation. His implementation is a deep embedding
realized with Isabelle/HOL and it supports not only the foundations of B but also the
generalized substitutions and the representation of abstract machines. Bodeveix & al.
[12] have a similar but less ambitious goal, as their validation involves only the gen-
eralized substitutions. This time the deep embedding is done with PVS and automated
with the PBS tool by Muñoz. The work of Bodeveix & Filali [13] concerns the type-
checking of B, this time with a shallow embedding in PVS. This work gave way to a
typechecker which was later integrated into the BRILLANT platform. Berkani & al. [9]
proposed a deep embedding of B into Coq for validating the logic rules of the prover of
the AtelierB commercial tool. To the best of our knowledge, all the works we just cited
have no usable tool available, either because it does not exist anymore or because the
proof assistants they are based upon have evolved too much.

65

Colin, Mariano

More recent implementations consist of B/Phox [23], BiCoq [19] and BiCoax. Ro-
cheteau [23] introduces a shallow embedding of the foundations of B in PhoX: the set
constructs are translated into PhoX[22], this translation being proved correct. This work
is now abandoned because its direct successor is actually BiCoax: the very first working
source code of BiCoax is a translation of the PhoX constructs into Coq.

We are left with comparing BiCoax with BiCoq [19]: the objective of Jaeger &
Dubois can be seen as a gathering of all the objectives of the previously cited works.
Their goal is to validate the theory of B and propose a proof tool for B. They realize
a deep embedding of B into Coq. Choosing a deep embedding avoids the interference
of the classical logic of B with the more intuitionistic logic of Coq and allows the
proposition of decision procedures. Their implementation also has the peculiarity of
using De Bruijn indices for quantified variables. [19] does not make it clear what parts
of [1] are covered, although we can infer that they include the first two chapters.

With respect to all the works presented here, we can see that the most relevant work
to compare our efforts with is BiCoq [19]. The most recurring question in comments
about earlier presentations of BiCoax was about the reuse of BiCoq: why not develop
on the base of BiCoq ? The first answer is purely practical: several attempts to contact
the authors of BiCoq before and during the development of BiCoax were unsuccessful,
thus we simply did not have BiCoq at disposal. We then were deprived of the most
straightforward option of reusing BiCoq.

The second answer is about the durability and the availability of BiCoax. We wanted
to avoid the fall into oblivion from which all the previous work, B/PhoX [23] excepted,
seem to have suffered. We also wanted to include BiCoax in the tool suite of the BRIL-
LANT platform, which requires the release of BiCoax under open-source license terms.
As a result, BiCoax is now part of the BRILLANT platform and is available for anyone
to try. It is also durable as it is proposed in the same conditions as B/PhoX, which was
the only work we could reuse in the end. Moreover, using Coq as an underlying proof
tool makes the durability of BiCoax linked to the effective durability of Coq.

In light of the previous comparisons, we thus make the strong but independently
verifiable claim that BiCoax is the most complete academic tool for proving B or event-
B projects, complete to be read in the sense of “matching the BBook”.

We shall conclude this section by mentioning the provers of B commercial tools.
Their main objective is very pragmatic: having an efficient automated proof tool for
a possibly big number of proof obligations. They function mostly by saturation of
premises until a contradiction in the hypotheses is found. They also include mecha-
nisms for the users to specify their own decision procedures. For instance, the prover
of the B-toolkit includes a tactic language comparable to the tactic language of Coq,
although much simpler. Those commercial provers are also based upon an adapted B
set-theoretic logic, hence comparing them with academic tools is somewhat less rele-
vant. What makes these tools interesting is their efficiency: they are thus a good choice
for evaluating the performance of B academic proof tools.

66

Colin, Mariano

3 A short presentation of the involved formalisms

3.1 The B and event-B formal methods

B is a formal software development method used to model and reason about systems [1].
The B method has proved its strength in industry with the development of complex
real-life applications such as the Roissy VAL [7]. The principle behind building a B
model is the expression of system properties which are always true after each evolution
step of the model. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system takes. A
successor of B called event-B[21] takes the modelling further in allowing the reasoning
about systems in an event-based fashion. The verification step of an event-B model is
done in a similar way as B with taking into account deadlock problems due to the fact
the formalism is event-based.

In both cases, the verification entails the generation of so-called proof obligations
(POs) which are set-theoretic first-order logic formulas to be proved in the context of the
B or event-B theory. PO generation for B is supported by several tools like B4Free[6], ,
AtelierB[4] , the B-toolkit[5] or the BGOP of our BRILLANT [18] platform. For event-B,
the only tool is Rodin[24]. The proof is also supported by the tools mentioned previ-
ously except for the BGOP, whose only task is PO generation. Proof in BRILLANT shall
be supported by BiCoax.

There are a few differences in the theory of B and event-B, though. Event-B gives
different definitions for some of the basic constructs,supposedly compatible with B. As
BiCoax is primarily about validating the BBook, we shall focus in this document on B
alone, although we might occasionally mention event-B to state how our implementa-
tion fares or shall fare in an event-B context.

3.2 Coq

Coq [25] is a proof assistant based on the calculus of inductive constructions. This
implies the following important points:

– The logic is an intuitionistic one, hence properties such as excluded middle or the
axiom of choice, fundamental in the logic of B, are not available immediately. Coq
fortunately provides modules in its libraries for such axioms

– Types are first-class citizens. It is possible to build datatypes associating basic val-
ues with types or to make the existence of a datatype rely upon the validity of a
proposition, for instance.

Types are also organized along a hierarchy of sorts:

Set is the sort of program types. If this datatype is supposed to be implementable, this
sort shall be preferred. Natural numbers and integers belong to Set, for instance

Prop is the sort of propositions, hence logical formulas
Type is the sort of Set and Prop and it constitutes the rest of the type universe hierar-

chy: a datatype built upon another datatype of Typen will inhabit Typen+1, although
these indices are hidden to the user.

67

Colin, Mariano

The following example shows how the union property of two sets is modeled in the
ENSEMBLES module of Coq’s standard library:

Inductive Union (B C:Ensemble) : Ensemble :=
| Union introl : ∀ x:U, In B x→ In (Union B C) x
| Union intror : ∀ x:U, In C x→ In (Union B C) x.

This datatype can be interpreted two ways. In the propositional perspective, Union introl
and Union intror are axioms describing the properties of the union from the notion of
set belonging. In the type theory perspective, Union introl is an element of type Union
B C and it is parametrized by a (set belonging) property.

Another important functionality of Coq in our context is the ability to write tactics
for automating repetitive proof tasks. Thanks to constructs reminiscent of a program-
ming language and to pattern-matching, it is possible to associate specific proof steps
to goals of a known shape. These proof steps can involve existing tactics and theorems.

4 Implementation choices

After a short presentation of the targetted organization of our library and of the design
choices made before implementation, we exhibit its particularities.

4.1 Organization and design choices

Ideally, it should be possible to trace BiCoax theorems and definitions back to the corre-
sponding entry of the BBook. We thus chose to split BiCoax the same way as the part of
the BBook we model. The BCHAPTER1 module introduces the theorems of first-order
classical logic (we reuse the logical connectives of Coq), the BCHAPTER2 introduces
basic and derived set constructs and BCHAPTER3 introduces high-level constructs. In
order to manage code size, we chose to have one file for each section. There are two
noticeable exceptions: the first chapter and properties listings. The first chapter holds in
one single file because no definitions are introduced and proofs are short. The properties
listings of the BBook follow the “one table = one file” policy. Finally each definition or
theorem shall refer in a comment the corresponding page, section and table row of the
BBook, when applicable. Table 2 sums up what sections of the BBook are modelled,
into how many and which files.

When implementing the various definitions of the BBook, we used the following
guideline: if a matching definition exists in the standard library of Coq, we use it. If
not, we implement it preferably as an inductive definition: this constitutes more of a
stylistic choice which is consistent with the module of the standard library we reuse
the most. In all cases, BiCoax is initially based on B/PhoX[23] which means that the
equivalence or the equality of each translated operator shall be assessed. Hence each
BiCoax module containing definitions will also contain theorems showing the equality
or the equivalence of the definition with the corresponding BBook definition.

BiCoax might also be used by non-specialists in the future: POs can be big, hence
readability of formulas is an important concern. Coq allows the definition of additional
Unicode notations and event-B introduced Unicode notations for B constructs [21].

68

Colin, Mariano

Chapter BBook section Filled-in files files
1 All 1 BCHAPTER1

2

Basic set constructs 2 BBASIC, BINCLUSION PROPS

Derived constructs 2 BDERIVED CONSTRUCTS{, PROPS}
Relations 1 BRELATIONS

Functions 1 BFUNCTIONS

Catalogue of properties 13 . . . LAWS, EQUALITIES . . .

3

Generalized Intersection/Union 1 BGENERALIZED UNION INTER

Fixpoints 1 BFIXPOINTS

Finite sets 1 BFINITE SUBSETS

Infinite sets 1 BINFINITE SUBSETS

Natural numbers 13 BNATURALS{ BASICS,. . . }
Integers 1 BINTEGERS{ BASICS,. . . }
Finite sequences 0 BSEQUENCES

Finite trees 0 BTREES

Labelled trees 0 BLABELLED TREES

Binary trees 0 BBINARY TREES

Well-founded relations trees 0 BWELL FOUNDED

Table 2. Global organization

We thus decided to introduce a notation scope that can be activated when necessary.
This notation scope also follows the guidelines of [21] for associativity and priority
of notations. Some event-B notations are in a “private” zone of Unicode because no
corresponding symbol exists officially: in that case we decided to reuse other similar-
looking symbols. Here follows an example of Unicode notation for set belonging:

Notation "x ∈ y" := (In y x) (at level 11, no associativity): eB scope.
Many definitions are parametrized by the types of the sets they manipulate. In that

case we declared these type parameters implicit so that Coq infers them. This design
choice makes the formulas feel less crowded.

We shall now detail what parts of Coq were reused and when not, what changes we
introduced w.r.t. the definitions of the BBook.

4.2 From B to Coq

Reused constructions. BiCoax is a shallow embedding, hence we reuse some parts of
Coq for our benefit.

The most basic connectors are directly reused, i.e. logical connectors (conjunction,
disjunction, negation, etc) and pairing. On a related note, reusing the pairing of Coq
shielded us from discovering the fact that the injectivity of pairing is never showed in
B, as noticed by Jaeger in the French version of [20] at the end of Sec. 8.2.

We reused the definitions of the Coq’s standard library ENSEMBLES module for
basic set constructs: set belonging, inclusion, union, intersection, empty set, set differ-
ence. This reuse is also justified by the fact that set belonging in this module match very
closely set belonging in B. Let U be a datatype and A a value of type (EnsembleU): A
is actually a function of U to propositions (U → Prop). Set belonging is defined as :

69

Colin, Mariano

Definition In (A:Ensemble) (x:U) : Prop := A x.
This means that for the ENSEMBLES module, belonging to A is the same as verifying
the A predicate, which matches exactly the B definition of set belonging.

We also imported the CLASSICALEPSILON module for the choice operator as well as
related constructs and tactics proposed by Castéran [15]. We could not reuse the notion
of relation of the ENSEMBLES module because it lacks the property being itself a set (of
couples), hence we modeled relational and functional constructs in the “B way” upon
the basic set constructs mentioned above.

Earlier communications about BiCoax raised the question of why we decided to
reuse the ENSEMBLES module instead of FSETS. This is because this module requires
an ordered datatype upon which sets of this datatype can be built. In B, the only basic
datatype is that of the BIG abstract set: as we have no information about the order of
its elements, it was thus not possible to use FSETS. Let us note here that it would be
possible to do so with event-B as it defines the natural numbers as a basic datatype,
which we know are an ordered type.

Our rule of thumb for definitions is to use inductive constructions when possible.
The third chapter of the BBook introduces at its beginning the notion of fixpoint and
makes almost systematic use of it for defining the rest of B constructs: this is where
our choice of Coq becomes the most fruitful as inductive (and thus fixpoint-based)
constructs are pervasive in Coq. As a consequence, all inductive constructs of B are
translated into inductive definitions. The existing inductive definitions we reused were
the notion of finite sets as the Approximant of the ENSEMBLES module, the notion of
natural number and all arithmetic operators for natural numbers of the ARITH module.

Proposed constructions When not reusing definitions of the standard library of Coq,
we had to balance ease-of-use and traceability to the BBook of the definitions we pro-
posed. While it is not the place here to present all definitions we introduced, we think
that the definition of partial function sums up what challenges choosing a definition
poses. The BBook suggests two equivalent definitions of partial function:

– {f | f ∈ A ↔ B ∧ (f−1;f) ⊆ id(B)}
– {f | f ∈ A ↔ B ∧

∀(x,y,z).(x,y,z ∈ A×B×B ∧ x 7→y ∈ f ∧ x 7→z ∈ f ⇒ y = z)}

The second definition make explicit the image unicity property for functions, which
is often used in proofs involving partial functions. This property can of course be de-
duced from the first form of the definition, but it makes it less immediately usable for
the end-user. In the second definition, the type information about x, y and z seems re-
dundant: it should be deducible from the belonging of x 7→ y and x 7→ z to f . These
remarks lead us to the final shape of the corresponding BiCoax definition:

Inductive partial function (U V: Type) (A: Ensemble U) (B: Ensemble V): Ensemble
(Ensemble (U*V)) :=

pfun intro : ∀ (f : Ensemble (U*V)),
In (relation A B) f

→ (∀ (x: U) (y: V), In f (x,y)→ (∀ (z: V), In f (x,z)→ y=z))
→ partial function U V A B f.

70

Colin, Mariano

The use of a curryfication of pfun intro arguments instead of a conjunction also
removes one or two additional decomposition steps in proofs later on.

In the end, we believe it to be easy for the end-user to manipulate the various def-
initions. The danger is then that the definitions we propose do not match the BBook
definitions anymore. This imposes on us the verification that our definitions are equiv-
alent to the BBook definitions.

4.3 Validity of modified constructs

Let us look at the definition of shallow embedding of a B term in PhoX as defined in
[23], where † is a translation function:

(f t1 · · · tn)† ≡ f † t†
1 · · · t†

n

For the embedding to be correct, it must guarantee that it is the same to handle a trans-
lated complex term or to handle the same term for whom each subterm is translated.
When the embedding is a deep one, this verification can be assisted by the tool used for
it. Because our embedding is a shallow one, we can also do such a verification but it
is meaningful only for connectors directly reused: for instance, proving with Coq that
(P↔ Q)↔ (P↔ Q) is trivially verified.

Fortunately this meaninglessness is limited to logical connectives. For other con-
structs, the verification, even if done within Coq itself, is more meaningful. When the
definition is predicative we use the logical equivalence of Coq and for terms we used
Coq’s Leibniz equality, whether they be sets or other constructs. Here we advise the
reader to see e.g. the verification of the validity of set union in the BDERIVEDCON-
STRUCTS module.

When dealing with datatypes the verification becomes a bit more convoluted as the
operators defined upon this datatype must also be transformed. We thus introduce ho-
momorphic functions for translating one datatype into the other and we verify that one
operator in the one datatype is isomorphic with the corresponding operator in the other
datatype. For instance, in the BNATURALS* modules the homomorphisms are nat of bbN
and bbN of nat and for all arithmetic operators (except logarithm at the time of writing)
the isomorphism is verified.

All the design choices we presented here gave us a clear guideline for implementing
the first part of the BBook and we present some theoretical results and remarks in
section 5.

5 Theoretical results

So far BiCoax amounts to about 27000 lines, or 768KB. It contains 1163 theorems and
lemmas and was written with 3 estimated person-months. What has been implemented
is split between:

Chapter 1 All non-trivial theorems about first-order logic with predicates have been
proved. This part is somewhat trivial but what makes it most interesting is seeing
which theorems actually require the excluded middle for being proved

71

Colin, Mariano

Chapter 2 All this chapter was implemented and all properties were proved
Chapter 3 All sections up to and excluding integers have been implemented. The only

theorems left unproved at the moment are the Dedekind-infinity theorem for infi-
nite sets and the properties about natural logarithm, for which we also proposed a
definition purely based on the nat datatype of Coq.

At this point, we found very few mistakes in the BBook, which makes it a solid
reference for basic mathematical concepts. The mistakes include:

– What we think are typographical errors, e.g. a u instead of a v in a hypothesis
– False properties, the ones numbered 33 and 34 in MEMBERSHIP LAWS. Given their

location, they are most likely copy/paste errors
– Property 2.5.1, where the right-to-left implication is actually false. This mistake

most probably occurred because one of the hypotheses needed for proving the defi-
nition was overlooked (which the use of a tool would not allow). As a consequence
the proof of theorem 3.5.3 is wrong, while the theorem itself is true: we did the
proof differently, because the theorem 3.5.3 is needed after

– Properties of addition: the codomain of the addition was deduced to be N from
theorem 3.5.3, while it can only be deduced to be P(BIG). Many definitions depend
on addition, hence blindly following the theorems would have induced too many
chances. As a consequence we decided to define the addition upon (N C succ),
which leads to the desired properties, instead of succ.

We put counterexamples and more detailed explanations in an ERRATA file dis-
tributed along with BiCoax. The following sections present interesting or difficult points
pertaining to our implementation.

5.1 Axioms in BiCoax and dependability

The dependability of BiCoax can be attributed to the trustworthiness of the following
items: Coq, the axioms we included and the non-inconsistency brought by the intro-
duced axioms. Coq has existed for about two decades and many academic and industrial
users trust it, hence we will not discuss it further here.

The very fundamental axioms we needed and thus included are: the excluded middle
(EM), the constructive indefinite description (epsilon) and set extensionality (Set ext).
The derived axioms we introduced so far are the infinity of the BIG set and the axioms
related to integer negation for defining the negative part of the set of integers in the
BBook. If BiCoax were to be inconsistent, it would thus come from the use of these
axioms which are necessary for our implementation.

Without entering into details, we know that the excluded middle, while making a
strong assumption about the decidability of statements, does not cause inconsistencies
by itself. Used with the axiom of choice, it implies proof-irrelevance [8], which is still
not inconsistent. As epsilon can be seen as a weaker form of the axiom of choice, it
is then very possible that proof-irrelevance is present in our implementation. We also
know that epsilon allied with the impredicativity of Coq’s Set sort leads to inconsistency
[15, introduction]. As of version 8.0, Set is predicative by default hence we also avoided
inconsistency here.

72

Colin, Mariano

As a consequence, the other places from where inconsistencies might originate are
the derived axioms coming from B: it can thus be said that BiCoax can be considered as
dependable as B. We however do not plan to scrutinize these axioms in the near future
to look for potential inconsistencies.

5.2 Pitfalls of function application

As reckoned by Jaeger [19, section 3], implementing function application in a shallow
embedding is a tricky exercise. According to the BBook, functional application requires
the choice operator (epsilon) and a relation having the property that the image of any
of its element is unique (the functional property). As we used Castéran’s [15] unique
choice iota operator, unicity becomes an intrinsic property of the image.

Definition app (U V:Type) (A: Ensemble U) (B: Ensemble V)(f : Ensemble (U*V))
(x:U) (applicability: In (partial function A B) f ∧ In (domain f) x) :=

iota V
(codomain unique inhabitation U V A B f x applicability)
(fun y:V⇒ f (x,y)).

This might be the definition the most foreign to its B origin, as the problem of its
soundness in Coq comes much into play: it requires an additional parameter which is a
proof that the datatype of the codomain is inhabited. Fortunately such a proof can actu-
ally be deduced from the the mandatory well-definedness side-condition of functional
application. The definition above is thus what we think is the best trade-off between Coq
soundness and friendliness to the end user, who is likely to have already seen proofs of
well-definedness in other B tools. Its use in formulas requires an additional proof of
existence of well-definedness. This explains why the EQUALITIES EVALUATION module
contains so many existential quantifications.

5.3 The types of B and Coq

As expected, BiCoax exhibits some of the peculiarities of B typing. For instance, any
set must be based on a given datatype: hence there is not one but several empty sets
[1, section 2.3.3]. Overlooking this fact when implementing a prover “from scratch”
might lead to inconsistencies. We still could make it look like there is only one empty
set without breaking typechecking thanks to Coq’s notation mechanism:

Notation " /0" := (Empty set) (at level 10, no associativity): eB scope.
Coq is indeed able to infer type parameters when they are simple enough: this per-

mitted us to propose a unified notation for the empty set.
We also removed in some definitions the “B typing” parts, i.e. the predicates stating

to what sets the bound variables belong. Indeed, these predicates are sometimes redun-
dant (see e.g. the partial function definition of Sec. 5.2). Systematically proving the
equivalence of the new definition with the corresponding BBook definition comforted
us in our action.

73

Colin, Mariano

5.4 Natural numbers and arithmetic operations in BiCoax

Implementing the part of the BBook introducing natural numbers faced us with a dilemma:
reusing the convenient Coq’s natural numbers or strictly following the BBook. In order
not to sacrifice usability, we decided to do both, finding easy-to-overlook peculiarities
in the process. For using both datatypes, we had to propose an isomorphism in the
form of two homomorphims: bbN of nat is a recursive function with a straightforward
definition similar to the B fixpoint construct for natural numbers. The nat of bbN ho-
momorphism is simply the cardinal of the B natural, which is a subset of BIG.

We proved that B arithmetic operations and Coq’s functions are equivalent, some-
times under conditions. Coq functions are indeed total w.r.t. their arguments (e.g. 0−
1 = 0 for natural numbers in Coq) while B operations are partial (x−y is defined under
the condition that x ≥ y). This suggests that for any other tool implementing B natu-
rals, the partiality of these operations may have been overlooked: hence some formulas
might be provable when they should not.

As a conclusion for the theoretical side of BiCoax, we can state that our work, while
not ground-breaking, is useful. It helped the trimming down of previously uncovered
mistakes of the BBook. It has also helped and will help in stating how B types and struc-
tures match their “programming-like” counterparts as we did for arithmetic operations
on natural numbers. We shall now present how BiCoax fares on the more practical side.

6 Experimental results

Experimentations with BiCoax were twofold: using it in a purely automated way for
determining what the tools in the upper part of the toolchain are expected to provide and
interactively with B toy projects for getting a better idea of the completion of BiCoax.

6.1 At the end of the B toolchain

We inherited from B/Phox, the ancestor of BiCoax, a way of generating PhoX proof
obligations from B POs described in an XML format. We adapted the XSL stylesheet
for doing so to Coq instead of PhoX, resulting in the bgop2bicoax XSL stylesheet. The
transformation from a PO to BiCoax is straightforward: after inserting the importing
of the BLIB module of BiCoax, the formula is translated to a Coq theorem using the
B constructs defined in BiCoax. A tactic call is inserted, followed by a proof-saving
command. Nowadays this part of the toolchain is mostly used for correcting the PO-to-
BiCoax transformation step.

Our first tests were with a publicly available B project, the boiler, in a “case-study”
flavor and an “industrial” flavor. The PO generator of BRILLANT issues 2335 POs for
the case-study boiler and 2563 for the industrial boiler. PO generation is as close to the
atelierB as possible so as to make subsequent comparisons more relevant. In a nutshell,
successful proofs (see Tab. 3) correspond to typing proofs and are realized in 45s on
average with the (still experimental) firstorder Coq tactic. Failures come mostly
from B disambiguation errors (such as cartesian product and multiplication) or XSLT
transformation errors (missing constructors, etc). The various errors we encountered are
as follows:

74

Colin, Mariano

T1: Cannot infer an instance for the implicit parameter U of app
T2: The reference ... was not found in the current environment
T3: Cannot infer a term for ...
T4: ’,’ expected after [binder list] (in [constr:binder constr])
T5: Cannot infer a type for ...
T6: The term "..." has type "..." while it is expected to have type "..."
T7: Attempt to save an incomplete proof

Case-study Industrial
Nbr PO 2335 2563
Nbr BPhoX 1871 43
Nbr BiCoax 237 52
Error T1 1446 24
Error T2 310 2450
Error T3 175 8
Error T4 66 15
Error T5 25 1
Error T6 20 -
Error T7 13 11

Table 3. Proof results

The discrepancy of T1 and T2 errors in the
proof results seems to be a consequence of the
more complex shape of expressions in the indus-
trial version of the boiler. In the end, the use of
BiCoax in an automated fashion seems possible
but will require corrections in the upper part of
the toolchain in the near future.

6.2 Using BiCoax interactively

It is our belief that the interface to proof tools
should be easy to use interactively, because on
non-trivial B projects the end-user will spend
most of his/her proving-time issuing commands
to the prover (the automated part is invisible, as
expected). Hence interactive proof shall be made

easy, which was also part of our motivation in using Coq as a proof tool.
As a quick test of the usability of BiCoax, we tried to prove two B toy projects,

the “LittleExample” project appearing in [1, Sec. 11.2] or [19] and a bounded stack,
with no further assumptions than the POs translated manually. As a result, the proofs
were successful and took no more than half an hour for each project. They are present
in the BMISC module of BiCoax along with the corresponding B projects in comment.
It is this somewhat unexpected success that turned our opinion to the idea that BiCoax
is almost ready for mundane proof tasks. Here follows a top-down proof tree of the
demonstration of the PO assessing that the read operation preserves the invariant of the
“LittleExample” machine:

` ∀(n,y).y ∈ FIN(N1)∧n ∈ N1⇒ (y∪{n}) ∈ FIN(N1)
intros

n : Z,y : (Ensemble Z),H : (y ∈ FIN(N1)∧n ∈ N1) ` (y∪{n}) ∈ FIN(N1)
rewrite commutativity 1

n : Z,y : (Ensemble Z),H : (. . .) ` ({n}∪ y) ∈ FIN(N1)
apply augmented set in finite sets

n : Z,y : (Ensemble Z),H : (. . .) ` (n,y) ∈ (N1×FIN(N1))
constructor

. . . ,H : (y ∈ FIN(N1)∧ . . .) ` y ∈ FIN(N1)
intuition

. . . ,H : (· · ·∧n ∈ N1) ` n ∈ N1
intuition

We perceived that our experience with proving the above projects could be better
though: some very trivial theorems were missing, such as the non-emptiness of a sin-
gleton, and tactics could have helped us solving repetitive proof tasks. In the future,
such interactive sessions shall give us directions for automating the proof of B projects,
maybe to the point of proposing specialized tactics for domain-specific B projects.

Because the projects we proved are not very complicated, we could not illustrate
here the full extent of using other tactics provided by Coq. For instance, when proving

75

Colin, Mariano

equality of arithmetic equations we can use the ring tactic: it normalizes arithmetic
terms and attempts to prove their equality. This tactic is actually defined for structures
that form a ring (hence here, natural numbers) but it could be applied to any other ring
(e.g. one formed with set operations). Another high-level tactic called omega follows
the same idea for mixes of equations and inequations in Presburger arithmetic.

7 Conclusion

We have proposed a shallow embedding of the mathematical foundations of B into Coq,
in order to provide a proof tool for B based on a generic proof assistant and in order
to validate the definitions and theorems of the BBook through implementation. When
relevant, we proposed handier alternative definitions, either ours or from Coq’s library.
We systematically proved the equivalence with the corresponding B definitions in the
process, to the extent allowed by a shallow embedding.

Our implementation covers the first two and a half chapters of the BBook up to
and almost including the integers, which amounts to about 1100 theorems. This imple-
mentation helped us uncover minor BBook mistakes not documented elsewhere. It also
brought more focus on confusing or overlooked parts of B. For instance, the difference
between “B typing” as set belonging and typing in the sense of type theory is hopefully
clearer. Moreover we exhibited potential pitfalls of the partiality of B arithmetic opera-
tors (subtraction, division and natural logarithm) which might have been overlooked in
other implementations of B.

Experimental results showed that an automated use of BiCoax is feasible but it
mostly requires changes in the upper part of the B toolchain. The ease, initially unex-
pected, with which we proved two B toy projects leads us to believe that BiCoax is
almost ready for the proof of mundane B projects.

The short-term perspectives include what we know or perceive BiCoax lacks: the
sections of the BBook left to be implemented, trivial theorems not present in the BBook
and tactics for repetitive proof tasks. Long-term perspectives include the implementa-
tion of several of the numerous B extensions that appear in the literature. Such exten-
sions consist for instance in the introduction of other datatypes in B or the extension of
B with a temporal logic [17].

Acknowledgements We would like to thank Arnaud Lanoix for proof-reading earlier
versions of this paper.

References

1. Jean-Raymond Abrial. The B Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, August 1996.

2. AFADL2000, LSR/IMAG. Approches Formelles dans l’Assistance au Développement de
Logiciels, LSR/IMAG – BP 72 38402 Saint-Martin d’Heres Cedex – Grenoble – France,
January 2000. LSR/IMAG.

3. AFADL2003, IRISA. Approches Formelles dans l’Assistance au Développement de Logi-
ciels, IRISA Rennes – France, January 2003. IRISA.

76

Colin, Mariano

4. AtelierB. http://www.atelierb.eu.
5. B-Toolkit. http://www.b-core.com.
6. B4Free. http://www.b4free.com.
7. F. Badeau and A. Amelot. Using B as a high level programming language in an industrial

project: Roissy VAL. In Formal Specification and Development in Z and B, volume 3455 of
LNCS, pages 334–354. Springer-Verlag, 2005.

8. Franco Barbanera and Stefano Berardi. Proof-irrelevance out of excluded-middle and choice
in the calculus of constructions. Journal of Functional Programming, 6:519–526, 1996.

9. Karim Berkani, Catherine Dubois, Alain Faivre, and Jérôme Falampin. Validation des règles
de base de l’Atelier B. In AFADL’2003 [3], pages 121–136.

10. Didier Bert, editor. B’98 : The 2nd International B Conference, Recent Advances in the
Development and Use of the B Method, volume 1393 of Lecture Notes in Computer Science
(Springer-Verlag), Montpellier, April 1998. B1998, LIRRM Laboratoire d’Informatique, de
Robotique et de Micro-électronique de Montpellier, Springer-Verlag.

11. Didier Bert, Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors. ZB’2002 –
Formal Specification and Development in Z and B, volume 2272 of Lecture Notes in Com-
puter Science (Springer-Verlag), Grenoble, France, January 2002. LSR-IMAG.

12. J.-P. Bodeveix, Mamoun Filali, and C. A. Munõz. Formalisation de la méthode B en COQ
et PVS. In AFADL’2000 [2], pages 96–110.

13. Jean-Paul Bodeveix and Mamoun Filali. Type synthesis in B and the translation of B to PVS.
In Bert et al. [11], pages 350–369.

14. Jonathan P. Bowen and Michael J. C. Gordon. A shallow embedding of Z in HOL. In
Information and Software Technology, pages 269–276, 1995.

15. Pierre Castéran. Utilisation en Coq de l’opérateur de description. pages 30–44, January
2007.

16. Pierre Chartier. Formalisation of B in Isabelle/HOL. In Bert [10], pages 66–82.
17. Samuel Colin. Contribution à l’intégration de temporalité au formalisme B : utilisation du

calcul des durées en tant que sémantique pour B. PhD thesis, Université de Valenciennes et
du Hainaut-Cambrésis, October 2006.

18. Samuel Colin, Dorian Petit, Jérôme Rocheteau, Rafaël Marcano-Kamenoff, Georges Mar-
iano, and Vincent Poirriez. BRILLANT : An open source and XML-based platform for
rigourous software development. In SEFM (Software Engineering and Formal Methods),
Koblenz, Germany, September 2005. AGKI (Artificial Intelligence Research Koblenz), IEEE
Computer Society Press.

19. Éric Jaeger and Catherine Dubois. Why would you trust B ? In LPAR, 14th International
Conference on Logic for Programming Artificial Intelligence and Reasoning, pages 288–302,
2007.

20. Éric Jaeger and Thérèse Hardin. A few remarks about formal development of secure systems.
In HASE ’08: Proceedings of the 2008 11th IEEE High Assurance Systems Engineering
Symposium, pages 165–174, Washington, DC, USA, 2008. IEEE Computer Society.

21. C. Métayer, J.-R. Abrial, and L. Voisin. RODIN deliverable 3.2: Event-B language, May
2005. http://rodin-b-sharp.sourceforge.net.

22. Christophe Raffalli and Paul Rozière. The PhoX Proof checker Documentation. version 0.83.
23. Jérôme Rocheteau, Samuel Colin, Georges Mariano, and Vincent Poirriez. évaluation de

l’extensibilité de phoX: B/PhoX un assistant de preuves pour B. In Valérie Ménissier-
Morain, editor, Journées Francophones des Langages Applicatifs (JFLA 2004), pages 37–54.
INRIA, 2004.

24. Rigorous Open Development Environment for Complex Systems. http://www.event-b.
org/platform.html.

25. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.2,
2008. http://coq.inria.fr/doc-eng.html.

77

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

Constructing a Formal Event Model of Linux
File System Access Permissions: A Research

Based Teaching Approach

David Cumbor and Bill Stoddart
School of Computing, Univ of Teesside, UK

Email D.Cumbor@tees.ac.uk

School of Computing, University of Teesside, Middlesbrough, UK

Abstract. Based on documentation of the Unix file system, supple-
mented by examination of Unix configuration files and experimental ob-
servations, we develop an Event B style model of Unix file permissions
and associated operations. The work is presented in the context of a “re-
search based teaching” approach, in which practical investigations play a
leading role and formal event modelling is used to capture our emerging
intuitions in a precise way.

1 Introduction

In a previous application of Formal Methods to operating systems [6] Morgan
and Sufrin comment: “As anyone who has ever used an operating system will
confirm, the manuals cannot tell the whole story about the behaviour of the
system. Indeed, almost every programmer .. sets up a number of experiments by
which she attempts to discover how it really behaves.”

Morgan and Suffrin introduce their paper with the remark “The Unix Operating
System is widely known and its filing system is well understood”. Nevertheless,
the formal modelling of Unix file access is still a current research topic, with one
recent contribution (2008) being “Some aspects of Unix file-system security by
Markus Wenzel”[8] in which Isabelle is used as the modelling environment.

In this paper we describe a research based teaching approach to investigating
Unix file access permissions through the creation of an Event B style model. Our
model is based partly on documentation of the Unix file system, as given in Unix
“Man” and “Texinfo” files, and as described in text books such as “The Unix
Programming Environment”[5]. However, this is supplemented by examination
of Unix configuration files and experimental observations on a Unix (Linux)
system. The work is presented in the context of a “research based teaching” ap-
proach, as described in the book [7]. Practical investigations play a leading role;
formal event modelling and natural language descriptions are used to capture

78

Cumbor, Stoddard

our emerging intuitions in a precise way. Rather than being studied in isolation
and as something apart from practical computing, formal methods are seen here
as a tool to be used in a practical investigation; the formal description of a
fairly complex system takes place in a step by step manner at the same time as
practical knowledge is gained relating to the system’s operation.

Students are presented with the given sets of the model. A structured discus-
sion leads to the emergence of the constants, variables, invariant clauses and
events. They are asked to devise experiments that test some given hypotheses
about the emerging model, and also to formulate such hypotheses themselves.
Successful hypotheses — those that withstand rigorous testing - are used to for-
mulate the constraints of the model. Other student exercises associated with this
project include the provision of Pearl scripts which mark up the textual output
of experiments for inclusion in LaTeX documents.

The investigations cover users, groups, files (including directories and paths),
individual file owners, group file owners, the file access permissions of owners,
groups and others, and the effect on these permissions on various actions taken
on files. Enough is reported here to illustrate our approach, but we do not provide
a complete model.

An essential part of the process is to describe in an abstract state which serves as
a foundation for a conceptual model. Some components of the abstract state will
correspond to information held within the Unix operating system, whilst others
describe conceptual elements, such as “groups”, and “users” and “files”. The as-
sociated dynamic part of the model would describe changes to the abstract state
brought about e.g. by adding users and groups, associating users with groups,
and changing ownerships and permissions. They also describe the conditions un-
der which certain events, such as reading a file, can occur. We are concerned
with how the description of events emerges through a process of refinement as
experiments progress, rather than with the presentation of completed model,
which is reserved for a later publication.

We present the model in Event B [2, 3], though we do not adhere to machine
readable notations: it is convenient for us to adopt a freer format, and for suc-
cinctness we base our notations on Abrial’s Generalised Substitution Language.
Natural language descriptions are woven into the formal text. Definitions of no-
tations used may be found in [1].

The rest of the paper is organised as follows. In Section 2 we outline our method
of conducting experiments. In Section 3 we give some formal background relat-
ing to our use of pre-conditions as well as guards in an event based model. In
Section 4 we describe the static aspects of our model. In Section 5 we study the
development of an event from the model and the use of both pre-conditions and
guards during refinement, and in Section 6 we draw conclusions and mention
future work.

79

Cumbor, Stoddard

2 The Experiments

We consider the development of our model to have been a simple adaptation of
the “scientific method”, with the aim of re-discovering the conceptual design of
a human artifact rather than investigating the natural world.

Our experimental material is the Unix file system with its associated file per-
missions, and the users and groups of the Unix system.

As with other branches of science, it is important to perform experiments within
a controlled environment to avoid extranious side effects. For example we avoid
consideration of block devices, and the effect of mounting a block device already
containing files created on another Unix system.

We admit that any model and associated documentation produced in this way
is always provisional - it is based on the few machines we have been able to
observe. It is always possible that our observations have exceptions, or are based
on some “hidden state” such as a particular configuration value. Nevertheless,
the potential refutability of our model is also a strength, as it can lead to the
search of a wider model of which the present model will form a part.

As examples of hypotheses we might wish to investigate:

Hypothesis 1. A non-superuser requires appropriate permissions to access a file,
but a superuser can always access a file, no matter what permissions are set.

Hypothesis 2. All users require suitable permissions to be set before accessing a
file, and the superuser can always set permissions on any file.

These hypotheses are obviously incompatible, and are investigated by exper-
iments whose results are given below. The results are cut and pasted from an
xterm, and some notes have been added by the student who performed the exper-
iments. Lines commencing with \% are comments from the supervisor suggesting
additional points that should be investigated.

We will create files as user ben and as Superuser (root), then
remove permissions from the files and see what abilities we have.

1.1 Control User

Here, as the prompt shows, the current user is ben

ben@doomed ~ $
ben@doomed ~ $ touch myfile
ben@doomed ~ $ ls -l myfile
-rw-r--r-- 1 ben ben 0 Feb 25 11:09 myfile
ben@doomed ~ $ echo "test me" > myfile
ben@doomed ~ $ cat myfile

80

Cumbor, Stoddard

test me
ben@doomed ~ $ chmod u-rw myfile
ben@doomed ~ $ ls -l myfile
----r--r-- 1 ben ben 8 Feb 25 11:10 myfile
ben@doomed ~ $ cat myfile
cat: myfile: Permission denied
ben@doomed ~ $

The user ben created a file called ’myfile’, then we removed the
owner’s read and write permissions from the file. The user ben
was then unable to access the file.

% There is an assumption here that when current user creates a
% file, that file will be owned by the current user. An inter-
% action should be added confirming this.

1.2 Super User

Here the prompt shows the current user to be root.

doomed ~ # touch sufile
doomed ~ # ls -l sufile
-rw-r--r-- 1 root root 0 Feb 25 11:11 sufile
doomed ~ # echo "testt file" > sufile
doomed ~ # cat sufile
testt file
doomed ~ # chmod u-rw sufile
doomed ~ # ls -l sufile
----r--r-- 1 root root 11 Feb 25 11:11 sufile
doomed ~ # cat sufile
testt file
doomed ~ # chmod 000 sufile
doomed ~ # ls -l sufile
---------- 1 root root 11 Feb 25 11:11 sufile
doomed ~ # cat sufile
testt file
doomed ~ # echo "and more" >> sufile
doomed ~ # cat sufile
testt file
and more
doomed ~ #

The root user creates a file called ‘‘sufile’’. We remove the
root users permission from its file but the root user can still
access it. Even when we remove all permissions the root user can

81

Cumbor, Stoddard

still access the file.

From these experiments we can tentatively accept hypothesis 1, that a root
user access a file irrespective of the file permissions. This becomes a “working”
hypothesis”, it is accepted for the moment, but we still keep a look out for future
results that might require us to refine it by detailing more precisely when it is
true: so far we have only tested this hypothesis on a file that was owned by the
super-user.

3 Pre-conditions, guards, and developing a model
through experiments

In the most usual use of Event B, events are able to occur spontaneously when
their guards are true. We can contrast this with the operations of a classical B
Machine, where the operations are designed to be invoked at an interface, e.g.
by another program.

Events have guards, which act as enabling conditions. Operations, in classical B,
may have pre-conditions. these function as “instructions on the box”, telling a
programmer when an operation can safely be invoked. However, in our approach
to experimental exploration of a complex system, we use both guards and pre-
conditions in the context of an event based model.

We note that guards can also serve to describe a user interface in which some
operations are unavailable, e.g. are invoked via buttons that are greyed out if
the firing condition of the event is not satisfied. In this scenario it makes sense
to combine them with pre-conditions, which represent a condition outside which
we provide no information as to whether the event can fire or what its effect
(possibly disastrous) may be.

As we perform more experiments we can extend our description of the system
to cover more cases. The pre-condition can then be loosened. For example we
might first find out how to perform some file operation as the owner of the file,
and would include, in the pre-condition of our description, the constraint that
the user should be the file owner. Later, as we obtain a complete understanding
of file permissions, we would loosen this pre-condition to cover all the ways in
which permissions can be obtained.

A further refinement step can be made when we have a pre-condition expressing
all the possible ways of having the requisite file permissions. At that point we
can switch the pre-condition expressing required firing conditions into a guard,
since outside these conditions the event cannot fire.

No difference can be detected between guards and pre-conditions when checking
the invariant properties of a specification[2]. We see the difference only when

82

Cumbor, Stoddard

refining, where we are able to tighten guards and weaken pre-conditions. In the
current investigation, the process of refinement yields more and more detailed
descriptions of file access events.

To add some weight to these assertions we now conduct a short mathematical
discussion.

If S describes an update and Q a post condition, we write [S]Q for the condition
that an occurrence of S will result in a post-condition satisfying Q .

We write an event with guard g and effect S as g =⇒ S . Such an event can
only occur if g is true, and its effect will then be given by S . The associated
predicate-transformer rule is:

[g =⇒ S]Q ≡ g ⇒ [S]Q

We write an event with pre-condition P and effect S as P | S . We don’t know
whether such an event can occur outside P or not, and if it can occur we know
nothing about its effect. The associated predicate transformer rule is:

[P | S]Q ≡ P ∧ [S]Q

If S and T are events whose effects act in the same state space, we can say that
S is refined by T if a post-condition guaranteed by S is also guaranteed by T ,
i.e. if the following holds for an arbitrary post-condition Q

S v T ≡ [S]Q ⇒ [T]Q

The following results, which show how to mingle guards and pre-conditions, may
then be proved:

(g2 ⇒ g1) ⇒ (g1 =⇒ S v g2 =⇒ S)
(P1 ⇒ P2) ⇒ (P1 | S v P2 | S)
P | g =⇒ S = (P ⇒ g) =⇒ P | S
P | S v P =⇒ S
P | g =⇒ S v g =⇒ P | S

We leave the proofs as exercises for the diligent reader.

4 Modelling an abstract state

A serious limitation of the Unix Manual concept, where each operation has its
effect described on its own “man” page, is that the description of operation ef-
fects is not complemented by a systematic description of what is being affected,

83

Cumbor, Stoddard

i.e. by a description of the system state. This limitation is equally present in
the GNU Texinfo system which officially superseded the “man” page form of
documentation. Following TexInfo, in a historical sense, we see a change of at-
titude exemplified by remarks such as “the documentation is in the listings” or
by the use of WIMP interfaces, supposed to provide an obvious access to system
internals that requires no conceptual explanation. I.e. we see, more or less, an
abandonment of any serious documentation attempt.

In the Event B approach, on the other hand, we begin our construction of a
model by providing a description of the model’s state. This state, we should
note, will be abstract and conceptual - that is, it does not necessarily represent
the details of what the concrete elements of state in a system are, but rather
gives a description of internal state that is consistent with observations of the
system. Were we seeking to implement a system, these components of abstract
state would be refined into components of concrete state, but that will not be our
aim here; rather we want to use the notion of abstract state as a documentation
tool, allowing us to think about, and describe, a system at the most conve-
nient conceptual level, i.e. the level which contains the necessary and sufficient
information for describing system behaviour.

4.1 Abstract sets

Our model is based on a number of abstract sets, such as FILE , the set of all
conceivable files. We say “conceivable files” to indicate that this set does not
refer just to the files in the system at a particular time. We call that set file,
and generally use a consistent naming convention by which, where an upper
case word denote and abstract set, and the same name in lower case denotes a
variable representing those elements of the abstract set which are present in the
current system state.

The other given sets of our model are:

USER the set of all users

GROUP the set of all groups

NAME the set of all names. We will assume that a Unix name e.g. foo is
associated with the name foo in the model.

ID the set of all user and group identities.

CONTENT the set of all possible file contents.

We also have a set of permissions, for which we list the elements:

PERM = {r , w , x}
Our model will only consider read write and execute permissions, and execute
permissions will only be of interest in as far as they affect directories.

84

Cumbor, Stoddard

4.2 Constants

We have a number of constants:

r ∈ FILE is the root directory of the file system. We are not concerned to always
choose names that correspond with names used in Unix, where the root directory
is referred to as / (forward slash).

root ∈ USER is the super user.

root id is the root users associated identity.

4.3 Variables

The state of our model is represented by a number of variables. We introduce
them with some initial type information and brief comments, and subsequently
add some additional “state invariant” information.

file ⊆ FILE is the set of files held in the system.

file name ∈ file → NAME is the function associating each file with its name.
We mean here the local name rather than the whole path, so many files can have
the same name.

file owner ∈ file → user a function associating each file with its owner.

file group ∈ file → group a function associating each file with a group of users
who may access the file via its “group permissions”. group is declared below.

dir ⊆ file is the set of files which are directories.

wd ∈ dir the working directory.

cu ∈ user the current user.

user ∈ P (USER) the set of users in the system. A user is identified by name at
the user interface, and by a user-id internally.

user id ∈ user → ID a function associating each user with an ID.

user name ∈ user → NAME a function associating each user with a name.

group ∈ P (GROUP) the set of groups in the system. As with users, each group
is associated with both a name and an identity.

group name ∈ group → NAME the function associating each group with its
name.

group id ∈ group → ID the function associating each group with its ID.

group members ∈ group → P (users) a function associating each group in the
system with its members

85

Cumbor, Stoddard

owner permissions ∈ file → P (PERM) a function associating each file with the
access permissions of the files owner.

group permissions ∈ file → P (PERM) a function associating each file with the
access permissions of members of the file’s group (other than the owner).

others permissions ∈ file → P (PERM) a function associating each file with the
access permissions of users who are not the owner and not in the file’s group.

path ∈ file � seq(NAME) is a function associating each file with a unique path.
A file at /mnt/thefolder/thefile can be thought of, using a suitable naming
convention, as having a path modelled by the sequence 〈r , mnt , thefolder , thefile〉,
where r is our name for the root directory. There is a one to one correspondence
between paths and files.

parent ∈ file \ {r} → dir Each file except the root directory has a parent file
which is a directory. The intention is, for example, that if
path(f) = 〈r , mnt , thefolder , thefile〉
then
parent(f) = path−1(〈r , mnt , thefolder〉).

4.4 Invariant and initialisation

Part of our invariant has been given as each variable was introduced. It also
includes the following clauses.

The parent of a file f other than the root directory is characterised by:
path(parent(f)) = front(path(f))

To state that the parent relation defines a tree, we need the property, already
given, that the root directory is not in the domain of parent, together with the
property that sufficient applications of the parent function will yield the root
directory:

∀ f .f ∈ file ⇒ ∃n.parentn(f) = r

We assume the system is initialised to some configuration satisfying the invariant.
A more detailed initialisation could be used to specify an initial file structure
for a Unix system, but is beyond the scope of the current investigation.

5 Modelling file access events

One approach to modelling Unix access permissions might be to give a formal
specification to the Unix commands such as touch, cat, cp, mv etc. However,
this would be a clumsy and require considerable duplication if used as a direct

86

Cumbor, Stoddard

approach, since there is often more than one way to perform the same task.
For example both cp and cat can be used to copy files, and a file move can be
done by a m̄v= command or by a copy followed by a rm. In addition there is
a mismatch between Unix shell commands, which can take variable numbers of
arguments and generally have large numbers of command line options, and the
strongly typed style used in B.

We therefore look for a collection of atomic “events”, happening within the
system, and which can be used as a basis for a conceptual model. The events we
choose are:

– a user is added to the system

– a group is added to the system

– a user is added to a group

– the current user changes her working directory

– the current user creates a file

– the current user reads a file

– the current user writes a file

– the current user removes a file

– the current user changes the ownership of a file

– the current user changes permissions on a file

Our understanding of when these events can take place and their exact effect
emerges gradually through our experimental examination of the system. To cap-
ture our current knowledge at a particular stage in the investigation we make
use of pre-conditions which are not usually part of the conceptual apparatus of
Event B. The pre-condition represents the system state we have investigated so
far. As our understanding progresses through performing additional experiments
we can widen the precondition to include additional cases.

We see how the works for a possible version of the create file event. In this version
we give a name as argument, and a file of that name is created in the working
directory. The file will belong to the user that creates it, its initial group (we
have observed) will be a group having the same name as the user. From student
experiments listed in Appendix B we know the file can be created by an ordinary
user if that user owns the parent directory and has write and execute permission
there:

87

Cumbor, Stoddard

Create(name) =̂
owner(parent(wd) = cu ∧
{w , x} ⊆ owner permissions(parent(wd)) ∧
user name(cu) ∈ ran(group name)

|
any f .f /∈ file =⇒

file := file ∪ {f } ‖
file name(f) := name ‖
parent(f) := wd ‖
path(f) := path(wd)← name ‖
file owner(f) := cu ‖
owner permissions(f) := {r , w , x} ‖
group permissions(f) := {r} ‖
others permissions(f) := {r} ‖
file group(f) :∈ {g | g ∈ group ∧ group name(g) = user name(cu)}

We use the pre-condition to state the prevailing condition when we do an experi-
ment, and the body of the event to describe the result. We also use guards, which,
of course, have a different semantics and a different purpose. For a RemoveFile
event, the event can only fire if the file selected for removal exists, and this condi-
tion is a guard rather than a pre-condition. The difference between pre-conditions
and guards is seen during refinement, where we are allowed to tighten guards
and weaken pre-conditions.

The pre-conditions record under what circumstances we have obtained our ex-
perimental results. We observe that creating a file associates that file with a
singleton group with the same name as the current user. That file already exists.
We do not yet know what group would be chosen if this group does not exist
(and the documentation is not going to help us in this respect!).

Nor do we know if a user who is not the owner of the parent directory can perform
a CreateFile operation. After some further experiments, however, we find that
what is required is simply that the user has write and execute permissions on
the parent directory.

Permissions work as follows:

The super-user always has all permissions.

The owner has “owner” permissions, she cannot take advantage of “group” or
“others” permissions.

All group members other than the file owner have the “group” permissions as-
sociated with the file. They cannot take advantage of “owner” or “others” per-
missions.

Any user who is not the file owner and not in the group associated with the file
will have the “others” permissions.

88

Cumbor, Stoddard

This is somewhat counter intuitive, in that the general user can be given more
liberal permissions than the file owner or a user who has a specific relationship
with the file via the files associated group.

Since the concept of permissions is ubiquitous in our model we define a condition
to formally capture the above rules.

permissions(user , file) ==
if user = root then {r , w , x}
elseif user 6= root ∧ user = file owner(file) then

owner permissions(file)
elseif user¬root ∧ user 6= file owner(file) ∧ user ∈ file group(file) then

group permissions(file)
else others permissions(file)
end

We can then broaden the pre-conditions of the Create event as follows to show
that any user with relevant permissions on the parent directory can create a file.

Create(name) =̂
{w , x} ⊆ permissions(cu, parent(wd)) ∧ ...

rest of definition as before

Note that it is this relaxation of a condition during refinement that tells us we
are dealing with a pre-condition here rather than a guard.

At this point a reader may suggest that permissions should function as guards
rather than pre-conditions, since if permissions do not allow an event, that event
cannot take place. As noted earlier, this is a further refinement step.

6 Conclusions

We have presented a refinement based method for investigating the behaviour
of a complex system through the construction of a theory based on experimen-
tal observation. Our subject matter has been the Unix file store. The material
is suitable for investigation by computer science students working at final year
undergraduate or at research level. Rather than isolating formal methods from
practical computing experience, the approach attempts to unite theory and prac-
tice.

Writing system documentation based on experimental evidence is always subject
to doubt. Results may fail to match predictions, but at least we then have a
definite refutation of our theory. At such points we would search for a new theory,
typically one with an additional, currently “hidden” variable. Often we can guess
where the model is subject to this form of limitation - for example the initial

89

Cumbor, Stoddard

permissions granted to a new file are given definitively in the model, but are no
doubt subject to change under different security policies. Further developement
of these ideas, a more complete description of Unix file permissions, and an
informal document, abstracted from the formal model and describing Unix access
permissions, will form part of the first author’s PhD thesis.

References

1. J R Abrial. The B Book. Cambridge University Press, 1996.
2. J-R Abrial. Extending B without Changing it (for Developing Distributed Systems).

In H Habrias, editor, The First B Conference, ISBN : 2-906082-25-2, 1996.
3. J R Abrial. Modeling in Event B. Cambridge University Press, 2009.
4. I Hayes, editor. Specification Case Studies. International Series in Computer Science.

Prentice Hall, 1987.
5. Brian W. Kernighan and Rob Pike. Unix Programming Environment (Prentice-Hall

Software Series). Prentice Hall, 1984.
6. C Morgan and B Sufrin. Specification of the unic filing system. In Hayes [4], pages

91–140.
7. Briony J Oates. Researching Information Systems and Computing. Sage Publica-

tions Ltd., 2006.
8. Markus Wenzel. Some aspects of unix file-system security, 2008. Available from

www.cl.cam.ac.uk/ lp15/Isabelle/dist/library/HOL/Unix/document.pdf.

Appendices
A Unix commands used in experiments

The Unix commands we use in our experiments are:

adduser for adding a new user to the system

addgroup for adding a new group to the system

cd for changing the working directory

chmod for changing permissions of a file

chown for changing the owner of a file

chgrp for changing the group to which a file belongs

ls for listing files and associated ownership, group ownership and file permission
details, and for seeing when we can list such details.

touch for creating files for use in experiments

echo for generating example content to place in files

cat for testing read and write permissions on files.

90

Cumbor, Stoddard

cp for copying files

mv for moving files

B Experiments on the effect of directory permissions

Directory Permissions

This experiment is to see what effect the permissions of a
directory have on a file within said directory. The directory
/mnt/testarea has full permissions to every one.

doomed ~ # ls -l /mnt/
drwxrwxrwx 4 root root 4096 Feb 9 10:37 testarea
doomed ~ #

The user bob creates a folder that only he can access

bob@doomed ~ $ cd /mnt/testarea/
bob@doomed /mnt/testarea $ mkdir thefolder
bob@doomed /mnt/testarea $ ls -l
drwxr-xr-x 2 bob bob 4096 Feb 25 11:17 thefolder
bob@doomed /mnt/testarea $ chmod 700 thefolder
bob@doomed /mnt/testarea $ ls -l
drwx------ 2 bob bob 4096 Feb 25 11:17 thefolder
bob@doomed /mnt/testarea $

The user bob creates a file then tries to change the ownership
of the file to the user ben

bob@doomed /mnt/testarea $ touch thefolder/thefile
bob@doomed /mnt/testarea $ ls -l thefolder/thefile
-rw-r--r-- 1 bob bob 0 Feb 25 11:18 thefolder/thefile
bob@doomed /mnt/testarea $ chown ben thefolder/thefile
chown: changing ownership of ‘thefolder/thefile’: Operation not
permitted
bob@doomed /mnt/testarea $ chown ben: thefolder/thefile
chown: changing ownership of ‘thefolder/thefile’: Operation not
permitted
bob@doomed /mnt/testarea $

Since bob is unable to change ownership root does it

doomed ~ # chown ben /mnt/testarea/thefolder/thefile

91

Cumbor, Stoddard

bob@doomed /mnt/testarea $ ls -l thefolder/thefile
-rw-r--r-- 1 ben bob 0 Feb 25 11:18 thefolder/thefile
bob@doomed /mnt/testarea $

The user ben tries to access the file he owns in thefolder

ben@doomed /mnt/testarea $ pwd
/mnt/testarea
ben@doomed /mnt/testarea $ cat thefolder/thefile
cat: thefolder/thefile: Permission denied
ben@doomed /mnt/testarea $

The user bob modifies the containing folder’s permission so
the others permissions include read.

bob@doomed /mnt/testarea $ chmod o+r thefolder
bob@doomed /mnt/testarea $ ls -l
drwx---r-- 2 bob bob 4096 Feb 25 11:18 thefolder
bob@doomed /mnt/testarea $

The user ben tries to access his file again

ben@doomed /mnt/testarea $ cat thefolder/thefile
cat: thefolder/thefile: Permission denied
ben@doomed /mnt/testarea $

We remove read permission and add execute

bob@doomed /mnt/testarea $ chmod o-r+x thefolder
bob@doomed /mnt/testarea $ ls -l
drwx-----x 2 bob bob 4096 Feb 25 11:18 thefolder
bob@doomed /mnt/testarea $

The user ben is now able to read and write to the file

ben@doomed /mnt/testarea $ cat thefolder/thefile
ben@doomed /mnt/testarea $ echo "poop" >> thefolder/thefile
ben@doomed /mnt/testarea $ cat thefolder/thefile
poop
ben@doomed /mnt/testarea $

Conclusion: it is only once the execute permission of a
containing folder is available that a user can modify a file
he has within it.

92

Cumbor, Stoddard

Acknoledgements

We acknowledge the contribution of the anonymous referees.

93

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

How to make mistakes?

Stefan Hallerstede

University of Düsseldorf
Germany

halstefa@cs.uni-duesseldorf.de

Abstract. When teaching Event-B to beginners, we usually start with models
that are already good enough, demonstrating occasionally some standard tech-
niques like “invariant strengthening”. We show that we got it essentially right but
need to make improvements here and there. However, this is not how we really
create formal models. To a beginner, getting shown only nearly perfect models is
overwhelming. So we should start earlier and show how we usually get models
wrong initially. This provides ample opportunity to demonstrate the strengths of
formal reasoning (and the weaknesses). The principal strength of formal reason-
ing lies in its capacity to locate mistakes in a model and to suggest corrections.
A beginner should learn how to profit from his mistakes by improving his un-
derstanding of the model. A weakness of formal reasoning is that we only find
mistakes that we expect, for example, invariant violation or non-termination. Mis-
takes that do not fall into one of these categories may slip through.
In this article we present how a formal model is created by refinement and alter-
ation. The approach employs mathematical methodology for problem solving and
a software tool. Both aspects are important. Mathematical methodology provides
ways to turn mistakes into improvements. The software tool is necessary to ease
the impact of changes on a model and to obtain rapid feed back. We begin with a
set of assumptions and requirements, the problem, and set out to solve it, giving
a more vivid picture of how formal methods work.

1 Introduction

In Event-B [2] formal modelling serves primarily for reasoning: reasoning is an essen-
tial part of modelling because it is the key to understanding complex models. Reason-
ing about complex models should not happen accidentally but needs systematic support
within the modelling method. This thinking lies at the heart of the Event-B method.

We use refinement to manage the many details of a complex model. Refinement is
seen as a technique to introduce detail gradually at a rate that eases understanding. The
model is completed by successive refinements until we are satisfied that the model cap-
tures all important requirements and assumptions. In this article we concern ourselves
only with what is involved in coming up with an abstract model of some system. Note
that refinement can also be used to produce implementations of abstract models, for
instance, in terms of a sequential program [1,8]. But this is not discussed in this article.
? This research was carried out as part of the EU research project DEPLOY (Industrial de-

ployment of system engineering methods providing high dependability and productivity)
http://www.deploy-project.eu/.

94

Hallerstede

We present a worked out example that could be used in the beginning of a course
on Event-B to help students to develop a realistic picture of the use of formal methods.
The challenge is to state an example in such a way that it is easy to follow but provides
enough opportunity to make (many) mistakes. We chose to use a sized-down variant of
the access control model of [2] which we have employed for lectures at ETH Zürich
(Switzerland) and at the university of Southampton (United Kingdom). We have not
used the description of a computer program because it does not leave enough room for
misunderstanding. We begin by stating a problem to be solved in terms of assumptions
and requirements and show how the problem can be approached using formal methods.
It is not possible to show everything that happens during an actual development of a
formal model. But it is possible to point at the main difficulties encountered and show
how to approach them. Students should be encouraged to make mistakes and experiment
with formal models. On the way they will learn about strengths and weaknesses of
formal methods.

We approach the model of the access control in small increments, learning at each
increment something about the problem and the model. We understand this incremental
approach in two ways. The first way is by formal refinement. An existing model is
proved to be refined by another: all properties of the existing model are preserved in the
refined model. The second way is by alteration of an existing model: properties of the
existing model may be broken. When a model is shown to be not consistent, it needs
to be modified in order to make it consistent. This reflects a learning process supported
by various forms of reasoning about a model, for instance, proof, animation, or model-
checking. This way of thinking about a model is common in mathematical methodology
[6,9]. The first way is commonly used and taught in formal methods, whereas the second
is at least not acknowledged. In order to apply formal methods successfully both ways
need to be mastered. This is only feasible in the presence of software tools that make
reasoning easy and modifications to a model painless. We have relied on the Rodin
modelling tool [3] for Event-B for proof obligation generation and proof support and
on the ProB tool [7] for animation and model-checking. Both tools are integrated in the
Rodin platform and can be used seamlessly. In later sections we do not further specify
the tools used, though, as this should be clear from the context. Also note that we present
proof in an equational style [5,10] whereas the Rodin tool uses sequents as in [2].

Overview. In Section 2 we introduce Event-B. The following sections are devoted to
solving a concrete problem in Event-B. In Section 3 the problem is stated. Section 4
provides a more detailed overview of Sections 5 to 9. It is intended to help the reader
keeping track of how the solution of the problem advances in the ensuing sections. A
first model is produced and discussed in Section 5. In Sections 6 and 8 we elaborate
the model by refinement. Section 7 contains a small theory of transitive closures that
is needed in the refinement. In Section 9 some further improvements of the model are
made and limitations of formal modelling discussed.

2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and ma-
chines. Contexts contain the static part of a model whereas machines contain the dy-

2

95

Hallerstede

namic part. Contexts may contain carrier sets, constants, axioms, where carrier sets are
similar to types [4]. In this article, we simply assume that there is some context and do
not mention it explicitly. Machines are presented in Section 2.1, and proof obligations
in Section 2.2 and Section 2.3. All proof obligations in this article are presented in the
form of sequents: “premises” ` “conclusion”.

Similarly to our course and based on [2], we have reduced the Event-B notation
used so that only a little notation suffices and formulas are easier to comprehend, in
particular, concerning the relationship between formal model and proof obligations.
We have also reduced the amount of proof obligations associated with a model. We
have done this for two reasons: firstly, it is easier to keep track of what is to be proved;
secondly, it permits us to make a point about a limitation of formal methods later on.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v = v1, . . . , vm define
the state of a machine. They are constrained by invariants I(v). Theorems are predicates
that are implied by the invariants. Possible state changes are described by means of
events E(v). Each event is composed of a guard G(t, v) and an action x := S(t, v),
where t = t1, . . . , tr are parameters the event may contain and x = x1, . . . , xp are
the variables it may change1. The guard states the necessary condition under which an
event may occur, and the action describes how the state variables evolve when the event
occurs. We denote an event E(v) by

E(v) =̂ any t when

G(t, v)
then

x := S(t, v)
end

or E(v) =̂ begin

x := S(v)
end

.

The short form on the right hand side is used if the event does not have parameters and
the guard is true. A dedicated event of the latter form is used for initialisation. The
action of an event is composed of several assignments of the form

x` := B`(t, v) ,

where x` is a variable and B`(t, v) is an expression. All assignments of an action x :=
S(t, v) occur simultaneously; variables y that do not appear on the left-hand side of
an assignment of an action are not changed by the action, yielding one simultaneous
assignment

x1, . . . , xp, y1, . . . , yq := B1(t, v), . . . , Bp(t, v), y1, . . . , yq , (1)

where x1, . . . , xp, y1, . . . , yq are the variables v of the machine. The action x :=
S(t, v) of event E(v) denotes the formula (1), whereas in the proper model we only
specify those variables x` that may change.

1 Note that, as x is a list of variables, S(t, v) is a corresponding list of expressions.

3

96

Hallerstede

2.2 Machine Consistency
Invariants are supposed to hold whenever variable values change. Obviously, this does
not hold a priori for any combination of events and invariants I(v) = I1(v)∧. . .∧ Ii(v)
and, thus, needs to be proved. The corresponding proof obligations are called invariant
preservation (` ∈ 1 .. i):

I(v)
G(t, v)
`

I` (S(t, v)) ,

(2)

for every event E(v). Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that neither an invariant nor a guard appears in
the premises of proof obligation (2), that is, the only premises are axioms and theorems
of the context. We say that a machine is consistent if all events preserve all invariants.

2.3 Machine Refinement
Machine refinement provides a means to introduce more details about the dynamic
properties of a model [4]. A machine N can refine at most one other machine M .
We call M the abstract machine and N a concrete machine. The state of the ab-
stract machine is related to the state of the concrete machine by a gluing invariant
J(v, w) = J1(v, w)∧ . . .∧ Jj(v, w), where v = v1, . . . , vm are the variables of the
abstract machine and w = w1, . . . , wn the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by a concrete event F (w). Let
abstract event E(v) with parameters t = t1, . . . , tr and concrete event F (w) with
parameters u = u1, . . . , us be

E(v) =̂ any t when

G(t, v)
then

v := S(t, v)
end

and F (w) =̂ any u when

H(u, w)
with

t = W (u)
then

w := T (u, w)
end .

Informally, concrete event F (w) refines abstract event E(v) if the guard of F (w) is
stronger than the guard of E(v), and the gluing invariant J(v, w) establishes a simu-
lation of the action of F (w) by the action of E(v). The term W (u) denotes witnesses
for the abstract parameters t, specified by the equation t = W (u) in event F (w),
linking abstract parameters to concrete parameters. Witnesses describe for each event
separately more specific how the refinement is achieved. The corresponding proof obli-
gations for refinement are called guard strengthening (` ∈ 1 .. g):

I(v)
J(v, w)
H(u, w)
`

G` (W (u), v) ,

(3)

4

97

Hallerstede

with the abstract guard G(t, v) = G1(t, v) ∧ . . . ∧ Gg(t, v), and (again) invariant
preservation (` ∈ 1 .. j):

I(v)
J(v, w)
H(u, w)
`

J` (S(W (u), v), T (u, w)) .

(4)

3 Problem Statement

In the following sections we develop a simple model of a secure building equipped with
access control. The problem statement is inspired by a similar problem used by Abrial
[2]. Instead of presenting a fully developed model, we illustrate the process of how we
arrive at the model. We can not follow the exact path that we took when working on the
model: we made changes to the model as a whole several times. So we would soon run
out of space. We comment on some of the changes without going too much into detail
in the hope to convey some of the dynamic character of the modelling process.

The model to be developed is to satisfy the following properties:

P1 : The system consists of persons and one building.
P2 : The building consists of rooms and doors.
P3 : Each person can be at most in one room.
P4 : Each person is authorised to be in certain rooms (but not others).
P5 : Each person is authorised to use certain doors (but not others).
P6 : Each person can only be in a room where the person is authorised to be.
P7 : Each person must be able to leave the building from any room where the person

is authorised to be.
P8 : Each person can pass from one room to another if there is a door connecting the

two rooms and the person has the proper authorisation.
P9 : Authorisations can be granted and revoked.

Properties P1, P2, P8, and P9 describe environment assumptions whereas properties
P3, P4, P5, P6, and P7 describe genuine requirements. It is natural to mix them in the
description of the system. Once we start modelling, the distinction becomes important.
We have to prove that our model satisfies P3, P4, P5, P6, and P7 assuming we have P1,
P2, P8, and P9.

4 Storyboard

In this section we give a brief overview of the development as it will unfold in Sec-
tions 5 to 9. The reader is encouraged to return to this section while reading through
those sections. We have tried to keep a natural flow in the presentation to make it more
credible. It also requires some skill to stay on track when solving a complex problem.

It lies in the nature of the presented material that we can easily lose sight of our aim.
By the way, what is our aim? This will be stated in the beginning of Section 5 before
starting any work:

5

98

Hallerstede

Our aim is to produce a faithful formal model of the system described by the
properties P1 to P9 of Section 3.

Once we know what we want to achieve we can get started. In Section 5 we begin by
making a rough plan of how to proceed and create a first abstract machine introducing
four invariants inv1 to inv4 and abstract events pass, grant, and revoke. The reason
for the briefness of Section 5 is simply that we needed space to make some more inter-
esting points later on. It is not to suggest that inventing a first model would be trivial.

In Section 6 we commence with the refinement of the abstract machine, introducing
invariants inv5 to inv7, and event pass. We uncover that the properties P1 to P9 do
not say enough about the nature of the doors used in the building. Incompleteness of
assumptions is a common difficulty dealing with which carries the risk of introducing
undocumented assumptions into the model. At this point we have incorporated proper-
ties P1 to P6 and property P8 into our model.

In order to express P7 formally, a little bit of theory about transitive closures is
needed which is introduced in Section 7. (Nothing new is “invented”. We simply use
an existing theory.) We use this in Section 8 to have a first go at property P7 by means
of invariant inv8. (Property P7 is formalised as a more intricate theorem thm1 implied
by the invariants. This is a common strategy to ease the effort of verifying invariant
preservation.) However, when analysing inv8 we find that it is too strong and weaken
it to inv8′.

In the remainder of Section 8 we refine events grant and revoke. (Proving refine-
ment of event grant we find the need for invariant inv9, which would also permit us
to prove thm1.) When trying to refine event revoke we discover that event revoke
of abstract machine is wrong. We have to alter the abstract machine in order to get a
model that is consistent and represents P9 adequately. By the end of Section 8 we feel
that properties P1 to P9 have all been incorporated into the model. To ensure this we
have made some effort to trace them into the formal model and argued that each one
has been adequately captured.

In Section 9 we have another look at the model, animating it. We immediately see
that the concrete machine cannot “do” anything. It deadlocks right after the initiali-
sation of the machine. We rectify the problem and use it to illustrate limitations of a
formal method. This is also a good place to advertise the usefulness of complementary
techniques in analysing formal models.

5 Getting started with a fresh model

Our aim is to produce a faithful formal model of the system described by the properties
P1 to P9 of Section 3. The first decision we need to make concerns the use of refinement.
We have decided to introduce the properties of the system in two steps. In the first step
we deal only with persons and rooms, in the second also with doors. This approach
appears reasonable. At first we let persons move directly between rooms. Later we state
how they do it, that is, by passing through doors. In order to specify doors we need
to know about rooms they connect. It is a good idea, though, to reconsider the strategy
chosen for refinement when it turns out to be difficult to tackle the elements of the model
in the planned order. For now, we intend to produce a model with one refinement:

6

99

Hallerstede

(i) the abstract machine (this section) models room authorisations;
(ii) the concrete machine (sections 6 and 8) models room and door authorisations.

In Event-B we usually begin modelling by stating invariants that a machine should
preserve. When events are introduced subsequently, we think more about how they
preserve invariants than about what they would do. The focus is on the properties that
have to be satisfied. We declare two carrier sets for persons and rooms, Person and
Room, and a constant O, where O ∈ Room. Constant O models the outside of the
building. We choose to describe the state by two variables for authorised rooms and
locations of persons, arm and loc, with invariants

inv1 : arm ∈ Person ↔ Room Property P4
inv2 : Person × {O} ⊆ arm

inv3 : loc ∈ Person → Room Property P3
inv4 : loc ⊆ arm Property P6

Invariant inv2, that each person is authorised to be outside, is necessary because we
decided to model location by a total function making the outside a special room. For
instance, person p is outside is written formally loc(p) = O. In a first attempt, we
made loc a partial function from Person to Room expressing that a person not in the
domain of loc is outside. However, this turned out to complicate the gluing invariant
when introducing doors into the model later on. (Because of property P7 we need an
explicit representation of the outside in the model.) As a consequence of our decision
we had introduce invariant inv2. It corresponds to a new requirement that is missing
from the list in Section 3 but that we have uncovered while reasoning formally about
the system. In the following we focus on how formal reasoning is used to improve the
model of the system.

In order to satisfy inv2, inv3 and inv4 we let

initialisation

begin

act1 : arm := Person × {O}
act2 : loc := Person × {O}

end .

We model passage from one room to another by event pass,

pass

any p, r when

grd1 : p 7→ r ∈ arm p is authorised to be in r

grd2 : p 7→ r /∈ loc but not already in r

then

act1 : loc := loc C− {p 7→ r}
end .

7

100

Hallerstede

Event pass preserves the invariants. Granting and revoking authorisations for rooms is
modelled by the two events

grant revoke

any p, r when

grd1 : p ∈ Person

grd2 : r ∈ Room

then

act1 : arm := arm ∪ {p 7→ r}
end

any p, r when

grd1 : p ∈ Person

grd2 : p 7→ r /∈ loc

then

act1 : arm := arm \ {p 7→ r}
end .

The two events do not yet model all of P9 which refers to authorisations in general,
including authorisations for doors. Events grant and revoke appear easy enough to
get them right. But it is as easy to make a mistake. This is why we have specified
invariants: to safeguard us against mistakes. If the proof of an invariant fails, we have
the opportunity to learn something about the model and improve it. The two events
preserve all invariants except for revoke which violates invariant inv2,

Person × {O} ⊆ arm Invariant inv2
p ∈ Person Guard grd1
p 7→ r /∈ loc Guard grd2
`

Person × {O} ⊆ arm \ {p 7→ r} Modified invariant inv2

In an instance of the model with two different rooms I and O and one person P we find
a counter example:

arm = {P 7→ I, P 7→ O}, loc = {P 7→ I}, p = P, r = O .

In fact, we must not remove O from the set of authorised rooms of any person. To
achieve this, we add a third guard to event revoke:

grd3 : r 6= O .

A counter example provides valuable information, pointing to a condition that it does
not satisfy. It may not always be as simple to generalise but at least one can obtain an
indication where to look closer.

The model we have obtained thus far is easy to understand. Ignoring the doors in
the building, it is quite simple but already incorporates properties P3, P4, and P6. Its
simplicity permits us to judge more readily whether the model is reasonable. We can
inspect it or animate it and can expect to get a fairly complete picture of its behaviour.
We may ask: Is it possible to achieve a state where some person can move around in
the building? We have only partially modelled the assumptions P1, P2, P8, and P9.
We could split them into smaller statements that would be fully modelled but have
decided not to do so. Instead, we are going to document how they are incorporated in
the refinement that is to follow.

8

101

Hallerstede

6 Elaboration of more details

We are satisfied with the abstract model of the secure building for now and turn to
the refinement where doors are introduced into the model. In the refined model we
employ two variables adr for authorised doors and loc for the locations of persons
in the building (as before). The intention is to keep the information contained in the
abstract variable arm implicitly in the concrete variable adr. That is, in the refined
model variable arm would be redundant. We specify

inv5 : adr ∈ Person → (Room ↔ Room) Property P5
inv6 : ∀ q · ran(adr(q)) ⊆ arm[{q}] Property P4

6.1 Moving between rooms

Let us first look at event pass. Only a few changes are necessary to model property P8,

pass

any p, r when

grd1 : loc(p) 7→ r ∈ adr(p)
then

act1 : loc := loc C− {p 7→ r}
end .

We only have to show guard strengthening, because loc does not occur in inv5 and
inv6. The abstract guard grd1 is strengthened by the concrete guards because r ∈
ran(adr(p)). The second guard strengthening proof obligation of event pass is:

loc ∈ Person → Room Invariant inv3
loc(p) 7→ r ∈ adr(p) Concrete guard grd1
`

p 7→ r /∈ loc Abstract guard grd2

Using inv3 we can rephrase the goal,

p 7→ r /∈ loc { inv3 }
⇔ loc(p) 6= r

Neither concrete guard grd1 nor the invariants inv1 to inv6 imply this. The invariant
is too weak. We do not specify that doors connect different rooms. In fact, our model of
the building is rather weak. We decide to model the building by the doors that connect
the rooms in it. They are modelled by a constant Door. We make the following three
assumptions about doors:

axm1 : Door ∈ Room ↔ Room Each door connects two rooms.

axm2 : Door ∩ idRoom = ∅ No door connects a room to itself.

9

102

Hallerstede

axm3 : Door ⊆ Door−1 Each door can be used in both directions.2

These assumptions are based on our domain knowledge about properties of typical
doors. They were omitted from the problem description because they seemed obvi-
ous. However, the validity of our model will depend on them. As such they ought to
be included. We began to think about properties of doors because we did not succeed
proving a guard strengthening proof obligation. If adr(p), for p ∈ Person, would
share the property of the set Door given by axm2, we should succeed. Hence, we add
a new invariant inv7. We realise that it captures much better property P5 than invariant
inv5,

inv7 : ∀ q · adr(q) ⊆ Door . Property P5

Using inv7 and axm2, we can prove ∀x, y · x 7→ y ∈ adr(p) ⇒ x 6= y , and
with “x, y := loc(p), r” we are able to show the guard strengthening proof obligation
above.

7 Intermezzo on transitive closures

Property P7 is more involved. It may be necessary to pass though various rooms in order
to leave the building. We need to specify a property about the transitive relationship of
the doors. We can rely on the well-known mathematical theory of the transitive closure
of a relation.

A relation x is called transitive if x ; x ⊆ x. In other words, any composition of
elements of x is in x. The transitive closure of a relation x is the least relation that
contains x and is transitive. We define the transitive closure x+ of a relation x by

∀x · x ⊆ x+ (5)

∀x · x+ ; x ⊆ x+ (6)

∀x, z · x ⊆ z ∧ z ; x ⊆ z ⇒ x+ ⊆ z . (7)

That is, x+ is the least relation z satisfying x ∪ z ; x ⊆ z. The definition implies

∀x · x ∪ x+ ; x = x+ (8)

The transitive closure is monotonic and maps the empty relation to itself,

∀x, y · x ⊆ y ⇒ x+ ⊆ y+ (9)

∅+ = ∅ . (10)

8 Towards a full model of the building

Using the transitive closure of authorised rooms we can express that every person can
only reach authorised rooms from the outside,

inv8 : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] .

2 We say Door is a symmetric relation.

10

103

Hallerstede

This invariant does not quite correspond to property P7. However, given the discussion
about properties of doors in Section 6 we should be able to prove that all invariants
jointly imply property P7 which we formalise as a theorem,

thm1 : ∀ q · (arm[{q}] \ {O})× {O} ⊆ adr(q)+ . Property P7

We proceed like this because we expect that proving inv8 to be preserved would be
much easier than doing the same with thm1. Let us continue working with inv8 for
now and return to thm1 later.

8.1 Initialisation

In the abstract model all persons can only be outside initially. This corresponds to them
not being authorised to use any doors,

initialisation

begin

act1 : adr := Person × {∅}
act2 : loc := Person × {O}

end .

The invariant preservation proof obligations for inv5 and inv6 hold, as can easily be
seen letting “arm, adr := Person× {O}, P erson× {∅}” in inv5, inv6, and inv7.
For invariant inv8 there is more work to do. We have to show:

` ∀ q · (Person × {O})[{q}] ⊆ (Person × {∅})(q)+[{O}]
Using law (10), (Person× {∅})(q)+[{O}] = ∅ 6⊇ {O} = (Person× {O})[{q}] .
Invariant inv8 is too strong! Because of invariant inv7 we cannot initialise adr to
Person × {{O 7→ O}} and because of inv6 we cannot use any other door. Thus,
we must weaken invariant inv8. We replace it by:

inv8′ : ∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O}

8.2 Granting door authorisations

A new door authorisation can be granted to a person if (a) it has not been granted yet
and (b) authorisation for one of the connected rooms has been granted to the person.
We introduce constraint (a) to focus on the interesting case and constraint (b) to satisfy
invariant inv8′. Thus,

grant

any p, s, r when

grd1 : s 7→ r ∈ Door \ adr(p)
grd2 : s ∈ dom(adr(p))

then

act1 : adr := adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}} 3

end

11

104

Hallerstede

Invariant inv5 is preserved by event grant by definition of relational overwriting C−.
For invariant inv6 we have to prove:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r /∈ adr(p) Concrete guard grd1
s ∈ dom(adr(p)) Concrete guard grd2
`

ran((adr C− {p 7→ adr(p) ∪ {s 7→ r, r 7→ s}})(q))
⊆ (arm ∪ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q 6= p the proof is easy. For the other case q = p we prove,

ran(adr(p) ∪ {s 7→ r, r 7→ s}) ⊆ (arm ∪ {p 7→ r})[{p}]
⇐ . . .

⇐ s ∈ ran(adr(p))

We would expect s ∈ ran(adr(p)) to hold because doors are symmetric and because
of concrete guard grd2, that is, s ∈ dom(adr(p)). We specified symmetry in axiom
axm3 but this property is not covered by invariant inv7. We have to specify it explicitly,

inv9 : ∀ q · adr(q) ⊆ adr(q)−1 . (see axiom axm3)

We can continue the proof where we left off

s ∈ ran(adr(p)) { inv9 with “q := p” }
⇐ s ∈ dom(adr(p))

It is easy to show that invariants inv7 and inv9 are preserved by event grant. Preser-
vation of inv8′ can be proved using law (8) and law (9).

Having specified invariant inv9 we would now succeed proving theorem thm1 pos-
tulated in the beginning of this section. This shows that our model satisfies property P7.
We do not carry out the proof but turn to the last event not yet refined.

8.3 Revoking door authorisations

We model revoking of door authorisations symmetrically to granting door authorisa-
tions. A door authorisation can be revoked if (a) there is an authorisation for the door,
(b) the corresponding person is not in the room that could be removed, and (c) the room
is not the outside. Condition (a) is just chosen symmetrically to grd1 of refined event
revoke (for the same reason). The other two conditions (b) and (c) are already present

3 Event-B has the shorter (and more legible) notation adr(p) := adr(p) ∪ {s 7→ r, r 7→ s}
for this. We do not use it because we can use the formula above directly in proof obligations.
We also try as much as possible to avoid introducing more notation than necessary.

12

105

Hallerstede

in the abstraction. The refined events grant and revoke together model property P9.

revoke

any p, s, r when

grd1 : s 7→ r ∈ adr(p)
grd2 : p 7→ r /∈ loc

grd3 : r 6= O
then

act1 : adr := adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}}
end

We expect that the guard of event revoke will be to weak to preserve invariant inv8′.
We are going to search for it in the corresponding proof. But we can get started without
it, in particular, proving guard strengthening of the abstract guards grd1 to grd3 and
preservation of inv5, inv6, inv7, and inv9. For instance, preservation of inv6:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ {p 7→ r})[{q}] Modified invariant inv6

for all q. For q = p we have to prove ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \
{r}, thus, r /∈ ran(adr(p) \ {s 7→ r, r 7→ s}). This does not look right. Indeed, we
find a counter example with one person P and three different rooms H, I, O:

adr = {P 7→ {O 7→ H, H 7→ O, O 7→ I, I 7→ O, I 7→ H, H 7→ I}}
arm = {P 7→ H, P 7→ I, P 7→ O}
loc = {P 7→ O} p = P s = I r = H

In order to resolve this problem we could remove all doors connecting to r. But this
seems not acceptable: we grant door authorisations one by one and we should revoke
them one by one. We could also strengthen the guard of the concrete event requiring,
say, adr(p)[{r}] = {s}. But then we would not be able to revoke authorisations once
there are two or more doors for the same room. The problem is in the abstraction! The
abstract event revoke should not always remove r. We weaken the guard of the abstract
event using a set R of at most one room instead of r. If R = ∅, then {p} × R = ∅.
So, for R = ∅ event revoke does not change arm and for R = {r} it corresponds to

13

106

Hallerstede

the first attempt at abstract event revoke:

revoke

any p, R when

grd1 : p ∈ Person

grd2 : loc(p) /∈ R

grd3 : R ∈ S(Room \ {O})
then

act1 : arm := arm \ ({p} × R)
end ,

where for a set X by S(X) we denote all subsets of X with at most one element:

Y ∈ S(X) =̂ Y ⊆ X ∧ (∀x, y · x ∈ Y ∧ y ∈ Y ⇒ x = y) .

With this the proof obligation for invariant preservation of inv6 becomes:

∀ q · ran(adr(q)) ⊆ arm[{q}] Invariant inv6
s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

ran((adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q))
⊆ (arm \ ({p} × R))[{q}] Modified invariant inv6

for all q. For q = p we have to prove,

ran(adr(p) \ {s 7→ r, r 7→ s}) ⊆ arm[{p}] \ R . (11)

Before we can continue we need to make a connection between r and R. We need a
witness for R. After some reflection we decide for

R = {r} \ ran(adr(p) \ {s 7→ r, r 7→ s}) . (12)

Witness (12) explains how the concrete and the abstract event are related. If there is
only one door s connecting to room r, then R = {r} and the authorisation for room
r is revoked. Otherwise, R = ∅ and the authorisation for room r is kept. Now we
can prove (11) using inv6 and (12). We note without showing the proofs that guard
strengthening of the abstract guards grd1 to grd3 and preservation of inv5, inv7, and
inv9 all hold. Only preservation of invariant inv8′ remains:

∀ q · arm[{q}] ⊆ adr(q)+[{O}] ∪ {O} Invariant inv8′

s 7→ r ∈ adr(p) Concrete guard grd1
p 7→ r /∈ loc Concrete guard grd2
r 6= O Concrete guard grd3
`

(arm \ ({p} × R))[{q}] Modified invariant inv8′

⊆ (adr C− {p 7→ adr(p) \ {s 7→ r, r 7→ s}})(q)+[{O}] ∪ {O}

14

107

Hallerstede

for all q. Let D = {s 7→ r, r 7→ s}. For q = p we have to show

(arm \ ({p} × R))[{p}] ⊆ (adr(p) \ D)+[{O}] ∪ {O} . (13)

We have seen above that the term on term on the left hand side is either arm[{p}] or
arm[{p}] \ {r}. So we won’t succeed proving (13) unless we add a guard to event
revoke. We cannot use arm[{p}] in the guard because the refined machine does not
contain variable arm. If inv6 was an equality, we could use ran(adr(p)) instead of
arm[{p}], obtaining the guard

grd4 : ran(adr(p)) \ {r} ⊆ (adr(p) \ D)+[{O}] ∪ {O} .

It says that all rooms except for r must still be reachable from the outside after revoking
the authorisation for door D leading to room r. This sounds reasonable. We find that it
is not possible to turn the set inclusion into an equality in invariant inv6. However, we
can still prove the weaker theorem

thm2 : ∀ q · ran(adr(q)) ∪ {O} = arm[{q}] ,

using inv2, inv6, inv8′, and property (8) of the transitive closure. The authorised rooms
are maintained precisely by means of the authorised doors. As a matter of fact, initially
we used thm2 as invariant instead of inv6 but then weakened the invariant to inv6 and
proved thm2 as a theorem. This is a useful strategy for reducing the amount of proof
necessary while keeping powerful properties such as thm2.

9 Towards a better model

After all the serious thinking about the model we are confident that the model captures
the properties P1 to P9. Assuming we have one person P and three different rooms H,
I, and O we can inspect how the modelled system would behave.

Initially variables adr and loc have the values

adr = Person × {∅}
loc = Person × {O} .

Event pass is disabled as expected; grd1, that is, loc(p) 7→ r ∈ adr(p) cannot be
satisfied for any p and r. Similarly, event revoke is disabled, but also event grant:
guard grd2, s ∈ dom(adr(p)), cannot be satisfied for any s. Deadlock! We have
not proved all properties we would expect from our model. This property seems to be
implicitly contained in properties P8 and P9, but we have missed it. We have to weaken
grd2,

grd2′ : s ∈ dom(adr(p)) ∪ {O}
As a consequence, we have to check again that concrete event grant preserves all in-
variants. Fortunately, all proofs succeed.

Note, that just adding another proof obligation will not suffice to solve the problem
in general. We can easily imagine a lift, say, that does not have a deadlock because some

15

108

Hallerstede

button could always be pressed and the lift could always move; but the doors of the lift
would remain always shut. If we do not specify that we expect the doors to open on
some occasions, a model of the lift may not have this property. Because such properties
are common sense they are often not mentioned but then they are also easily forgot. We
have to analyse the model using complementary techniques such as proving, model-
checking, and animation in order to find such mistakes. In the end, the best we can hope
for is a model of good quality that captures the required properties well. This problem
holds for formal modelling in general. However, it is very visible in the incremental
approach described in this article. The proof obligations shown in Section 2 have been
restricted not to take into account deadlock-freedom to emphasise the problem that we
only verify properties where we expect difficulties but not more. So we can see better the
benefits of using jointly the three techniques of proof, model-checking, and animation.

10 Conclusion

What we have learned: We have used proof to verify that the model is consistent and to
get indications for improvements of the model. We have used model-checking before
attempting a proof. If a counter example was found, the effort of proving could be
saved, and the counter example could be analysed. (We could also have started a proof
knowing that it would fail.) Finally we have used animation to “try out” the model, to
see whether it behaves reasonably. When we animated the model, we found a problem
that was not discovered by the other two techniques. Whereas trying out (or systematic
testing) does not show absence of errors as proof does, proof only verifies properties
where we expect problems. In this sense proof is incomplete too. We have developed a
more realistic impression of what a formal method can achieve.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.
2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, 2008. To appear.
3. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environment

for Event-B. In Z. Liu and J. He, editors, ICFEM 2006, volume 4260, pages 588–605.
Springer, 2006.

4. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of Discrete
Models: Application to Event-B. Fundamentae Informatica, 77(1-2), 2007.

5. D. Gries and F. B. Schneider. A Logical Approach to Discrete Math. Springer, 1994.
6. I. Lakatos. Proofs and Refutations. Cambridge University Press, 1976.
7. M. Leuschel and M. Butler. ProB : an automated analysis toolset for the B method. Interna-

tional Journal on Software Tools for Technology Transfer, 10(2):185–203, 2008.
8. C. C. Morgan. Programming from Specifications: Second Edition. Prentice Hall, 1994.
9. G. Pólya. How to Solve It: A New Aspect of Mathematical Method. Princeton Science

Library. Princeton University Press, second edition, 1957.
10. A. J. M. van Gasteren. On the Shape of Mathematical Arguments, volume 445 of LNCS.

Springer, 1990.

16

109

From Research to Teaching Formal Methods: The B Method June 8th, 2009, Nantes, France

Structurer Réaliser et Prouver
Comment et Pourquoi

Alain COUTURIER(1),Michel GAZEAU(1),

Gérald JEAN-BAPTISTE(1),Gwenola KERGLONOU(2)

(1) CNAM des Pays de la Loire (2) ICAM Nantes

Abstract.
There are three types of difficulties encountered when teaching algorithmic. First, how do

we define an algorithm and prove that it is exact? Second, for practical reasons these algorithms
concerning A types are realized by B types, how do we validate this realization? And third, a
program being a translation in a language belonging to a paradigm, how do we achieve this
translation and how can we prove its exactness? In order to illustrate their purpose, the authors
present an algorithm allowing the computation of the minimal coverage of graph.

Keywords: algorithm,minimal cover,data structures,morphism.

1 Introduction

L'enseignement de l'algorithmique rencontre d'importantes difficultés.
Beaucoup d'enseignants les considèrent comme inéluctables ou les contournent à
grand renfort de métaphores ou d'appels au sens commun. Ces difficultés concernent :

1. La confusion souvent faite entre un algorithme et son codage dans un
langage de programmation. Généralement définis comme une suite
d'opérations, les algorithmes induisent une démarche opérationnelle très
proche d'une réalisation en machine et inadaptée à l'étape conceptuelle.
La distinction à opérer entre une preuve et un algorithme : un algorithme
n'est pas une preuve. La popularité des démarches empiriques par
«essais-erreurs» donne la priorité à toute réalisation et assimile
l'algorithme à son code.

2. La compréhension et l'utilisation des types : généralement abordé à
partir du typage statique offert par certains langages de programmation,
ce concept n'est pas compris en phase de spécification. Cela revient à se
priver d'une grande partie de sa puissance d'expression.

110

Couturier, Gazeau, Jean-Baptiste, Kerglonou

3. Le choix, souvent inexistant, d'une structure de données permettant
d'accueillir le problème posé. Cette difficulté est récurrente en recherche
opérationnelle où, dès la présentation du problème à résoudre, les
données sont supposées stockées dans un tableau.

Pourtant, l'utilisation de la théorie des ensembles et de la logique du premier
ordre sont de nature à faciliter la résolution de ces difficultés d'apprentissage. À partir
de quelques exemples, nous allons essayer de montrer :

1. qu'une définition plus rigoureuse des algorithmes lève toute ambiguïté et
laisse le champ libre à plusieurs réalisations ;

2. que le pattern de la «machine à états» facilite la construction d'une
véritable preuve ;

3. que le concept de type abstrait et de morphisme de structures permettent
de formaliser le passage de l'algorithme à une réalisation prouvée,
dépendante du paradigme choisi ;

4. que l'emploi de la théorie des ensembles et des langages ensemblistes
étend l'espace des solutions possibles.

2 Spécifications, algorithmes, preuves, réalisations

 Une spécification n'est pas un algorithme, et un algorithme n'est pas du code
ou une version francisée d'un langage de programmation.

Pas de "tant que" ,ni de "répéter ... jusqu'à" , ni de "si ... fin si" dans un algorithme.

Et pourquoi pas ? Pour une raison bien simple : un algorithme doit être universel. Il
doit pouvoir être utilisé pour écrire des programmes appartenant à n'importe quel
paradigme. Or nous devons admettre qu'il existe des langages aussi efficaces que les
langages impératifs et qui n'ont :

• ni variables,
• ni structures de répétitions.

Alors qu'est-ce qu' un algorithme ?

Thèse :
Un algorithme est un ensemble de règles de réécriture, permettant, en partant d'une

situation initiale, d'aboutir à une situation finale, appelée solution du problème posé.
Cette solution doit vérifier les propriétés (ou spécifications) fournies.

2.1 La machine à états

2.1.a Définition
Le concept de machine à états, adapté des travaux de JONES[1], nous permet de

présenter les algorithmes dès le début de l'apprentissage et de manière indépendante
du langage éventuellement utilisé :

111

Couturier, Gazeau, Jean-Baptiste, Kerglonou

Une machine à états (mae), est composée :
1°) d'un ensemble d'états E dont un final. Un état est un n-uplet de
composantes caractérisant le système ;
2°) d'une suite finie d’états s = [e1 … ,ei , ei+1 . . . ,en] avec ei E ;∈

3°) d'une fonction Φ : E → E, Φ définit le passage de l'état i à l'état suivant
i+1.

Pour démontrer que la mae est exacte :
1) on vérifie qu'un certain prédicat P (ou un ensemble fini de prédicats) est

vrai à l'état initial ou état 0,
2) que si ce prédicat est vrai à l'état i, il reste vrai à l'état i+1.

Le prédicat P est appelé un invariant. Si la machine s'arrête au bout d'un nombre
fini d'étapes, l'état final vérifie aussi ce prédicat P.

2.1.b Un exemple :
Soit E ={e1,… ,ei, … ,en} une collection de sous-ensembles. Évaluer

R = ∪ ei où i∈I . Si s est la suite de sous-ensembles [e1,… ,ei, … ,en],

l'expression que nous cherchons à obtenir est :
R = e1 … ∪ ei, … ∪ en où ei parcourant la suite s

a) La notation utilisée :
[a,b ..] : suite d'éléments
[] : suite vide
+ : opérateur de concaténation de suites
x : r : suite non vide, composée d'une tête et d'une queue(reste) r
hd : renvoie la tête d'une suite non vide
tl : renvoie une copie d'une suite s, privée de sa tête

b) La machine à états :
La machine à états utilisée possède deux composantes s et e où s est la suite à

traiter et e l' ensemble des résultats partiels. Trois équations gèrent cette machine :
 (eq 1) état initial : ({}, s)
 (eq 2) passage état i vers état (i+1) : (e , x:r) → (x∪e , r)
 (eq 3) état final : (e , []) → e

Ces règles induisent l' algorithme suivant :

c) L'algorithme
 (1) unions s → unions_aux {} s
 (2) unions_aux e x:r → unions_aux (x+e) r
 (3) unions_aux e [] → e

112

Couturier, Gazeau, Jean-Baptiste, Kerglonou

d) Remarques :
• Cette machine à états unions est équivalente à un pliage gauche(foldl) s :

unions s ≡ foldl union {} s
• Nous utilisons la notation → pour indiquer qu'il s'agit d'une règle de

transformation (réécriture) et non les symboles = ou ≡ qui nous paraissent ambiguës.

Il nous faut, maintenant définir le concept de réalisation, c'est à dire comment
mettre en œuvre nos algorithmes.

2.2 Morphismes de structures

La notion de type abstrait[3] permet de traiter des éléments sans chercher à
connaître la manière dont ils sont représentés en machine. Les opérations sur ces
éléments obéissent alors à des règles (ou axiomes).

Un type abstrait est une structure mathématique munie d'opérations de base
(ou primitives). La définition d'un type (et de ses opérations de base) comporte deux
parties :

• les axiomes de définition ;
• les axiomes de comportement.

Se pose alors la question : comment le réaliser ?
Soient A et B deux types abstraits munis chacun d'un ensemble d'opérateurs

 et  . '
Réaliser A en B (réaliser les éléments de type A à l'aide d'éléments de type B)

c'est :
• Fournir une fonction T : A → B
• Prouver que les «objets» B se comportent comme les «objets» A

De façon plus formelle le diagramme suivant commute : T(φ (x)) ≡ φ'(T(x))

A :T  B

φ :  φ' : 
Eqns T :  Eqns'

2.2.a Un exemple : réaliser le type Queue par un type Tree ?
Le type Queue est muni des opérations queuevide, dequeue, enqueue et il vérifie

les axiomes de comportement suivants :
a) queuevide(qnil) = true où qnil est une queue vide ;
b) queuevide(enqueue(x, f) = false, f étant une queue quelconque ;
c) dequeue(enqueue(x, qnil)) = qnil
d) dequeue(enqueue(x, f)) = enqueue(x, dequeue(f)) si queuevide(f) = false ;
e) dequeue(qnil) = error

113

Couturier, Gazeau, Jean-Baptiste, Kerglonou

Soit Tree(A) l'ensemble des arbres de type A, solution de l'équation :
Tree(A) = {tnil} | ZTree(A)
Ztree(A) = Leaf(A) | Node({0,1}, Ztree(A), ZTree(A))

muni des opérations d'insertion (insert), de suppression (delete),de test (istnil) de
signature :

insert : A × Tree(A) → Tree(A)
delete : Ztree(A) → Tree(A)
istnil : Tree(A) → Bool

Remarques :
1) ZTree est l'ensemble des arbres non vide.
2) Un élément t∈Tree(A) est :

• soit vide ;
• soit une feuille composée d'un élément x, notée leaf(x) ;
• soit un noeud ayant trois composantes (i, G, D) avec i∈{0, 1},

G ∈ Ztree(A) et D ∈ Ztree(A).

L'opération enqueue est réalisée par insert et dequeue par delete

Queue Tree

qnil tnil

enqueue(x,qnil) insert(x, tnil)
= leaf(x)

enqueue(y,enqueue(x,qnil)) insert(y, leaf(x))
= node(0, leaf(x), leaf(y))

enqueue(z,q)

si T(q)=node(0, L, R) alors
= node(1, insert(z, L), R)

si T(q)=node(1, L, R) alors
= node(0, L, insert(z, R))

Exemple : insertion des éléments :1, 2, 3, 4, 5.

q=<1> q=<1,2> q= <1,2,3> q=<1,2,3,4> q=<1,2,3,4,5>
(1) 0 1 0 0
        
 (1) (2) 0 (2) 0 0 0 0
          
 (1) (3) (1) (3) (2) (4) 1 (3) (2) (4)
  
 (1) (5)

Remarque : (x) représente une feuille c'est à dire leaf(x)

114

Couturier, Gazeau, Jean-Baptiste, Kerglonou

2.2.b Comment vérifier la correction de la réalisation ? Quelles
preuves doit-on apporter ?

Notant T le morphisme de transformation, ces réalisations doivent notamment
vérifier les équations :

(1) T[dequeue(enqueue(x,qnil))] = T[qnil]
(2) T[dequeue(enqueue(x,q))] = T[enqueue(x,dequeue(q))] si
queuevide(q) = false.

2.3 Les structures de données implicites

Appelons structures implicites les structures dites "évidentes" , et qui, par
leur évidence, masquent la recherche de structures plus générales et/ou plus
optimales.

Par exemple, en RO, il est courant de représenter les coûts dans un graphe
valué dans un problème de recherche des chemins de coût minimal dans un graphe g
= (E,G,C), par un "tableau de coûts". Or, il s'agit non pas d'un tableau mais d'une
fonction (donc non obligatoirement partout définie).Si l'on continue à utiliser le terme
"tableau de coûts", quelle valeur faut-il mettre pour représenter l’absence de coût ?

Le choix du langage de réalisation[4] et donc de la structure influence trop

souvent l'algorithme. A contrario, aucune hypothèse de structuration des données ne
doit être choisie si elle n' est pas en relation avec le problème.

Nous allons mettre en œuvre notre démarche sur une classe d'équations
booléennes de la forme : ∏∑ mij, équations que l'on rencontre dans différents
problèmes d'optimisation.

3 Résolution d' équations booléennes

3.1 Le problème

Dans certaines classes de problème (esims, couverture minimale, cliques, ...) on
est amené à déterminer la solution d'équations booléennes se présentant sous forme de
produits de sommes de variables :

L = (a + b + c) * (c + d) * (d + e + f + g) *... = 1 (eq 1)

où a,b,c,d ... sont des éléments de l'ensemble B = {0,1} muni des opérateurs
classiques non, et, ou, imp ... Pour des raisons de simplifications d'écriture on écrit :

x' pour non(x), x + y pour ou(x, y), x*y ou xy pour et(x, y) .

La technique classique de résolution est de développer puis de simplifier
l'équation (eq1) pour la mettre sous la forme de sommes de produits de monômes :

115

Couturier, Gazeau, Jean-Baptiste, Kerglonou

L simplifiée = a*c*d + ... + a*e*f*g ... = 1
Simplifier c'est appliquer les règles de réécriture :
(r1) a + a = a
(r2) a * a = a
(r3) a + a*b = a
(r4) a*(a+b) = a
(r5) (a+b)(a+c) = a + b*c

Exemple
Considérons l'expression L= (a + b) * (a + b + c) * (d + e) * (d + e + f) = 1.

En développant et en simplifiant on obtient :
L = a * d + a * e + b * d + b * e = 1

L'équation L possède 4 monômes donc 4 solutions

Existe-t-il une structure (au sens informatique) munie d'opérations pouvant
traduire ces opérations d' algèbre booléennes ?
 Comment représenter les opérations : développer, simplifier ?

3.2 Les morphismes de transformation

Nous proposons de représenter les équations booléennes par des sous-ensembles.

Terme booléen Représentation ensembliste

monôme
somme de monômes

sous-ensemble des variables
ensemble de sous-ensembles

Exemples
 L'opérateur est omis. 

abcde
abc + cde + efg

 {a, b, c, d, e}
{{a, b, c} , {c, d, e} , {e, f, g}}

Comment alors représenter les opérations développer et simplifier ?
Définissons deux transformations S,R et un morphisme T caractérisés par la tableau
suivant :

Expression booléenne Morphisme : T Expression ensembliste

e = (a + b)(a + c) T :  f = {{{a},{b}}, {{a},{c}}

simplification algébrique
S : 

 simplification ensembliste
R : 

e' = a + bc T :  f' = {{a}, {b, c}}

116

Couturier, Gazeau, Jean-Baptiste, Kerglonou

L'expression e = (a + b) (a + c) est
 représentée par : f = T(e) = {{a}, {b}}, {{a}, {c}}}

  simplifiée en : e' = S(e) = a + bc
  f simplifiée est représentée par : R(f) = {{a}, {b,c}}

 Nous devons alors vérifier que : R(T(e)) ≡ T(S(e)), c'est à dire que le diagramme
commute :

 Τ
 →
S ↓ ↓ R T o S = R o T où o est l' opérateur de composition

 →
 Τ

3.3 Le traitement
Il comporte 3 fonctions : solve, traiter, simplifier.

3.3.a La fonction solve

Cette fonction englobe le traitement général : développer et simplifier.
Signature
solve : S(S(A)) → S(℘(E))
Exemple
solve [[1, 2], [1, 3], [3 + 4][3 + 5]] → {{1, 3}, {2, 3}, {1, 4, 5} }

L'algorithme utilise une machine à états. Chaque état comprend deux
composantes (e, r) où e est l'ensemble des résultats partiels et r la suite restante à
traiter.

algorithme

• solve s → solve_aux (hd s) (tl s)
• solve_aux e x:r → solve_aux (traiter x e) r
• solve_aux e [] → e

3.3.b La fonction traiter

Elle consiste à developper et simplifier deux expressions e1 et e2
Signature :
traiter : ℘(℘(E)) × ℘(℘(E)) → ℘(℘(Ε))

e1 e2 e
Exemple :
traiter {{1}, {2}} {{1}, {3}} → { {1}, {2, 3}}

avec e1 = {{1}, {2}} correspondant, par exemple, à : (a + b)
et e2 = {{1}, {3}} correspondant, par exemple, à : (a + c)

117

Couturier, Gazeau, Jean-Baptiste, Kerglonou

Algorithme :

traiter e1 e2 → simplifier(developper(e1 e2))
avec :
développer e1 e2 → {u1 + u2 : u1 in e1 , u2 in e2}

3.3.c La fonction simplifier

Soit E une collection de sous-ensembles e1 ... en . Simplifier E, c'est
supprimer les sur-ensembles de E. Si simplifier(E) → F, alors aucun élément de F
n'est sous-ensemble strict d'un autre élément de F.

Le prédicat (∀ u∈F, ∃ v∈ F | v ⊂ u et v ≠ u) est faux

Algorithme :

simplifier exp → exp - { u : u ∈ exp | (∃ v∈exp : v ⊂ u and v ≠ u) }

3.3.d La fonction transformer

Pour faciliter la saisie, l'expression L à traiter est écrite sous la forme de suite de
n-plets de variables. Par exemple, L = (a + b + c) (a + c) (b + c + d) (b + d) = 1 est
transformée(codée) en :

[[a, b, c], [a, c] , [b, c, d], [b, d]]

Signature
transformer : S(S(A)) → S(℘(℘(A)))
Exemple
transformer [[1, 2], [1, 3], [2, 4]] → [{{1}, {2}}, {{1}, {3}}, {{2}, {4}}]

A nouveau l'algorithme utilise une machine à états. Un état comprend 2
composantes (e, r) où e est l'ensemble des résultats partiels et r la suite restante à
traiter.

Algorithme
transformer s → transforme_aux {} s
transformer_aux e x:r → transforme_aux e{{v} : v in x} r
transformer_aux e [] → e

Appliquons cette démarche à un problème classique de recherche opérationnelle
[2].

118

Couturier, Gazeau, Jean-Baptiste, Kerglonou

3.4 Application : algorithme de couverture minimale

3.4.a Un exemple
Soit :
C = {p, q, r, s} un ensemble de caméras
D = {a, b, c, d, e} un ensemble de dépôts
r une application de C dans D qui à chaque caméra associe un sous-ensemble de

dépôts qu'elle peut surveiller :
 p → {a, c}
 q → {b, e}
 r → {b, d}
 s → {a, d, e}
 R = { (p, {a, c}) , (q, {b, e}), (r, {b, d}), (s, {a, d, e}) }

a b c d e

p x x

q x x

r x x

s x x x

Problème : Déterminer le nombre minimal de caméras permettant de surveiller l'
ensemble des dépôts.

Solution : Elles doivent alors satisfaire l'équation L :
(p + s) (q + r) p (r + s) (q + s) = 1 .

D'après le morphisme développé en 2.2, L est transformée en :
 solve {{{p}, {s}}, {{q}, {r}}, {{p}}, {{r}, {s}}, {{q},{s}}}

3.4 Prédicats
Soit f = (A, B, F) une correspondance d' un ensemble A dans un ensemble B

de graphe F, où F est un sous-ensemble de A × B. Si (x, y) ∈ F alors y est une image
de x (y est un successeur de y ou x est un prédécesseur de y. A toute correspondance
f(A, B, F) on peut associer une fonction g=(A, ℘(B), G) de A dans ℘(B) qui associe
à tout x de A le sous-ensemble de ses successeurs.

Remarque : ℘(E) désigne l'ensemble des sous-ensembles de E

g = (A ,B, G) : A → B
↓ ↑

f = (A,℘(B), F) : A → ℘(B)
↓ ↑

h= g' = (B, A, H) : B → A avec H = G'
↓ ↑

119

Couturier, Gazeau, Jean-Baptiste, Kerglonou

k = f' = (B, ℘(A), K) : B → ℘(A)

Exemple :

a b c d e f

p 1 1 1

q 1 1 1

r 1 1

s 1 1

t 1 1

F = {(a, {p, r}), (b, {q, s}), (c, {p, t}), (d, {q, t}), (e, {p, s}), (f, {q, r}) }
G = { (a, p), (a, r), (b, q), (b, s), (c, p), (c, t), (d, q), (d, t), (e, p), (e, s), (f, q), (f, r) }
H = G' = {(p, a), (r, a), (q, b), (s, b), (p, c), (t, c), (q, d), (t, d), (p, e), (s, e), (q, f),(r, f)}
K = {(p,{a, c, e}, (q, {b, d, f}), (r, {a, f}), (s, {b, e}), (t, {c, d}) }

Si l'exemple ci-dessus est associé à un problème de couverture minimale ({a, b, c,
d, e, f} ensemble de dépôts, {p, q, r, s, t} ensemble de caméras de surveillance), ce
problème possède une solution unique :

res = {p, q}.
Pour prouver que res est une couverture il suffit de montrer que :
E=K(p) ∪ K(q) où E = domain(G) est l'ensemble des dépôts. Or
domain(G) ={a, b, c, d, e, f}
K(p) ={a, c, e} et K(q) ={b, d, f}.

Remarque : l'ensemble {r, s, t} est une couverture mais non minimale car elle est
de cardinal 3.

4.- Conclusion
Même si les langages de programmation évoluent moins vite que les matériels,

l'élévation de leur niveau d'abstraction est continue et actuellement, une majorité de
spécialistes s'accordent cependant pour dire que demain les langages seront plus
déclaratifs, plus dynamiques et plus concurrents et que tous les programmeurs
travailleront dans des environnements multi-paradigmes.

Aujourd'hui, un enseignement informatique qui, serait exclusivement basé sur une
approche opérationnelle, correspondrait à un enseignement qui, au début des années
80, ignorerait les langages structurés.

C'est dans cette perspective que notre démarche pédagogique a été conçue.

120

Couturier, Gazeau, Jean-Baptiste, Kerglonou

Sans nécessité l'apprentissage d'un formalisme particulier, elle s'appuie sur un
usage intensif de la théorie des ensembles, introduit une séparation nette entre
algorithmes et réalisations, et implique deux familles de preuves :

• prouver les algorithmes ;
• prouver que les réalisations sont conformes, c'est à dire prouver que les

transformations des structures utilisées préservent un ensemble de propriétés
spécifiques des structures.

Son ambition est de proposer une approche progressive vers les méthodes
rigoureuses de développement. Dans un première étape, elle permet d'aborder la
phase de réalisation en machine en utilisant un langage ensembliste comme SETL (ou
ISETL).

5.- Références

(1) JONES C.B "Software development : a rigourous approach"
 (1980) Prentice-Hall New-York.

(2) GONDRAN M , MINOUX M "Graphes et algorithmes "
 (1979) Eyrolles Paris
 (3) Henderson P"Functional Programming : Application and Implementation "
 (1980) Prentice-Hall New-Yorck.
(4) Kingston J.H "Algorithms and data structures "
 (1990) Addison-Wesley Sydney

Journées scientifiques - Université de Nantes (FR) - 2009

From Research to Teaching Formal Methods: The B Method
TFM-B’2009

imprimé par IUT de Nantes (Université de Nantes), juin 2009
Publié par APCB

ISBN 2-9512461-0-2
EAN 9782951246102

