
HAL Id: hal-04914101
https://hal.science/hal-04914101v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Find the Lady: Permutation and Re-synchronization of
Deep Neural Networks

Carl de Sousa Trias, Mihai Petru Mitrea, Attilio Fiandrotti, Marco Cagnazzo,
Sumanta Chaudhuri, Enzo Tartaglione

To cite this version:
Carl de Sousa Trias, Mihai Petru Mitrea, Attilio Fiandrotti, Marco Cagnazzo, Sumanta Chaudhuri, et
al.. Find the Lady: Permutation and Re-synchronization of Deep Neural Networks. Proceedings of the
Thirty-Eighth AAAI Conference on Artificial Intelligence, 2024, Vancouver, Canada. pp.21001-21009,
�10.1609/aaai.v38i19.30091�. �hal-04914101�

https://hal.science/hal-04914101v1
https://hal.archives-ouvertes.fr

Find the Lady: Permutation and Re-synchronization of Deep Neural Networks
Carl De Sousa Trias1, Mihai Petru Mitrea1, Attilio Fiandrotti2,
Marco Cagnazzo3, Sumanta Chaudhuri4, Enzo Tartaglione4

1Télécom SudParis, Institut Polytechnique de Paris, France
2University of Turin, Italy
3University of Padua, Italy

4 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
carl.de-sousa-trias@telecom-sudparis.eu

Abstract

Deep neural networks are characterized by multiple symmet-
rical, equi-loss solutions that are redundant. Thus, the order
of neurons in a layer and feature maps can be given arbitrary
permutations, without affecting (or minimally affecting) their
output. If we shuffle these neurons, or if we apply to them
some perturbations (like fine-tuning) can we put them back
in the original order i.e. re-synchronize? Is there a possible
corruption threat? Answering these questions is important for
applications like neural network white-box watermarking for
ownership tracking and integrity verification.
We advance a method to re-synchronize the order of permuted
neurons. Our method is also effective if neurons are further
altered by parameter pruning, quantization, and fine-tuning,
showing robustness to integrity attacks. Additionally, we pro-
vide theoretical and practical evidence for the usual means to
corrupt the integrity of the model, resulting in a solution to
counter it. We test our approach on popular computer vision
datasets and models, and we illustrate the threat and our coun-
termeasure on a popular white-box watermarking method.

Introduction
The deployment of deep neural networks for solving com-
plex tasks became massive, for both industrial and end-user-
oriented applications. These tasks are instantiated in a huge
variety of applications, e.g. autonomous driving cars. In this
context, neural networks are in charge of safety-critical op-
erations such as forecasting other vehicles’ trajectories, act-
ing on commands to dodge pedestrians, etc. The interest
in protecting the integrity and the intellectual property of
such networks has steadily increased even for non-critical
tasks, like ChatGPT content detection (Uchida et al. 2017;
Adi et al. 2018; Li, Wang, and Barni 2021). Some water-
marking techniques already allow embedding signatures in-
side deep models (Uchida et al. 2017; Chen et al. 2019a;
Tartaglione et al. 2020), but these are designed to be robust
against conventional attacks, including fine-tuning, pruning,
or quantization, and assume the original location of the wa-
termarked parameters remains unchanged. Neural networks,
however, have internal symmetries such that entire neurons
can be permuted, without impacting the overall computa-
tional graph. Once this happens, although the input-output

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Given some model (left), let us assume we permute
the order of neurons and apply other types of corruption
(right): are integrity checks at the neuron’s level enough to
verify the integrity of the model? And what about retrieving
the signature in white-box watermarking? This problem re-
sembles the “find the lady / three-card monte” game, where
the queen of hearts needs to be found out of shuffled cards.

function for the whole model does not change, the ordering
of the parameters in the layer changes, and for instance, all
the aforementioned watermarking approaches fail in retriev-
ing the signature of the model, despite it still being there.
This is referred to as geometric attack in the multimedia wa-
termarking community (Wan et al. 2022), and we port the
same concept to deep neural networks: the input-output re-
lationship is preserved, but the order of the neurons is per-
muted, disallowing the recovery of signatures (Fig. 1).

Some studies (Hecht-Nielsen 1990; Ganju et al. 2018; Li,
Wang, and Zhu 2022) already raised concerns about permu-
tation in deep layers; yet, such a problem has not yet been
studied in its general form, nor has its formal definition been
stated. The first question we ask ourselves is whether the
original ordering for the neurons can be retrieved, even when
the applied permutation rule is lost. It is also a well-known
fact that deep neural networks are redundant (Setiono and
Liu 1997; Agliari et al. 2020; Wang, Li, and Wang 2021)
and some works enforce this towards improving the gener-
alization capability of the neural network, like dropout (Sri-
vastava et al. 2014), while others detect such redundancies
and prune them away (Wang, Li, and Wang 2021; Chen et al.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21001

Input
channels

Neurons

(a)

Input
channels

Neurons

(b)

Input
channels

Neurons

(c)

Input
channels

Neurons

(d)

Figure 2: Representation of the weights tensor for the l-th layer (a), permutation of neurons 1 and Nl (b), representation of the
weights tensor for layer l + 1 (c) permutation on channels, following the same permutation of l (d).

2019b; Tartaglione et al. 2021). Hence, it is not even clear
whether it is possible to “distinguish”, with no doubt, one
neuron from all the others in the layer. This would be an im-
portant step to re-order (re-synchronize) the neurons in the
target layer. Besides, we ask the same question even in the
case we apply some noise to the model: as a fact, the learn-
ing process for deep neural networks is noisy, and robustness
towards the unequivocal identification of the parameters be-
longing to a neuron from the others in a noisy environment
is important in the considered setup. The main contributions
of this study can be summarized as:
• we study the neuron redundancy case for deep neural net-

works, observing that despite some neurons showing the
same input/output function, under the same input, their
parameters can be consistently different;

• we explore different ways to re-synchronize a permuted
model, showing and explaining fallacies for some of the
most intuitive approaches;

• we put in evidence a potential integrity threat for re-
synchronized models and we highlight the counter-
measure for it;

• we advance an effective solution to re-synchronize lay-
ers, even when subjected to noise, and we extensively
validate it with four different noise sources, on five dif-
ferent datasets, and nine different architectures.

Permuting Neurons
Preliminaries
In this section, we define the neuron permutation problem.
For the sake of simplicity, we will exemplify the problem
on a single fully connected layer without biases; however,
the same conclusions hold for any other layer typology, e.g.
convolutional or batch-normalization. Let us define the out-
put yl ∈ RNl×1 of the l-th layer:

yl = φ
[〈
wl,yl−1

〉]
(1)

where yl−1 ∈ RNl−1×1 is the input, wl ∈ RNl−1×Nl are
the weights for the l-th layer (as displayed in Fig. 2a), ⟨·⟩
indicates inner product, and φ(·) is the activation function.
Let us consider the case a permutation πl is applied on the
neurons of the l-th layer; the elements in the permutation
matrix Pπl

∈ RNl×Nl are:

(Pπl
)i,j =

{
1 if j = πl(i)
0 otherwise. (2)

The neurons are permuted, and the ordering for the input
channels yl−1 remains intact (Fig. 2b). Hence, the permuted
output for the l-th layer will be

yπl

l = φ
(〈
wπl

l ,yl−1

〉)
, (3)

wπl

l,c,− = ⟨Pπl
, (wl,c,−)⟩ ∀c; (4)

where wl,c,− represents all elements of the l-th layer for the
c-th channel, and wl,−,n represents all elements of the l-th
layer for the n-th neurons. After having applied πl at layer l,
the output of the model is likely to be altered, as the propa-
gated yπl

l ̸= yl, which is processed as input by the next layer
(Fig. 2c). Hence, to maintain the output of the full model un-
altered, we need to also permute the weights in layer l + 1

wπl

l+1,−,n = ⟨Pπl
, (wl+1,−,n)⟩ ∀n. (5)

In this way, the permuted outputs in the l-th layer will be
correctly weighted in the next layer, and the neural network
output will be unchanged (Fig. 2d). To illustrate our study,
we define a companion dataset and an architecture, namely
the CIFAR-10 and VGG-16 (without batch normalization),
respectively. The model we will use as a reference is trained
for 50 epochs using SGD, with a learning rate 10−2, weight
decay 10−4, and momentum 0.9. Let the first convolutional
layer of the fourth block of convolutions (where every block
is separated by a maxpool layer) be our l-th layer.

Any Hope to Recover the Original Order?
Assuming the Pπl

∈ RNl×Nl matrix is known, the answer
is straightforward. Yet, the question becomes hard to answer
when the Pπl

∈ RNl×Nl matrix is unknown. The difficulty
derives from the fact that neural network models internally
have many redundancies (Setiono and Liu 1997; Wang, Li,
and Wang 2021) that can a priori cast confusion when trying
to find the initial order. Many approaches, like dropout (Sri-
vastava et al. 2014), enforce this to make deep models ro-
bust against noise. Consider the case in which two neurons
belonging to the l-th layer are redundant, and let them be
denoted by the i-th and the j-th, with the parameters wl,−,i

and wl,−,j . Given some ξ-th sample in D, with D being the
dataset the model is trained on, yξl,i = yξl,j . From this, we
can have two scenarios:
• wl,−,i = wl,−,j : in this case, the i-th and the j-th neuron

share exactly the same parameters. As such, since they

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21002

Figure 3: Evolution of cosine similarity of two non-zero neu-
rons before and after activation function for yl−1 inputs.

receive the same input yξ
l−1, and by construction, they

have all the same activation function φ(·), they map the
same function and they are, hence, identical. Since they
are the same from all points of view, ordering them one
way or another does not matter.

• wl,−,i ̸= wl,−,j : in this case, the i-th and the j-th neu-
ron have a different set of parameters, but share the same
outputs for some samples in D.

The second case is the most interesting: is it possible to
recover the original ordering of neurons exhibiting the same
output under the same input? It is easy to prove that

wl,−,i = k ·wl,−,j ⇒ yξl,i = k · yξl,j∀ξ, (6)

with k ∈ R being some scalar quantity. To test whether two
neurons are extracting the same information, we can com-
pute the cosine similarity SC(yl,i, yl,j) between their out-
puts, and ask that it is exactly one: from this, we obtain∑

ξ

yξl,iy
ξ
l,j =

√∑
ξ

(
yξl,i

)2
√∑

ξ

(
yξl,j

)2

. (7)

From (1) it is clear that, having non-linear activations and
in general Nl−1 > Nl, (7) is satisfiable for wl,−,i ̸= wl,−,j .
Let us observe this empirically, using our companion setup:
we select 2 neurons i,j of the l-th layer such that their co-
sine similarity SC(yl,i, yl,j) = 1, for several values of k.
Since l is a convolutional layer, we know that yξ

l,i ∈ R1×Ml ,
where Ml is a function of the input size for l, kernel size and
stride. Hence, we are able here to plot the cosine similarity
given the input of one single ξ-th sample and to track the
change of the similarity between yξ

l−1 and yξ+1
l−1 . Fig. 3 dis-

plays the cosine similarity between two neurons in the l-th
layer before and after the activation function. Despite the co-
sine similarity remaining to one, this happens thanks to the
non-linear activation, as the pre-activation potentials are less
correlated. Furthermore, we observe that the parameters of
these neurons are essentially de-correlated, as their cosine
similarity values −0.02. This shows that even if two neu-
rons have a similar (non-zero) response to the same input,
their internal function (before the non-linearity) can be dif-
ferent. This gives us hope to distinguish each neuron, hence,
retrieving the original ordering of the neurons.

35 40 45
||wl, ,i||1

0

25

50

75

P
op

u
la

ti
on

(a)

2 4 6 8 10 12 14 16
B

0

50

100

Ψ

0

50

100

er
r

%

(b)

Figure 4: (a) L1 norm distribution of the neurons of the l-th
layer a VGG-16 model trained on CIFAR10. (b) Robustness
of ranking L1 norms of neurons, against quantization. Ψ is
on the left axis in blue and the err % on the right axis in red.

Re-synchronizing Neurons
In this section, we first define against which additional mod-
ifications, applied in conjunction with the permutation, the
counterattack should still retrieve the original order, namely:
Gaussian noise, fine-tuning, pruning, and quantization. Sec-
ond, we explore the potential counterattack solutions by pre-
senting methods of the state-of-the-art and showing where
they worked and failed. Finally, we present our method
leveraging the cosine similarity to recover the original order.

Robustness in Retrieving the Original Order
In the previous section, we discussed how neurons can be
permuted inside a neural network without impacting the
model performance. In this section, assuming the initial per-
mutation matrix is no longer available, we will explore ways
to recover the original ordering for permuted neurons, even
when they are possibly modified. In particular, we will ex-
plore robustness in retrieving the original order when under-
going four different transformations.
• Gaussian noise addition: we apply an additive noise
N (0, σlΩ), with Ω ≥ 0, σl standard deviation of l.

• Fine-tuning: we resume the original training of the
model with Θ standing for the ratio of fine-tuning epochs
to the original training epochs.

• Quantization: we reduce the number of bits B used to
represent the parameters of the model.

• Magnitude pruning: we mask the T fraction of the
smallest weights of the model, according to the ℓ1-norm.

Even when the model undergoes these transformations, our
goal is to be able to recover the original ordering for the
model: we denote by Ψ as the fraction of neurons we were
able to place back to their original position (multiplied by
100), and we shall refer it as re-synchronization success rate.
Here follows a sequence of approaches aiming at bringing Ψ
close to 100, under the aforementioned transformations.

In the Search of the Lost Synchronization
The next sections explore the different methods to solve the
permutation problem.

Finding the Canonical Space: Rank the Neurons Our
first approach consists of ranking all the neurons in the l-th
layer according to some specific scoring function. For in-
stance, we can attempt to look at the intrinsic properties of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21003

Algorithm 1: Re-synchonization algorithm.

Inputs: the original model Γ, the altered model Γ̃πl
, the

number of layers of these models L.
Output: The re-synchronized model Γ̃
for l = {1, . . . , L− 1} do

Step 1: Compute score metric on w̃πl

l

wl ∈ RNl−1×Nl ← parameters in lth layer of Γ
w̃πl

l ∈ RNl−1×Nl ← parameters in lth layer of Γ̃πl

S ← SC(wl, w̃
πl

l) =
(wl)

T ·w̃πl
l

∥wl∥2∥w̃
πl
l ∥2

Step 2: Obtain the permutation matrix Pπ−1
l

Pπ−1
l
← [0]Nl,Nl

for i = {1, . . . , Nl} do
j ← argmaxi(S)
(Pπ−1

l
)i,j = 1

end for
Step 3: Permute neurons in lth layer of Γ̃ and channels
in (l + 1)th of Γ̃πl

w̃l ←
〈
Pπ−1

l
,
(
w̃πl

l,c,−

)〉
∀c ▷ equation (4)

w̃πl

l+1 ←
〈
Pπ−1

l
,
(
w̃πl

l+1,−,n

)〉
∀n ▷ equation (5)

end for
return Γ̃

the neurons inside the layer, like their weight norm, to per-
form a ranking (Ganju et al. 2018). Unfortunately, this ap-
proach is not general: there are specific cases, like spheri-
cal neurons (Lei, Akhtar, and Mian 2019) in which the pa-
rameters are normalized and, for instance, not possible to be
ranked according to their norm. This effect is not limited to
these special models: if we plot the distribution of the norms
for the l-th layer in our companion VGG-16 model trained,
as represented in Fig. 4a, we observe that typically the values
for the norm of the neuron’s parameters are in a very small
domain: for instance, the minimal gap between these norms
is in the order of 10−5. We expect, hence, that this ranking
is very sensitive to all the aforementioned transformations.
As an example, Fig. 4b displays the non-robustness against
quantization attack: the neurons are permuted (blue line, the
higher the better) before losing any performance on the task
(red line, the lower the better).

Creating a Trigger Set A second approach could be to
learn an input yl−1 such that the output yl permits to iden-
tify the neurons. With our first approach, we aim to learn
a yl−1 such that we maximize the distance between all the
neurons’ outputs. Then, we say the norm of the output cor-
responds to the ranking of the neuron itself. Empirically, in
our companion setup, we observe that this approach is not
robust to fine-tuning. Indeed, despite having a minimum gap
between outputs larger than one, after just an extra 1% of
training, we observe a re-synchronization success rate al-
ready dropping to 10%, or in other words, we are not able to
recover the exact position for the 90% of neurons. This effect
confirms our idea that neurons could have similar behavior
for the same input which makes them easily swapped af-

෨Γ𝜋𝑙 ← altered model

𝐿 ← number of layers

𝑤𝑙 ∈ ℝ𝑁𝑙−1×𝑁𝑙 ← parameter in 𝑙-th
layer of Γ

෥𝑤𝑙
𝜋𝑙 ∈ ℝ𝑁𝑙−1×𝑁𝑙 ← parameter in 𝑙-th

layer of ෨Γ𝜋𝑙

END

NO
YES

𝑙 + +

෥𝑤𝑙 ← 𝑃𝜋𝑙
−1 , 𝑤𝑙,𝑐,−

𝜋𝑙 ∀𝑐

෥𝑤𝑙+1
𝜋𝑙 ← 𝑃𝜋𝑙

−1 , 𝑤𝑙+1,−,𝑛
𝜋𝑙 ∀𝑛

𝑃𝜋𝑙
−1 ← [0]𝑁𝑙×𝑁𝑙

𝑖 ← 0

YES

𝑗 ← argmax𝑖 𝑆

(𝑃𝜋𝑙
−1)𝑖,𝑗= 1

𝑖 + +

NO

𝑆 ← 𝑆𝐶(𝑤𝑙 , ෥𝑤𝑙
𝜋𝑙) =

(𝑤𝑙)
𝑇 . ෥𝑤𝑙

𝜋𝑙

𝑤𝑙 2 ෥𝑤𝑙
𝜋𝑙

2

Γ ← original model

𝑙 < 𝐿 − 1

𝑙 ← 0

START

෨Γ ← re-synchronized model

Output: ෨Γ

Inputs:

𝑖 ≤ 𝑁𝑙

Figure 5: Flowchart of Alg. 1.

ter any modifications. Another approach is developed in (Li,
Wang, and Zhu 2022) which aims to learn a set of inputs
to identify a neuron based on the response to the trigger
set. However, this method seems ineffective since the re-
synchronization success rate never reaches 100% and it was
only tested on the first layers of the neural network.

Finally, we simplify the problem by identifying each neu-
ron independently from the others. If we can do so, then we
will also be able to re-synchronize the whole layer. Towards
this end, using a similar strategy heavily employed in many
interpretability works (Suzuki et al. 2017), we can learn the
input yl−1 which maximizes the response of the i-th neuron
only, and at the same time minimizes the response of all the
others. With this method we can create a set of Nl inputs for
the l-th layer, to identify all its neurons.

This approach shows its robustness to all the modifica-
tions, but has a big drawback: it demands a lot of memory
to store the learned inputs (we need one input per neuron,
hence the space complexity is O(Nl−1 · Nl ·Ml−1), where
Ml−1 is the size of each output coming from l − 1). Be-
sides, we need also a consistent computational effort, as we

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21004

(a) SC(wl,i,−, wl,i,−) (b) SC(wl,i,−, w
πl
l,i,−) (c) SC(wl,i,−, w̃

πl
l,i,−) (d) Pπl

Figure 6: Cosine similarity for different contexts: (a) without permutation (b) with permutation (4) and (c) with fine-tuning and
permutation (4) (d) is P (πl) for both (b) and (c). For visibility purposes, (b), (c), and (d) are clipped (first 100 elements).

need to forward a batch of Nl inputs. This makes the “re-
synchronizer” overall bigger than the model itself and be-
comes prohibitive.

Find the Lady by Similarity
With the previous approaches, we have observed that it is,
in general, difficult to learn some input yl−1 such that the
output yl provides us the ranking of the neurons for l, as
this approach is very sensitive to any minor perturbation in-
troduced in the model. We have observed, though, that it is
possible to uniquely recognize each neuron independently,
learning a specific yl−1 which activates the target neuron.
However, this solution consumes a lot of memory and com-
putation resources. We have seen that two neurons, despite
having the same output in some subspace of the trained do-
main, are in general very different. In particular, we can ex-
pect that SC(wl,i,−,wl,j,−) < 1∀j ̸= i.

Let us study this phenomenon practically. Fig. 6a shows
the correlation between the neuron’s weights wl: since it is
essentially a diagonal matrix, after applying some unknown
permutation πl as in Fig. 6b, we can easily recover the orig-
inal positions building the Permutation matrix

(Pπl
)i,j =

{
1 j = argmaxk

[
SC(wl,i,−,w

πl

l,k,−)
]

0 otherwise.
(8)

The question is here whether, even after applying some
perturbation to the parameters, we are still able to recover
the permutation π. As such, let us define w̃l,i,− the set of
parameters of the i neuron in the l-th layer undergoing some
perturbation. We can assume that any perturbation we want
to introduce does not significantly change the performance
LΞ of the trained model. As such, let us evaluate the cosine
similarity between wl,i,− and w̃l,i,−: we expect that when
this measure drops, the performance of the model will drop
as well. Two neurons, despite having the same output in the
trained domain, are in general different: we can expect that

SC(wl,i,−, w̃l,i,−) > SC(wl,i,−, w̃l,j,−)∀j ̸= i. (9)

According to (9), it is possible to detect where the i-th
neuron has been displaced, thus, recovering the original or-
dering. This condition obeys some theoretical warranties.

Let us compare the set parameters wl,i to the same, where
we apply a perturbation, which results in w̃l,i = wl,i+ŵl,i.
According to the Cauchy-Schwarz inequality, the only pos-
sible solution is that ŵl,i is a scalar multiple of wl,i.

Let us investigate the case in which we perform fine-
tuning on the parameters: we record a slight improvement
in the performance with Θ = 2%, and we observe that the
permutation matrix (Fig. 6d) we obtain from the cosine sim-
ilarities (Fig. 6c) is the same as the one recovered before,
making out re-synchronization success rate to 100%. The
details of our method are presented in Alg. 1 and Fig. 5.

Integrity Loss
We will analyze here the special case when ŵl,i = k ·wl,i.

Let us assume the input of the l-th layer follows a Gaus-
sian distribution, with mean µl and covariance matrix Σl.
We know that the post-synaptic potential still follows a
Gaussian distributionN (µz, σ

2
z). Given that ŵl,i will pro-

duce as output z̃, we can write the KL-divergence between
the outputs generated from the original and from the per-
turbed neuron

DKL(z||z̃) = log(1 + k) +
σ2
z + k2µ2

z

2(1 + k)2σ2
z

− 1

2
(10)

Under the assumption of having an activation such that
|φ(x)′| ≤ 1∀x ∈ R, we know that the above divergence
upper-bounds DKL(y||ỹ). Specifically, for ReLU activations,
under the assumption of µz = 0, the KL-divergence is

DKL(y||ỹ) =
2(k + 1)2 log(k + 1)− k(k + 2)

(k + 1)2
, (11)

which is dependent on k only. Despite having maximum
similarity (except for the degenerate case k = −1), the KL
divergence of the output is non-zero ∀k ̸= 0, which means
the behavior of the model is modified.

Experimental Results
Datasets We will test our proposed approach on five
datasets: CIFAR-10 (Krizhevsky, Hinton et al. 2009) and
ImageNet-1k (Russakovsky et al. 2015) for image classifi-
cation (metric is here top-1 classification error denoted by

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21005

CIFAR10 ImageNet Cityscapes COCO UVG
VGG16 RNet18 RNet50 RNet101 ViT-b MNetV3 DeepLabV3 YOLOV5 DVC

G
au

ss
ia

n
no

is
e

ad
di

tio
n

Ω=0 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.96±0.19† 7.03±0.28† 23.85† 22.63† 24.07† 25.95† 32.26‡ 48.70⋆ 0.177•

Ω=1 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 75.69 100.00
metric(↓) 10.25±0.17† 7.30±0.08† 24.73† 23.17† 24.08† 40.44† 32.16‡ 79.00⋆ 0.177•

Ω=2 Ψ(↑) 100.00±0.00 100.00±0.00 99.56 99.26 99.64 100.00 100.00 57.65 100.00
metric(↓) 11.82±0.17† 9.13±0.59† 27.68† 25.08† 24.77† 70.50† 32.75‡ 82.10⋆ 0.177•

Ω=7 Ψ(↑) 99.88±0.12 99.90±0.10 57.28 39.45 99.64 85.31 41.02 8.24 100.00
metric(↓) 41.27±2.11† 99.55±6.30† 66.97† 60.49† 60.39† 98.91† 38.30‡ 99.62⋆ 0.180•

Ω=10 Ψ(↑) 93.50±0.98 94.90±0.80 12.93 12.74 99.22 43.05 12.89 5.49 100.00
metric(↓) 56.62±2.31† 75.18±5.14† 92.65† 83.04† 83.99† 99.41† 39.74‡ 99.23⋆ 0.182•

Fi
ne

-t
un

in
g

Θ=2 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.97±0.20 † 6.96±0.11† 23.35† 22.54† 24.08† 26.60† 34.85‡ 47.40⋆ 0.184•

Θ=6 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.96±0.19† 6.98±0.15† 23.23† 22.57† 24.08† 26.41† 31.58‡ 46.20⋆ 0.179•

Θ=8 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.88±0.24† 7.01±0.19† 23.21† 22.54† 24.07† 26.37† 30.35‡ 46.40⋆ 0.179•

Θ=10 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.89±0.16† 6.94±0.13† 23.13† 22.49† 24.07† 26.31† 29.64‡ 46.00⋆ 0.178•

Q
ua

nt
iz

at
io

n

B=16 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.96±0.19† 7.03±0.28† 23.85† 22.63† 24.08† 25.96† 32.26‡ 48.70⋆ 0.177•

B=8
Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 98.44

metric(↓) 9.97±0.20† 7.05±0.27† 23.91† 22.70† 24.10† 26.00† 31.49‡ 48.90⋆ 0.338•

B=6 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 98.44
metric(↓) 9.98±0.17† 7.14±0.27† 26.99† 25.12† 29.55† 42.91† 32.26‡ 89.10⋆ 0.823•

B=4
Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 85.49 98.44

metric(↓) 10.77±0.28† 7.76±0.26† 99.91† 99.99† 96.81† 99.91† 47.28‡ 100.00⋆ ∞•

B=2 Ψ(↑) 100.00±0.00 100.00±0.00 31.54 9.91 100.00 100.00 100.00 56.47 98.44
metric(↓) 87.73±5.56† 88.20±2.77† 99.9† 99.9† 99.81† 99.9† 96.63‡ 100.00⋆ ∞•

M
ag

ni
tu

de
pr

un
in

g

T =0 Ψ(↑) 100.00±0.00 100.00±0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
metric(↓) 9.96±0.19† 7.03±0.28† 23.85† 22.63† 24.07† 25.95† 32.26‡ 48.70⋆ 0.177•

T =91 Ψ(↑) 100.00±0.00 100.00±0.00 98.87 98.34 100.00 100.00 100.00 65.88 100.00
metric(↓) 10.87±0.22† 9.67±0.95† 26.30† 23.94† 25.06† 40.00† 33.11‡ 50⋆ 0.188•

T =95 Ψ(↑) 100.00±0.00 100.00±0.00 97.61 97.12 100.00 100.00 100.00 51.76 100.00
metric(↓) 12.11±0.45† 12.88±1.90† 28.35† 24.58† 25.60† 48.73† 33.75‡ 51.10⋆ 0.191•

T =98 Ψ(↑) 100.00±0.00 100.00±0.00 93.12 91.94 99.83 97.91 99.61 36.47 100.00
metric(↓) 17.53±1.28† 21.71±5.39† 30.88† 25.65† 26.03† 63.48† 34.47‡ 52.60⋆ 0.198•

T =99 Ψ(↑) 99.90±0.13 99.63±0.31 81.10 78.81 95.37 86.46 90.24 25.88 100.00
metric(↓) 26.71±2.84† 28.16±7.35† 32.62† 25.98† 26.63† 76.22† 36.43‡ 41.40⋆ 0.219•

Table 1: Robustness to Gaussian noise addition, fine-tuning, quantization, and magnitude pruning.

†), CityScapes (Cordts et al. 2016) for image segmentation
(metric is here the complementary mean IoU ‡), COCO (Lin
et al. 2014) for object detection (metric is here the com-
plementary of mAP50 ⋆) and UVG (Mercat, Viitanen, and
Vanne 2020) (metric is here the mean rate-distortion (bpp) •
for a given image quality, MS-SSIM = 0.97).

Implementation Details We evaluate our approach on
many different state-of-the-art architectures: VGG16 (Si-
monyan and Zisserman 2014), ResNet18 (RNet18) (He et al.

2016), ResNet50 (RNet50) (He et al. 2016), ResNet101
(RNet101) (He et al. 2016), ViT-b-32 (ViT-b) (Doso-
vitskiy et al. 2021), MobileNetV3 (MNetV3) (Howard
et al. 2019), DeepLabV3 (Chen et al. 2018), YOLOV5n
(YOLOV5) (Jocher et al. 2022) and DVC (Lu et al. 2019).
We will test the robustness of our approach using the re-
synchronization success rate Ψ after applying random per-
mutation to the penultimate layer and the four perturbations.
For all of the aforementioned experiments, we have used all
the traditional setups described in the respective original pa-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21006

Figure 7: Robustness evaluation of the (Uchida et al. 2017)’s
watermarking method against the 4 attacks.

pers. For the models trained on CIFAR-10, we have run 10
seeds and the average results are reported.1

Robustness against Gaussian Noise We evaluate our
methods against Gaussian noise addition with Ω ∈ [1, 10].
The error starts increasing while Ψ remains very close to
100%. For instance, Ω valuing 6, Ψ is still equal to 100%
while the error has more than doubled. Table 1 reports the
results. In particular, we observe that consistently for all the
architectures except YOLO, when the error starts increasing,
Ψ remains very close to 100%. But for YOLO, the error has
more than doubled while we only failed to recover a fifth of
the original order.

Robustness against Fine-tuning We here evaluate our
method against perturbations produced by simply fine-
tuning the model, adding more training complexity. Table 1
presents the results for all the architectures. We observe that
consistently for all the architectures, Ψ remains equal to
100%. Despite, different experimental setups, the error on
YOLO always increases: so we decided to not extend its test.

Robustness against Quantization We also evaluate our
methods against quantization. In particular, we will evalu-
ate the performance with B ∈ [2; 16]. Specifically, the error
starts increasing around 3 bits while Ψ remains very close to
100%. Table 1 presents the results: remarkably, for most of
the architectures, including YOLO and ViT, Ψ remains close
to 100% despite the error being extremely high.

Robustness against Magnitude Pruning We evaluate our
methods against magnitude pruning T ∈ [90; 99]% of the
aimed layer. The error starts increasing while Ψ remains
very close to 100%. Table 1 shows good robustness for most
of the architectures. For ResNet and YOLO, Ψ decreases
before having a huge increase in the error, but, even if the
aimed layer is fully pruned, the error rate remains below
50% and 70% respectively: this is due to the residual con-
nections.

Application to White-box Watermarking Watermarking
of neural networks is increasingly considered an impor-

1the source code is available at https://github.com/
carldesousatrias/FindtheLady

(a) Original output. (b) Altered output.

Figure 8: Misdetection of the pedestrian induced by the
scalar product modification of the weights.

tant problem with many practical applications (the chal-
lenge of watermarking ChatGPT or assessing the integrity
of unmanned vehicles). Currently, the white-box watermark-
ing literature fails to be robust against permutation attacks.
Fig. 7 shows the correlation (evaluated as Pearson correla-
tion coefficient) of a white-box watermark when employing
a state-of-the-art approach (Uchida et al. 2017). Uchida et
al.’s approach is considered one of the first white-box wa-
termarking methods, where a regularization term is added
to the cost function to change the distribution of one pre-
selected layer in the model. It projects the parameter of the
watermarked layer on a space a binary watermark. The or-
der of neurons is mandatory to recover the original binary
mark. We observe that permuted neurons, although not im-
pacting the performance of the model, destroy the correla-
tion. Applying our approach as a counter-attack (CA), we
observe that we successfully retrieve the watermark and pre-
serve the robustness, more applicative results are presented
in (De Sousa Trias et al. 2023).

Integrity Loss Let us here consider a counter-attack for
our algorithm, on a real application: pedestrians are not
detected anymore while the cosine similarity remains still
equal to one (the effect in Fig. 8). To protect our method
against this issue, we simply need to add a ℓ2-norm verifi-
cation between wl,i and w̃l,i: any modification to the norm
can, in this way, detected and corrected.

Conclusion
In this paper, we have defined and investigated one uprising
question for deep learning models: is it possible to recog-
nize parameters in a neuron after some perturbations? Is it
possible to recover an original ordering for the neurons after
random permutations and some perturbations? We have ex-
plored the realm of neuron similarity, observing the param-
eters and outputs of different layers. We have investigated
many ways to do so, observing and assessing their failure
reasons. Finally, we advance a method that leverages the co-
sine similarity between the original layer and its permuted,
perturbed version. We empirically assessed the robustness
of this approach against several perturbations, for a variety
of architectures and datasets. This work has a direct impact
on watermarking, where it serves as a generic counter-attack
tool against parameter permutation, and has an indirect im-
pact in various other AI domains, like pruning: as a result,
neurons having perfectly correlated outputs typically have
orthogonal kernels.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21007

Acknowledgements
This work was funded in part by the Digicosme Labex
through the transversal project NewEmma and by Hi!PARIS
Center on Data Analytics and Artificial Intelligence.

References
Adi, Y.; Baum, C.; Cisse, M.; Pinkas, B.; and Keshet, J.
2018. Turning Your Weakness into a Strength: Water-
marking Deep Neural Networks by Backdooring. In 27th
USENIX Security Symposium.
Agliari, E.; Alemanno, F.; Barra, A.; Centonze, M.; and
Fachechi, A. 2020. Neural Networks with a Redundant Rep-
resentation: Detecting the Undetectable. Physical review let-
ters.
Chen, H.; Rouhani, B. D.; Fu, C.; Zhao, J.; and Koushanfar,
F. 2019a. Deepmarks: A Secure Fingerprinting Framework
for Digital Rights Management of Deep Learning Models.
In Proceedings of the 2019 on International Conference on
Multimedia Retrieval.
Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; and
Adam, H. 2018. Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation. In Proceed-
ings of the European conference on computer vision.
Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach,
M.; Yan, S.; and Feng, J. 2019b. Drop an Octave: Reduc-
ing Spatial Redundancy in Convolutional Neural Networks
with Octave Convolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.
Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler,
M.; Benenson, R.; Franke, U.; Roth, S.; and Schiele, B.
2016. The Cityscapes Dataset for Semantic Urban Scene
Understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition.
De Sousa Trias, C.; Mitrea, M.; Tartaglione, E.; Fiandrotti,
A.; Cagnazzo, M.; and Chaudhuri, S. 2023. A Hitchhiker’s
Guide to White-Box Neural Network Watermarking Robust-
ness. In 11th European Workshop on Visual Information
Processing.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2021. An Image Is Worth 16x16
Words: Transformers for Image Recognition at Scale. In In-
ternational Conference on Learning Representations.
Ganju, K.; Wang, Q.; Yang, W.; Gunter, C. A.; and Borisov,
N. 2018. Property Inference Attacks on Fully Connected
Neural Networks Using Permutation Invariant Representa-
tions. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition.
Hecht-Nielsen, R. 1990. On the Algebraic Structure of Feed-
forward Network Weight Spaces. In Advanced Neural Com-
puters. Elsevier.
Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.;
Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al.

2019. Searching for MobilenetV3. In Proceedings of the
IEEE/CVF international conference on computer vision.

Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.;
NanoCode012; Kwon, Y.; TaoXie; Michael, K.; Fang, J.;
imyhxy; Lorna; Wong, C.; Yifu, Z.; V, A.; Montes, D.;
Wang, Z.; Fati, C.; Nadar, J.; Laughing; UnglvKitDe;
tkianai; yxNONG; Skalski, P.; Hogan, A.; Strobel, M.; Jain,
M.; Mammana, L.; and xylieong. 2022. ultralytics/yolov5:
v6.2 - YOLOv5 Classification Models, Apple M1, Repro-
ducibility, ClearML and Deci.ai integrations.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning Multiple
Layers of Features from Tiny Images.

Lei, H.; Akhtar, N.; and Mian, A. 2019. Octree Guided CNN
with Spherical Kernels for 3D Point Clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition.

Li, F.-Q.; Wang, S.-L.; and Zhu, Y. 2022. Fostering the Ro-
bustness of White-Box Deep Neural Network Watermarks
by Neuron Alignment. In ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing. IEEE.

Li, Y.; Wang, H.; and Barni, M. 2021. A Survey of Deep
Neural Network Watermarking Techniques. Neurocomput-
ing.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
COCO: Common Objects in Context. In European confer-
ence on computer vision. Springer.

Lu, G.; Ouyang, W.; Xu, D.; Zhang, X.; Cai, C.; and Gao,
Z. 2019. DVC: An End-to-End Deep Video Compression
Framework. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Mercat, A.; Viitanen, M.; and Vanne, J. 2020. UVG Dataset:
50/120fps 4K Sequences for Video Codec Analysis and De-
velopment. In Proceedings of the 11th ACM Multimedia
Systems Conference.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision.

Setiono, R.; and Liu, H. 1997. Neural-Network Feature Se-
lector. IEEE transactions on neural networks.

Simonyan, K.; and Zisserman, A. 2014. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. Com-
puting Research Repository.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. The journal of machine
learning research.

Suzuki, K.; Roseboom, W.; Schwartzman, D. J.; and Seth,
A. K. 2017. A Deep-Dream Virtual Reality Platform for
Studying Altered Perceptual Phenomenology. Scientific re-
ports.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21008

Tartaglione, E.; Bragagnolo, A.; Odierna, F.; Fiandrotti, A.;
and Grangetto, M. 2021. Serene: Sensitivity-Based Regu-
larization of Neurons for Structured Sparsity in Neural Net-
works. IEEE Transactions on Neural Networks and Learn-
ing Systems.
Tartaglione, E.; Grangetto, M.; Cavagnino, D.; and Botta,
M. 2020. Delving in the Loss Landscape to Embed Robust
Watermarks into Neural Networks. In 25th International
Conference on Pattern Recognition. IEEE.
Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017.
Embedding Watermarks into Deep Neural Networks. In Pro-
ceedings of the 2017 ACM on international conference on
multimedia retrieval.
Wan, W.; Wang, J.; Zhang, Y.; Li, J.; Yu, H.; and Sun, J.
2022. A Comprehensive Survey on Robust Image Water-
marking. Neurocomputing.
Wang, Z.; Li, C.; and Wang, X. 2021. Convolutional Neural
Network Pruning with Structural Redundancy Reduction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21009

