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Maximum likelihood estimation of the extended Kalman filter’s
parameters with natural gradient

Colin Parellier, Camille Chapdelaine, Axel Barrau and Silvère Bonnabel

Abstract— The extended Kalman filter (EKF) relies on noise
parameters, notably the covariance matrix of the observation
noise. To identify them using real data, the standard approach
consists in maximizing the likelihood of the EKF’s estimates.
To perform the optimization, we propose in this paper to use
Amari’s natural gradient descent, in a way that preserves
positive semi-definiteness of the covariance parameter. We
derive the corresponding equations, and we bring the method
to bear on a real-world experiment, where we identify the
covariance matrix of a GNSS for a vehicle localization problem.

Index Terms— State estimation, Kalman filter, Information
geometry, Identification.

I. INTRODUCTION

The Kalman filter (KF), or its extended version (EKF),
is pervasive in state estimation. One recurrent engineering
problem, though, is that of tuning the EKF’s multiple param-
eters. As the EKF’s performance critically depends on those
parameters in practice, they require a great deal of manual
“tweaking”, and engineering know-how [1], [26]. Hence,
automatic tuning of the KF (or of the EKF), where the un-
known parameters are optimized (in other words “learned”)
from data so as to maximize filter’s predictions, dates back
to the early days of filtering. The optimization procedure
relies on gradient ascent of a likelihood function, where the
gradient is computed through the sensitivity equations [16],
see also [27]. Such gradient descent may lead to instability
that various methods have seeked to combat, see [18], [25].
Derivative-free alternatives were also proposed, using the
expectation-maximization (EM) algorithm [9], [24].

In this paper, we consider the problem of gradient descent
based maximum likelihood estimation of the noise covari-
ance matrix R used by an EKF. We leverage a special type
of gradient descent, namely the “natural gradient” of Amari
[4] from information geometry [3], [20]. Natural gradient has
recently proved very powerful for machine learning [19] and
for state estimation in robotics when estimating covariance
matrices, see [5], [6]. We show that it leads to a well-behaved
gradient descent algorithm, as compared to constant step
size tuning. However, the problem with (natural) gradient
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descent with respect to a positive semi-definite covariance
matrix R is that the updated matrix at each step may lose
its symmetry, and the eigenvalues may become negative,
which is meaningless. A way to enforce symmetry and
positive semi-definiteness is to work with a “square-root”
factorization R = LLT and to perform natural gradient on
factor L instead. This then requires to derive the natural
gradient w.r.t. L, which is our first main contribution.

To assess the method, we consider an application to
accurate localization of a vehicle, based on the fusion of an
inertial measurement unit (IMU) and a GPS. Our goal is to
learn the covariance of the GPS sensor, so as to maximize the
likelihood associated with the state estimates. The dynamical
model involves a 18-dimensional state space, and the learning
problem involves a 73 minutes long trajectory that spans
a 5 km-wide loop. The experiments are similar to those
of [1], but with a significant upscaling: they use a 5-
dimensional state space to model a 2D vehicle performing
a 15 meters wide loop, while we use a 18-dimensional
state space for a 3D vehicle performing a 5 km wide loop.
The covariance matrix encoding the GPS’s uncertainty is
generally not known accurately, and is learned from data
by maximizing the log-likelihood. Because of the size of
the problem, we utilize our recent closed-form sensitivity
equations, see [21], that lead to drastic speed-ups of the
gradient computation, rendering the method tractable in spite
of the length of the data sequence. This application, based on
our own unpublished real-world experiments with an actual
car, is our second main contribution.

The paper is organized as follows. Section II presents the
proposed method for learning the noise covariance parameter.
Section III presents the extended Kalman filter (EKF) used
for sensor fusion, and the localization problem to which our
learning method is applied. Section IV reports on our own
experimental results.

II. MAXIMUM LIKELIHOOD ESTIMATE FOR THE KALMAN
FILTER PARAMETERS WITH NATURAL GRADIENT DESCENT

In this paper, we consider a system

xn+1 = f (xn,un)+wn, yn = h(xn)+ vn,

where xn is the state, un the control input, wn ∼N (0,Q) a
white noise, and where yn denote noisy observations, with
vn ∼N (0,R) a noise.

An extended Kalman filter (EKF) may be devised for this
system. When doing so, the covariance matrices Q,R are
considered as tuning parameters. In practice, they are hard to
tune manually, and can be learned using data. In the sequel,



however, we only focus on the noise covariance parameter,
namely matrix R.

A. Maximum likelihood parameter learning

A longstanding approach to learning R is by maximum
likelihood over a sequence of data. Indeed, one may compute
the negative log-likelihood (NLL) associated to a sequence
of measurements y1, . . . ,yN , given noise covariance R:

L =− log p(y1, . . . ,yN |R ) . (1)

The gradient of the scalar loss function L with respect
to R ∈Mp(R) is a p× p matrix ∂L

∂R whose i j’s entry is
the partial derivative of L w.r.t. Ri j. A simple method to
automatically tune R is then through gradient descent, that
is, one iterates over

R← R−η
∂L

∂R
, (2)

with η the step size, to be tuned by the user.

B. Natural gradient descent method

Gradient descent (2) with a fixed scalar step size η is
a first simple method to minimize the NLL. However, this
fixed step size is often complicated to tune, given the cost
function is complicated and nonconvex. To improve it, one
could think of implementing line search. However, evaluating
the cost function L is computationally demanding, as it is
based on the EKF’s estimates and thus requires running an
EKF over the entire data sequence (the NLL expression is
deferred to Section III, see (18), not to interrupt to flow
of reading). In the same way, one could think of using
Newton’s method to help conditioning the gradient with the
inverse of the Hessian. However, computing the second order
derivatives seems very costly, numerically. Moreover we do
not deal with a vector parameter, but with a matrix parameter,
making the Hessian a complicated object. For those reasons,
we propose in this work to use the method of natural gradient
from information geometry [4], where a Riemannian metric
“distorts” the parameter space and renders the gradient much
more adaptive (notably it becomes invariant to a change of
units). Natural gradient is very effective, but often proves too
difficult or too costly to compute [19].

Natural gradient requires deriving the Fisher metric associ-
ated to the NLL. This seems a difficult task, though, owing to
the complexity of the NLL in Kalman filtering. In this paper,
we focus on the natural gradient associated to the family of
Gaussian distributions as a proxy.

C. Fisher Information Metric (FIM) and natural gradient for
multivariate Gaussians

Let us consider the set of centered multivariate Gaussians
N (0,R). They are parameterized by their covariance matrix
R ∈ Rp×p.

Proposition 1: The FIM associated to the family of cen-
tered multivariate Gaussian distributions N (0,R) writes
⟨δR,δR⟩R = Tr(R−1δRR−1δR).

Proof: We start from the Kullback-Leibler (KL) diver-
gence. It can be considered as a definition of the FIM that
KL(N (0,R+δR)||N (0,R)) = 1

2 ⟨δR,δR⟩R +O(||δR||3).
On the other hand, we may compute explicitly the KL

between Gaussian distributions and we find that

KL(N (0,R+δR)||N (0,R))

=
1
2

Tr(R−1(R+δR))+
1
2

log |R|− 1
2

log |R+δR|− d
2
. (3)

The proof is concluded using that log |R+ δR| = log |R|+
Tr(R−1δR) + O(||δR||)2, which allows for computing the
gradient of R 7→ log |R|, and in turn using (R + δR)−1 =
R−1−R−1δRR−1 +O(||δR||)2, which allows for computing
the Jacobian of this gradient, yielding the Hessian we are
looking for.

Proposition 2: The natural gradient of a scalar objective
function L associated with the family of centered Gaussian
distributions writes

∇̃L (R) = R
∂L

∂R
R . (4)

Proof: The natural gradient is defined as the Rieman-
nian gradient, see [11], [20], of the function in the sense of
the FIM. The scalar product at R associated to the FIM reads

⟨δR1,δR2⟩R = Tr(R−1
δR1R−1

δR2) . (5)

We then write for a scalar function L (R+ δR) = L (R)+
⟨∇̃L (R),δR⟩R + O(||δR||2) where ∇̃L (R) ∈ Md(R) de-
notes the natural gradient. Using the standard Euclidean
scalar product for matrices ⟨A,B⟩ := Tr(AT B) the first order
term also writes ⟨ ∂L

∂R ,δR⟩, proving the result by identifica-
tion as Tr(R−1∇̃L (R)R−1δR) = Tr( ∂L

∂R δR) for all symmet-
ric δR.
Albeit well-known, see e.g. [5], the latter proof was included
for completeness, especially in view of results to come.

The natural gradient algorithm then consists in replacing
the standard gradient in (2) with its “natural” counterpart

R← R−η∇̃L (R) = R−ηR
∂L

∂R
R. (6)

We immediately observe that, as L is unitless, (6) is
invariant to a change of units R 7→ sR, contrary to (2). A
suitable stepsize tuning η for R expressed in, e.g., meters,
will work equally if R is expressed in kilometers, which
makes the method more adaptive.

D. Natural gradient in factorized form LLT

For the covariance parameter output by the optimization
algorithm to make sense, one must maintain the covariance
matrix parameter R positive semi-definite (PSD) over the
descent procedure. However, for too large a stepsize, (6)
may become negative (but small step sizes lead to slow
convergence). Following a standard approach [10], we write
R = LLT with L a “square-root” matrix of the same size as
R. By maintaining L ∈Md(R) instead of R, one does not
have to numerically maintain positive semi-definiteness and
symmetry of R in the gradient descent, since it is inherent
to the decomposition. We hence propose to derive a novel



natural gradient in factorized form, to enforce positive semi-
definiteness. Our result is as follows.

Proposition 3: The natural gradient of a function L as-
sociated with the density of Gaussian distributions N (0,R)
parameterized in factorized form R = LLT , reads :

∇̃L (L) =
1
2

LLT ∂L

∂R
L =

1
2

R
∂L

∂R
L . (7)

Proof: The first step is to derive the FIM in this form.
Lemma 1: The FIM associated with the family

N (0,LLT ) parameterized by L writes ⟨δL,δL⟩L =
2Tr(L−1δLL−1δL+(δL)T L−T L−1δL).

Proof: We may compute the FIM with respect to
parameter L associated with the family N (0,LLT ). From
Proposition 1, the second-order expansion of the KL writes

Tr(R−1
δRR−1

δR)

= Tr
(
(LLT )−1(δLLT +LδLT )(LLT )−1)(δLLT +LδLT )

)
= 2Tr(L−1

δLL−1
δL+(δL)T L−T L−1

δL).

This corresponds to the scalar product ⟨δL,δJ⟩L =
2Tr(L−1δLL−1δJ)+2Tr

(
(δL)T (LLT )−1δJ

)
.

Let us now conclude the proof. To retrieve the natural
gradient we need to equate the first-order expansions, that is,
⟨∇̃L ,δL⟩L = ⟨ ∂L

∂L ,δL⟩ where the latter denotes the standard
Euclidean scalar product for matrices ⟨A,B⟩ := Tr(AT B). We
thus need to find the natural gradient at L, denoted by ∇̃L (L)
here, that ensures we have for all δL the following

2Tr(L−1(∇̃L )L−1
δL)+2Tr

(
(δL)T (LLT )−1

∇̃L
)

= Tr
(
(δL)T ∂L

∂L

)
.

This is equivalent to

L−1
∇̃L +(L−1

∇̃L )T =
1
2

LT ∂L

∂L
.

Now if we momentarily admit that for the Euclidean gradient
∂L
∂L = 2 ∂L

∂R L, we have

L−1
∇̃L +(L−1

∇̃L )T = LT ∂L

∂R
L.

As at each gradient step the gradient needs to be symmetric
to preserve symmetry of the parameter (otherwise we may
symmetrize it), we may assume ∂L

∂R to be symmetric. As
the antisymmetric part of L−1∇̃L does not play any role
in the equation, we may fix it by imposing that L−1∇̃L be
symmetric, which yields (7).

To prove the remaining unproved formula, we write
L

(
(L + δL)(L + δL)T

)
≈ L (LLT ) + tr

(
( ∂L

∂R )T (LδLT +

δLLT )
)
=L (LLT )+2tr

(
( ∂L

∂R L)T δL
)
, using that ∂L

∂R is sym-
metric. Denoting L (R) = L̄ (L) we also have L̄ (L+δL)≈
L̄ (L)+ tr

(
( ∂L̄

∂L )T δL
)
, and thus ∂L̄

∂L = 2 ∂L
∂R L.

When working with the square-root factor L, the gradient
descent using the Euclidean gradient reads

L← L−η
∂L

∂L
. (8)

The natural gradient algorithm then consists in replacing the
standard gradient in (8) with its natural counterpart, that is,

L← L−η∇̃L (L) = L−η
1
2

R
∂L

∂R
L, (9)

and to let R = LLT be the estimated covariance matrix.

III. APPLICATION TO IDENTIFICATION OF GNSS
UNCERTAINTY

To assess our novel gradient descent scheme for EKF
parameter identification, we consider a vehicle equipped with
an inertial measurement unit (IMU) and other sensors such as
Global Positioning System (GPS or more generally GNSS).
We denote the orientation of the vehicle by Ωn ∈ SO(3),
where SO(3) is the special orthogonal group. Its inertial
velocity is denoted by υn ∈R3, and its position by pn ∈R3.

A. Modelling of the IMU

The IMU measures rotation rates ωn ∈ R3, and acceler-
ations an ∈ R3. We denote by Φ ∈ R3 the Earth rotation
vector and by δn the sampling period of the IMU. We
further introduce the exponential operator exp : R3→ SO(3),
which maps each v ∈ R3 to matrix exp(v) = expm ((v)×),
where expm denotes matrix exponential, and (·)× denotes
Rodrigues operator which associates to v ∈ R3 the skew-
symmetric matrix (v)× such that, ∀u ∈ R3, (v)×u = v× u,
where × denotes cross product. The equations used for IMU
modelling read Ωn+1 = ΓnΩn exp [δn (ωn−dn−wω

n )]
υn+1 = Γn (υn +δnΩn (an−bn−wa

n)+δng(pn))
pn+1 = Γn (pn +δnυn)

(10)
where Γn = exp(−δnΦ), and g(pn) is the gravity vector at
pn [15] 1. In these equations, wω

n and wa
n are white Gaussian

noises with known variances σ2
ω and σ2

a respectively: wω
n ∼

N (0,σ2
ω I),wa

n ∼N (0,σ2
a I), where I is the identity matrix.

Gyroscope and acceleration measurements have unknown
biases, respectively denoted by dn ∈ R3 and bn ∈ R3 in
Equation (10). The temporal evolution of these biases is
described by

dn+1 = dn +wd
n , bn+1 = bn +wb

n , (11)

where wd
n and wb

n are white Gaussian noises with known
variances σ2

d and σ2
b respectively: wd

n ∼N (0,σ2
d I) and wb

n∼
N (0,σ2

b I).

B. Sensor fusion with extended Kalman filter (EKF)

As IMUs lead to estimates that inevitably drift over time,
they need to be aided by other sensors, through observations
of the form

yn = h(χn)+ vn , vn ∼N (0,R). (12)

The measurements (12) read for the considered application

yn = pn +∆n (υn−Φ× pn)+Ωnln + vn (13)

1To be consistent with our experiments, we use equations of aerospace
engineering associated to an IMU that is accurate enough to measure the
rotation of the Earth. The method also applies to cheaper IMUs, though.



where vn ∼N (0,R). Here, ln ∈R3 is the unknown lever arm
between the IMU frame and the GPS frame, and needs be
estimated. ∆n corresponds to the time lapse between the last
IMU measurement and the considered GPS measurement.
We assume that GPS data are not biased with respect to our
model, so the noise vn is considered as zero-mean.

The goal of sensor fusion (or observer design) is to
estimate at each time step n the system’s state:

χn = (Ωn,υn, pn,dn,bn, ln) . (14)

To estimate χn, we resort to an extended Kalman filter (EKF),
that is still the state of the art in the navigation industry. To
do so we rewrite Equations (10) and (11) in the general form:

χn+1 = f (χn,un,wn) (15)

where uT
n =

(
ωT

n ,a
T
n
)

and wT
n =

(
wωT

n ,waT
n ,wdT

n ,wbT
n

)
is a

centered Gaussian noise. At each timestep, the EKF com-
putes an estimation χ̂n of the system state χn and of the
error covariance matrix Pn. The EKF consists in a prediction
step alternated with an update step. In the prediction step,
the variables of the system state χn are evolved through the
noise-free dynamical model, given by propagation equation
(15) and its linearization:{

χ̂n|n−1 = f
(
χ̂n−1|n−1,un,0

)
Pn|n−1 = FnPn−1|n−1FT

n +GnQGT
n

. (16)

where matrices Fn are the Jacobians of f with respect to χn
(in the sense of a certain state error, see below), and Gn is
the Jacobian of f with respect to wn. In the update step, the
state χn is corrected in the light of the measurements yn:

Sn = HnPn|n−1HT
n +R , Kn = Pn|n−1HT

n S−1
n ,

Pn|n = (I−KnHn)Pn|n−1 , χ̂n|n = χ̂n|n−1⊕Knzn
(17)

where zn is the innovation zn = yn−h(χ̂n) and Hn denote the
Jacobians of h with respect to χn. To update the state χ̂n|n,
the definition of the ⊕ operator depends on the choice of the
error state vector. In the present paper, our choice for ⊕ is
based on the Lie group SE2(3) that was introduced by the
Invariant EKF (IEKF) theory of [7], and which was recently
thoroughly treated in [13]. The IEKF finds its roots in the
invariant observer theory [2], [12], and has led to various
successes in the industry and in robotics, e.g., [8], [14], [17],
[22]. An explicit description is given in Appendix A.

A standard computation (e.g., [1], [16]) shows that up to
an additive constant the NLL writes

L =
N

∑
n=1

log |Sn|+ zT
n S−1

n zn . (18)

C. The parameters of the EKF

The EKF for sensor fusion detailed above depends on
covariance matrices Q and R. The IMU (process) noise
covariance Q related to σ2

ω σ2
a , σ2

d and σ2
b is well-known

from the characteristics of the IMU. On the contrary, the
measurement covariance R of the GPS is hard to characterize,
and is known with less accuracy, see [1], [26], since GPS
errors are often correlated over time, whereas the EKF

Fig. 1: Actual car used for the experiments

assumes that the errors are independent. Hence, the learned
covariance R is not exactly that of the sensor: it is the
parameter that maximizes the performance of the filter, in
the sense of likelihood of data, and allows it to cope with
unmodeled effects such as measurement correlation.

D. Gradient computation by backpropagation

The expression (18) of L depends on the noise parameter
R in a complicated manner, through equations (16)-(17).
The derivatives of L with respect to R may be obtained
through the well-known sensitivity equations [16]. However,
this comes at a heavy computational price: for each entry
of the matrix Ri j, one needs to run the equivalent of a
Kalman filter over the entire dataset, see Appendix A.3 of
[23], to get each ∂L

∂Ri j
. In [21], we very recently proposed an

alternative method that requires the equivalent of running one
Kalman filter over the dataset to compute the derivative with
respect to the entire matrix, that is, ∂L

∂R , leading to drastic
reduction in computation time. Owing to the length of the
data sequence and the dimension of the state, we opt for this
method to get the gradients, allowing for implementation of
the proposed square-root natural gradient descent.

IV. EXPERIMENTAL RESULTS ON REAL DATA

The method is tested on real data, acquired from a wheeled
vehicle equipped with an IMU and a GPS. The vehicle used
for the experiments is shown in Figure 1 and is an experi-
mental vehicle of the company Safran, which participates in
the present paper.

We estimate noise covariance square-root factor L such
that R = LLT using the proposed method. The trajectory is
displayed in Figure 2. This trajectory is 73 mn long and
contains N = 4428 GPS measurements. The IMU signal is
sampled at 100 Hz and the GPS at 1 Hz.

A. Assessing the EKF

We first evaluate the estimation of the trajectory per-
formed by the EKF detailed in Section III, and compare
it with a ground truth given by the IMU high preci-
sion commercial software, when using a coarse approx-
imation of the covariance matrix: we take R to be the
identity, which corresponds to a 1 meter standard devi-
ation that matches specifications of the used GPS sen-
sor. Table I shows the root-mean square error RMSE =



Fig. 2: Trajectory used when estimating L (in the form
R = LLT ). The figure shows the trajectory estimated by
the proposed EKF, as well as the ground truth. Data were
acquired on a closed road near Paris, France.

√
1
N ∑

N
n

(
x̂n− xground−truth

n

)
and median absolute devia-

tion (MAD): MAD = mediann=1,...,N

∣∣∣x̂n− xground−truth
n

∣∣∣. The
MAD’s interest is to mitigate initial errors. In Table I, RMSE
and MAD are sufficiently low to validate the EKF indeed.

TABLE I: Errors for the run used for the training, on
positions over each axis (in meters) and on yaw (in degrees)

Position-x Position-y Position-z yaw
RMSE 2.33 m 3.53 m 2.63 m 3.62°
MAD 1.45 m 2.08 m 2.26 m 0.58°

B. Comparison between Euclidean and natural gradient

Based on the proposed EKF, the NLL L given by equation
(18) is minimized by gradient descent with fixed step size
η , using the backpropagation based gradients of [21].

We compare the results obtained using Euclidean gradient,
see (8), or our natural gradient, see (9), with respect to L.
For each gradient descent, 100 steps are performed.

Figure 3a displays the NLL over the gradient descent
steps using Euclidean or natural gradient, with fixed step
size η = 0.001 or η = 0.01. To highlight the differences,
Figure 3b displays a zoom on the 40 last steps. As one
can see, whatever the value of the step size is (η = 0.001
or η = 0.01), the proposed natural gradient outperforms the
Euclidean gradient descent in terms of final value reached.
Besides, the larger step η = 0.01 leads to faster convergence.

C. Generalization performance

We now assess how the learned covariance performs in
practice on unseen data. In Table II, we compute, for 7
unseen runs, the NLL obtained with each estimated L, i.e.
with Euclidean or natural gradient, with step size η = 0.01 or
η = 0.001. An example of a trajectory corresponding to data
in one of these runs is shown in Figure 4. In Table II, one

(a)

(b)

Fig. 3: Negative log-likelihood over the gradient descent with
different step sizes, using Euclidean or the proposed natural
gradient: (a) over all the steps, (b) zoom over the last steps.

Fig. 4: Example of trajectory used for the tests, namely run
7 in Table II.



TABLE II: Generalization results: final Negative Log Likeli-
hood (×104) depending on the method, on 7 unseen datasets

Run Euclidean
gradient -
η = 0.01

Natural
gradient -
η = 0.01

Euclidean
gradient -
η = 0.001

Natural
gradient -
η = 0.001

Run 1 3.623 1.802 2.165 13.464
Run 2 14.951 −0.734 8.919 6.945
Run 3 7.943 3.252 4.742 16.168
Run 4 20.614 0.577 12.296 17.666
Run 5 14.951 −1.967 8.919 2.062
Run 6 1.482 −0.244 0.887 −0.120
Run 7 6.769 1.587 4.039 14.910

can see that the proposed method, that is, natural gradient
on the factor L, with η = 0.01, consistently outperforms all
the other methods. Interestingly, going from η = 0.01 to
η = 0.001 improves Euclidean gradient but to a point that is
still outperformed by the natural gradient with η = 0.01.

V. CONCLUSION

In this paper, we have proposed a novel gradient descent
algorithm to estimate the noise covariance parameter of an
EKF over data, by likelihood maximization. The method was
successfully applied to a challenging example of engineering
interest, and was demonstrated on real experiments. In the
future, we would like to attempt to derive natural gradient
w.r.t. the likelihood L , as in [4], instead of the proxy that
we used, i.e., that associated with Gaussian families.

APPENDIX

A. Error state vector used in the invariant EKF

To define the error state vector, denoted as ξn, the system
state χn given in (14) is seen as the concatenation of
two states χn = (Ψn,βn), where Ψn = (Ωn,υn, pn) ∈ SE2(3)
and β T

n =
(
dT

n ,b
T
n , l

T
n
)
∈ R9. The error state vector is split

according to this decomposition: ξ T
n =

(
ξ ΨT

n ,ξ
β T

n

)
. The

error ξ Ψ
n ∈R9, associated with Ψn, is chosen as left-invariant

[7], while the error ξ
β
n , associated with βn, is chosen as

linear.
Given the total error ξn, the ⊕ operator used for updating

the state in equation (17) is defined as follows. The vector
ξ̃n = Knzn is split according to the splitting of the error state
vector: ξ̃ T

n =
(

ξ̃ ΨT
n , ξ̃

β T

n

)
, and, in the update (17), each part

of the system state χn = (Ψn,βn) is updated as :

Ψ̂n|n = Ψ̂n|n−1⊙ exp
(

ξ̃
Ψ
n

)
, β̂n|n = β̂n|n−1 + ξ̃

β
n , (19)

where ⊙ is the internal binary operation on SE2(3), and exp
denotes the exponential map on SE2(3) [7], [13].
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