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Abstract 

In response to the climate crisis and ever diminishing global carbon budget targets, managing carbon emissions, 

particularly during the post-occupancy phase in the building sector, is pivotal. This study presents a novel approach 
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that uses a parametric Life Cycle Assessment (LCA) workflow that integrates the temporal dimension to align 

post-occupancy decision-making with carbon budgets. Applying this method to a French residential case study, 

this work explores optimization, sensitivity analysis, and different visualization techniques in hopes to inform 

building actors not only of which carbon mitigation measures to implement, but also when to execute them. The 

temporal aspect of decision-making proved to be extremely useful as a renovation plan for the remaining building 

life cycle is proposed. Interestingly however, similar optimization solutions emerged from static and dynamic 

LCAs despite very distinct Global Warming Potential values, suggesting a possible overlook of dynamic 

parameters. Findings also illuminate the complexity of conveying multifaceted decision-making information, 

emphasizing the importance of tailoring solutions. Nonetheless, the specificity of results necessitates further 

research across varied building typologies. This study is another step towards sustainable building management, 

underlining the urgency of adhering to carbon budgets. 

1 Introduction 
Buildings' contribution to greenhouse gas (GHG) emissions was 37% in 2021 [1], underlining the critical role 

this sector plays in global decarbonization efforts, notably, adhering to the Global Carbon Budget of 400 GtCO2-

eq necessary to maintain global warming within 1.5°C [2]. French legislative targets aim at a reduction of 49% in 

building emissions by 2030 [3]. However, one of the challenges resides in the fact that 80% of the building 

infrastructure projected for occupancy in 2050 already exist [4]. Hence, the incumbent building stock significantly 

impacts carbon emission targets, rendering renovations an unavoidable and recurring undertaking [5]. 

Life Cycle Assessment (LCA) emerges as an invaluable tool in the efforts towards adhering to these carbon 

targets in the building sector. It facilitates the comprehensive evaluation of environmental impacts (EI) of products 

and services throughout their lifecycle, as set out in ISO 14040 [6] and ISO 14044 [7] standards. However, the 

distinctiveness of buildings – specifically their long lifespan and the complexity stemming from the multitude of 

components – necessitates the introduction of supplementary standards. These include the building-specific LCA 

standards such as EN 15878 [8] and EN 15804 [9]. 

In the context of decarbonizing the building sector then, it is pivotal to employ LCAs during the post-occupancy 

stage, specially renovations. The subsequent assessment of EI is then utilized to assist in decision-making (DM). 

This process empowers building owners to not just manage carbon emission trajectories, but also to anticipate and 

react to potential deviations. By doing so, they can continually steer their course towards ensuring carbon budget 

compliance. Nevertheless, it is important to note that typical LCA approaches often involve replacing components 

with identical ones at the end of the aging component's reference lifespan. This strategy, however, overlooks the 

inevitable evolution of the building and its environment, a factor that could significantly impact the carbon 

trajectory. 

In this work then, we propose a methodology for decision-making at post-occupancy stages that includes this 

temporal dimension. Specifically, we introduce a parametric dynamic LCA (DLCA) methodology. By applying 

optimization and sensitivity analysis (SA), we aim to identify and evaluate parameters related to carbon mitigation 

measures (CMMs) towards the goal is to find sets of solutions that comply with carbon budgets (CBs). 

To start with this task, a literature review on DLCA and post-occupancy decision-making is made over the next 

chapter. Subsequently, a methodology is developed, and results are presented from a case-study application. 

Finally, we will discuss and conclude on the method chosen and the limitations of the work proposed. 

2 Literature Review 

2.1 Dynamic LCA 

While the integration of building renovations and LCA holds significant steppingstones for the decarbonization 

of the building sector, it is not without methodological challenges. Some of these difficulties stem from the 

uncertainties surrounding energy consumption and electricity mix decarbonization [5], for instance. Addressing 

temporal uncertainties necessitates an evolution from traditional static LCA models to more nuanced DLCAs. 

DLCAs employ time-varying parameters in the assessment of EI, providing a more realistic representation of a 

building's performance over time [10]. 

To illustrate, Collinge et al. incorporated the evolution of national electricity mix, energy consumption, and 

water use into their DLCA [11] [12]. Similarly, Roux et al. factored in global warming scenarios [13], while 

Negishi [14] and Su et al. [15] proposed novel DLCA methodologies that incorporated a range of dynamic 
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variables, including the radiative forcing of different GHGs. By adding these layers of complexity, DLCAs can 

generate more accurate EI assessments, ultimately supporting well-informed and timely decision-making [16].  

2.2 Decision-making for building environmental performance 

Indeed, the unpredictable nature of long-term building performance parameters presents the risk of 

environmental performances straying from what might be necessary to meet GHG emission targets. To address 

this, the DM process in building design is increasingly leveraging LCAs, particularly during the early stages. This 

early integration of LCA into the design process fosters a higher degree of project flexibility [17], [18]. Yet, pre-

construction LCAs carry their own uncertainties. Hypotheses and standards in these assessments can deviate from 

reality, much like the gap between simulated and actual energy consumption – a discrepancy that arises not only 

from modelling error but also from unexpected occupant behaviour [19]–[22]. 

2.2.1 Sensitivity analysis 

Coupled with LCA, SA assists in the DM process by identifying which parameters have the largest impact in 

the results [23] and thus, are able to focus on the decisions that matter most. In buildings, SA has seen a plethora 

of applications, such as finding which daylight strategies have major impact in EE [24], finding the design 

decisions that matter the most in energy needs, EE and construction costs [25] and for identifying the biggest 

sources of uncertainty in building LCA [26]. Depending on the method applied however, a great number of samples 

is necessary, indeed in a variance-based method, such as Sobol SA, a sample size a thousand times larger than the 

number of parameters is recommended [27]. 

2.2.2 Optimization 

As for optimization techniques, calculating life cycle EI is a daunting task, as building energy simulations are 

time-consuming and resource intensive [28]. Optimizations can be classified into three categories: type of 

parameters (discrete or continuous), the number of objectives (single- or multi-objective) and by the type of 

algorithm (i.e. Genetic algorithm (GA) and Differential evolution) [29]. In the case of building retrofit, which 

typically deals with the window types, heating fuels and other categorical parameters, the parameters often are 

discrete. For multi-objective optimizations (MOOs), the objectives have divergent tendencies [28] and in life cycle 

GWP and the embodied and operational impact often does present this independent behaviour [30], [31]. 

In building simulations, gradient-free methods have been largely preferred. They are advantageous because 

gradient-based methods depend on initial predictions, regularity of the objective function, and are often exposed 

to local minima [32]. One such gradient-free method is GA, which has widely been applied to topics such as energy 

cost versus thermal comfort [33] or life cycle embodied and operational energy [34]. This algorithm starts with a 

population of potential solutions, which are then evolved iteratively. In each iteration, the “fittest” solutions are 

selected and recombined into another population to be used in the next iteration. With a large enough population 

then, the local minimum problem is avoided. 

2.3 Decision-making with DLCA 

The field of building DLCA has observed most of its evolution in the past 5 to 10 years. The integration of 

dynamic parameters (DP) into LCA processes has demonstrated substantial impact. For instance, in one case study, 

the dynamic Global Warming Potential (GWP) was found to fluctuate between 87% and 108% of its static value, 

contingent on the DLCA scenario and the time horizon of emissions [30]. This comparison between static and 

dynamic values is further echoed in studies like [11], [35], [36] and [37]. 

Nevertheless, to our knowledge, only Van de Moortel et al. [38] have investigated how DLCA influences the 

decision-making process during building renovation. Their work involved multiple scenarios, including variations 

in energy mix, degradation of airtightness, and occupant behaviour. Notably, their findings suggest that under 

certain conditions, a gas boiler could be more preferable than a heat pump. But these choices cannot be made in 

isolation, as they also stressed the importance of considering the building’s remaining service life post-renovation. 

This consideration stems from the need for the 'investment' in embodied GHG emissions (EE) to be offset by the 

reduction in operational emissions (OE) over time [38]. 

2.4 Research gap  

Despite the contributions found in the literature, a research gap persists. It is clear from the reviewed literature 

that the temporal aspect of building LCAs significantly influences outcomes over the multi-decade life cycle of a 

building. However, the precise impact of this temporal factor and its potential integration into the DM processes 
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remain ambiguous. More specifically, the integration of these dynamic, time-dependent parameters into DM 

methodologies, especially with a goal of ensuring carbon budget compliance, remains vague.  

Addressing this research gap, the methodology detailed in the next chapter proposes an innovative approach 

that integrates time as a crucial parameter in both the LCA and DM. This novel methodology will involve the 

parametric calculation of annual operational and embodied emissions over a building’s life cycle of 50 years, 

starting by defining dynamic parameters and renovation/replacement options for the building. The ultimate goal 

is to inform and facilitate decision-making processes that are committed to carbon budget compliance, addressing 

the identified deficiencies in current research. 

3 Methodology 

3.1 Carbon trajectory mitigation measures 

In order to correct GHG emission pathways of existing buildings, the following actions were studied included 

in the simulations. These will be referred to as carbon mitigation measures (CMMs). Additionally, for each of the 

listed measures, the moment when to apply these changes were defined as a parameter. For replacements, the 

following elements were considered, which were in line with other building optimization works, such as [39] and 

[33]: 

• Addition of insulation material (material and thickness) 

• Addition of Photovoltaic (PV) panels (surface of installation) 

• Replacement of the heating system (heating fuel) 

• Replacement of the windows (framing material and number of glazing layers) 

• Replacement of the ventilation system (heat-recovery system) 

It is vital to distinguish between 'addition' and 'replacement'. 'Addition' implies that none of the existing 

components will be removed to install the new material. Thus, new insulation complements the existing one. This 

decision aligns with the study's scope—limited to a reference life cycle of the building of 50 years—and hence the 

insulation installed during construction is still within its lifespan throughout. 'Replacement,' on the other hand, 

necessitates the removal of an existing component to make room for the new one, as seen in the case of heating 

systems. 

All optimization parameters in this study are integer values, primarily derived from the Environmental Product 

Declarations (EPDs) available on the French database, INIES [40]. Table 1 lists the heating system types 

incorporated into this optimization workflow, along with their respective efficiencies, inclusive of heat distribution 

and emission losses. Table 2 showcases the various combinations of glazing types and frames with their respective 

conductance and Solar Gain Heat Coefficient (SGHC). Finally, Table 3 associates different insulation thicknesses 

with each material. Instead of optimizing a real (ℝ) value representing insulation thickness, we opted to create 

categorical values representing combinations of insulation materials and thicknesses existing in the EPD database. 

Table 1 - Heating system types included in the parametric simulations. BAU represents the current heating 

system in the building, "Joules effect" radiators. 

Heating System Efficie

ncy 

Static embodied GWP per unit of 

heating power [kgCO2/kW] 

Natural Gas 0.90 1112.84 

Joule effect 

radiators 

1.00 506.93 

Wood pellet 0.93 1260.21 

LG Air-water HP 3.72 1802.11 

LG Air-air HP 3.15 1529.39 

Table 2 - Number of glazing layers and frame type of glazed surfaces included in the parametric simulations. 

BAU represents the current glazed surface type in the building. 

Glazing Type + Frame U-value SGHC Static embodied GWP per 

window surface [kgCO2/m²] 
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Double - Alu+PVC 1.2 0.8 127.85 

Triple - Alu+PVC 1 0.5 170.24 

Double - Wood 1.4 0.7 50.49 

Triple - Wood 1.2 0.5 65.67 

Double - Wood+Alu 1.1 0.7 195.2 

Triple - Wood+Alu 0.8 0.5 367.84 

Table 3 - Insulation materials and their respective studied thicknesses, as each material has different standard 

thicknesses. BAU represents the current insulation in the building, which is polyurethane panels of 10 cm. 

Insulation 

Material’s 

GWP 
Polyurethane Cotton Wool Glass Wool Wood Fibre 

Compressed 

rice straw 
Wood Straw 

Thinnest 

BAU 6 cm/ 

-0.30 kgCO2-

eq/m² 

14 cm/ 

3.2 kgCO2-

eq/m² 

4 cm/ 

-0.13 kgCO2-

eq/m² 

10 cm/ 

0.22 kgCO2-

eq/m² 

10 cm/ 

-11.0 kgCO2-

eq/m² 

Thin 

10 cm/ 

13.7 kgCO2-

eq/m² 

8 cm/ 

-0.39 kgCO2-

eq/m² 

16 cm/ 

3.8 kgCO2-

eq/m² 

8 cm/ 

-0.48 kgCO2-

eq/m² 

20 cm/ 

0.44 kgCO2-

eq/m² 

20 cm/ 

-17.4 kgCO2-

eq/m² 

Thick 

12 cm/ 

17.2 kgCO2-

eq/m² 

10 cm/ 

-0.45 kgCO2-

eq/m² 

20 cm 

5.2 kgCO2-

eq/m² 

10 cm/ 

-0.84 kgCO2-

eq/m² 

30 cm/ 

0.66 kgCO2-

eq/m² 

30 cm/ 

-23.85 

kgCO2-eq/m² 

Thickest 

14 cm/ 

20.2 kgCO2-

eq/m² 

16 cm/ 

-0.78 kgCO2-

eq/m² 

22 cm/ 

6.4 kgCO2-

eq/m² 

20 cm/ 

-2.6 kgCO2-

eq/m² 

40 cm/ 

0.88 kgCO2-

eq/m² 

40 cm/ 

-30.3 kgCO2-

eq/m² 

The PV panel installation boundaries range from no renewable energy production to the maximum roof surface 

available for PV installation in the case study, identified as 32 m² and with 3.2 m² steps. The ventilation system is 

a binary choice, either a humidity-controlled simple-flow mechanical ventilation or a double-flow mechanical 

ventilation with a heat recovery system. Lastly, the addition of a thermostat in every room with an electric heater 

is considered. This assumes users can configure the setpoint temperature inside the house to be 4°C lower when 

unoccupied, for 7 hours of the day. Without this equipment, the building is always conditioned to the setpoint of 

19°C. 

3.2 Renovation and replacement years 

The time of application for each of the identified measures is considered as part of the parametrization process, 

with different strategies applied for renovations and replacements. 

Renovation measures, namely the addition of PV panels or insulation, can be implemented anytime from the 

current year (i.e., as early as possible) until the year preceding the building's demolition. This interval can be 

expressed as: 

𝑅𝑒𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 𝑌𝑒𝑎𝑟 = [𝑦𝐶𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑦 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐸𝑂𝐿[            , 𝑦 ∈ ℤ 

Conversely, the timing for replacements, such as windows or heating systems, is restricted to the period from 

the current year until the expected end-of-life (EOL) for the existing component. This ensures that the methodology 

respects the reference life cycle of the component. This interval can be expressed as: 

𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑌𝑒𝑎𝑟 = [𝑦𝐶𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑦 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐸𝑂𝐿]     , 𝑦 ∈ ℤ 

In practical terms, consider a building constructed in 2013. Assuming the current year is 2023 and the windows 

have a 30-year life cycle, the interval for potential window replacement would be from 2023 to the expected 

window replacement year of 2043. In this same scenario, however, the potential addition of PV panels could be 

studied anytime from 2023 until 2062. This distinction in approach accommodates the unique factors and impacts 

of both renovations and replacements in the optimization process. 
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3.3 Dynamic parameters 

Bringing temporal parameters into the decision-making process necessitates the employment of a DLCA 

workflow, which not only provides more detail, but also elucidates the significance of timing with respect to the 

optimal decision-making process. 

Some DLCA frameworks have been proposed, with the most comprehensive identified in [15], which 

recognized ten categories of dynamic parameters. These include degradation of components, technological 

evolution, waste recycling dynamics, and dynamic characterisation. However, implementing a full DLCA 

framework is a complex undertaking and beyond the scope of this study. In response to this constraint, this study 

employs a simpler approach based on the French RE2020 norm [41]. 

Under the RE2020 norm, a decreasing weighting factor is assigned to all GHGs emitted by a building in a 

given year. The factor linearly decreases from 1 in the building's inaugural year to 0.58 in its 50th year of operation. 

The equation below outlines the total GWP of a component, where GWPtotal represents the component's lifecycle 

emissions, GWPy its emissions in a given year "y", and Fy the weighting factor for that year. 

𝐺𝑊𝑃𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐺𝑊𝑃𝑦 × 𝐹𝑦

50

𝑦=0

 

The components' emissions in the initial year are associated with its A1-5 modules and are not affected by the 

dynamic parameter, as defined by the EN 15804 [9]. As the building's life cycle progresses, the GHG emissions 

will have a diminishing impact on its life cycle carbon footprint, encompassing both OE and EE. The subsequent 

equation illustrates the calculation of the weighting factor, where "y" is the year under consideration. 

𝐹𝑦 = 1 − (
1 − 0.58

50
× 𝑦) 

In considering this weighting factor, the question of when a renovation should occur becomes more complex 

as there is an embodied emission incentive to delay renovations. Contrary to a static approach, which incentivizes 

energy-saving renovations to occur as early as possible, this approach encourages a more judicious temporal 

strategy. 

This policy-related dynamic parameter was established to incentivize the use of bio-based materials [41], which 

generally exhibit lower A1-5 emissions and greater C1-4 emissions compared to traditional components. This is 

evidenced in Table 4, which compares a laminated wood beam to a steel beam of the same functional unit. The 

static emissions of the laminated wood beam are -1.5 kgCO2-eq, but when considering the dynamic calculations, 

they become -14.6 kgCO2-eq. Conversely, the steel beam's emissions increase from 71 kgCO2-eq in the static 

LCA to 78.8 kgCO2-eq in the DLCA. 

Table 4 - DLCA calculation demonstration comparing a steel and a wood beam with identical functional units 

for building life cycle of 50 years. Adapted from [42]. 

Component LCA stage Emissions 

(kgCO2-eq) 

Weighting 

factor 

Dynamic Emissions 

(kgCO2-eq) 

Laminated wood beam 

Functional unit: 1 ml of (360 x 170) 

mm beam 

Life cycle: 50 years 

A1-3 -34.1 F0=1 -34.1 

A4-5 1.5 F0=1 1.5 

B1-7 0 - 0 

C1-4 38.9 F50=0.58 22.5 

D -7.8 F50=0.58 -4.5 

Total A-D -1.5 - -14.6 

Steel beam 

Functional unit: 1 ml of (360 x 170) 

mm beam 

Life cycle: 100 years 

A1-3 80.5 F0=1 80.5 

A4-5 9.1 F0=1 9.1 

B1-7 0 - 0 

C1-4 2.5 F50=0.58 1.4 

D -21.1 F50=0.58 -12.2 

Total A-D 71 - 78.8 
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In addition, the RE2020 norm uses DLCA to establish carbon budgets for new residences built in France since 

2022. These budgets are defined per square meter of liveable area, with limits set for embodied and operational 

GHG emissions in equivalent carbon-dioxide. These limits are calculated based on location, climate, size, parking 

space, and other factors. In line with national emissions targets, several budgetary targets have been set for 

buildings built in various periods: prior to 2023, 2023 to 2025, 2025 to 2028, and post-2031. These budgets provide 

the reference for this study and are illustrated in Figure 3. 

3.4 Parametric DLCA methodology for post-occupancy decision-making 

Having established the CMMs and DLCA methodology, we can now define the complete workflow, as 

summarized in Figure 1. In addition to the previously mentioned inputs, the workflow also requires LCA to 

establish a business-as-usual (BAU) scenario - a situation in which no CMMs are implemented throughout the 

building's life cycle. This scenario informs in DM about the carbon trajectory of the building and whether it 

performs adequately. The final input is the EPD database, which contributed to the creation of Table 1 and Table 

3 and all associated GWP values. 

In the calculations module of Figure 1, the initial step involves the development of a surrogate model (SM) for 

OE assessment. The inclusion of a SM is beneficial for the life cycle emissions calculations, since operational 

impacts are simulated yearly over the 50-year building life cycle. Indeed, the EnergyPlus simulations that would 

typically take around 16 seconds each (depending on building size and simulation setup), were reduced to 

approximately 2.3 milliseconds. 

 

Figure 1 - Full optimization methodology in terms of its inputs, calculations and outputs. 

Training this surrogate model required the execution of 1000 one-year energy simulations using EnergyPlus 

[43], in conjunction with a couple of Python libraries: EPPY [44] for energy model manipulation and simulation 

management and SMT [45] for the SM’s screening method and training. EPPY enabled 40 simulations to run in 

parallel, while SMT's advantage lay in its ability to incorporate mixed-integer parameters into the training of the 

SM. The energy simulations, conducted on a server with an Intel Xeon CPU with 40 cores and 80 threads running 

at 2.2 GHz and 256 GB of RAM, took a total of 55 minutes and 20 seconds. 

Sampling was performed using the Latin Hypercube, a quasi-random method common in building applications 

of SMs [46]. The model training adopted the Kriging interpolation model, given its extensive strategies for dealing 

with mixed-integer problems [47]. 

Once the surrogate model is trained, the lifecycle OE can be evaluated in a fraction of a second, and we can 

proceed to calculate EE. These are primarily dependent on the building components and their quantities, 

established via a quantity take-off process. Each component is associated with an EPD found in the INIES 
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database, sometimes corresponding to the actual component used, or otherwise replaced by a default component 

when an exact match wasn't available. This process was executed using an LCA tool named Vizcab [48], which 

allows all components and their respective quantities, life cycles, and EIs to be exported into an Excel file. This 

file's data is then processed by a Python script that calculates the building's life cycle embodied emissions. Overall, 

the complete workflow for operational and embodied life cycle emissions takes about 0.8 second. 

With the parametric DLCA calculation modules set up, the thousands of evaluations required for the 

optimization and the quasi-random sampling were made. In the optimization, the genetic algorithm implemented 

was configured with a population size of 100 and programmed to explore 100 generations. Each optimization took 

1h06min. Meanwhile, 13 thousand samples acquired with the Saltelli sampling were evaluated for the Sobol 

sensitivity to be executed, which took 3h13min. 

The final stage of the workflow is the output, which also is a challenge. The results of these evaluations need 

to convey an appropriate amount of information for DM not only for which measures to take, but also when to 

apply them. In the application part of this work then, we’ll explore some visualization techniques in the hopes to 

convey the information detailed below: 

• The user should be able to compare a set of solutions to a given target that is set for carbon emission 

targets or other constraints. 

• They also need to be able to compare it to the refence scenario. 

• The ability to visualize renovations made through time is particularly important in a dynamic method, 

specially to track progress. 

• The exploration of solution space should also be encouraged and available for the user to find the most 

adapted solution. 

• How important interactivity is for a proper amount of information to be conveyed needs to be analysed 

as well. 

• How the different parameters interact amongst each other is also important. 

• The identification of DM parameters that should be prioritized can, of course, be an extremely useful 

information. 

With the methodology establish, we shall now characterize the case-study through which its feasibility was 

investigated. 

3.5 Case-study 

The ability to compute annual emissions allows us to observe GHG emissions dynamically, where emission 

sources become clearer along time. This dynamic visualization is represented by a business-as-usual (BAU) 

scenario in Figure 2. On the left y-axis, depicted in blue, we can observe that the production and construction stage 

of the lifecycle (stages A1-5) is responsible for the emission of 50 tCO2-eq. Towards the end of the building's life 

cycle (stages C1-4), the emissions tally to around 23 tCO2-eq. During the use-stage (stages B1-7), an additional 

47 tCO2-eq of GHGs are emitted, contributing significantly to the building's overall emissions. 

The right y-axis, shown in red, offers a different perspective: it represents the cumulative sum, or trajectory, of 

the building's carbon emissions over time. As the building ages, the cumulative emissions present a clear indication 

of the total environmental impact. 

The systematic replacements that cause spikes in emissions are also clearly visible in Figure 2. Different 

coloured arrows represent different types of components being replaced. Specifically: 

1. HVAC (blue): Both the heating and ventilation systems have a service life of 17 years and so they are 

replaced after 17 and then 34 years of operation. 

2. Glazing (orange): The double-glazing windows have a service life of 30 years; thus they are changed 

only once. 

3. Electrical components (green): Plenty of components linked to the electrical installation have a service 

life of 25 year, requiring a replacement during the building lifetime. 

4. Sanitary elements (yellow): A lot of components in the bathroom and kitchen of the residence have a 

20-year service life. This means two replacements are made. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4538384

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



9 

 

 

Figure 2 - Yearly instantaneous (in blue) and cumulated (in red) GHG emissions throughout the 50-year 

lifespan of the building in kgCO2-eq. Mind that the left-axis is in a different scale and does not start at zero. 

The case study used in this work focuses on a two-story single-family house near Paris. This concrete slab and 

cinder block façade construction, with 146 m² of living space and 366 m3 of internal volume, is detailed more 

extensively in Table 5. It was selected to represent a typical French residence since 55% of French dwellings are 

single-family homes [49]. These details represent the BAU scenario and with the case-study established, the results 

will be shown in the following chapter. 

Table 5 - Case study main characteristics in a business-as-usual scenario 

Characteristics Value 

Year of construction 2017 

Horizontal structure Cast concrete 

Façade’s structure Cinder block 

Insulation material Polyurethane  

Opaque surface conductance 0.25 W/(m².K) 

Glazing type Double-glazing 

Glazing frame PVC + Aluminium 

Glazed surface conductance 1.2 W/(m².K) 

Ventilation system Simple-flow 

Heating system Electrical radiators 

Domestic hot water production Heat Pump water heater 

BAU embodied emissions 562 kgCO2-eq/m² 

BAU operational emissions 225 kgCO2-eq/m² 

4 Results 
In this results section, two ways to explore the CMMs and its solution space will be investigated, first with the 

optimization and then with the quasi-random Saltelli sampling. These methodologies offer complementary ways 

to find the most adapted solution to a case, depending on the building and its constraints. This chapter is organized 

into 3 sub-chapters: In the first one, we’ll apply the method supposing that the building has been operating for 5 

years in a BAU scenario; in the second subchapter, we’ll investigate the difference in results that applying the 

method 20 years after would generate; and lastly, we shall compare the static and dynamic approached to LCA. 

4.1 Case study after 5 years of use 

4.1.1 Optimization 

Each proposed optimization solution is constructed from a mix of measures to be implemented for better 

environmental performance. The most intuitive visualisation technique in a MOO is a scatter plot featuring the 

Pareto front of the two objectives. The embodied and operational GWP are displayed on the x- and y-axis, 

respectively. In this plot, in Figure 3, the life cycle GHG emissions budgets, defined by the RE2020, are included. 

The BAU scenario, which signifies a case where no measures occur, is also represented in this plot. 

1 1 2 3 4 4 
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Figure 3 – In this scatter plot, the Pareto Front of the MOO is presented. The dotted lines in the plot 

represent the carbon budgets defined by the RE2020 norm. The colour scale on the right is the overall GWP, 

meaning the sum of operational and embodied GWP. On the plot to the right is the same plot at a different scale 

to better show the pareto front. The green “x” in this plot represents the best solution in terms of overall GWP  

(Solution 1), whereas the “+” represents the CMMs that most closely satisfy the embodied budget of 550 kgCO2- 

eq/m² (Solution 2). The BAU scenario, represented by the star, shows a deviation of the building’s emissions 

from its operational targets of 150 kgCO2-eq /m². 

From an initial analysis of the scatter plot, three main clusters of solutions can be identified: (1) presents the 

solutions with a gas boiler replacement; (2) consists of keeping the Joules Effect heating system as is; (3) proposes 

a drastic enhanced OE by suggesting the installation of heat pumps at the detriment of EE. The variations within 

the clusters relate to ventilation, photovoltaic system size, timing of the renovations and insulation.  

Given that only five years have passed since construction in this first scenario, there's significant “room” for 

improvement to align the carbon trajectory with the carbon budgets. Indeed, several solutions can amend the OE 

trajectory to adhere to the operational budget while still complying with the 2023 embodied budget limit of 610 

kgCO2-eq/m² (to the left of the green line in Figure 3). However, no solutions were identified that align with the 

2025 budget for embodied emissions of 550 kgCO2-eq/m² (to the left of the yellow line in Figure 3). 

This work emphasizes the inclusion of time parameters in the decision-making process. In this first scenario, 

the building has been in operation for 5 years. With the use of MOO, we aim to study the CMMs that can be 

implemented presently or in the future to reduce this GWP trajectory. The results seen in show a plethora of 

solutions, where each point includes an extensive list of measures to be undertaken, or a renovation plan. This 

figure illustrates well the potential reductions in both lifecycle EE and OE, however the temporal aspect of DLCA 

is completely lost. The user needs to hover over the points in order to explore the proposed solutions. 

From Figure 3, two interesting solutions were highlighted, first the most effective solution in terms of overall 

GWP (the sum of OE and EE) comprises the following measures, resulting in embodied and operational GWP of 

617 and 89 kgCO2-eq/m², respectively (hereafter referred to as “Solution 1”): 

• Replacement of the glazed surfaces to wood-framed double-glazed windows when the exiting windows 

reach the end of their service lives at year 30. 

• Replacement of heating system to an air-air heat pump at year 6, despite the electric heaters still having 

11 extra years in their lifespans. Interestingly, changing the heating system as early as possible (at year 

5) increases overall GWP by 0.5 kgCO2-eq/m². 

• Addition of bio-sourced insulation as soon as possible, at year 5. 

• Installation of 32 m² of PV panels in 2 years’ time, at year 7. 
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These measures drastically cut operational GWP at the detriment of EE. Indeed, it exceeds the 610 kgCO2-

eq/m² 2023 budget. However, to adhere as closely as possible to the 2025 embodied budget in yellow, the following 

measures can be executed, which will be referred to as Solution 2: 

• Replacement of the glazed surfaces to wood-framing double-glazed windows at year 30. 

• Replacement of heating system to an air-air heat pump (HP) at the end of the current heating system’s 

life cycle at year 17. 

• Addition of bio-sourced insulation at year 5. 

These measures result in EE and OE of 571 and 149 kgCO2-eq/m² respectively, thus adhering to the operational 

budget while 21 kgCO2-eq/m² away from the 2025 budget. Figure 4 provides a better visualization of these 

measures through time. It highlights the introduction of insulation resulting in negative emissions at year 5 and a 

significant reduction in OE following the heat pump installation at year 17. This visualization provides better 

understanding of the timing of the CCM, however does not describe the solution space proposed in the Pareto front 

and fails to indicate the improvements relative to the BAU case. 

 
Figure 4 - Yearly and cumulated GWP after applying renovation measures in blue and in red, respectively. 

This GHG trajectory. Reminder that there are two y-axis and that the one on the right does not start at zero. 

To amend this, we examined the optimizer's frequency of parameters proposed in the Pareto front. From this 

plot shown in Figure 5Figure 5, it is clear that four of the twelve parameters are consistently selected: 

• Mechanical ventilation: heat recovery is never added. 

• Insulation material: the addition of bio-based insulation as carbon storage is always selected at year 5. 

Moreover, the largest thickness of insulation is also very frequent. 

• Glazing: 2-layered fenestrations is always preferred, although the frame material sometimes diverge. The 

wood-framed windows are slightly less energy performant, but has a lower EE associated. The 

recommended year of replacement remains unchanged from BAU, at year 30. 

Meanwhile, approximately 65% of the heating system solutions involve the replacement of electric radiators 

with heat pumps. However, the timing for this replacement seems to be somewhat ambiguous, largely depending 

on the priority given to operational and embodied emissions. Early replacement of Joules Effect heating with heat 

pumps minimizes OE but incurs a significant EE cost, because of the high weighting factor at year 5. Conversely, 

waiting for the existing system to reach its EOL at year 17 reduces the embodied GWP.  

The recommendations for a PV system are often high and when PV is factored into the building renovations, 

the solutions consistently suggest its installation as soon as possible. However, some solutions appear to suggest 

the decision-maker to wait 4 to 6 more years. Regarding the thermostat, around 90% of solutions regard it as a 

worthwhile decision. 

What this graphical representation allows decision-makers to understand then, is the identification of the 

systems that can be left in BAU operation Indeed, thanks to this analysis of the pareto front, the choice of 

ventilation is a complete “no brainer”, since under no circumstances is double-flow ventilation interesting. It does 

not need replacement before its current life cycle ends and the installation of a system with heat recovery is not 

warranted. 
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At the same time though, the decision-maker should not simply take the most represented solution for each 

parameter and apply it to the case-study, as this plot fails to represent how they interact with each other. This 

interaction can be explored in the scatter plot of Figure 1, but it would still be a rather complicated experience. A 

more appropriate solution then, shall be explored in the following chapter. 

 

Figure 5 - Parameter count for the solutions in the Pareto Front. 

To conclude with this sub-chapter, the optimization gives the decision-makers a set of optimal solutions in the 

form of a pareto front. This is useful in DM, but a glaring limitation of the proposed methodology is the sole 

inclusion of GWP, excluding key factors such as cost, intervention time and even other EIs. The solution to rectify 

this problem then, is to include instead, the idea of enabling the user to explore the solution space. 

4.1.2 Quasi-random evaluation 

As we delve deeper into the interplay between these parameters, we turn into Parallel Coordinates (PC) plot, 

depicted in Figure 6. This visualization enables users to observe and explore how different parameters interact 

with each other. But to derive meaningful insights from such a PC plot, a representative sample from the design 

space is required. The optimization process, guided by a GA, will instead acquire a lot more detail close to the 

pareto front. 
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Figure 6 – Illustration of Parallel coordinates plot of the 13k simulations acquired from a quasi-random 

sample of the DM parameters. With interactive filters a decision-maker can explore viable the solutions. On the 

left, the only filters applied are on the operational and embodied GWP, arcing back to the carbon budgets of 2022. 

On the right, additional filters are applied to renovation and replacement years. 

Then, to generate a representative sample, a quasi-random screening method known as Saltelli sampling was 

employed, which also allowed a sensitivity analysis of the input parameters on the overall GWP to be executed. 

The interactivity aspect of the PC plot is a key feature. For instance, by choosing a maximum GWP – 

operational, embodied, or overall – the decision-maker can identify immediate necessary actions to achieve that 
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goal. In Figure 6a, the RE2020 carbon budgets have been applied and clearly, some form of heating system 

replacement will most definitely be required into a more performant heat pump system.  

In Figure 6b however, we suppose that the building owners are unwilling to realize any sort of renovation 

before year 15 and thus, the decision-makers can explore CMMs alternatives that suit these limitations. If an 

additional constraint is to limit the overall GWP to 750 kgCO2-eq/m², this is only achievable if the building's 

heating needs are enhanced by installing at least 6 cm of cotton wool insulation by year 8, in 3 years’ time. This 

can be an undesirable and costly renovation, but by showing a bit more flexibility and agreeing to replace the 

heating system by year 10, a number of alternatives emerge, including the option to avoid all renovations to opaque 

surfaces. 

Clearly then, from Figure 6, heating system seems to be the most basic decision to be made. In order to further 

investigate this and by utilizing the same samples as in the creation of the PC, a Sobol sensitivity analysis was 

performed which should inform decision-makers about which decisions matter the most. The results in Figure 7 

confirm that the choice of heating fuel is the most critical decision in this case-study. The dramatically high value 

of this parameter’s Sobol indices can be attributed to the consideration of a wide range of heating fuels. From a 

heat-pump connected to low-carbon electricity to a fossil fuel-dependent boiler, the carbon intensity ranges from 

225 gCO2-eq/kWh to 79 gCO2-eq/kWh. This difference becomes even more pronounced when considering the 3- 

to 4-fold efficiency improvements of a heat-pump system. 

 

Figure 7 - Sobol indices of the DM parameters after 5 years of building operation. Notice that the x-axis has 

been truncated in Figure 10b to show the detail of the parameters, since the total index for "Heating_System" is 

around 0.98, an order of magnitude greater than the second most relevant parameter. 
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All of the information and visualization techniques demonstrated until now in this chapter convey 

complementary information to the user. Table 6 analyses how they fair against the requirements listed in the 

preceding chapter and clearly, no technique score all marks.  

Requirements Pareto Trajectory 

plot 

Solution 

frequency 

Parallel 

Coordinates 

Sobol 

Indices 

Visible constraints ✓ ✓  ✓  

Reference scenario ✓ ✓    

Temporal view  ✓    

Exploration ✓  ✓ ✓  

Interactivity needed ✓   ✓  

Parameter interactions    ✓ ✓ 

Priority identification   ✓  ✓ 

Table 6 - Comparison between the visualization techniques displayed in the results chapter. 

4.2 Case study after 25 years of use 

In order to further study the relevancy of the temporal dimension, we have also done the MOO considering 

that the building operated for 25 years in BAU state (instead of 5). When analysing the Pareto front, the solution 

with the lowest OE is still greater than the operational budget, meaning the building at year 25 is beyond a point 

of no return for this objective to be attained. Effectively, even the most energy-efficient solutions are not sufficient. 

Much like during conception and design then, when early DM gives more flexibility to practitioners, the same 

applies to post-occupancy DM, where early actions have a bigger impact on building EI. 

4.3 Static and Dynamic LCA 

Having established the effect of the weighting factor in the DM process, the differences between static and 

dynamic LCA should be further investigated. To do so, the MOO was run without the weighting factor with the 

building operating in BAU scenario for 5 years. In static LCA the, the GHGs emitted at year 5 and year 50 have 

the same impact towards lifecycle carbon footprint. 

The most important difference from its dynamic counterpart in is the fact that no static solution come close to 

following the 2023 embodied carbon budget, although the operational budget is still attainable. This clearly 

demonstrates how carbon budgets need to be sized with the LCA methodology in mind. It is worth highlighting as 

well that EE were the most heavily affected by the transition from static to dynamic. This is explained by the peak 

in emissions at year 50 in the form of EOL EI and thus, is multiplied by 0.58. Indeed, with the DLCA approach, 

EOL emissions represent around 20% of life cycle GWP, while with the static approach, this percentage jumps to 

26%.  

However, when analysing the MOO results, it was found that best overall static GWP solution is almost 

identical to the set of CMM given by the dynamic LCA optimization in Solution 1. The only difference was the 

replacement of the heating system at year 5 instead of year 6, while all other CMMs were the same as the ones 

found with the DLCA, including the use of bio-based materials. 

5 Discussions and limitations 
This chapter presents a comprehensive analysis of results presented in the preceding chapter. The objective is 

to offer actionable insights for both short-term and long-term planning, ensuring that buildings meet their carbon 

emission targets throughout their life cycle. We draw upon a case study to further evaluate the results, adding a 

discursive layer to our analysis. 

5.1 How information is conveyed to the decision-makers 

One of the key elements that emerged from this analysis is the complex task of conveying information suitable 

for effective decision-making. Various potential solutions were proposed, with their suitability largely depending 

on the particular circumstances of each case. Utilizing a classic Pareto front, depicted in Figure 3, is a common 

strategy in a multi-objective optimization. However, in the given context, interpreting the information it presents 

becomes challenging due to the multi-dimensional nature of the decisions it represents. The frequency count of 

Pareto solutions in Figure 5 provides a more comprehensive overview of the solutions given by the optimizer, 

albeit without the granular details of action plans and parameter interactions. These visualizations rely on the 

outcomes of the optimization algorithm. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4538384

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



16 

 

On the other hand, we employed the PC illustrated in Figure 6, a technique that thrives on interactivity and 

exploration by the user. Though it may require a larger sample size and considerable exploration efforts, it excels 

in showcasing a significant representation of combinatorial possibilities when the decision-maker has a set of pre-

established constraints. This plot does not rely on optimization, thereby offering an alternative perspective on the 

DM landscape. Furthermore, the same sample of data was used for a Sobol SA, that provides useful information 

to the decision-makers on which parameters their efforts should be concentrated. 

The visualization techniques were found to have complementary, but sometimes redundant features for DM, 

however the execution of a quasi-random evaluation and of an optimization is a costly effort. Thus, when choosing 

graphical representations, one should to choose a combination of techniques that can be done with a single set of 

evaluations. Two of the plots studied though, can and should be applied to both of them: trajectory plot, as it only 

shows one solution at a time and solution frequency, where no matter the technique, the user can easily understand 

the solution space. 

Finally, when comparing the capabilities and information conveyed by the quasi-random sampling to the 

optimization, the choice depends on what the decision-makers need to understand their options. Indeed, the 

optimization is excellent in finding the solutions most adapted to the objective functions, namely OE and EE. 

However, in a more realistic scenario with constraints other than GWP, the more representative evaluation possible 

solutions offered by the Saltelli sample better allow the exploration of the CMM. Therefore, if additional 

constraints are put in place, such as to the wall thickness, they are able to explore possible solutions. Of the two 

then, despite taking almost 3 times as long to evaluate, we believe the random sample is more useful for the DM 

process. 

For future works, it would be fruitful to validate these methods' effectiveness through feedback from 

practitioners. Furthermore, we also hope adding real-time simulations as an exploration method, where users can 

fine-tune their case-specific limitations. 

5.2 The case-study and its results 

The analysis revealed that all Pareto solutions proposed by the optimization algorithm unanimously included 

the addition of 40 cm of wood straw insulation. This choice is remarkable given the relatively high conductivity 

of the material compared to synthetic alternatives. This is in accordance with the findings in [30], where bio-based 

materials, despite their performance drawbacks, were found to significantly contribute to carbon sequestration. 

Despite the traditional trade-off paradigm in MOO then not being evidenced in this case, we retained this parameter 

to underscore the benefits of bio-based materials. A solution to this issue is to include more constraints, such as 

wall thickness or other objective functions such as life cycle cost 

However, it is imperative to consider the specificities of the case study building and their potential influence 

on the results. For instance, the case study building, being relatively inefficient, presented a larger room for 

operational emissions improvement. Comparatively, only a modest reduction potential existed for embodied 

emissions. However, this scenario could significantly differ in a near-zero energy building, which may present 

substantial embodied emission savings through component replacement. Furthermore, the geographical factors, 

such as the low carbon intensity of electricity in France, can influence the results. Indeed, the low carbon intensity 

favours electrical heating systems and making the PV panel's EE take longer to compensate. 

5.3 Time dimension in decision-making 

On the DLCA workflow, it is important to highlight the interaction between the weighting factor and the 

temporal decision-making parameters, namely when the renovations and replacements are to take place. Take the 

Solution 1’s operational emissions, for instance. They are extremely low at half of the OE budget of 150 kgCO2-

eq/m². This solution, ends up shortening the lifespan of the existing radiators by 12 years, which is a rather wasteful 

practice, however it does drastically reduce overall GWP as well. The introduction of the time dimension then, 

clearly adds another useful layer of flexibility to the DM process. 

However, when comparing the MOO’s pareto front with static and dynamic workflows, virtually no difference 

was found in the DM process. This happens despite the very large difference in raw GWP results between the two. 

Additionally, as mentioned in the literature review section of this paper, this DLCA methodology was 

conceptualized with the intent of incentivizing the use of bio-based materials. It was found in this work though, 

that in both LCA methods, bio-based materials are preferred. 
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Arguably then, there is no usefulness in including this layer of complexity to the DM process if no difference 

is found. However, the current study investigated a single application and thus, future work should explore the 

influence of different dynamic parameters on the optimization and sensitivity analysis results. Indeed, the 

weighting factor considered impact both OE and EE equally. 

A recommendation stays true with every LCA method however, the earlier in the building’s life cycle, the more 

flexibility and possibilities are presented to the decision-makers. Indeed, the effectiveness of any CMM depends 

on the remaining building life cycle, as found in [38]. 

6 Conclusions 
This study embarked on a mission to illuminate the post-occupancy decision-making landscape for buildings, 

focusing on managing carbon emissions. Through detailed examination of a case study and critical evaluation of 

results, several compelling insights surfaced. 

The methodology adopted in the paper centres on the computation of yearly operational and embodied 

emissions during a building's 50-year life cycle while considering a varying dynamic LCA method proposed by 

the most recent French norm. It starts with the definition of renovation and replacement choices for the building, 

including the addition of insulation material and PV panels, and the replacement of the heating system, windows, 

and ventilation system. Furthermore, the study addresses the timing for these carbon mitigation measures to be 

implemented.  

Our exploration then, demonstrated the multidimensional nature of decision-making and the challenge in 

conveying information for effective actions. Notably, we investigated a combination of optimization algorithms 

and sensitivity analysis with the aid of visualization techniques. We recognized the necessity of employing these 

techniques in a complementary manner, broadening our understanding of the solution space. Future work though, 

could include a survey with practitioners on the subject matter. 

Thanks to the application of the method to a French residential case-study, a couple of conclusions can be 

drawn on their results. However, they cannot be generalized, as it is particular to the context of the studied building. 

In fact, when comparing static and dynamic LCA in the optimization, similar solutions were found, despite the 

drastically different GWP raw values obtained. This might evidence a disinterest in including dynamic parameters 

in decision-making, but it is important to keep in mind the specificities of this French residential building. If 

additional conclusions should be made, a large sample of building typologies are required. 

Additionally, the case study’s specific characteristics also illustrated the importance of tailoring solutions to 

each building's circumstances. For instance, in the pareto front, two solutions were highlighted. One proposing the 

existing radiators in the house to be replaced by a heat pump despite being only 5 years into its 17-year life cycle, 

minimizing operational emissions. The other solution however, proposed the radiators to be utilized until its end-

of-life before being replaced. The latter offers perhaps a better compromise between operational and embodied 

emissions, while avoiding a wasteful practice. In future work though, it is highly encouraged to include more 

carbon mitigation measures, such as the installation of solar thermal panels, geothermal heating and replacement 

of electrical devices for more efficient ones. 

Indeed, while this study has provided insights, it also highlights the need for future work. It's a complex journey 

towards sustainable building management, but one that is critical in our carbon budget objectives. 
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