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Abstract
Defining consistent calculus frameworks on discrete meshes is useful for processing the geometry of
meshes or model numerical simulations and variational problems onto them. However digital surfaces
(boundary of voxels) cannot benefit directly from the classical mesh calculus frameworks, since their
vertex and face geometry is too poor to capture the geometry of the underlying smooth Euclidean
surface well enough. This paper proposes three new calculus frameworks dedicated to digital surfaces,
which exploit a corrected normal field, in a manner similar to the recent digital calculus of [1]. First
we build a corrected interpolated calculus by defining inner products with position and normal inter-
polation in the Grassmannian. Second we present a corrected finite element method which adapts the
standard Finite Element Method with a corrected metric per element. Third we present a corrected
virtual refinement method adapting the method of [2]. Experiments show that these digital calcu-
lus frameworks seem to converge toward the continuous calculus, offer a valid alternative to classical
mesh calculus, and induce effective tools for digital surface processing tasks. We then use these cor-
rected Laplace-Beltrami operators in order to build a regularization method for digital surface, using
geometric information given by discrete normal and curvature estimators.

Keywords: Digital calculus, Laplacian operator, Differential operators

1 Introduction
When solving differential equations on a mesh, it
is often required to build a set of differential oper-
ators for this mesh. Perhaps the most commonly
found is the Laplace-Beltrami operator as it is
used in a wide variety of applications such as mesh
editing [3, 4], mesh smoothing [5] or geodesic path
approximation [6]. Building a simple graph Lapla-
cian or discrete Laplacian does not suffice, since
the mesh geometry must be taken into account.

Using a subdivision scheme and building the oper-
ators on it (as done in [7]) do not suffice either, as
the limit surface does not solve the metric issues
(staircase effects induced by the grid). On tri-
angular and polygonal surfaces, several calculus
frameworks produce these differential operators,
such as the Finite Element Method (FEM) [8],
Discrete Exterior Calculus (DEC) [9], the Vir-
tual Element Method [10], etc (see [11] for a
comparative evaluation).
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Usually these frameworks operate under the
assumption that the mesh interpolates the under-
lying “true” smooth geometry. In the case of digital
surfaces made of surfels (boundary of voxels),
which are frequent when processing 3D images,
this assumption is false, and these frameworks fail
at yielding convergent operators. However several
geometric quantities can be evaluated with con-
vergence properties, such as surface area [12], or
the normal field and the curvature tensor [13, 14]
on digital surfaces. We are aware of only two dig-
ital analogs to differential operators: Caissard et
al. [15] proposed a digital Laplacian based on the
heat kernel, while two of the authors have adapted
in [1] the polygonal calculus of [16], by correcting
its normal vector field. The digital “Heat ker-
nel ” Laplacian of [15] is the only one that is
proven convergent and its convergence is observed
through experiments. The digital “Projected Poly-
DEC ” Laplacian of [1] is not pointwise convergent,
but yet provides meaningful results in variational
problems.

This paper proposes three new digital calculus
frameworks that are constructed with a tangent
space corrected by a prescribed normal vector
field (e.g., the II normal estimator [13]). Tangent
space correction has proven to be effective for
tasks such as estimating curvatures [14] and recon-
structing a piecewise smooth surface from a digital
surface [17]. The first one, called “interpolated cor-
rected calculus”, embeds the digital surface into
the Grassmannian with a vertex-interpolated cor-
rected normal vector field: the resulting surface
is thus continuous in positions and normals. It
is thus more consistent than the Projected Poly-
DEC, whose embedding is discontinuous between
surfels. The second one, called “corrected FEM ”,
adapts the Finite Element Method with metrics
tailored to a constant corrected normal vector per
element. The third one adapts the virtual refine-
ment method [2], where each face gets subdivided
intro triangles thanks to the addition of a vir-
tual vertex. The three constructions are consistent
with classical calculus constructions, and we hope
they will allow proving the convergence of oper-
ators. For now, we conducted experiments which
show that these frameworks build a consistent
Laplacian, convergent when slightly diffused. We
achieve results on par with [15] while retaining the
ease of build and sparsity from [1].

We also build a regularization method for
digital surface using corrected Laplace-Beltrami
operator and geometric estimators: since we can
estimate the normals n and the mean curvature
H, using the equality ∆p = −2Hn we can recover
the position p. We compare our method with a
former method for regularization [17] based solely
upon normals, and we explore the modification of
curvatures during the reconstruction.

2 Digital calculus with
corrected tangent space

We demonstrate here that the same approach of
corrected lengths and areas used in [1] can be used
to build differential operators with other methods.
The approach can be summarized as a correc-
tion of lengths and areas based on how orthogonal
they are to the true normal. Assuming we have
a vector v and a normal u, the corrected length
of v is given by ||v × u||. The corrected area
of a parallelogram defined by two vectors v and
w with normal u is given by det(u,v,w). These
can be seen as the length/areas of the projected
vector/parallelogram onto the tangent plane.

Our data here will be defined by values at
vertices, meaning that each face has 4 degrees of
freedom. We use these degrees of freedom to build
a base of functions on the mesh. These functions
are bilinear on mesh elements here but other basis
functions are possible (e.g., the Virtual Elements
Method [10] requires to know solely the behavior
of functions on edges). The methods we present,
similarly to [1], use a per face construction of
sparse operators.

Notations
The parameter space of each surfel is a unit square
□ := [0, 1]2 parameterized by s and t. We denote
by n the natural or naive normal of a surfel σ,
that can be computed with a cross product of two
consecutive edges. The corrected normal field will
be denoted u. Inside a surfel, we can decompose
these normals in the natural base of the surfel into
u = (ux,uy,uz).

A function f in a surfel σ is assumed to
be bilinearly interpolated. We denote then by[
f (σ)

]
:= [f00(σ), f10(σ), f11(σ), f01σ)]

⊤ the
degrees of freedom of f , corresponding to its values
at each vertex when circulating around σ. We will
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f00 f10

f11f01

f̄0 = 1
2 (f00 + f10)

f̄1 = 1
2 (f10 + f11)

f̄2 = 1
2 (f01 + f11)

f̄3 = 1
2 (f00 + f01) f̄ = 1

2 (f̄0 + f̄2)

Fig. 1: Notations for the interpolations of the val-
ues of a function f on a surfel.

often write simply
[
f

]
when the surfel is obvi-

ous from the context. We sometimes use averages
of these values, whose notations are illustrated in
Figure 1.

2.1 Interpolated corrected calculus
We propose here a calculus where the corrected
normal vector field u(x) is continuous over the
mesh: corrected normal vectors are given at ver-
tices; these vectors are bilinearly interpolated
within each face. Hence, within a surfel, u(s, t) =
u00(1−s)(1− t)+u10s(1− t)+u01(1−s)t+u11st.
Although this naive bilinear interpolation does
not respect the condition that normals need to
be unitary vectors, it yields much simpler formu-
las in calculation. Furthermore, experiments show
that a more complex interpolation yielding almost
unit normals does not improve the results, while
increasing the complexity of formulas.

The construction of the calculus is similar
to the polygonal calculus of [16], building inner
products, sharp and flat operators on a per face
basis. However the correction of the geometry does
not follow [1], but instead use an embedding of
the mesh into the Grassmannian to correct the
area/length measures. The Grassmannian is a way
to represent affine subspaces, hence tangent spaces
here. Within this space, one can define differ-
ential forms that are invariant to rigid motions
(Lipschitz-Killing forms). We exploit here the cor-
rected area 2-form (see [18, 14]): ωu

0 (x)(v,w) :=
det(u(x),v,w), for v and w tangent vectors. As
one can see, thanks to the embedding in the Grass-
mannian, the corrected area form can be expressed
as a simple volume form (i.e. a determinant).
Note that it falls back to the usual area measure
∥v ×w∥ when v and w are indeed orthogonal to
a unit normal vector u(x), while it gets smaller if
there is a mismatch between tangent and normal
information.

We first define how we integrate a quantity g
defined at vertices. In the case of a surfel σ with
constant normal n aligned with z-axis wlog, and
with v = ∂x

∂s and w = ∂x
∂t , the corrected area form

reduced on □ to ωu
0 (s, t) = ⟨n | u(s, t)⟩ = uz(s, t).

We can now compute the integral of g inside a
surfel:

∫∫
□
gωu

0 :=

∫∫
□
g(s, t)uz(s, t)dsdt

=
[
uz

]⊤ 1
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4 2 1 2
2 4 2 1
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2 1 2 4

 [
g

]
.

We study now the integral quantity
∫∫
∇Φωu

0 ,
which is an integrated gradient corrected by the
normal vector field u. First of all, the scalar field
Φ will generally be defined as the bilinear interpo-
lation of a scalar field ϕ defined over the domain.
Thus ϕ(s, t) = Φ(x(s, t)). We relate the gradient
of Φ with the partial derivatives of ϕ by writing
the standard chain rule with Jacobian matrices:

Jϕ(s, t) = JΦ(x(s, t))Jx(s, t)

⇔
[
∂ϕ
∂s

∂ϕ
∂t

]
(s, t) = (∇Φ)⊤(x(s, t))

[
∂x
∂s

∂x
∂t

]
(s, t) .

We quite naturally extend ϕ as constant along
the u direction. The preceding relation can now
be inverted given that (∂x∂s =

[
1 0 0

]⊤
, ∂x∂t =[

0 1 0
]⊤
,u =

[
ux uy uz

]⊤
) forms a basis ((s, t)

is omitted for conciseness):

∇Φ(x) =

 uz 0 0
0 uz 0
−ux −uy 1


︸ ︷︷ ︸

C

∂ϕ
∂s
∂ϕ
∂t
0

 .

It follows that
∫∫

□∇Φω
u
0 =∫∫

□ C
[
∂ϕ
∂s

∂ϕ
∂t 0

]⊤
uzdsdt . Below, we explicit the

vector
[
∂ϕ
∂s

∂ϕ
∂t 0

]⊤
involving derivatives of ϕ as

(1− t)(ϕ10 − ϕ00) + t(ϕ11 − ϕ01)
(1− s)(ϕ01 − ϕ00) + s(ϕ11 − ϕ10)

0
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=

1− t 0 −t 0
0 s 0 s− 1
0 0 0 0


︸ ︷︷ ︸

B


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


︸ ︷︷ ︸

D0

[
ϕ

]
.

The matrix D0 is the differential operator, and is
common to all quad faces. We get:∫∫

□
∇Φωu

0 =

∫∫
□
CBuzdsdt︸ ︷︷ ︸

Gσ

D0

[
ϕ

]
,

where Gσ is a 3 × 4 matrix whose expression is
(note the use of averages):

Gσ =
1

3

 ūz 0 −ūz 0
0 ūz 0 −ūz

−ūx −ūy ūx ūy


+

1

6

 ūz
0 0 −ūz

2 0
0 ūz

1 0 −ūz
3

−ūx
0 −ū

y
1 ūx

2 ūy
3

 .

The (corrected) area aσ of such a surfel σ has
a simple expression, while a pointwise expression
of the gradient Gσ is obtained by normalizing Gσ

by the corrected area leading to:

aσ :=

∫∫
□
ωu
0 =

∫∫
□
uzdsdt = ūz,

Gσ :=
1

aσ
GσD0 .

Sharp and flat operators.
The sharp operator transform a 1-form into a vec-
tor field. We use the expression of the pointwise
gradient to raise any 1-form as a representative
vector per surfel. Within a surfel, a 1-form asso-
ciates a scalar value to each (oriented) edge. Let
β be a 1-form, and

[
β (σ)

]
:=

[
β0 β1 β2 β3

]⊤ its
values on the 4 edges of σ. Omitting the differ-
ential operator D0 in the pointwise gradient gives
the representative 3D vector of β on surfel σ:

β♯(σ) :=
1

aσ
Gσ

[
β (σ)

]
.

The discrete sharp operator on σ is thus the 3× 4
matrix Uσ := 1

aσ
Gσ.

The flat operator projects a vector field onto
the tangent plane and computes its circulation

along each edge. The 1-form v♭ associated with
vector v is thus:

[
v♭

]
:=

∮
∂f

t⊤(I − uu⊤)v

=

∫ 1

0


[
1 0 0

]
(I − u(r, 0)u⊤(r, 0))v[

0 1 0
]
(I − u(1, r)u⊤(1, r))v[

−1 0 0
]
(I − u(r, 1)u⊤(r, 1))v[

0 −1 0
]
(I − u(0, r)u⊤(0, r))v

 dr.
By linearity, the flat operator Vσ is a 4× 3 matrix
(see appendix for details).

Inner products for discrete forms (i.e
metrics).
The inner product between 0-forms is simply
the integration of their product on the surfel σ.
For any bilinearly interpolated functions ϕ, ψ, we
obtain on the surfel σ the scalar:

⟨ϕ | ψ⟩0 (σ) :=
∫∫

σ

ϕψω
(u)
0

=
[
ϕ (σ)

]⊤
M0,σ

[
ϕ (σ)

]
.

The associated metric matrix is a 4 × 4 symmet-
ric matrix, called mass matrix, whose expression
is given in the appendix. If the corrected normal
vector u is consistent with the naive surfel nor-
mal n (i.e. ⟨u(s, t) | n⟩ > 0), then M0,σ is positive
definite.

We would like the inner product between 1-
forms β and γ to be defined by emulating the
continuous case. We integrate the scalar product
between the vectors associated with the 1-forms
on the surfel σ:

⟨β | γ⟩1 (σ) :=
∫∫

□

〈
β♯ | γ♯

〉
ω
(u)
0

=
[
β (σ)

]⊤
Mnaive

1,σ

[
γ (σ)

]
.

Using above relations we have:

⟨β | γ⟩1 (σ) = aσ(Uσ

[
β (σ)

]
)⊤(Uσ

[
γ (σ)

]
γ)

=
[
β (σ)

]⊤ (
1

aσ
G ⊤
σ Gσ

)[
γ (σ)

]
.

Hence Mnaive
1,σ = 1

aσ
G ⊤
σ Gσ; it is a symmetric

matrix. It can be verified that, if u is a unit con-
stant vector over the surfel σ and ⟨u | n⟩ > 0,
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then this matrix is symmetric positive semidefi-
nite. However, it is not definite. To remedy this,
we follow [16] and complement the definition to
get the stiffness matrix as

M1,σ :=
1

aσ
G ⊤
σ Gσ + λ(I − UσVσ) . (1)

Calculus on the whole mesh.
Let n, m and k be respectively the number of ver-
tices, edges and faces of the mesh. Let V be the
space of all sampled functions (an n-dimensional
vector space), and E be the space of all discrete
1-forms (an m-dimensional vector space). Global
operators sharp U (size 3k × m), flat V (size
m × 3k), mass matrix M0 (size n × n) and stiff-
ness matrix M1 (size m×m), differential D0 (size
m × n) are obtained by merging the correspond-
ing local operators Uσ, Vσ,M0,σ,M1,σ, D0 on the
corresponding rows and columns.

Codifferentials and Laplacian.
We build the 1-codifferential δ1 : E → V by
adjointness in our inner products.

∀f ∈ V ,∀α ∈ E ,

⟨D0f | α⟩1 = −⟨f | δ1α⟩0 ⇔ (D0f)
⊤M1α

= −f⊤M0δ1α.

Being true for all pairs (f, α), it follows that
δ1 := −M0

−1D⊤
0 M1. The Laplacian operator ∆0

is the composition of the codifferential and the
differential, i.e.

∆0 := δ1D0 = −M0
−1D⊤

0 M1D0.

Since it is very costly to build the matrixM0
−1, we

will generally not use the two operators δ1 and ∆0

as is when solving numerical problems, but we will
rather work with their “integrated” version (M0δ1
and M0∆0). We can now see another approach
to compute a Laplace-Beltrami operator coming
from the Finite Elements framework.

2.2 Generalization to Finite
Element Method

We show here how to adapt the standard Finite
Element Method (FEM), e.g. see [8], in order to

solve a Poisson problem. The method builds a stiff-
ness matrix L and a mass matrix M to transform
the Poisson problem into a linear problem. We will
see also that a Laplace operator can be obtained
with the same method. Our adaptation consist in
correcting the metric used, changing the formu-
las used for derivatives and dot products. While
we only demonstrate here how to correct FEM
on a Poisson problem, other problems can also be
corrected with the same metric.

The Poisson problem is formulated as solving
for g in ∆g = f , with a given boundary constraint
for g if the domain has a boundary, or with a fixed
value somewhere if the domain has no boundary.
The weak formulation of this problem is given by:
solve for f∫

Ω

∇g.∇Φ = −
∫
Ω

fΦ +

∫
∂Ω

Φ⟨∇g,n⟩ , (2)

for any Φ. In our case, we will evaluate against Φ
the locally bilinear functions inside each element.
The third term is dependent on the boundary
condition, and we will make it vanish here for now.

The FEM approach consists in discretizating
the problem at nodes and splitting the domain into
elements bordered by nodes (quads here): func-
tions g (say) are discretized at these nodes as
vectors g of their values at nodes. FEM assumes
bilinear interpolation of functions within elements.
It builds a stiffness matrix L and a mass matrix
M such that Lg = Mb. This corresponds to the
first two terms in ( 2). Boundary constraints are
integrated in this linear problem, either by remov-
ing rows and columns or by setting equalities. We
can then solve the Poisson problem by solving the
linear system Lg = Mb, but we can also deduce
a Laplacian operator ∆ :=M−1L.

The matrices are built quad by quad, so here
per surfel. We start by defining a metric G per
surfel, since it depends on the corrected normal
u, then using this metric in the formulas for
derivatives and scalar products when building the
matrices. Our reference element is a unit square
in the plane □. We obtain:

G =

[
1− (ux)2 −uxuy

−uxuy 1− (uy)2

]
.

Since we assume now that our corrected nor-
mal field is constant on the surfel, the metric is
also constant. This is an arbitrary choice we make
in order to keep formulas simple. It becomes easy
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to compute the gradient and Laplacian. We use
the formula df(w) = ⟨∇f,w⟩G for any vector
w, with ⟨·, ·⟩G the inner product. It follows that
∇f = G−1

[
∂f
∂s

∂f
∂t

]⊤
. For the Laplacian, since the

metric is constant, we use ∆f = ∇·∇f . We write
them more explicitly as:

∇f =
1

(uz)2

[
(1− u2y)

∂f
∂s + uxuy ∂f

∂t

uxuy ∂f
∂s + (1− (ux)2)∂f∂t

]
(3)

∆f =
1

(uz)2

(
(1− (uy)2)

∂2f

∂s2
+ 2uxuy ∂

2f

∂s∂t

+ (1− (ux)2)
∂2f

∂t2

) (4)

We choose a basis of bilinear functions on the
square as our basis functions. This choice can
be disputed: while linear functions are still har-
monic regarding to the Laplacian in (4), bilinear
functions are no longer harmonics in this setting.
However, finding a way to build hat functions that
stay harmonic in this setting is not obvious. Yet
bilinear functions are still used on quad meshes
that are not rectangular and where the same rea-
soning can be applied to show that they are not
harmonic. We define the four basis functions as
f0 = (1 − s)(1 − t), f1 = s(1 − t), f2 = st,
f3 = (1− s)t.

In order to build our stiffness matrix we eval-
uate:

∫
□⟨∇f,∇p⟩G for any bilinear f and p. The

local stiffness matrix LM is given in (5) of Figure
2. The global stiffness matrix L is then obtained by
summing over all the local stiffness matrices. The
local mass matrix MM is computed from

∫
Ω
fp ,

with f and p bilinear:

MM =
uz

36
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 . (6)

We recognize the standard mass matrix for quad
mesh with a factor correcting the area of the surfel.
It is the same as M0 for constant u. The global
mass matrix M is obtained similarly by summing
over all the local mass matrices.

2.3 Generalization to Virtual
Refinement Method

Here we show how we can adapt the method from
Bunge et al. [2] for surfels with corrected normals.

The method can be summarized as: each face
has a virtual point added to it, that is then used as
a basis for the triangulation the face. The point is
chosen as the one minimizing the squared areas of
the created triangles. Then, the point is expressed
as a linear combination of the face. The weights
used in the linear combination are used to create
a prolongation operator. The stiffness matrix are
then built on the triangulation, and the polygonal
versions of those matrices are deducted using the
prolongation.

First, we find the position of the virtual point
inside each face, by minimizing the squared areas
of the 4 created triangles. For the corrected nor-
mals, we use normals interpolated at vertices,
otherwise a constant normal per face would lead
to a point at the center of the face every time
and wouldn’t take advantage of this step. Thus
our goal is to find s0 and t0. Our goal is to mini-
mize the sum of the squared areas of the triangles
A2

0 + A2
1 + A2

2 + A2
3 (figure 3). The area of these

triangles can be expressed as an integral, recalling
that the corrected area form ωu

0 (x(s, t)) reduces
to uz(s, t) on a surfel:

A0 =

∫ s0

0

∫ s
s0

t0

0

uz(s, t)tdtds

+

∫ 1

s0

∫ 1−s
1−s0

t0

0

uz(s, t)tdtds. (7)

The three other areas have similar form. The com-
ponent uz being bilinear in s and t, the total area
to optimize is given by a 6th order polynomial,
and the exact solution is hard to obtain. Instead,
we use a simple gradient descent to minimize it:
using randomly generated values for the normals,
we see that it generally converges in a few steps
and always stays inside the surfel.

Once we have s0 and t0, we have our virtual
point p as a bilinear combination of the vertices
of the face. We can directly deduce the weights
and build the projection operator P . For the ver-
tices v0, v1, v2, v3 that make up the surfel, the
corresponding weights are w0 = (1 − s0)(1 − t0),
w1 = s0(1 − t0), w2 = s0t0, w3 = (1 − s0)t0. The

6



LM =
1

6uz


3uxuy + 2 + 2(uz)2 2(uy)2 − 1−(ux)2 1− 3uxuy − (uz)2 2(ux)2 − 1−(uy)2

2(uy)2 − 1−(ux)2 2− 3uxuy + 2(uz)2 2(ux)2 − 1)−(uy)2 3uxuy + 1− (uz)2

2− 3uxuy − (uz)2 2(ux)2 − 1− (uy)2 3uxuy + 2 + 2(uz)2 2(uy)2 − 1−(ux)2

2(ux)2 − 1−(uy)2 3uxuy + 1 + (uz)2 2(uy)2 − 1−(ux)2 2− 3uxuy + 2(uz)2

 . (5)

Fig. 2: Local stiffness matrix LM for the corrected finite element method.

s0

t0

v0 v1

v3 v2

A0

A1

A2

A3

Fig. 3: We find s0 and t0 such that the sum of the
squared areas A2

0 +A2
1 +A2

2 +A2
3 is minimized.

prolongation operator then needs to assign values
to vertices and the virtual vertices from the ver-
tices: for a single face, it would be a 5× 4 matrix
of the form

Pf =


w0 w1 w2 w3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The global prolongation operator P ∈ Rnv+nf×nv

is built on the same principle: the first nf rows
have non-zero values on the columns whose indices
correspond to the vertices of the face, with the
values being the wi of the virtual point of this
face associated to the vertex corresponding the
the row. The following nv rows correspond to the
identity matrix.

For the mass matrix, we simply apply the area
formula of (7). For the stiffness matrix, we could
try to again use a finite element approach, however
trying to evaluate

∫
∇g ·∇fdA for f and g two lin-

ear functions, and using the correction metric, is

quite complex. Instead, we adapt the metric ver-
sion of the cotan formula. For a triangle with edges
l0, l1 and l2 (opposite to vertices v0, v1 and v2
respectively), the coefficient between two different
vertices i and j is given by (−l2k + l2i + l2j )/(4A).

Once we have built the mass matrix M△ and
L△ on the triangulation, using our prolongation
operator we compute M = P⊤M△P and L =
P⊤L△P . We now have three ways of building
a sparse Laplace-Beltrami operator. We see now
how they compare against operators from previ-
ous works. We compare the method “PolyDEC”
[16], its corrected version “Projected PolyDEC”
[1], the interpolated corrected calculus “Corrected
Calculus”, the corrected finite element method
“Corrected FEM”, the corrected virtual refinement
method “Corrected VRM” and the heat kernel
method "Heat Kernel" [15].

3 Evaluations and comparisons
We compare the resulting operators and the ones
from previous works on several use cases: first
on the sphere, with forward evaluation (compute
the Laplacian of a function), backward evaluation
(solve a Poisson problem getting a function back
from its Laplacian), eigenvalue comparisons, and
then on a standard mesh by comparing with the
results obtained on an underlying triangle mesh.
Plots related to digitized spheres are the means
of the results of 32 computations for each step,
each conducted with a different center to bet-
ter take into account the variability in sphere
discretizations.

3.1 Forward evaluation
Several previous works tried to evaluate the qual-
ity and convergence of the Laplacian operator
when used in a forward manner: from f defined
on the mesh, we compute ∆f both analytically
and with a discrete Laplacian, then compare the
two results. In other words, if our stiffness matrix
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Fig. 4: Naive forward evaluation of the mesh
Laplacian on an exponential function. No conver-
gence is observed.

is called L and our mass matrix M , we solve the
equation LF =MX where X is the unknown.

A naive approach consists in computing X =
M−1LF . This is the one that was used for evalu-
ation in previous works, and was not convergent
when using sparse operators. We reproduce this
behavior by computing the Laplacian of f(x) = ex

using various methods, none of which seem to con-
verge (see Figure 4). This is disappointing since
we expect the Laplacian operator to have linear
convergence when evaluated in forward manner, as
observed in [15] and proven for the mesh Laplacian
[19] on triangle mesh.

Our idea for improving the convergence con-
sists of adding a small diffusion step to the result.
It suffices to replace the mass matrix M by M −
dtL. In other words, instead of evaluating X =
M−1LF , we evaluate X = (M − dtL)−1LF . The
result depends on the choice of parameter dt: we
found that we approach linear convergence when
dt is in the order of h, and the best quality for
dt = 0.035h. This means that we add a diffu-
sion step with a characteristic length of order h

1
2 ,

which is coherent with results from other works.
Using this method, we achieve what seems to be
linear convergence on different functions (Figure
5), with results comparable or even higher quality
than in [15]. We run the same experiment as figure
5, with estimated normal vectors (using Integral
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Fig. 5: Forward evaluation of the mesh Lapla-
cian with added diffusion on a quadratic function
(top), exponential function (middle) and the sixth
spherical harmonic (bottom). Adding diffusion
significantly improves the results, achieving lin-
ear convergence on the sphere. We achieve similar
rates of convergence as Heat Kernel [15], with a
better quality on less smooth functions. The Heat
Kernel method is , however, limited to a grid step
of h ≥ 0.03, due to its enormous memory usage.

Invariant [13]) instead of ground truth. Results
are shown in Figure 6, and also approach linear
convergence.
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Fig. 6: Evaluation of the Laplacian using the
integral invariant normal estimator. Estimated
normals give slightly worse results than with true
normals, yet the Laplacian seem to converge too.
Computations are performed for grid steps h ≥
0.008 because integral invariant normal estimator
is very slow on finer grids.

3.2 Backward evaluation
A Laplacian is often built to solve a Poisson prob-
lem. We evaluate a function on our digital surface,
we also evaluate its Laplacian using an exact for-
mula, then we compute an approximation of the
original function that we compare to the exact
original. It is a criterion used for Laplacian eval-
uation (see [11]), which has not yet been done
for digital Laplacians. It also makes more sense
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Fig. 7: Error when solving a Poisson problem with
different Laplacians. We approach a quadratic
convergence rate.

to evaluate the Finite Element Methods in this
case than in forward evaluation, as this is the
problem the operator is built for and is proven
(in the case of standard regular meshes) to con-
verge. We find that all methods give roughly the
same results (figure 7). They seem to be conver-
gent, with a rate around h1.9, which is coherent
with the theoretical quadratic rate. Again, we run
the experiment using the Integral Invariant esti-
mators and approach similar rate of convergence
(Figure 8).
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Fig. 8: Results using integral invariant estimated
normals for solving a Poisson problem.

3.3 Eigenvalues
We follow the evaluation of eigenvalues on the
spherical harmonics used in [11]. Since the spher-
ical harmonics have analytic expressions, we can
compare the eigenvalues of our operator to the
exact eigenvalues of the Laplace-Beltrami opera-
tor on the sphere. To obtain these eigenvalues, we
solve for λ in the following generalized eigenvalue
problem Lu = λMu. Figure 9 shows the first
eigenvalues of our Laplacians on the unit sphere
with discretization steps h = 0.1 and h = 0.01.
The PolyDEC method [16] is not accurate, but
corrected methods are, with accuracy increased at
finer resolutions.

-40

-20

0

0 20 40

E
rr

or

h = 0.1

-40

-20

0

0 20 40
E

rr
or

h = 0.01

-0.06

-0.04

-0.02

0

0.02

0.04

0 20 40

R
el

at
iv

e
ei

ge
nv

al
ue

s
er

ro
r

h = 0.1

-0.02

0

0.02

0.04

0 20 40

R
el

at
iv

e
ei

ge
nv

al
ue

s
er

ro
r

h = 0.01

Reference
PolyDEC

Projected PolyDEC

Corrected Calculus
Corrected FEM
Corrected VRM

Fig. 9: The smallest 49 eigenvalues of the Lapla-
cian on unit sphere with discretization step 0.1
and 0.01. Relative error is given by (λ̂ − λ)/λ,
where λ̂ is the approximated eigenvalue and λ the
correct value.
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3.4 Comparison to the cotan
Laplacian

Until now all our comparisons were made on a
digitized sphere: this is because there are some
closed form expressions of Laplacians, and its
eigen decomposition is well studied. However, the
sphere is a very specific case, and our evaluations
may not reflect well more general cases. We com-
pare here our operators to the results obtained on
a regular, high quality triangle mesh with the stan-
dard cotan Laplacian. To do so, we use a refined
version of a triangle mesh (at 100000 vertices), and
equivalent digital surfaces at different resolutions
(1283, 2563, 5123). Then we built a projection
operator allowing us to map values on the high
resolution mesh to the digital one (orthogonal pro-
jection and linear interpolation). We also use this
projection operator to map the normal vector field
computed on the mesh to the surfels or vertices in
the calculus frameworks. We then compute a func-
tion on the triangle mesh as well as its Laplacian
using the cotan Laplacian on the triangle mesh
[4], and then their projection on the digital sur-
face, which we use as "ground truth". Forward
evaluation results are shown on figure 10. We use
the same diffusion constant as previously (0.035h).
Error is significantly reduced with the discretiza-
tion step of the digital surface, suggesting that our
operator is convergent toward the result given by
the cotan Laplacian.

As a more complex testbed for our corrected
differential operators, we propose in the follow-
ing section a method for mesh regularization that
relies on differential calculus.

4 Surface regularization from
normal vectors and
curvatures

Since we can estimate normal vectors, curvatures,
and build a corrected Laplace-Beltrami operator
even with bad positions, we can leverage the equal-
ity ∆p = −2Hn in order to recover consistent
positions after estimating normals and curvatures.
Another way to view this approach is to say that
we use our mean curvature estimator along with
the normal estimator in order to build delta coor-
dinates which encode the deviation of each point

to the barycenter of its neighbors. In this situa-
tion, following the argument from [20], we need
less precision in order to recover the result since
encoding delta coordinates requires less precision
that encoding the absolute position. Our approach
can also include curvature modifications steps if
needed.

4.1 Digital surface regularization
We describe here a process of regularization for
digital surfaces. The steps are the following: we
first compute integral invariants [13] (with α =
1/3) for normals n on the digital surface, and then
use corrected curvature measures [18] (with radius
r = 0.1) for estimation of the mean curvature H.
We also build a corrected Laplacian from the cor-
rected normals and the digital surfaces. We could
then minimize the energy ||∆p′−Hn||2. However,
similarly to some high pass quantization that does
not preserve low frequencies, the results we have
shown good features but tends to deviate from the
original surface (figure 11). In the case of digital
surfaces, the error in position is in high frequen-
cies, so it makes sense to use this energy to fix the
high frequencies: in order to also match in lower
frequencies by minimizing

||∆p′ −Hn||2 + α||p′ − p||2 ,

where p are the original positions and α is a weight
between the two energies. The α coefficient has to
be homogeneous to the inverse of a square length,
so we take it of the form α = α0

h2 (h being the dis-
cretization step) and we use α0 = 10. This energy
is quadratic so it can be minimized in a single step
by computing

p′ = −1

2
(L⊤M−1L+ αM)−1(LHn− αMp).

We compare our results with the ones obtained
using the method of Coeurjolly et al. [17] (figure
12). Their method also uses an input corrected
normal field, and also includes a term attaching
positions to the original ones: however, in their
case, it is used in order to avoid shrinkage (the
rest of the energy can be minimized by just shrink-
ing the surface) while we only use this term in
order to avoid a low frequencies deviation (remov-
ing this term yields a non-degenerate solution).
Our results are visually similar to the one obtained
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Fig. 10: Comparison between classical cotan Laplacian of a function defined on a triangle mesh and the
digital Laplacian operators. All three operators have comparable performances. The error decreases as
the resolution increases, suggesting that all three operators are convergent.

Original shape α = 0 α = 10/h2

Fig. 11: Regularization of a 256 × 256 × 256 voxelization of the armadillo mesh with and without a
position attachment term. While most of the features of the shape are obtained, the members highly
deviate from the original position when α = 0

by [17]. We compare the use of non-corrected and
corrected operators, by using non-corrected ones
built using the method from de Goes et al. [16]
and the normal corrected variants from Coeur-
jolly and Lachaud [1] (figure 13). Compared to
the results obtained using corrected operators, the
non-corrected one look inflated: this is explained

by the lack of correction in the mass matrix, mean-
ing that the estimated area of the shape is taken
to be the same as the area of the digital surface
which is significantly larger than the area of the
actual surface. However, since the non-corrected
Laplacian does not change the geometry of the
surfels, the quads resulting from the regularization
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have similar edge lengths: if this is a desired fea-
ture for the result, α can be increased in order to
make the result match more closely to the digital
surface and counter the expansion effect caused by
overestimated area.

A drawback of our method is that the recov-
ered surface tends to be smoother than the original
(figure 14), due to the nature of the normal and
curvature estimators which smoothes the actual
curvature and normals.

We do some experiments on known surfaces
in order to measure the accuracy of the method:
we first voxelize the surface, then we regularize
the digital surface and then measure the distance
of the regularized surface to the original one. We
measure the l1 distance and the difference between
the of the regularization and of the original sur-
face: both errors are reduced as the grid step
diminishes (figure 15).

4.2 Mesh reconstruction from
normal fields

We explore the possibility of using corrected oper-
ators when using other geometries than digital
surface, or other normal fields than one estimated
from an estimator ran on positions. Such a case
arises when using surfaces with normal maps. We
use a high resolution surface in order to build a
lower resolution surface with a normal map. The
latter is a much more compact data structure than
the former. Our goal is to build back the origi-
nal surface from the lower resolution one and the
normal map.

As a proof of concept, we start from a coarse
mesh with a normal map. We then build a vox-
elization of this coarse mesh, which we then sub-
divide. We compute a projection for the center of
each surfel onto the coarse mesh in order to sample
the normal map on the coarse mesh, thus emulat-
ing a normal map directly defined on the digital
surface. The procedure is illustrated on Figure 16.
This case illustrates a situation where the posi-
tions highly deviate from the underlying surface,
and where the reconstruction tends to be unsta-
ble. As a way to stabilize this procedure, we clamp
the curvature estimator as it introduces very high
incorrect values at somes points. Our method is
able to recover the original surface with only a
few defects visible. Using non-corrected operators
induce a far worse reconstruction.

4.3 Curvature edition
Since we use normals and curvature to recover
positions, we can modify the curvature and recover
a shape with this curvature. A simple way to do
this is through the modification of the H com-
ponent. Since we do not modify the normals and
we still try to match the original positions, the
resulting surface doesn’t exactly have the target
curvature: as an example, we can multiply the cur-
vature by a constant, which in theory only rescales
the shape by the same amount, while in our case
this exaggerates the features of the shape.

Thus, our reconstruction can include various
curvature modifications such as curvature amplifi-
cation or curvature clamping (figure 17). This can
be used in order to exaggerate some features, or
instead to smooth some part of the shape.

As a way to further modify the curvature, we
can directly manipulate the shape operator S :=
dn. It is a symmetric 3×3 matrix, with at most two
non-zeros eigenvalues k1 and k2 corresponding to
the principal curvatures. Their eigenvectors corre-
spond to the principal curvature directions. It can
usually be obtained from classical curvature esti-
mators, such as corrected curvature measure. The
last eigenvalue of the resulting matrix is generally
not zero however (corresponding to the normal
direction): this is fixed by computing instead
S + Knn⊤, where K is a big constant (like 106)
and then ignoring the largest eigenvalue. The two
remaining eigenvalues can then be modified, and
a shape operator S′ can be built. Since dn = S,
we can integrate our shape operator S′ in order
to build n′ (again, we also add a term to attach
the new normals to the original normals), which
we then normalize. We then evaluate p′ from n′

and H ′ = Tr(S′). The procedure is summarized in
algorithm 4.3.

This procedure does not make the curvature
exactly match the input: for example, if we try
to set Gaussian curvature to 0 everywhere, since
the Gauss-Bonnet theorem states that

∫
Ω
KdA =

2− 2g with g the genus, a surface homeomorphic
to a sphere (g = 0) cannot have 0 Gaussian cur-
vature everywhere. In practice, setting one of the
two curvature components to 0 everywhere gives a
smoother surface. Curvatures can also be modified
in order to, for example, exaggerate the strongest
principal curvature (see figure 18).
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Fig. 12: We use several regularization methods on a voxelization of the bunny shape on a 256 × 256 ×
256 grid. Left: original shape, middle-left: regularization of [17], middle-right: our regularization with a
corrected Laplacian, right with a non-corrected Laplacian. The bottom row shows that our results do not
shrink compared to the ones obtained by Coeurjolly et al. [17]. Here, the difference between corrected
and non-corrected is visually small.

Algorithm 1: Normal and surface regu-
larization

Data: P, F,N, S, α //digital surface of
positions P and faces F, normal
fields N, shape operator field S

Result: P ′ //Corrected positions
L,M ←
BuildCorrectedLaplacian(P, F, N );

Div ←
BuildCorrectedDivergence(P, F, N );//Build
corrected operators

dS ← Div(S);
//Minimize ||M−1LN ′− dS||2+α||N ′−N ||2

N ′ ← (LM−1L+ αM)−1(−2LdS + αMN);
H ← trace(S) //Compute mean curvature
N ′ ← normalize(N’);
//Minimize ||M−1LP ′−HN ′||2+α||P ′−P ||2

P ′ ← (LM−1L+ αM)−1(−2LHN ′ + αMP );
return P’ ;

5 Conclusion
We show that, similarly to the corrected Poly-
DEC method [1], a corrected normal field can be
inserted within discrete calculus frameworks yield-
ing different Laplace-Beltrami operators. All these
operators seem to converge when solving Poisson
problems, and when used in a forward evaluation,
the addition of a slight diffusion also seems to
make them convergent. A limit of our study is that
these results are only experimental: only the Heat
kernel Laplacian of [15] is yet proven to converge
on digital surfaces (strong consistency). However,
since results on a common framework (the finite
element method) seem promising, it may be inter-
esting to see if the proof of convergence from this
framework can be adapted to digital surfaces. The
same type of calculus construction could also be
tested outside digital surfaces, for instance on a
triangle mesh with a corrected normal field or
a normal field of much higher resolution such
as a normal map (as done in [18]). The idea of
adding diffusion and modifying the mass matrix
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Fig. 13: Left: regularization with a corrected
laplacian vs right with a non-corrected one, both
on a 256×256×256 voxelization of the spot shape.
The corrected Laplacian shows the pattern given
if the digital surface was projected onto the under-
lying surface, while the non-corrected one provides
a surface where each edge has approximately the
same length. The top row uses α = 0.1 and the
bottom one α = 1000: when using low α (so a weak
attach to the original positions), the non-corrected
Laplacian regularization is visually worse than the
corrected one. However, if the regularity of edge
lengths is a desired effect, α can be increased to
decrease the influence of the Laplacian.

can be seen as similar to the approach of [21].
However Caissard et al. [15] were not able to repro-
duce their experiments and expected convergence,
probably because digital surfaces do not have the
mesh regularity required by the proof. Indeed,
from our metric G it is easy to find that mesh

1 2

Regularization of [17]

3

3

1

3

2

Corrected Laplacian regularization
Fig. 14: Top: original shape (voxelization of the
fandisk shape on a 256× 256× 256 grid). Middle:
regularization from [17]. Bottom: our regulariza-
tion using a corrected Laplacian. Our method
exhibits less sharp angles (2), but tends to be
smoother and to avoid stair-like effects on parts
of the surface that should be flat (1). Our method
is also sensible to artifacts from curvature esti-
mations: the bottom side isn’t flat and there is a
visible bump inside an angle (3).

regularity means that 1
|uz| is bounded. Such a con-

dition can be fulfilled for some specific meshes
(such as a digital plane), but is not guaranteed on
surface digitization in general (such as a sphere).
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grid size : 64x64x64 128x128x128 256x256x256 512x512x512

sphere position error 0.00583 0.00289 0.00138 0.000688
normal error 0.0548 0.0416 0.0333 0.0233

bunny position error 0.00457 0.00235 0.00118 0.000184
normal error 0.239 0.158 0.0972 0.0614

spot position error 0.00370 0.00188 0.000942 0.000510
normal error 0.152 0.1014 0.0783 0.0569

Fig. 15: Error obtained on the regularization of digital surfaces by comparing with the surface that
was voxelized. The error is first obtained pointwise by computing the distance of each point of the
regularization to the original surface (and by taking the difference of the normals for the normal error)
and then integrated into the l1 error.
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No modification

H ← 2H

H > 50 ⇒ H ← 50
Fig. 17: Various reconstructions of the fandisk
shape with mean curvature manipulations.

[21] Hildebrandt, K., Polthier, K.: On approxi-
mation of the Laplace-Beltrami operator and
the Willmore energy of surfaces. Computer
Graphics Forum (2011)

A Details on the interpolated
corrected calculus

Let σ be a surfel aligned with x and y and with
normal aligned with z. The flat operator has the
following expression:

Vσ :=
1

6

[
V1 V2 V3

]
with:

V1 :=
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V2 :=
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V3 :=
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The metric matrix for 0-forms is defined as the
matrix such that, for any bilinearly interpolated
functions ϕ, ψ, we obtain on surfel σ the scalar:

⟨ϕ | ψ⟩0 (σ) :=
∫∫

σ

ϕψω
(u)
0 = [ϕ (σ)]

⊤
M0 [ϕ (σ)] .

Let us now define weighted sums for components
of u over the quad. We number the edges when
turning along the boundary of the surfel σ from 0
to 3, such that edges 0,1,2,3 connect vertex pairs
(x00,x10), (x10,x11),(x01,x11),(x01,x00), respec-
tively. We define

ū00 := 9u00 + 3u10 + u11 + 3u01

ū10 := 3u00 + 9u10 + 3u11 + u01

ū11 := u00 + 3u10 + 9u11 + 3u01

ū01 := 3u00 + u10 + 3u11 + 9u01

ū00,10 := 3u00 + 3u10 + u11 + u01

ū10,11 := u00 + 3u10 + 3u11 + u01

ū11,01 := u00 + u10 + 3u11 + 3u01

ū01,00 := 3u00 + u10 + u11 + 3u01
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Standard
regularization k2← 0 k2 ← −k2 k1 ← 2k1 k2 < −5

⇒ k2 ← −5
Fig. 18: Various curvature editions of k1, k2 the principal curvatures, with k1 > k2. These are applied
during the regularization process starting from voxelized shapes on a 256× 256× 256 grid.

By integration of the left-hand side, we obtain for
a surfel with normal z:

M0 =
1

144

 ūz
00 ūz

00,10 4ūz ūz
01,00

ūz
00,10 ūz

10 ūz
10,11 4ūz

4ūz ūz
10,11 ūz

11 ūz
11,01

ūz
11,01 4ūz ūz

11,01 ūz
01

 .
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