
HAL Id: hal-04913543
https://hal.science/hal-04913543v1

Preprint submitted on 14 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A benchmark for elasto-plasticity in finite strain
Louis Lesueur, Anders Thorin, Daniel Weisz-Patrault

To cite this version:
Louis Lesueur, Anders Thorin, Daniel Weisz-Patrault. A benchmark for elasto-plasticity in finite
strain. 2025. �hal-04913543�

https://hal.science/hal-04913543v1
https://hal.archives-ouvertes.fr


A benchmark for elasto-plasticity in finite strain
Louis LESUEUR1,2, Anders THORIN1, Daniel WEISZ-PATRAULT2

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Laboratoire de Mécanique des Solides, CNRS UMR 7649, École Polytechnique Institut

Polytechnique de Paris, F-91128 Palaiseau

ABSTRACT Finite strain elasto-plastic simulations are critical in fields such as materials science (metal forming,
forging, additive manufacturing) and automotive engineering (crash simulations). These simulations are
traditionally carried out using computationally intensive finite element analysis (FEA), which limits their use
in optimization tasks (e.g., optimal control, design processes) and real-time applications (e.g., teleoperation,
personnel training). In this work, we introduce a benchmark dedicated to highly non-linear elasto-plastic
simulations, designed to evaluate and develop neural network models tailored for solving elasto-plastic
problems under finite strain conditions, ultimately unlocking potentially real-time optimization and interactive
simulations. The datasets include simulations of 1D and 3D elements, featuring quasi-static sequences
of applied loads on complex geometries, and the resulting computed physical quantities: displacements
fields, plastic flow coefficient field, stresses. To specifically evaluate the impact of plasticity on different
neural networks, the datasets also feature simulations with identical inputs but employing a purely elastic
constitutive law.

Link to open datasets: https://doi.org/10.57745/HQJMYA.

1. Introduction Finite strain elasto-plastic simulations are essential in fields involving significant
material deformation, where both elastic and plastic behaviors occur. Key applications include
aerospace (crashworthiness, landing gear), automotive (crash simulations, forming), civil engineering
(geotechnical, seismic analysis), materials science (metal forming, additive manufacturing) or
biomechanics (tissue modeling, implants). Traditionally, these simulations are carried out using
computationally intensive finite element analysis (FEA), which limits their use in optimization tasks
(e.g., optimal control, design processes) and real-time applications (e.g., tele-operation, personnel
training).

This work introduces a benchmark dedicated to highly non-linear elasto-plastic simulations,
designed to evaluate and develop neural network models tailored for solving elasto-plastic problems
under finite strain conditions. By leveraging the capabilities of neural networks, we aim to unlock
the potential for optimization and interactive simulations, thereby addressing the computational
challenges associated with traditional FEA methods.

Scientific ML: In recent years, ML has made spectacular progress, particularly in the fields
of Computer Vision and language processing. These advancements now extend to “Scientific
ML” which involves the use of ML algorithms in scientific contexts. Notably, the development of
PINNs [6, 18] has demonstrated the ability of NNs to accurately model the solutions of differential
equations.

NN in computational mechanics : More specifically in computational mechanics, NNs have
been successfully used to develop surrogate models in non-linear solid mechanics, offering inference
speeds that are several orders of magnitude faster than FEA. An overview of the latest techniques is
presented in [9]. Three main approaches have emerged:

1. Physics-Informed Neural Networks (PINN): In the PINN approach, the solution u of a
differential equation is approximated by a neural network û. This approach allows the use of
physics-inspired loss functions, such as minimizing a residual. PINNs are very popular and can
be used to model linear elasticity [7] as well as nonlinear behaviors in solid mechanics, such

1

https://doi.org/10.57745/HQJMYA


as elastoplasticity [1, 20]. Specific PINN architectures exist to enforce physical constraints
like thermodynamics [15]. It is worth noting that in PINNs for PDEs, boundary conditions are
incorporated into the loss function. This requires external forces to be known or parameterized
beforehand, which is not always feasible.

2. Global Approaches: In these approaches, a neural network architecture is also used to
approximate a solution function u of an equation but unlike PINNs, the goal is to predict
its values at specific points within a domain based on input loads and boundary conditions.
This approach is useful when the cost of evaluating a residual is too high [16] or when the
supporting geometries are too complex. Regarding computer mechanics, a popular global
use of neural networks is to learn only the constitutive law and integrate it into finite element
software [8, 10].

3. Generative Neural Networks: Particularly popular in fluid mechanics [12], generative machine
learning architectures, such as GANs or VAEs, can be used to generate physically realistic dis-
placement or stress fields. Similar to image generation, controlling the outputs via prompting
is a major challenge.

Datasets in computer mechanics: These advances have motivated the creation of benchmarks
such as [19] and [2], which compile results from various time-dependent simulations modeling
of diverse physical phenomena. Although comprehensive, these benchmarks are designed for
general PDE-solving algorithms. Regarding applications in computational mechanics, specifically
continuum mechanics, there is a lack of comprehensive benchmarks, and often the data used in
papers are not accessible.[14] is arguably the most complete dataset in computational mechanics, but
it pertains to fluid mechanics. In solid mechanics, specific datasets for certain problems can be found,
such as [17], which contains semi-realistic images of porous materials. Concerning elasticity, the
problem being straightforward, few papers share their data, preventing reproducibility. An exception
is [3] which provide an example and database of 2D-elasticity. [21] also shares data from elastic
simulations using the Finite Element Method (FEM) on plates. For non-linear solid simulations, few
articles exist, and none share data to the authors’ knowledge. Results of particle-based simulation
are shared in [11] for reinforcement learning.

The following derives the governing equations of finite strain elasto-plasticity (section. 2). The
two databases are then described (sections 3 and 4).

2. Problem statement

2.1. Large transformation plasticity The basic set of equations of the theory of plasticity
at finite strains is briefly recalled for the sake of clarity. The three-dimensional Cauchy model is first
presented, and then the uni-dimensional Timoshenko beam theory, as both are used in the following
datasets.

2.1.1. Cauchy model The transformation from the reference configuration Ω0 to the current configura-
tion Ωt is parametrized by xxx = ΦΦΦ(XXX, t), where ΦΦΦ is a bijective function called transformation, XXX
denotes a particle in the reference configuration, t the time, and xxx the location of the particle in the
current configuration. The displacement field uuu reads uuu = ΦΦΦ −XXX . The Lagrangian description relies
on the transformation gradient FFF = ∇∇∇XXXΦΦΦ, which transforms a volume element dΩ0 in the reference
configuration into dΩ in the current configuration. Classically, the Green-Lagrange deformation is
defined as follows:

eee = 1
2

(
FFF ⊤ · FFF − 111

)
(2.1)

2



Classical finite strains theory also involves a stress-free configuration called released configuration
that is obtained by unloading the volume element dΩ. The transformation gradient can therefore
be decomposed into the second order tensor FFF E representing the elastic part of the transformation
while FFF P represents the plastic part:

FFF = FFF E · FFF P (2.2)
FFF P is often assumed to be isochoric, i.e., detFFF P = 1 so that the volume variation reduces to

J = detFFF = detFFF E . Both FFF E and FFF P are incompatible in the sense that they are not gradients
of any transformation in general. The decomposition (2.2) is not unique a priori. The macroscopic
plasticity uniqueness is ensured by imposing the symmetry of FFF E , i.e., FFF ⊤

E = FFF E .
The Eulerian description leads to define the 2nd order deformation rate tensor ddd = sym

[
ḞFF ·FFF −1

]
,

where sym denotes the symmetric part of a tensor. By using the decomposition (2.2) one defines the
plastic strain rate:

dddP = sym
[
ḞFF P · FFF −1

P

]
(2.3)

Note that dddP is a 2nd order deviatoric tensor. The cumulative plastic strain rate denoted by ṗcum is
then defined as follows:

ṗcum =
√

2
3 dddP : dddP (2.4)

Introducing the virtual power of internal forces the symmetric 2nd order Cauchy stress tensor is
defined and denoted by σσσ (Pa) representing the internal forces per unit surface. In virtue of the virtual
power principle one obtains the following equilibrium equation without body and acceleration forces
and and boundary conditions:{

∀xxx ∈ Ωt, div [σσσ(xxx, t)] = 0
∀xxx ∈ ∂ΩT,t, σσσ(xxx, t) · nnn(xxx, t) = ΣΣΣext(xxx, t) (2.5)

where ∂ΩT,t ⊂ ∂Ωt is the part of the boundary where the external stress vector ΣΣΣext (Pa) is applied,
and nnn is the outer normal vector at the boundary.

Neglecting kinematic hardening, common thermodynamic assumptions lead to the following
von Mises flow rule:

dddP = 3
2

ṗcum

σY (pcum)dev [κκκ] (2.6)

where κκκ = J FFF −1
E · σσσ · FFF E is the 2nd order Mandel stress tensor, σY > 0 is the yield stress (assumed

to only depends on pcum) and dev denotes the deviatoric part of a tensor. In addition, the elastic
domain is the convex set defined by the Von Mises yield criterion, which is the set of κκκ that satisfies
the inequality: √

3
2 dev [κκκ] : dev [κκκ] ≤ σY (pcum). (2.7)

Furthermore, for an isotropic Neo-Hookean material, one can show that:

σσσ = µ0

J
5
3
FFF 2

E +
k0J(J − 1) − µ0

J
5
3

tr
[
FFF 2

E

]
3

111 (2.8)

where k0 and µ0 are the bulk and shear coefficients respectively. In the databases, k0 = 5.25×1011 Pa
and µ0 = 8.08 × 1010 Pa. In addition, the hardening curve is written in the form:

σY (pcum) = σ0 + k pn
cum (2.9)

where σ0 (Pa) is the initial yield stress, k (Pa) a hardening coefficient and n a dimensionless
exponent. In the following σ0 = 300 MPa, k = 0.9 MPa and n = 0.13, resulting in the hardening

3



curve showed in Fig. 1.

0.0 0.5 1.0 1.5
pcum

4

6

8

σ
Y

(P
a)

×108

Figure 1: Hardening curve of simulations where σY is in Pa and pcum is dimensionless.

2.1.2. Timoshenko beam theory This subsection is dedicated to the paperclip dataset, see section 3.
The Timoshenko beam theory is uni-dimensional, hence the reference and current configurations
are defined by their curvilinear absissa respectively denoted by s0 and s and the smooth mappings
[0, l0] ∋ s0 7→ XXX(s0) and [0, l] ∋ s 7→ xxx(s, t) (where l0 and l are respectively the initial and the
current length of the beam, XXX is the particle in the reference configuration and xxx the location of the
particle in the current configuration). The Lagrangian description relies on a bijective transformation
function, which reads xxx = ΦΦΦ(s0, t). The displacement of the neutral axis reads UUU = ΦΦΦ − XXX . The
length variation reads J = ds/ds0.

In addition, the Timoshenko beam theory assumes that a rigid cross-section is attached to each par-
ticle XXX . Therefore one can define a direct orthonormal reference frame (nnn0(s0), iii0(s0), jjj0(s0)) for the
cross-section in the reference configuration, where nnn0 is the outer normal vector of the cross-section.
Consider, the cross-section frame in the current configuration denoted by (nnn(s, t), iii(s, t), jjj(s, t)),
where nnn is the outer normal vector of the cross section in the current configuration. There exists
an orthogonal second-order tensor OOO(s0, t) such that nnn = OOO · nnn0 (and similarly for iii, jjj). One
can for instance consider the three Euler angles of OOO in the reference configuration denoted by
(φn0 , φi0 , φj0). The associated curvature variation reads:

χχχ = OOO−1 · ∂OOO

∂s0
(2.10)

which is an anti-symmetric 2nd order tensor, which can be re-written as a three components vector.
Consider the tangent unit vector in the reference configuration ttt0(s0) = ∂XXX/∂s0. It is assumed

that in the reference configuration the cross section outer normal vector aligns with the tangent
vector of the neutral axis, i.e nnn0 = ttt0. Consider the tangent unit vector in the current configuration
ttt(s, t) = ∂xxx/∂s. Unlike the Euler-Bernoulli beam theory nnn ̸= ttt in general. Consider the rotation
angles θu, θv such as ttt = cos(θv)cos(θu)nnn + cos(θv)sin(θu)iii − sin(θv)jjj, which is completed by
unit vectors uuu,vvv to form a direct orthonormal frame, where uuu = −sin(θu)nnn + cos(θu)iii and vvv =
sin(θv)cos(θu)nnn + sin(θv)sin(θu)iii + cos(θv)jjj.

The Lagrangian analysis of the transformation of a beam element dΩ0 into dΩ leads to the

4



following elastic-plastic decomposition:
J = JE JP

χχχ = χχχE + χχχP

θu = θu
E + θu

P

θv = θv
E + θv

P

(2.11)

where the subscript E sands for elastic and P for plastic. Note that χχχE and χχχP are three components
vectors (or alternatively anti-symmetric 2nd order tensors).

The Eulerian description involves the generalized deformation rate vector ddd = ∂vvv/∂s − www · ttt
where www = ȮOO · OOO−1 is an anti-symmetric 2nd order tensor, which can be re-written as a three
components vector, and the curvature rate ∂ωωω/∂s, which leads to define the plastic strain rate
vectors:

dddP =
(
J̇P J−1

P , θ̇u
P , θ̇v

P

)
and ωωωP = χ̇χχP . (2.12)

Hence the cumulative plastic strain rate reads:

ṗd =
√

dddP · dddP and ṗω =
√

ωωωP · ωωωP (2.13)

and the cumulative plastic strain reads:

pcum =
∫

t
(ṗd + ṗw) dt. (2.14)

Introducing the virtual power of internal forces the generalized forces in the current configuration:
RRR (N) representing the resultant internal force and MMM (N.m) representing the internal bending
moment. In virtue of the virtual power principle one obtains the following equilibrium equations
and boundary conditions:

∂RRR(s, t)
∂s

+ fff ext(s, t) = 0

RRR(s, t) × ttt(s, t) − ∂MMM(s, t)
∂s

+ cccext(s, t) = 0

RRR(0, t) = −RRRext,0(t) andRRR(l, t) = RRRext,l(t)
MMM(0, t) = −MMM ext,0(t) andMMM(l, t) = MMM ext,l(t)

(2.15)

where RRRext,0,RRRext,l (N) are the external forces applied in s = 0 and s = l respectively, MMM ext,0,MMM ext,l (N.m)
are the external bending moments applied in s = 0 and s = l respectively, and fff ext (N/m) and
cccext (N.m/m) are the external force per unit length and external bending moment per unit length
respectively.

Consider the generalized force RRR0 (N) and bending moment MMM0 (N.m) defined in the reference
configuration:

RRR0 = (N, Qu, Qv)
MMM0 = JE OOO−1.MMM.OOO

(2.16)

where N = JERRR · ttt is the normal force, and Qu = JEcos(θv)RRR ·uuu and Qv = −JERRR ·vvv are the shear
forces.

Neglecting kinematic hardening, common thermodynamic assumption lead to the following flow
rule:

dddP = ṗd

S σY

RRR0 and ωωωP = ṗω

S σY

MMM0 (2.17)

where S is the area of the cross section. In addition, the elastic domain is the convex set defined by:
√

RRR0.RRR0 − S σY ≤ 0
√

MMM0.MMM0 − SL σY ≤ 0
(2.18)

5



Furthermore for isotropic material the following relations hold:
N = ES eE

Qu = GS θu
E

Qv = GS θv
E

MMM0 = EIII · χχχE

(2.19)

where eE = 1/2(J2
E −1) is the Green-Lagrange elastic strain, E (MPa) the Young modulus, G (MPa)

the shear coefficient, S the area of the section, and III (m4) the 2nd order tensor of second moment of
area of the section.

3. Paperclip dataset The “paperclip” dataset consists of a set of quasi-static simulations that
model the action of human fingers on a paperclip modeled as a Timoshenko beam. It is openly
accessible [13].

3.1. Input: Mesh and boundary conditions The mesh of the paperclip is presented in
Fig. 2.

0 10

X axis (mm)

−5

0

5

10

15

20

25

Y
ax

is
(m

m
)

Paperclip mesh

Figure 2: Mesh of the paperclip used the first dataset.

To model the action of hands deforming the paperclip, two wrenches are applied at two points
on the paperclip xxx1 and xxx2, identified by their curvilinear abscissas s = s1 and s = s2. For the static
equilibrium to be satisfied, the two wrenches are balanced:{

RRR1,t + RRR2,t = 0
MMM2,t + MMM1,t + xxx1 × RRR1,t + xxx2 × RRR2,t = 0 (3.1)

where × denotes the cross product, RRR1,t,RRR2,t are forces and MMM1,t,MMM2,t are bending moments applied
to xxx1,xxx2 at any time t. Using the equilibrium (3.1) for each series, it is sufficient to choose the points
of application and generate two sequences RRR1,t and MMM1,t. The procedure is as follows:

1. We randomly choose a pair of curvilinear abscissas (s1, s2). For symmetry reasons, we can
choose s1 > s2 + m, where m > 0 is a margin that models the spacing between the fingers.

6



2. We randomly choose the initial values RRR1,0 and MMM1,0, such that each component is within
[−Rmax, Rmax] and [−Mmax, Mmax] respectively, where Rmax > 0 and Mmax > 0.

3. The sequence is divided into ns steps (ns is randomly chosen between 1 and a number nmax).
In the proposed dataset: Rmax = 0.05 N, Mmax = 1 × 10−4 N m and nmax = 3.

4. Due to non-linearity, for each step, the external forces and bending moments are applied
progressively. Classically, identical loading increments are considered, but in this contribution
loading increments progressively rotate to follow various loading paths.

Such sequences are presented in Tab. 1.

RRR1,t MMM1,t

0 100 200 300
step

0

2

4

R
1
,t

(N
)

Datum 231

x-axis

y-axis

z-axis

0 100 200 300
step

−1

0

M
1
,t

(N
.m

)

×10−5 Datum 231

x-axis

y-axis

z-axis

0 100 200 300
step

0

5

10

R
1
,t

(N
)

Datum 289

x-axis

y-axis

z-axis

0 100 200 300
step

−0.5

0.0

0.5

1.0

M
1
,t

(N
.m

)

×10−5 Datum 289

x-axis

y-axis

z-axis

0 100 200 300
step

−1.0

−0.5

0.0

R
1
,t

(N
)

Datum 478

x-axis

y-axis

z-axis

0 100 200 300
step

−2

0

2

M
1
,t

(N
.m

)

×10−5 Datum 478

x-axis

y-axis

z-axis

Table 1: Examples of loading sequences from the dataset, where x, y, z are global coordinates.

3.2. Output The free Finite Element software Cast3m [4] was used. For each simulation, the
following quantities are computed and are provided in the database (or can be easily retrieve
using relationships presented in section 4.2): the displacement UUU and Euler rotation angles of the
cross section (φ1, φ2, φ3) in OOO, the generalized strains: e = 1/2(J2 − 1), θu, θv, and the three
component curvature vector χχχ, the internal resultant force RRR0 and bending moment MMM0 all defined in
section 2.1.2. For elastoplastic simulations, the cumulative plastic strain pcum and plastic generalized
deformations: eP = 1/2(J2

P − 1), θu
P , θv

P , χχχP are also computed.

7



To reduce the size of the dataset, these data are projected onto a coarser mesh, which is generated
by regularly subsampling the initial mesh. Each simulation corresponding to one sequence takes an
average of 3 min using Cast3m, on a standard laptop.

3.3. Visualization of Results and Analysis A total of 1000 sequences were generated.
An example is presented in Fig. 3. The minimum, maximum, and average values of the outputs are
presented in Table 2.

min avg max
ut (mm) −34 −1.6 41
uu (mm) −43 −0.6 36
uv (mm) −37 −0.35 36

e −2.1 0.03 2.1
θu −1.8 −0.06 1.6
θv −1.8 0.08 1.6

χt (mm−1) −3.1 × 10−3 6.5 × 10−7 3.4 × 10−3

χu (mm−1) −2.2 × 10−4 1.2 × 10−6 2.1 × 10−4

χv (mm−1) −1.9 × 10−4 −4.0 × 10−6 2.0 × 10−4

Rt (N) −14 0.2 14
Ru (N) −14 0.07 13
Rv (N) −12 −0.2 13

Mt (N mm) −0.24 6.5 × 10−4 0.33
Mu (N mm) −0.74 2.1 × 10−4 0.50
Mv (N mm) −0.36 −1.4 × 10−3 0.60

Table 2: Outputs value ranges for an elastic-plastic computation.

4. Car hood dataset The car hood dataset consists of a set of quasi-static simulations that
simulate hammering of the car hood using the classic 3D Cauchy medium. It is in open access [13].

4.1. Input: Mesh and boundary conditions The original mesh used is a CAD mesh
of the hood of a Renault Twizy (Fig. 4a). In order to run accurate finite element simulations with
Cast3m, a refined version is constructed using MeshLab (Fig. 4b).

The (X, Y, Z) coordinate system is defined by the principal components of the mesh (in the
sense of PCA), so that the width and length of the hood are aligned with the (X, Y ) plane. The
origin of the coordinate system is located at the centroid of the mesh.

Arbitrarily, the hood is clamped in three zones, corresponding to Dirichlet boundary conditions
(zero displacement imposed). They are highlighted in red in Fig. 5

The loading sequences simulate a certain number of hammer blows. It is constructed using the
following steps:

1. The number of hammer blows is randomly selected, ranging between 1 and nh. Here, nh = 10.

2. For each hammer blow, a strike point p is randomly chosen in the (X, Y ) plane. The strike
area is then defined by the set of triangles located at the intersection between the mesh and a
cylinder centered at p with radius R. Here, R = 0.2 m.

3. A sequence has a determined duration of nt points. The durations of each blow are then
calculated by partitioning J1, ntK into nh elements. Here, nt = 200.

8



X
−20

0

20
Y

t=0 t=75 t=150 t=225

Y
−20

0

20

Z

0 25
Z

−20

0

20

X

0 25 0 25 0 25

elastic elastoplastic s1 s2

Figure 3: Sample of the paperclip dataset providing strongly nonlinear deformations.

(a) Initial CAD Mesh (b) Refined mesh

Figure 4: Car hood meshes

4. For each blow, its maximum intensity (peak of the triangle) (f, t) is randomly chosen within
[0, fm] × [ts,i, ts,f ], where ts,i represents the initial step of the blow, and ts,f its final step. In
the dataset, fm = 400 Pa.

Examples of loading sequences are shown in Fig. 6. In average, a sequence is generated in

9



Figure 5: Boundary conditions applied on the hood: Dirichlet condition (zero displacement) in red, Neumann
condition (imposed zero force almost everywhere) in blue.

12 min. Examples of paths are shown on Fig. 7.

0 50 100 150 200
step

0

200

400

600

800

f
(P

a)

Loading paths - datum 238

Figure 6: Amplitudes of a few loading sequences. Each color represents a hit.

4.2. Output The governing equations are detailed in section 2.1.1.
Only displacements uuu, the Cauchy stress tensor σσσ and the cumulative plastic strain pcum are

recorded. Indeed, all the other computed quantities (i.e., transformation gradient, elastic and plastic
Green-Lagrange strain tensors) can be retrieved only using uuu and σσσ.

Indeed, the transformation ΦΦΦ and the transformation gradient FFF can be computed from uuu. One
can also compute J = det [FFF ].

The total Green-Lagrange strain EEE = 1/2(FFF ⊤ · FFF − 111) is then computed. FFF 2
E can be obtained

from σσσ through (2.8), hence the elastic Green-Lagrange tensor EEEE = 1/2
(
FFF 2

E − 111
)

can also

computed. Therefore using FFF = FFF E · FFF P one can compute FFF ⊤
P · FFF P = FFF ⊤ ·

(
FFF 2

E

)−1
· FFF hence the

plastic Green-Lagrange tensor EEEP = 1/2(FFF ⊤
P ·FFF P −111) is retrieved. From this simple observation, it

becomes clear that a learning algorithm focused on stresses and displacements is sufficient to recover

10



−4 −2 0 2 4

X (m)

−3

−2

−1

0

1

2

3

Y
(m

)

Loading paths

Figure 7: Examples of loading paths. Each colored line represents an example path taken by the hammer in a
sequence from the database. All sequences in the database are represented in gray scale.

all the essential quantities of the problem—but whether also incorporating other fields during the
training process or in the architecture may help the training is an open problem.

All these results are projected onto a coarser mesh to reduce the database size. This coarser
mesh was generated using the quadric edge decimation algorithm in MeshLab [5], so that the points
of the coarse mesh are shared with those of the fine mesh, to ensure correct subsampling. Some
examples of coarse meshes are shown in Fig. 8.

(a) decimation = 0.05 (b) decimation = 0.25 (c) decimation = 0.5 (d) decimation = 0.75 (e) decimation = 1.0

Figure 8: Different submeshes extracted with Quadric edge decimation.

4.3. Visualization of Results and Analysis A total of 1000 sequences were generated. A
few examples are visible on Fig. 9. The minimum, maximum, and average values of the inputs and
outputs are presented in Table 3.

5. Conclusion In conclusion, we believe that this dataset will be valuable to the Scientific ML
community for several reasons:

11



min avg max
uX (mm) −3040 −2 2433
uY (mm) −1458 −4 3264
uZ (mm) −5000 −134 599
σxx (Pa) −33 × 109 −26 × 106 16 × 109

σyy (Pa) −33 × 109 −20 × 106 20 × 109

σzz (Pa) −33 × 109 −11 × 106 18 × 109

σxy (Pa) −3.6 × 109 1.8 × 106 3.5 × 109

σxz (Pa) −2.4 × 109 0.1 × 106 4.4 × 109

σyz (Pa) −5.4 × 109 −1.4 × 106 2.4 × 109

pcum 0.0 0.01 2.9

Table 3: Samples of the second database: deformation of a car hood in response to multiple hammer taps.

T=0 T=50 T=100 T=150

T=0 T=50 T=100 T=150

T=0 T=50 T=100 T=150

Figure 9: Some example of generated data.

• Training material: This database is the first of its kind to contain such precise simulations in
a quantity suitable for training data-driven models, particularly neural networks. It models
physically complex problems that are challenging and can guide the development of new
architectures tailored to Scientific ML.

• Benchmark: One of the main limitations of previous works was the lack of a reference dataset
for benchmarking proposed architectures, especially in the field of finite strain elasto-plasticity.
We believe that this dataset can serve as a benchmark for future architectures.

• Speeding-up Simulations: This database paves the way for significant acceleration in simula-
tion times, with numerous applications in engineering, such as real-time interactive simulations
and optimization of manufacturing processes.

References
[1] ARORA, Rajat, Pratik KAKKAR, Biswadip DEY, Amit CHAKRABORTY. Physics-informed neural networks for

modeling rate- and temperature-dependent plasticity. 23, 2022. arXiv: 2201.08363.

12

https://arxiv.org/abs/2201.08363


[2] BENATO, Lisa et al. Shared data and algorithms for deep learning in fundamental physics. Computing and
Software for Big Science 6(1):9, 2022. arXiv: 2107.00656.

[3] CASENAVE, Fabien, Brian STABER, Xavier ROYNARD. Mmpg: a mesh morphing gaussian process-based machine
learning method for regression of physical problems under nonparametrized geometrical variability. Advances
in Neural Information Processing Systems 36, 2024. arXiv: 2305.12871.

[4] CEA. Cast3m. http://www-cast3m.cea.fr/. 2020.
[5] CIGNONI, Paolo, Marco CALLIERI, Massimiliano CORSINI, Matteo DELLEPIANE, Fabio GANOVELLI, Guido

RANZUGLIA. “MeshLab: an Open-Source Mesh Processing Tool”. Eurographics Italian chapter conference,
2008.

[6] HABIB, Ahed, Ausamah AL HOURI, M Talha JUNAID, Samer BARAKAT. “A systematic and bibliometric review
on physics-based neural networks applications as a solution for structural engineering partial differential
equations”. Structures. Volume 69. Elsevier. 2024: 107361.

[7] HAGHIGHAT, Ehsan, Maziar RAISSI, Adrian MOURE, Hector GOMEZ, Ruben JUANES. A physics-informed deep
learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied
Mechanics and Engineering 379:113741, 2021.

[8] HASHASH, YMA, Sungmoon JUNG, Jamshid GHABOUSSI. Numerical implementation of a neural network based
material model in finite element analysis. International Journal for numerical methods in engineering 59(7):989–
1005, 2004.

[9] HERRMANN, Leon, Stefan KOLLMANNSBERGER. Deep learning in computational mechanics: a review. Compu-
tational Mechanics:1–51, 2024.

[10] HUANG, Daniel Z, Kailai XU, Charbel FARHAT, Eric DARVE. Learning constitutive relations from indirect
observations using deep neural networks. Journal of Computational Physics 416:109491, 2020. arXiv: 1905.
12530.

[11] HUANG, Zhiao, Yuanming HU, Tao DU, Siyuan ZHOU, Hao SU, Joshua B. TENENBAUM, Chuang GAN. Plas-
ticineLab: a soft-body manipulation benchmark with differentiable physics. 7, 2021. arXiv: 2104.03311.

[12] KIM, Byungsoo, Vinicius C AZEVEDO, Nils THUEREY, Theodore KIM, Markus GROSS, Barbara SOLENTHALER.
“Deep fluids: a generative network for parameterized fluid simulations”. Computer graphics forum. Volume 38.
Wiley Online Library. 2019: 59–70. arXiv: 1806.02071.

[13] LESUEUR, Louis, Anders THORIN, Daniel WEISZ-PATRAULT. A benchmark for elasto-plasticity in finite strain.
Version V1. 2025. [10.57745/HQJMYA].

[14] LIENEN, Marten, David LÜDKE, Jan HANSEN-PALMUS, Stephan GÜNNEMANN. From zero to turbulence:
generative modeling for 3d flow simulation. arXiv preprint arXiv:2306.01776, 2023. arXiv: 2306.01776.

[15] MASI, Filippo, Ioannis STEFANOU, Paolo VANNUCCI, Victor MAFFI-BERTHIER. Thermodynamics-based artificial
neural networks for constitutive modeling. Journal of the Mechanics and Physics of Solids 147:104277, 2021.
arXiv: 2005.12183.

[16] MENDIZABAL, Andrea, Pablo MÁRQUEZ-NEILA, Stéphane COTIN. Simulation of hyperelastic materials in
real-time using deep learning. Medical image analysis 59:101569, 2020. arXiv: 1904.06197.

[17] RABBANI, Arash, Masoud BABAEI, Reza SHAMS, Ying DA WANG, Traiwit CHUNG. Deepore: a deep learning
workflow for rapid and comprehensive characterization of porous materials. Advances in Water Resources
146:103787, 2020. arXiv: 2005.03759.

[18] RAISSI, Maziar, Paris PERDIKARIS, George E KARNIADAKIS. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal
of Computational physics 378:686–707, 2019.

[19] TAKAMOTO, Makoto, Timothy PRADITIA, Raphael LEITERITZ, Daniel MACKINLAY, Francesco ALESIANI, Dirk
PFLÜGER, Mathias NIEPERT. “Pdebench: an extensive benchmark for scientific machine learning”. Advances in
Neural Information Processing Systems. Edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
A. Oh. Volume 35. Curran Associates, Inc., 2022: 1596–1611. arXiv: 2210.07182.

[20] VLASSIS, Nikolaos N, WaiChing SUN. Sobolev training of thermodynamic-informed neural networks for in-
terpretable elasto-plasticity models with level set hardening. Computer Methods in Applied Mechanics and
Engineering 377:113695, 2021. arXiv: 2010.11265.

[21] ZHONG, Weiheng, Hadi MEIDANI. Physics-informed discretization-independent deep compositional operator
network. Computer Methods in Applied Mechanics and Engineering 431:117274, 2024. arXiv: 2404.13646.

13

https://arxiv.org/abs/2107.00656
https://arxiv.org/abs/2305.12871
http://www-cast3m.cea.fr/
https://arxiv.org/abs/1905.12530
https://arxiv.org/abs/1905.12530
https://arxiv.org/abs/2104.03311
https://arxiv.org/abs/1806.02071
http://dx.doi.org/10.57745/HQJMYA
https://arxiv.org/abs/2306.01776
https://arxiv.org/abs/2005.12183
https://arxiv.org/abs/1904.06197
https://arxiv.org/abs/2005.03759
https://arxiv.org/abs/2210.07182
https://arxiv.org/abs/2010.11265
https://arxiv.org/abs/2404.13646

	1 Introduction
	2 Problem statement
	2.1 Large transformation plasticity
	2.1.1 Cauchy model
	2.1.2 Timoshenko beam theory


	3 Paperclip dataset
	3.1 Input: Mesh and boundary conditions
	3.2 Output
	3.3 Visualization of Results and Analysis

	4 Car hood dataset
	4.1 Input: Mesh and boundary conditions
	4.2 Output
	4.3 Visualization of Results and Analysis

	5 Conclusion
	References

