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When 3D change detection (and characterization) meets Deep Learning
A doctoral journey from Iris de Gélis (2020–2023), to be ready for processing data acquired by the future CO3D satellite constellation [1].
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DL+3D still at its infancy, especially for point change characterization, assessing SOTA needs a public dataset [2] and comparative study [3].

Siamese KPConv
The first deep architecture for multiple change detection at point scale over 3D point clouds [4, 5].

A Siamese architecture. . . relying on the Kernel Point convolution. . . and achieving state-of-the-art results
(mIoU ch = 80.12 vs. 52.37 for RF [6]).

Early encoding
Change information is crucial!
Can be embedded explicitly or implicitly [7].
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TABLE I
COMPARISON OF SIAMESE KPCONV NETWORK WITH DIFFERENT

INPUT FEATURES ON THE URB3DCD-V2 LOW-DENSITY LIDAR
DATASET. THE RESULTS ARE GIVEN IN %. THE 10 INPUT FEATURES ARE

AS FOLLOWS: Nx , Ny , Nz , LT , PT , OT , Zrange , Zrank , nH AND
Stability.

Method # of input features mAcc mIoUch

Siamese KPConv

0 91.21 ± 0.68 80.12 ± 0.02
10 93.65 ± 0.16 84.82 ± 0.58
9 w/o Stability 91.44 ± 0.47 80.49 ± 0.64
1 Stability only 92.92 ± 0.47 83.80 ± 0.89

unchanged class, despite this class not being the most inter-
esting one. Hence, we preferred herein to disregard the overall
accuracy or precision scores that were not very indicative of
the method’s performance under these settings. Accordingly,
we selected the mean accuracy (mAcc) and the mean of the
Intersection over Union (IoU) over the classes of change
(mIoUch) for a more reliable quantitative assessment of the
different methods. The accuracy was computed as follows:

Acc =
TP + TN

TP + TN + FP + FN
(7)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively. IoU is computed
as follows:

IoU =
TP

TP + FP + FN
(8)

All tests were conducted three times to assess the variability
in the results. The average results of these three runs are given
along with the standard deviation in Tables I, II, III and IV.

C. Experimental results

1) Results of adding hand-crafted features to the Siamese
KPConv network: Table I presents the quantitative results.
Note that the results given with zero input features cor-
responded to those reported in the original publication of
the Siamese KPConv [19]. Providing the hand-crafted fea-
tures as input in addition to the point coordinates consid-
erably improved the results. We subsequently assessed the
importance of the unique change-related hand-crafted feature,
the Stability. The point distribution and the height hand-
crafted features seem to have only a slight beneficial impact
(+0.37% of mIoUch) on the change segmentation results. In
contrast, the Stability feature seems to have a major impact
(+3.67% of mIoUch) on both metrics mAcc and mIoUch.
More specifically, when looking at the per class gain in the
IoU, the Stability feature on its own principally helped in the
‘new building’, ‘demolition’ and ‘missing vegetation’ classes
(Figure 4).

2) Results of the Siamese KPConv evolution: Tables II and
III present the quantitative results of the evaluation of the three
architectures on the Urb3DCD-V2 dataset. Each of the three
architectures outperformed the Siamese KPConv network. The
best architecture was Encoder Fusion SiamKPConv, followed
by Triplet KPConv. OneConvFusion performed only slightly
better with a 1.5% of the mIoUch when compared with
Siamese KPConv. Looking at the per-class results (Table III
and Figure 5), the Encoder Fusion SiamKPConv network

TABLE II
RESULTS IN % OF THE THREE SIAMESE KPCONV EVOLUTIONS ON

THE URB3DCD-V2 LOW DENSITY LIDAR DATASET.

Method mAcc (%) mIoUch (%)
Siamese KPConv [19] 91.21 ± 0.68 80.12 ± 0.02

Siamese KPConv (+10 input features) 93.65 ± 0.16 84.82 ± 0.58
OneConvFusion 92.62 ± 1.10 81.74 ± 1.45
Triplet KPConv 92.94 ± 0.53 84.08 ± 1.20

Encoder Fusion SiamKPConv 94.23 ± 0.88 85.19 ± 0.24

provided a significant improvement for all change classes.
Figures 6 and 7 depict the qualitative results. The three
architectures provided very similar results to the ground truth.
In Figure 7, each of the three Siamese KPConv evolutions
showed results that were more accurate than those in Siamese
KPConv in the new building facades. These facades were
particularly hard to correctly detect because the neighboring
facade was not visible in the first PC (Figure 7a). Therefore,
identifying the new facade in the class ‘new building’ while
the neighboring facades were unchanged was not obvious. In
this situation, the network should understand that the facade
may be new because the roof is new. In the same manner, a
roof that remains unchanged should also have an unchanged
facade. Another difference with the Siamese KPConv results
can be found in Figure 6 (zoomed out portions), where a
part of the church roof is identified as new vegetation for
Siamese KPConv only, not for the other architectures. The
misclassification was probably due to the dome roof shape
that looked like a tree in the simulated data. Even if the tree
models were not totally spherical (i.e., the Arbraro software
[48] was used to obtain OBJ models of trees, see [19]), the
LiDAR simulation on these models rendered a quite spherical
object with only a few points inside the foliage of the tree,
unlike the real LiDAR acquisition. Therefore, aside from the
shape, the main factor for distinguishing between vegetation
and the dome is that trees are generally on the ground. These
examples highlight the fact that the network should be able to
understand the PC at multiple scales and predict changes with
regard to the surrounding objects.

Table IV presents the quantitative results for the experiments
on the real data. All proposed architectures and exploitation of
the hand-crafted features enabled us to improve the state-of-
the-art Siamese KPConv results. Encoder Fusion SiamKPConv
and OneConvFusion showed the largest improvements of up
to approximately 5% of the mIoUch. In contrast to the results
on the Urb3DCD-V2 results, OneConvFusion obtained results
comparable with those of Encoder Fusion SiamKPConv, albeit
with a larger standard deviation. Given that the training set for
AHN-CD included numerous labeling errors and considering
the standard deviations of OneConvFusion and Encoder Fusion
SiamKPConv, these two approaches were similar in terms of
performance. Although OneConvFusion achieved only a minor
enhancement in Urb3DCD-V2, it produced results that yielded
a significant improvement on the AHN-CD dataset similar to
Encoder Fusion SiamKPConv. OneConvFusion is a network
with fewer parameters compared to other methods (Table V).
This probably led to a better generalization of the training data
and ended up in superior results despite the numerous errors

Less supervision
Siamese KPConv and variants require large annotated datasets.
DC3DCD [8] is an appealing alternative based on unsupervised learning.
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Revisiting DeepCluster to segment the PC in change clusters.
Enables user-guided mapping of predicted clusters to real classes.

Conclusions and Future Works
Contributions:

• A core set of deep models for 3D change categorization
• Various extensions of the recent Siamese KPConv model

Perspectives:
• Lack of curated real datasets (AHN is not perfect nor enough)
• Possible application in other fields where large PCs are available
• Towards new architectures (transformers) and other learning

paradigms (semi-supervised)
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