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Abstract
Nodular	heterotopia	(NH)–related	drug-	resistant	epilepsy	is	challenging	due	to	
the	deep	location	of	the	NH	and	the	complexity	of	the	underlying	epileptogenic	
network.	Using	ictal	stereo-	electroencephalography	(SEEG)	and	functional	con-
nectivity	 (FC)	 analyses	 in	 14	 patients	 with	 NH-	related	 drug-	resistant	 epilepsy,	
we	aimed	to	determine	the	leading	structure	during	seizures.	For	this	purpose,	
we	 compared	 node	 IN	 and	 OUT	 strength	 between	 bipolar	 channels	 inside	 the	
heterotopia	and	inside	gray	matter,	at	the	group	level	and	at	the	individual	level.	
At	 seizure	 onset,	 the	 channels	 within	 NH	 belonging	 to	 the	 epileptogenic	 and/
or	 propagation	 network	 showed	 higher	 node	 OUT-	strength	 than	 the	 channels	
within	the	gray	matter	(p	=	.03),	with	higher	node	OUT-	strength	than	node	IN-	
strength	(p	=	.03).	These	results	are	in	favor	of	a	“leading”	role	of	NH	during	sei-
zure	onset	when	involved	in	the	epileptogenic-		or	propagation-	zone	network	(50%	
of	patients).	However,	when	looking	at	the	individual	level,	no	significant	differ-
ence	between	NH	and	gray	matter	was	found,	except	for	one	patient	(in	two	of	
three	seizures).	This	result	confirms	the	heterogeneity	and	the	complexity	of	the	
epileptogenic	network	organization	in	NH	and	the	need	for	SEEG	exploration	to	
characterize	more	precisely	patient-	specific	epileptogenic	network	organization.
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1 	 | 	 INTRODUCTION

Nodular	 heterotopia	 (NH)	 is	 among	 the	 most	 common	
malformation	of	cortical	development1	and	is	 frequently	
associated	 with	 drug-	resistant	 epilepsy.2	 The	 treatment	
of	NH-	related	epilepsy	is	challenging	due	to	the	deep	NH	
localization	and	to	 the	complex	 interactions	of	NH	with	
adjacent	cortex.3,4	Stereo-	electroencephalography	(SEEG)	
has	been	used	to	investigate	and	better	characterizing	the	
implication	of	NH	in	patients	with	drug-	resistant	epilepsy,	
and	 to	 perform	 radiofrequency	 thermocoagulation	 (RF-	
TC)	on	select	channels	.4,5

The	role	of	NH,	as	well	as	of	the	surrounding	and	re-
mote	 neocortex,	 in	 the	 generation	 of	 seizures	 remains	 a	
matter	of	debate.6,7	Despite	the	use	of	intracranial	SEEG	
recordings,	identifying	network	leaders	remains	challeng-
ing.3	Functional	connectivity	(FC)	analysis	describes	how	
different	brain	areas	synchronize	their	activities	through	
mathematical	estimates	of	the	inter-	dependency	between	
EEG,	 SEEG,	 and	 blood	 oxygen	 level–dependent	 (BOLD)	
signals,	 and	 allows	 for	 the	 determination	 of	 which	
structure	 takes	 the	 lead	 in	 the	network,	 thanks	to	graph	
measures.

This	study	aims	to	characterize	the	mutual	relation	be-
tween	NH	and	the	cortex	using	ictal	SEEG	FC	analysis,	by	
estimating	a	“leading”	role	of	one	structure	onto	the	other.

2 	 | 	 METHODS

An	 observational	 retrospective	 cohort	 study	 was	 con-
ducted	at	our	center	between	January	2001	and	January	
2021.	Inclusion	criteria	were:	(1)	the	presence	of	at	least	
one	 NH	 on	 magnetic	 resonance	 imaging	 (MRI)	 sam-
pled	 by	 SEEG	 electrode	 and	 (2)	 available	 pre-	operative	
MRI	 and	 postoperative	 computerized	 tomography	 (CT).	
Exclusion	 criteria	 were:	 (1)	 absence	 of	 spontaneous	 sei-
zure	on	SEEG	and	 (2)	 seizure	 lasting	 less	 than	64	s	 (not	
allowing	for	sufficient	data	to	apply	FC	analysis	over	three	
different	 ictal	 periods	 –	 see	 paragraph	 2.2).	 The	 institu-
tional	 review	 board	 approved	 this	 study	 (C3BHV2),	 and	
written	patient	consent	was	obtained	both	for	the	implan-
tation	of	the	electrodes	for	SEEG	and	for	the	subsequent	
RF-	TC	procedures.

2.1	 |	 SEEG/MRI procedure and  
recordings

SEEG	 procedure	 and	 recordings	 were	 described	 previ-
ously.3	Signals	were	recorded	on	a	256-	channel	Natus	sys-
tem	(Deltamed)	with	a	.16	Hz	high-	pass	filter.	The	sampling	
rate	 was	 at	 minimum	 256	Hz.	 Patients’	 epilepsy-	related	

characteristics,	 including	 classification	 of	 the	 NH	 on	 a	
three-	dimensional	 (3D),	T1-	weighted	sequence,	were	col-
lected.8	 The	 NHs	 were	 segmented	 semi-	automatically	
using	 3D,	 gadolinium-	enhanced,	 axial	 T1-	weighted	 im-
ages	on	preoperative	MRI	with	the	open-	source	ITK-	SNAP	
software	(Figure 1A;	available	at	www.	itksn	ap.	org).	Then,	
preoperative	MRI	studies	were	registered	to	a	1.0-	mm	iso-
tropic	brain	atlas	 (Montreal	Neurological	 Institute	 [MNI]	
152)	 using	 open-	source	 software	 (Statistical	 Parametric	
Mapping	 (SPM)	 12,	 2014;	 https://	www.	fil.	ion.	ucl.	ac.	uk/	
spm/	)	running	on	MATLAB	(R2018a	The	MathWorks	Inc.;	
2018.).	 The	 regions	 of	 interest	 corresponding	 to	 the	 NH	
were	normalized	in	the	MNI	space	using	the	SPM	transfor-
mation	matrix.	We	then	color-	coded	the	frequency	for	visu-
alization	 using	 open-	source	 MRIcroGL	 software	 (https://	
www.	mccau	sland	center.	sc.	edu/	mricr	ogl/	).

Postoperative	CT	and	preoperative	3D	T1-	weighted	se-
quences	were	co-	registered	using	the	 in-	house	GARDEL	
software	 (https://	meg.	univ-		amu.	fr/	wiki/	GARDEL:	prese	
ntation).	 The	 SEEG	 channels	 were	 classified	 into	 two	
groups	according	to	anatomic	location:	(1)	contacts	within	
the	NH	and	(2)	contacts	outside	of	the	NH	but	within	the	
gray	matter	(GM).	A	SEEG	bipolar	montage	was	created	
including	the	NH	and	all	gray	matter	channels	having	an	
exploitable	signal.

2.2	 |	 Functional connectivity and 
epileptogenic index analysis

FC	 analyses	 were	 done	 using	 the	 in-	house	 Anywave	
software	 (https://	meg.	univ-		amu.	fr/	wiki/	AnyWa	ve:	
Download).9	For	each	patient,	we	selected	 four	 time	pe-
riods	 lasting	 16	s	 in	 each	 SEEG	 seizure	 (Figure  1C):	 (1)	
Background	 (BG),	 which	 finished	 10	s	 before	 seizure	
onset;	(2)	onset	of	seizure	(OS),	representing	the	first	16	s	
of	the	seizure;	(3)	middle	of	seizure	(MS),	placed	just	after	
the	end	of	OS	period;	and	(4)	end	of	seizure	(ES),	corre-
sponding	 to	 the	 last	 16-	s	 period	 of	 the	 seizure.	 Seizure	
onset	was	positioned	at	the	beginning	of	ictal	discharges	
(first	neurophysiological	change	from	background	activity	
in	at	least	one	bipolar	channel)	and	end	of	seizure,	just	be-
fore	the	end	of	ictal	discharge	in	all	sampled	channels.	For	
each	patient,	one	to	three	spontaneous	seizures	were	ana-
lyzed.	 Interdependencies	 between	 bipolar	 SEEG	 signals	
were	 estimated	 by	 pairwise	 nonlinear	 regression	 analy-
sis	 based	 on	 the	 h2	 coefficient.10	 The	 h2	 was	 computed	
on	 broadband	 signals	 with	 a	 frequency	 ranging	 from	 2	
to	45	Hz,	a	sliding	window	of	3	s,	and	an	overlap	of	1.5	s.	
Because	h2	values	are	asymmetric,	we	created	a	directed	
connectivity	matrix	using	the	h2	value	between	two	bipo-
lar	 channels	 (channel1	>	channel2	 and	 channel2	>	chan-
nel1).	We	calculated	for	each	channel	the	mean	of	the	h2	
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values	of	 (1)	all	 ingoing	 links	 (node	 IN-	strength),	 (2)	all	
outgoing	 links	 (node	 OUT-	strength),	 (3)	 the	 sum	 of	 the	
node	 IN-		 and	 OUT-	strength	 (node	 total	 strength	=	TOT-	
strength)	divided	by	the	number	of	channels	per	patient,	
as	described	previously.11	The	mean	node	strength	of	BG	
was	subtracted	from	the	other	periods	(OS,	MS,	and	ES)	to	
better	estimate	the	changes	in	FC	due	to	seizures	activity.

The	 epileptogenicity	 index	 (EI,	 estimating	 the	 pro-
pensity	of	a	brain	region	to	generate	fast	discharge	early	
during	the	seizure	course,	maximum	=	1)	was	calculated	
to	 determine	 the	 epileptogenic	 zone	 (EZ,	 EI	>	.4),	 the	
propagation	zone	(PZ,	EI	between	.2	and	.4),	and	the	non-	
involved	zone	(NI,	EI	<	.2).9

2.3	 |	 Statistical analysis

The	 objective	 of	 statistical	 analyses	 was	 to	 determine	 if	
channels	within	NH	or	GM	were	 leading	 the	other	dur-
ing	 the	 seizure.	 We	 used	 two	 approaches	 to	 determine	

this.	 First,	 we	 considered	 NH	 as	 “leader”	 if	 the	 node	
OUT-	strength	was	significantly	higher	than	the	node	IN-	
strength.	To	answer	this	question,	node-	strength	changes	
in	heterotopic	channels	were	assessed	 in	a	 linear	mixed	
model	with	periods	(OS	vs	MS	vs	ES),	directionality	 (IN	
vs	 OUT-	strength),	 and	 involvement	 in	 the	 epileptogenic	
network	(EZ/PZ	vs	NI)	as	fixed	effects	and	patient	as	ran-
dom	effect.	Second,	we	compared	the	node	OUT-	strength	
between	channels	within	NH	and	GM	to	establish	which	
structure	 was	 more	 “sender,”	 reinforcing	 its	 role	 as	 a	
“leader.”	To	evaluate	changes	in	node	OUT-	strength	only,	
a	 second	 linear	 mixed	 model	 was	 then	 computed,	 with	
periods,	structures	(NH	vs	GM),	and	involvement	 in	the	
epileptogenic	network	as	fixed	effects	and	patient	as	ran-
dom	effect.	For	both	analyses,	interaction	between	factors	
was	 included	 in	 the	 model.	 A	 stepwise	 regression	 using	
Akaike	 information	 criterion	 was	 used	 to	 optimize	 the	
models.	 Post	 hoc	 analyses	 (pairwise	 comparisons)	 were	
performed	on	significant	factors	using	least-	squares	mean	
with	Tukey	correction	for	multiple	comparisons.	Finally,	

F I G U R E  1  Methods	and	results	synthesis.	(A)	Manual	segmentation	of	the	nodular	heterotopia	(NH)	and	gray	matter	(GM)	on	the	
preoperative	magnetic	resonance	imaging	(MRI)	using	ITK-	SNAP	software	with	overlay	of	a	stereo-	electroencephalography	(SEEG)	
electrode.	(B)	Location	and	prevalence	of	NH	in	our	cohort.	Color	frequency	map	illustrates	the	number	of	patients	with	NH	in	a	certain	
location.	(C)	Illustration	of	the	different	periods	of	the	seizure	selected	for	functional	connectivity	(FC)	analysis.	(D)	Distribution	of	number	
of	bipolar	channels	in	heterotopia	per	patient	with	involvement	in	the	epileptogenic	network	(EZ/PZ,	belonging	to	the	epileptogenic/
propagation	zones;	NI,	belonging	to	the	non-	involved	zone).	€	Node	OUT-	strength	of	channels	within	GM	or	NH	according	to	the	different	
seizure	period	(onset	of	seizure	[OS],	middle	of	seizure	[MS],	end	of	seizure	[ES])	and	the	epileptogenic	network	(EZ/PZ	and	NI).	Note	that	
channels	within	heterotopia	and	belonging	to	the	EZ/PZ	had	higher	node	strength-	OUT	values	during	the	seizure	onset	(OS)	than	channels	
within	the	GM.	(F)	Comparison	of	node	OUT-		and	IN-	strengths	for	channels	inside	heterotopia:	at	OS	the	node	OUT-	strengths	were	higher	
than	node	IN-	strengths	only	for	channels	belonging	to	the	EZ/PZ.
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node	strength	was	also	assessed	at	the	individual	level	for	
each	seizure	using	Wilcoxon	test	with	Bonferroni	correc-
tion.	 The	 differences	 in	 node	 strength	 were	 investigated	
as	a	function	of	the	NH	volume,	between	periods	(OS,	MS,	
and	ES),	between	different	EI	classifications	(EZ/PZ	and	
NI),	and	anatomic	classifications	(NH	or	GM).

A	 p-	value	of	 less	 than	 .0	after	 correction	was	consid-
ered	statistically	significant.	All	analyses	were	conducted	
with	R	Statistical	Software	(Version	4.0.4.).

3 	 | 	 RESULTS

3.1	 |	 Patient population

Table  1	 summarizes	 the	 patients’	 characteristics	 and	
Figure  1B	 presents	 the	 frequency	 location	 map	 of	 the	
NHs.	 Fourteen	 adult	 patients	 were	 included	 (10	 female,	
mean	 age	 at	 SEEG:	 32.8	±	11.7	years).	 The	 mean	 dura-
tion	of	epilepsy	before	SEEG	was	16.6	±	13.1	years	(range,	
3–46	years).	 The	 mean	 volume	 of	 NH	 was	 8.7	±	8.9	cm3	
(range,	1.3–25.4	cm3).	NHs	were	located	primarily	 in	the	
right	hemisphere,	specifically	near	the	atrium	of	the	right	
lateral	ventricle	(Figure 1B).	The	mean	number	of	SEEG	
electrodes	 was	 13.6	±	3.7	 (range,	 8–19	 electrodes),	 corre-
sponding	 to	 176.6	±	46.3	 contacts	 (range	 100–245).	 The	
management	comprised	SEEG-	guided	thermocoagulation	
in	 nine	 patients,	 neuromodulation	 (vagus	 nerve	 stimu-
lation/deep	 brain	 stimulation)	 in	 four,	 disconnection	 in	
one,	 and	 tailored	 cortectomy	 in	 one	 patient	 (Table  1).	
Sustained	Engel	class	I	outcome	was	obtained	 in	six	pa-
tients	 and	 Engel	 class	 II	 in	 two	 patients;	 six	 patients	
were	in	Engel	class	II/IV	and	one	patient	refused	surgery	
(Table 1).	Concerning	 the	FC	analysis,	 25	 seizures	were	
analyzed	 (mean	 number	 of	 seizures	 by	 patient:	 1.8	±	.8;	
range,	 1–3).	 The	 mean	 number	 of	 bipolar	 channels	 in-
cluded	in	the	final	analysis	was	64.4	±	16.4	(range,	33–99).

3.2	 |	 Connectivity at the group level

NH	was	involved	in	the	EZ/PZ	in	7	of	14	cases	(Figure 1D).	
The	node	TOT-	strength	increased	during	the	seizure.	The	
mean	node	TOT-	strength	was	significantly	higher	during	
the	 MS	 period	 than	 during	 the	 OS	 period	 and	 was	 also	
higher	during	the	ES	period	than	in	the	OS	and	MS	peri-
ods	(p	<	.001	in	all	cases).	This	increase	existed	in	both	the	
GM	and	the	NH	nodes.	Notably,	 the	node	TOT-	strength	
was	unrelated	to	NH	volume	(p	=	.63).

Concerning	 the	 nodes	 belonging	 to	 the	 EZ/PZ,	 we	
found	a	higher	node	OUT-	strength	in	the	NH	than	in	the	
GM	only	during	the	OS	(Figure 1E;	p	=	.03).	There	was	no	
significant	difference	for	other	periods	or	nodes	belonging	

to	the	NIZ.	The	nodes	within	NH	and	belonging	to	the	EZ/
PZ	 also	 showed	 significantly	 higher	 node	 OUT-	strength	
than	 IN-	strength	 (Figure  1F).	 This	 difference	 was	 not	
found	for	contacts	within	the	GM.

3.3	 |	 Connectivity at the individual level

Although	a	statistically	significant	difference	between	NH	
and	GM	was	shown	in	only	 two	seizures	of	one	patient,	
some	 considerations	 can	 be	 drawn	 by	 looking	 at	 single	
case	results:	in	some	seizures,	the	NH	showed	only	a	minor	
connection	 with	 the	 epileptogenic	 network	 (Figure  2:	
Patient	3),	whereas	in	other	seizures,	the	NH	was	strongly	
connected	 to	 the	 GM	 and	 had	 a	 leading	 role	 (Figure  2:	
Patient	4).	In	most	of	cases,	the	differences	between	NH	
and	GM	were	not	very	pronounced	(Figure 2:	Patient	10).	
This	heterogeneity	was	observed	inter-	individually	as	well	
as	between	different	seizures	of	the	same	patient.

4 	 | 	 DISCUSSION

We	report	 the	variation	of	SEEG	FC	during	seizure	 in	a	
series	 of	 patients	 presenting	 NH-	related	 drug-	resistant	
epilepsy.	This	study	showed	that	(1)	NH,	but	not	GM,	if	
involved	 in	seizure	generation/propagation,	acted	as	 the	
seizure	“leader,”	with	a	high	OUT-	strength	FC	at	the	sei-
zure	onset;	and	(2)	there	was	a	great	heterogeneity	of	the	
FC	patterns	at	the	individual	level.

At	the	group	level	in	the	present	series,	NH	was	likely	
to	 lead	 the	 epileptogenic	 network,	 despite	 some	 intra-		
and	inter-	individual	variability	observed	at	the	individual	
level.	In	comparison	with	our	previous	study	on	NH	epi-
leptogenicity	(based	on	time-	frequency	analysis	at	seizure	
onset),	the	actual	findings	argue	that	NH	can	play	a	piv-
otal/“leading”	role	 in	the	 ictal	modification	of	FC	(node	
strength),	even	when	it	is	involved	in	the	propagation	net-
work,	and	not	only	in	the	EZ	(referred	to	as	the	“hetero-
topic	seizures”	in	our	previous	study).3

Node	 strength	 increased	 during	 all	 seizure	 periods,	
and	this	result	was	in	line	with	previous	publications.11	
Despite	this	global	result,	there	was	a	great	heterogene-
ity	in	the	FC	patterns	between	patients	and	even	between	
the	different	seizures	of	the	same	patient.	This	could	be	
due	 to	 the	 heterogenicity	 in	 patients	 with	 NH-	related	
drug-	resistant	epilepsy,	with	significant	variability	in	the	
location,	the	number	of	NHs,	the	epilepsy	duration	be-
fore	SEEG,	and	the	type	of	seizures.	Also,	notable,	some	
genetic	factors	can	contribute	to	the	observed	heteroge-
neity:	apart	from	animal	model	data,	filamin	1	gene	or	
NRAS	 mutation	 have	 been	 associated	 with	 NH.12–14	 A	
recent	 study	 has	 focused	 on	 morphological	 aspects	 of	
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NH	and	associated	cortical	lesions	using	ultra-	high	field	
MRI.15	 Of	 interest,	 in	 the	 present	 work,	 there	 was	 no	
statistical	correlation	between	the	NH	FC	values	(node	
strength)	and	the	NH	volume.

Structural	 and	 functional	 MRI	 connectivity	 studies	
have	 shown	 aberrant	 connections	 of	 heterotopia	 with	
the	 overlying	 cortex.16,17	 From	 a	 neurophysiological	
point	 of	 view,	 three	 main	 profiles	 of	 FC	 could	 be	 dis-
tinguished:	 NH	 poorly	 connected	 within	 the	 epilepto-
genic	 network;	 NH	 strongly	 connected	 and	 being	 the	
leader	 vs	 the	 GM;	 and	 no	 difference	 between	 NH	 and	
GM.	The	lack	of	significant	differences	between	the	GM	
and	NH	FC	values	at	 the	individual	 level	could	be	due	
to	the	complex	network	organization,	without	a	“single	
leader”	structure,	or	due	to	a	limited	statistical	power	of	
our	analyses.

Results	should	be	interpreted	with	caution	due	to	the	
retrospective	 and	 monocentric	 nature	 of	 this	 study.	 By	
definition,	 SEEG	 is	 a	 personalized	 treatment;	 therefore	
the	 electrode	 implantations	 varied	 from	 one	 patient	 to	
another.	 The	 low	 spatial	 resolution	 of	 SEEG,	 combined	
with	the	fact	that	some	trajectories	were	not	possible	due	
to	anatomic	constraints,	limited	the	epileptic	network	in-
vestigation,	possibly	leading	to	sampling	bias.	Other	lim-
itations	were	the	different	numbers	of	seizures	analyzed	
from	the	different	patients	in	this	series,	bias	lowered	by	
the	signal	heterogeneity	between	seizures	from	the	same	
patient.

Identifying	seizure	leader	in	cases	of	NH-	related	drug-	
resistant	epilepsy	is	of	particular	importance.	Indeed,	sev-
eral	 surgical	 approaches	 have	 been	 proposed:	 resective	
surgery,	 radiofrequency	 thermocoagulation	 (or	 RF-	TC),	
laser	 interstitial	 thermal	 therapy,	 responsive	 neurostim-
ulation,	 and	 deep	 brain	 stimulation,	 with	 various	 out-
comes.18–24	 NHs	 are	 deeply	 rooted,	 making	 resection	
surgery	 difficult.	 Good,	 albeit,	 inconsistent	 results	 with	
RF-	TC	have	been	reported.3,23	The	high	heterogeneity	of	
this	 series	 called	 for	 personalized	 treatment	 strategies,	
and,	given	the	good	tolerance	of	SEEG,	 it	seems	reason-
able	to	consider	thermocoagulation	following	SEEG	as	a	
first	surgical	option.25

To	 conclude,	 NH	 can	 be	 the	 leader	 structure	 in	 the	
epileptogenic	 network	 when	 data	 are	 analyzed	 at	 the	
group	 level,	 but	 each	 patient	 with	 NH	 showed	 an	 in-
dividual	signature	of	 the	 ictal	FC	pattern.	This	 finding	
highlights	the	indication	for	the	SEEG	exploration4,26	to	
better	understand	the	organization	of	epileptogenic	net-
works	 in	 this	 peculiar	 population.6,10,25–27	 Larger	 stud-
ies	are	needed	 to	clarify	 the	great	heterogeneity	 in	 the	
NH	patient	population	and	to	link	network	analysis	and	
treatment	outcomes.
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