
HAL Id: hal-04913266
https://hal.science/hal-04913266v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A stateful protocol-based detection engine combining
behavior use cases and system specifications

S. Seng, J. Garcia-Alfaro, I. Gazeau, L. Desmonts

To cite this version:
S. Seng, J. Garcia-Alfaro, I. Gazeau, L. Desmonts. A stateful protocol-based detection engine combin-
ing behavior use cases and system specifications. Internet Technology Letters, 2025, �10.1002/itl2.633�.
�hal-04913266�

https://hal.science/hal-04913266v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A stateful protocol-based detection engine combining behavior use
cases and system specifications

S. Seng1,2 J. Garcia-Alfaro1 I. Gazeau2 L. Desmonts2

1Télécom SudParis, France
2EDF R&D, France

Abstract

Faced with the increasing need for network monitoring, many detection methods have been proposed. In
the last few years, AI-based methods, especially Machine Learning, have been the most popular. However,
these methods are not yet fully operational and detection methods based on signatures or on specifications
still keep all their legitimacy. In this letter, we propose a technique that combines a detection method based
on protocol specification with a learning method train on a dataset specific to a use case. This combination
leads to the definition of the notion of protocol profile.
Our solution is a continuation of a previous work which proposes an anomaly detection over-layer that are
complementary to the pre-existing ones within a NIDS. The latter keeps its usual detection technique to which
is added a stateful monitoring layer based on protocol specifications represented using Harel statecharts
as well as our protocol profile layer. An algorithm has been proposed to automatically generate a protocol
profile. It is based on event occurrence probabilities and an intermediate data format that we introduce: the
Flow Graph Execution Log (FGEL). Other algorithms are also mentioned. A prototype has been realized
and an experimentation with the POP3 protocol and simulated data sets has allowed to validate the concept.

K E Y W O R D S

Intrusion Detection System, Anomaly Detection, Protocol-specification-based detection, Protocol Modeling,

Statechart

1 INTRODUCTION

1.1 Importance of Intrusion Detection System (IDS)

A Network Intrusion Detection System (NIDS) intercepts all the
network packets that circulate within its perimeter. It must then
determine for each packet whether it is normal, malicious or
possibly an anomaly. There is no perfectly efficient solution for
this packet classification action and this is the main challenge
for NIDS: to obtain a high attack detection rate while limiting
false-positives and false-negatives1.

In a previous work2, the authors represent the operation of       F I G U R E 1 Addition of a stateful layer into actual NIDS 
NIDS using three successive layers: Capture, Dissection and
Detection. They then propose the addition of an extra analysis
dimension by adding a stateful monitoring layer of communica-
tion protocols between the Dissection and Detection layers (see Figure 1). This stateful monitoring layer is realized thanks to 
protocol models specified with Harel’s statecharts3.



The authors propose a tool implementing this layer, named STANPI (STAteful Network Protocol Intrustion detection tool).
This tool corresponds to an extension plugin for the open source NIDS Zeek4. It instantiates a statechart for each session of a
supported protocol. Each received network packet fires a transition in the statechart, which causes the active states to evolve and
thus allows stateful monitoring. The authors insist that stateful monitoring is a complementary layer that does not replace the
NIDS detection layer. Indeed, it offers anomaly detection capabilities on communication protocols as well as new contextual
information made available to the detection layer (current states, exchange history, etc.). But it does not really have an attack
detection logic. Moreover, it would be unable to detect attacks that respect the communication protocol.

1.2 Proposal: protocol-profile-based detection

In this letter, we propose a new method that combines anomaly detection by protocol specification, as defined in2, and behavioral
anomaly detection by learning methods. More precisely, the objective is to have a model offering both anomaly detection
capabilities on the protocol, but also on the usage of this protocol in a given use case, which we call a "protocol profile".

To reach this goal, we will start from the protocol model used in2 (i.e. the representation of a protocol in Harel’s Statechart)
and we will propose a method to complete this model by a learning algorithm with a dataset of a given use case.

F I G U R E 2 Extraction of sub-model from a use case dataset

As an example, Figure 2 shows our system which
takes two inputs: 1) a model of a protocol ac-
cepting three authentication methods (password,
challenge-response, certificate). 2) network traces
of this protocol coming from a use case where only
one authentication method is effectively used (cer-
tificate). The output of this system is an extract of
the input model 1) from which the not applicable
states to the use case have been invalidated.

A prototype has been realized, it follows the work
conducted in2. The use case used is based on the
POP3 protocol, with simulated datasets.

The rest of this letter is structured as follows.
Section 2 elaborates further on our problem domain. Section 3 provide our contribution, while section 4 reports experimental
and results work. Section 5 provides some additional discussions. Section 6 concludes the work.

2 PROBLEM DOMAIN

Our protocol profile combines protocol specification-based methods with machine learning-based anomaly detection methods.
Each of these two methods has been the subject of several studies.

The literature on specification-based detection techniques is abundant. However, these techniques do not have a convergent
positioning and use among the different types of detection engines. Some authors5, see it as a synonym for knowledge-based, 
while others see it as another type of behavior-based anomaly detection6 or as a category in its own right7. Where opinions 
converge is in its definition: a model based on specifications defined by an expert to describe a system. This specification work is
potentially complex, time-consuming and prone to human error. This divergence in positioning seems to stem from the system to
be specified. If the specifications aim to model attacks, then these are more likely to be considered knowledge-based. If, on the
other hand, the specifications aim to model a complete system, such as an IS, then they will be considered behavior-based.

In our study, it is not the final system that is modeled, but the protocol it uses: protocol-specification-based.
In contrast, anomaly-based detection techniques are the focus of the majority of recent proposed techniques. This is due in

part to the recent explosion of AI methods, and in particular those based on machine learning, notably Deep Learning. Many of
these studies report excellent detection rates, with very few false positives and false negatives. However, these excellent results
need to be put into perspective1,8.

Except for the joint use of specification and Machine Learning methods, the notion of combining or synthesizing these two
topics seems to have been little studied.



3 OUR PROPOSAL: GENERATE A PROTOCOL PROFILE FROM A SPECIFICATION
MODEL AND A USE CASE DATASET

3.1 Methodology

F I G U R E 3 Training phase: protocol profile building chain

To generate a protocol profile, we partly reuse the
work in2, in particular the generic protocol model
and the STANPI (STAteful Network Protocol In-
trustion detection tool) anomaly detection engine
based on a stateful monitoring. We then use the
results of STANPI to generate an intermediary net-
work exchange data format. This format will then
be used to extract metrics that will lead to the
generation of protocol profiles.

We will consider two phases of operation in our
methodology: the first phase called TRAINING,
in which the training algorithm is applied, leading
to the generation of the protocol profile. The sec-
ond phase, called RUN, corresponds to the nominal
operation of STANPI. It then acts as a NIDS and
detects anomalies with respect to the protocol and
the protocol profile.

3.2 Protocol Specification Model

The protocol model used is considered as input data. It contains the specifications of a protocol as they might be described by an
expert. This model is generic and does not take into account the use made of the protocol; in other words, it is agnostic of any
use case.

STANPI allows to follow in real time the evolution of the automata (statechart model) for each session of a protocol. It is thus
possible to know the active states and the transitions fired. By recording this information in a log, we obtain what we call a Flow
Graph Execution Log (FGEL). The figure 3 illustrates this methodology.

By analyzing the FGEL, we can extract metrics specific to the use of the protocol in a dataset, typically a training dataset.
From these metrics, we can build a protocol profile. Several metrics and methods are possible, two of which are presented in the
following sub-sections, and others are discussed in the following section 5.

3.2.1 Naive method: unvalidate transitions

The most obvious and simplest method is to invalidate, in the automaton, transitions that are never crossed and, by transitivity, any 
states that are never reached. The construction of the protocol profile then consists in creating a new automaton from the FGEL.

Such a profile seems to meet our objective to build a protocole profile. Furthermore, it can be reused as is, as an input model 
in STANPI, replacing the generic protocol model (agnostic of any use case).

From an implementation point of view, we prefer not to create a new model as mentioned above, but to create a complementary 
model to the generic model, or to modify the generic model to integrate profile-related metrics. This allows us to maintain two 
distinct levels of anomaly: the generic model and the profile. Thus, when an anomaly occur, it is possible to distinguish whether 
the anomaly is a non-conformity with the generic model (and therefore also with the profile) or whether it conforms to the 
generic model but not to the profile.

This method of invalidating transitions is rigid and fails to identify certain anomalies related to the frequency with which 
transitions are used. For example, if our training dataset contained a single password authentication error, then the profile will 
never raise an anomaly when multiple password authentication errors occur (typically a bruteforce attack). Another example 
is the number of transmission errors in a protocol session. If the training data set contains a very low number of transmission



errors, then our profile will not raise any anomaly when a very high number of transmission errors occur. These two examples
could be a sign of a potential attack or network problem that it might be worthwhile identifying. This rigidity can also lead to
false negatives. We therefore propose another method based on probabilities.

3.2.2 Probabilist method: Use occurency probability

Another method to build a profile is to define a probability of occurrence for each transition in the automaton. During the
NIDS RUN phase, it is then possible to compare this probability of occurrence with the utilization rate of a transition, and thus
eliminate potential anomalies in the event of divergence.

In practice, such a probability of occurrence is a static metric that does not take into account the possible diversity of exchanges
in a training dataset. As it stands, it is an average value with no estimation error. This lack of tolerance is likely to result in a large
number of false positives. To overcome this limitation, we introduce a margin of one standard deviation from this mean value.

Note that the probabilistic method is a superclass of the transition invalidation method. In fact, a probability of occurrence of
0% and a standard deviation of 0% are enough to invalidate a transition, all other values corresponding to a valid transition.

4 EXPERIMENTATION AND RESULTS

4.1 Use case based on POP3 protocol

F I G U R E 4 Automata model of POP3 protocol

In order to verify the relevance and the efficiency of our solution,
we carried out an experiment. As a prototype, modifications
were made to STANPI in order to take into account the notion
of protocol profile. The goal of these experimentations was to
confront our work to some datasets and see if it had the expected
beheaviour in cases it should and should not raise an anomaly
event.

Those trails were conducted by using the POP3 mail protocol
as reference, as it is a protocol that is easy to read, which made
the result’s interpretation all the more efficient compared to a
more complexe protocol. Figure 4 represents the generic model
of the POP3 protocol in statechart in the W3C SCXML format9.

We have not identified a freely accessible dataset that uses
both the POP3 protocol and a use case sufficiently detailed
for our context. We therefore simulated our own datasets. Our
use case is represented by a normal user, wishing to retrieve
his e-mails using the Mozilla Thunderbird e-mail client. The
POP3 server used is Dovecot. Using a client such as Mozilla
Thunderbird and a predefined server imposes sessions with their
own POP3 message sequences.

Four datasets were then created:

• A training dataset containing normal POP3 exchanges, as representative and exhaustive as possible of our use case.
• A control dataset, representing the same use case and generated under the same conditions as the training dataset. However,

the scenarios differ in terms of session duration and number of messages exchanged. This dataset is not expected to raise any
issues.

• A control data set, in which a brute force authentication attack is performed. This data set is intended to detect anomalies.
• An alternative control dataset, in which an authentication other than that corresponding to the use case is used. Typically,

AUTH authentication (CRAM-MD5) is used instead of USER/PASS. This dataset is intended to detect anomalies.



Training and control datasets must be healthy (i.e. free of attacks) and as representative and exhaustive as possible of the use
case to be modeled.

4.2 Modeling and STANPI Modifications

Changes have been made to the protocol models and STANPI to take account of protocol profiles. The SCXML format used for
the model natively allows additional information to be added to each object, including transitions. For STANPI, the modifications
consist in ensuring that no invalid transitions are crossed, or in removing any anomalies.

For the probabilistic method, in the model, we simply replace the binary flag with a probability of occurrence and a tolerance
of one standard deviation.

From a design point of view, STANPI’s profile management, in particular decision making, has been abstracted by isolating it
in a dedicated library named Oracle. This makes it easy to evolve profile-related capabilities or methodologies, while limiting
STANPI modifications.

4.3 Results

The results show that our prototype works well. The brute force dataset also revealed anomalies with respect to the protocole
profile caused by exceeding the occurency probability. The alternative authentication dataset did raise anomalies caused by an
invalidation of the alternative authentication in the protocole profile.

About performance, in terms of hardware resources (memory, processor) or in terms of execution time, implementing the
POP3 protocol profile within STANPI has a negligible overhead. It was not possible to measure a significant difference with or
without a profile. The execution time of the training phase is similar to that of a RUN phase, which in turn depends on the NIDS
Zeek. In any case, it remains much faster than real-time training if it is performed from a network dump (pcap). Finally, FGEL
and profile generation takes just a few seconds on an inexpensive laptop.

This experimentation shows that the notion of protocol profile integrated into a NIDS allows to detect anomalies related to the
non respect of a protocol use case. It also shows that the method of profile creation is efficient and that its implementation in
STANPI has a negligible additional cost.

5 DISCUSSION

5.1 Evaluation Performances

The first point to note is that our experiment is a proof of concept, and so performance evaluation in terms of detection rates, false-
negatives or false-positives, is not fully qualified. To measure these performances, we would need a quality training and control
dataset, labeled and specific to a use case, which we do not have. Finally, even if our solution is capable of detecting attacks, we
would point out that it can only detect anomalies in protocol usage, and that the role of attack detection or classification is the
responsibility of the detection layer, to which our protocol profile layer provides complementary information.

5.2 Profile Limitations and Other Methodologies

The two profile generation methods proposed, while relatively well adapted, do not take advantage of the latest advances in
Machine Learning. In addition, our methodologies do not take into account two characteristics that may be specific to a use case:

• the temporal aspect of network exchanges, such as throughput and latencies between requests and responses, or periodic
requests such as keep-alive requests issued at fixed intervals.

• sequences between message types: some use cases use sequences of messages, in a precise order within an existing set of
message types.



Algorithms such as naive bayes are particularly effective for identifying sequences. Similarly, unsupervised learning algorithms
such as Recurrent Neural Networks (RNN) could be effective for identifying sequences and temporal management of exchanges.
It should be noted, however, that these AI algorithms offer little capacity for explanation1.

5.3 Improvement

The notion of oracle, especially if used in conjunction with prediction algorithms such as RNN, could solve a NIDS operating
difficulty that STANPI does not take into account: packet loss. Indeed, packet loss could cause a protocol’s state tracking within
STANPI to become out of sync, leading to false-positive anomalies. For example, if a packet is lost during the authentication
phase, the automaton may be blocked in the authentication phase, when in fact it has been completed. All subsequent packets are
then likely to raise anomalies. Thanks to its predictive capabilities, the oracle could take charge of this packet loss, suggest the
missing packets and resynchronize the automaton accordingly.

6 CONCLUSION

In this letter we propose a new method for combining a network anomaly detection method based on protocol specifications with
a learning method based on the behavior of a given use case. This combination of two methods led to the introduction of the
notion of "protocol profile". A protocol profile then corresponds to the modeling of the network behavior for a specific system.
Two algorithms have been proposed to generate this protocol profile: transition invalidation and probability of occurrence.

A model and dataset-specific exchange history format has been defined: the Flow Graph Execution Log (FGEL). It corresponds
to an intermediate data format that enables an easy pivoting between several protocol profile generation algorithms.

A prototype has been built using the STANPI tool from previous work, which it complements with our new protocol profile
layer, positioned between the stateful monitoring layer and the detection layer. Our NIDS, based on Zeek and STANPI, then
operates using several layers: Capture, Dissection, Stateful Monitoring, Protocol Profile Monitoring and Detection. The last
three layers offer anomaly or attack detection capabilities on different perimeters.

Limitations and avenues for improvement were also discussed. In particular, the possibility of generating protocol profiles
from RNN-based AI algorithms.

REFERENCES
1. Seng S, Garcia-Alfaro J, Laarouchi Y. Why Anomaly-Based Intrusion Detection Systems Have Not Yet Conquered the Industrial Market?. In:

Aïmeur E, Laurent M, Yaich R, Dupont B, Garcia-Alfaro J., eds. Foundations and Practice of SecuritySpringer International Publishing 2022;
Cham:341–354

2. Seng S, Garcia-Alfaro J, Laarouchi Y. Implementation of a Stateful Network Protocol Intrusion Detection Systems. In: 2022:398–405.
3. Harel D. Statecharts: a visual formalism for complex systems. Science of Computer Programming. 1987;8(3):231–274. doi: 10.1016/0167-

6423(87)90035-9
4. Zeek . The Zeek Network Security Monitor. 2021.
5. Kaouk M, Flaus JM, Potet ML, Groz R. A Review of Intrusion Detection Systems for Industrial Control Systems. In: 2019:1699–1704. ISSN:

2576-3555
6. Mitchell R, Chen IR. A survey of intrusion detection techniques for cyber-physical systems. ACM Computing Surveys. 2014;46(4):55:1–55:29. doi:

10.1145/2542049
7. Liao HJ, Richard Lin CH, Lin YC, Tung KY. Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications.

2013;36(1):16–24. doi: 10.1016/j.jnca.2012.09.004
8. Tavallaee M, Stakhanova N, Akbar Ghorbani A. Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods. Toward Credible

Evaluation of Anomaly-Based Intrusion-Detection Methods. 2010;40(5):516–524. Num Pages: 9 Place: New-York, NY Publisher: Institute of
Electrical and Electronics Engineers.

9. Barnett J, Akolkar R, Auburn R. State Chart XML (SCXML): State Machine Notation for Control Abstraction. 2015.

http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1016/j.jnca.2012.09.004



