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ABSTRACT

This paper presents a nonlinear reaction-diffusion-fluid system that simulates radiofrequency
ablation within cardiac tissue. The model conveys the dynamic evolution of temperature and
electric potential in both the fluid and solid regions, along with the evolution of velocity within
the solid region. By formulating the system that describes the phenomena across the entire do-
main, encompassing both solid and fluid phases, we proceed to an analysis of well-posedness,
considering a broad class of right-hand side terms. The system involves parameters such as heat
conductivity, kinematic viscosity, and electrical conductivity, all of which exhibit nonlinearity
contingent upon the temperature variable. The mathematical analysis extends to establishing
the existence of a global solution, employing the Faedo–Galerkin method in a three-dimensional
space. To enhance the practical applicability of our theoretical results, we complement our study
with a series of numerical experiments. We implement the discrete system using the finite el-
ement method for spatial discretization and an Euler scheme for temporal discretization. Non-
linear parameters are linearized through decoupling systems, as introduced in our continuous
analysis. These experiments are conducted to demonstrate and validate the theoretical findings
we have established.

1. Introduction and problem statement
1.1. Background

The paper introduces a mathematical model for tracking the evolution of an invasive medical technique that is
widely employed across various medical disciplines, specifically Radiofrequency Ablation (RFA). Our goal is to im-
prove the applicability and efficiency of this technique, particularly in the treatment of conditions like cardiac arrhyth-
mia and the ablation of tumors located in different regions of the body. The RFA technique is characterized by its
exceptional precision, high effectiveness, and low mortality rates. RFA has evolved into a widely accepted and highly
effective treatment for a variety of cardiac arrhythmias, including ventricular arrhythmias, atrial fibrillation, and atrial
tachycardia, among others. The operation of this treatment technique is based on the application of high-frequency
electrical current within specific myocardial regions (see Figure 1). This process leads to the generation of elevated
temperatures (typically exceeding 50 ◦C) within the cardiac tissue, resulting in cell death. RFA procedures are mathe-
matically represented through a thermistor problem, which simulates the heating of a conductive material by inducing
electric current at a specific boundary region for a defined time period. This model is formulated as a coupled system
of nonlinear partial differential equations (PDEs), specifically consisting of the heat equation with Joule heating as the
heat source and the current conservation equation with temperature-dependent electrical conductivity.

The need to control the results of RFA experiments has driven various research efforts. For instance, there has been
a focus on predicting tissue temperatures to provide real-time guidance during the process, as established in [24, 37].
These investigations have primarily centered on optimal control and inverse problems, with a specific emphasis on
identifying the frequency factor and energy involved in the thermal damage function for different tissue types. In this
context, we refer to the two works by Meinlschmidt et al. [29, 30], which addressed boundary condition identification
problems through optimization techniques. The authors established the well-posedness and optimality conditions. A
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recent contribution by Huaman et al. [23] explores the local null controllability of the thermistor problem, considering
spatially distributed control.

In the following subsections, we describe the coupled system that models the dynamics of radiofrequency ablation
(RFA) treatment in the presence of a specific fluid, namely, blood. Let T > 0 represent the final time, and consider
bounded open subsets in three-dimensional space denoted as Ωb and Ωts. These subsets correspond respectively to
the blood vessel and the cardiac tissue and possess piecewise smooth boundaries denoted by Σb and Σts. For visual
reference, Figure 1 illustrates the radiofrequency ablation procedure within cardiac tissue, showing an overview of
different regions within the domain. The readers can consult the configuration geometry and boundaries conditions of
our model in Figure 2.

Figure 1: Illustration of radiofrequency ablation procedure within cardiac tissue, highlighting di�erent regions in the domain.
https://www.stopafib.org/procedures-for-afib/catheter-ablation/

1.2. Electrothermal field in thermistor models
RFA utilizes alternating electric currents within the radiofrequency range (450 - 500 kHz) to induce controlled

thermal damage in tissues. This technique is commonly employed for the treatment of conditions such as liver, lung,
and kidney tumors, varicose veins, as well as cardiac arrhythmias. During this procedure, an electrode is inserted
under image guidance to precisely target and heat the tissue. When alternating electric fields are applied to resistive
materials like biological tissue, two forms of heating occur; conduction losses resulting from resistive heating due
to ion movement and dielectric losses caused by the rotation of molecules in the alternating electric field. However,
within the frequency range below 1MHz, dielectric losses become negligible [9].

In our model, we exclusively focus on resistive heating. The resulting electric field within the tissue can be accu-
rately described by the Laplace equation:

∇ ⋅
(

�ts∇'ts
)

= 0 in ΩT ,ts ∶= (0, T ) × Ωts, (1)

where, �ts denotes the electrical conductivity of the material in Siemens per meter (S∕m), and 'ts represents the
electric potential in Volts (V ). The electric field intensity, denoted as E in units of Volts per meter ((V∕m)), and the
current density J in Amperes per square meter

(

A∕m2
)

are calculated from the following relationships: E = −∇' and
J = �tsE. The local power density responsible for tissue heating is determined by multiplying the current density J
by the electric field intensity E. This power density is then used to compute the temperature distribution within the
tissue using the heat-transfer equation [22].
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This equation accurately characterizes the situation when the ablation catheter is within the tissue, although it’s
important to acknowledge that the electric field might also extend into the adjacent blood vessel. As a result, both
scenarios are considered simultaneously.

1.3. Bio-heat distribution
During radiofrequency ablation (RFA), electrical energy is delivered, causing a rise in temperature in both the

blood vessel and the cardiac tissue surrounding the catheter. In our study we employs the Pennes equation to describe
the bio-heat transfer model:

�1,i�2,i �t,i − ∇ ⋅
(

�i
(

�i
)

∇�i
)

= Si + �m,i in ΩT ,i ∶= (0, T ) × Ωi, for i = b, ts, (2)

where �1,i (kg∕m3), �2,i (J∕kg × K), and �i represent the density, specific heat, and thermal conductivity functions
dependent on the media (blood vessel for i = b or the tissue for i = ts), respectively. Recall that Ωb and Ωts represent
the tissue and blood vessel domains. The coefficient �m,i models the metabolic heat generation for i = b, ts. Finally,
the electromagnetic heat source Si (W ∕m3) due to radiofrequency heating is given by:

Si = �i
(

�i
)

|∇'i|2 in ΩT ,i, for i = b, ts. (3)

It’s important to mention that during RFA, the electromagnetic heat source (S ≃ O(108)) is significantly greater in
magnitude compared to the metabolic heat source (�m ≃ O(103)). Therefore, in this work, we neglect the metabolic
heat generation �m,i for i = b, ts. In our bio-heat model (2), the thermal and electrical conductivities of the blood and
the tissue depend on the temperature of the media.

1.4. Blood flow model
The blood flow can be characterized as an incompressible Navier–Stokes fluid, governed by the following system:

�
(

)tu + (u ⋅ ∇) u
)

− ∇ ⋅
(

�
(

�b
)

D (u)
)

+ ∇� = F , in ΩT ,b,
∇ ⋅ u = 0, in ΩT ,b.

(4)

Here, u represents the flow velocity, and � denotes the pressure scaled by the density �. The parameter � signifies the
dynamic viscosity of the blood, equivalent to ��, where � is the kinematic viscosity that depends on the temperature �b
of the blood vessel. In (4), the functions D(u) = 1

2

(

∇u + ∇uT
)

and F represents the strain rate tensor and the external
force, respectively.

In the context of initial data for fluid velocity, it is essential to provide a carefully prescribed value. Typically, this
velocity field should be divergence-free to be considered admissible. In many hemodynamic simulations, the actual
value of this quantity is often unknown. As a result, it is frequently set to zero throughout the domain, or, in a more
informed approach, it is estimated as the solution to a stationary Stokes problem. The issue of boundary conditions is
of utmost significance when simulating blood flow. Extensive literature has been dedicated to addressing this topic in
recent years, with comprehensive reviews available, such as in [15, 32].
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1.5. Electro-thermo-fluid model
The electro-thermo-fluid model addressed in this paper is formulated as follows, summarizing all the equations

described above:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�
(

)tu + (u ⋅ ∇) u
)

− ∇ ⋅
(

�
(

�b
)

D (u)
)

+ ∇� = F , in ΩT ,b,

∇ ⋅ u = 0, in ΩT ,b,

)t�b − ∇ ⋅
(

�b
(

�b
)

∇�b
)

+ u ⋅ ∇�b −
(

�b
(

�b
)

∇'b
)

⋅ ∇'b = 0, in ΩT ,b,

− div
(

�b
(

�b
)

∇'b
)

= 0, in ΩT ,b,

)t�ts − ∇ ⋅
(

�ts
(

�ts
)

∇�ts
)

−
(

�ts
(

�ts
)

∇'ts
)

⋅ ∇'ts = 0, in ΩT ,ts

− div
(

�ts
(

�ts
)

∇'ts
)

= 0, in ΩT ,ts.

(5)

We complete the system (5) with the following boundary conditions

u = ud on ΣT ,b,
�b = �̄ on ΣDT ,b and �ts = �̄ on ΣDT ,ts,

�b = �ts on ΣT ,7 ∪ ΣT ,8 and (�b
(

�b
)

∇�b) ⋅ nb = −(�ts
(

�ts
)

∇�ts) ⋅ nb on ΣT ,7 ∪ ΣT ,8,
�i
(

�i
)

∇'i ⋅ nb = 0 on ΣT ,7 and 'i = 'i,d on ΣT ,i ⧵ ΣT ,7,

(6)

where ΣT ,i ∶= (0, T ) × Σi for i = b, ts. The initial data are

�i (0, ⋅) = �̄ on Ωi, ∀i = b, ts,
u (0, ⋅) = u0 on Ωb.

(7)

Here, we divide the boundaries of blood domain Ωb and tissue domain Ωts into regular parts ΣDi , Σ
N
i and Σ8, as

illustrated in Figure 2. Thus,

Σi ∶= ΣDi ∪ Σ7 ∪ Σ8, ΣDb ∶= ∪
3
i=0Σi, ΣDts ∶= ∪

6
i=4Σi,

�d =

{

�s on ΣT ,8,
�̄ on ΣT ⧵

(

ΣT ,7 ∪ ΣT ,8
)

,
, 'i,d =

{

'd on ΣT ,8,
0 on ΣT ,i ⧵

(

ΣT ,7 ∪ ΣT ,8
)

,

and ud =
⎧

⎪

⎨

⎪

⎩

ue on ΣT ,1 ∪ ΣT ,3,
us on ΣT ,8,
0 on Σ7 ∪ ΣT ,2.

Regarding the blood boundary conditions, we impose inlet and outlet velocity boundary conditions u = ue on the
left and right surfaces of the blood volume (ΣT ,1 ∪ ΣT ,3). We assume that the saline irrigation flow (u = us on ΣT ,8)
serves as a velocity boundary condition applied to the area of the electrode tip. On the remaining boundary of the blood
volume Σb (Σ7), we apply a no-slip condition (u = 0). For the thermal boundary conditions, a constant temperature
�̄ = 37◦C is set on ΣDT ,b ⧵ (ΣT ,7 ∪ ΣT ,8) for �b and temperature of the saline flow is denoted by �s (�ts = �b = �s on
ΣT ,8). On the contact surface (ΣT ,7) between the two media (blood and tissue), we ensure the continuity of the flux
and temperature. Similarly, a constant temperature of �ts = 37◦C is maintained on the remaining boundary surface of
the tissue (ΣT ,4 ∪ ΣT ,5 ∪ ΣT ,6). In the electrical model, we enforce a zero flux boundary condition on the tissue-blood
surface ΣNb , except on the surface of the conducting part of the RF probe (ΣT ,8), where 'i = 'd for i = b, ts. On the
remaining boundary surface of the tissue and blood, we set 'i = 0 for i = b, ts.
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



θb = θ̄

φb = 0

u = ue

on Σ1 Σ3

Σ2





θts = θb

u = 0

(ηts(θts)∇θts) · nts = (ηb(θb)∇θb) · nb

σts(θts)∇φts · nts = σb(θb)∇φb · nb = 0

on Σ7

Σ7

Σ6

Σ5

{
θts = θ̄

φts = 0
on Σ4 ∪ Σ5 ∪ Σ6





θb = θts = θs

φb = φts = φd on Σ8

u = us

Ωb

Σ4

Σ1

Σ7

Σ8

θb = θ̄

φb = 0

u = ue





Ωts

Electrode





θb = θ̄

φb = 0

u = 0

on Σ2

H

L

r

Figure 2: Con�guration geometry and boundaries conditions of the model.

1.6. Contributions and related works
The mathematical study of thermistor models, particularly the heat-potential model, has been the subject of sev-

eral works. For instance, in [3], the existence of a solution is established based on the maximum principle and a
fixed-point argument. In [12], the existence of a weak solution over an arbitrarily large time interval is demonstrated
using the Faedo–Galerkin method. In [27], the existence and uniqueness of the solution for thermistor equations were
addressed without relying on non-generalized assumptions on the data. Additionally, in the case of constant thermal
conductivities, the existence and uniqueness of the solution in three-dimensional space are shown, with a particular
emphasis on its �-Hölder continuity, as seen in [38]. From a computational perspective, there is currently a lack of
numerical analyses covering various scenarios of the model, including variations in conductivity and spatial consid-
erations. In the context of two-dimensional space, where constant thermal conductivity is assumed, significant results
were developed in [2]. In the latter, by using a mixed finite element method with a linearized semi-implicit Euler
scheme, an optimal error estimate for the L2 norm is derived while adhering to specific time-step conditions. Expand-
ing this computational approach to higher-dimensional spaces, particularly in two and three dimensions (see [26]),
time-step conditions for linearized semi-implicit methods are developed. Furthermore, optimal error estimates have
been presented for a Crank-Nicolson Galerkin method concerning nonlinear thermistor equations [25], as well as for
similar schemes based on backward differential formulas [17]. In order to enhance our understanding of the practical
application of thermistor equations in various scenarios and dimensions, developing models that couple the thermistor
system with Navier–Stokes systems presents a challenge. These results can be particularly relevant for addressing fluid
dynamics during ablation, as evident in blood flow [13, 19, 28, 31, 35, 36, 39]. Some mathematical and mechanical
studies of blood flow dynamics have been the subject of research, such as [14, 32].

In this paper, our primary focus is on the mathematical investigation and numerical approximation of a Thermo-
Electric-Flow model. What distinguishes this model is its method of partitioning the domain into two distinct regions,
representing the blood vessel and cardiac tissue, as visually depicted in Figure 2. We undertake a rigorous analysis of
the electro-thermo-fluid model in three dimensions, introducing an equivalent variational formulation. Our choice of
temperature-dependent electrical and thermal conductivities ensures that they satisfy the necessary conditions for the
existence of solutions. By employing the Faedo–Galerkin approach and using compactness arguments, we are able to
establish the existence of solutions for this model. However, it’s important to note that the practical implementation of
our model poses certain challenges. Specifically, the variational formulations of the heat equation encounter compli-
cations due to the quadratic terms involving electric fields in (5), denoted as

(

�i
(

�i
)

|∇'i|2
)

, where i = b, ts. Since
we are seeking 'i in the spaceH1 (Ωi

)

, it follows that �i
(

�i
)

|∇'i|2 is limited to L1
(

Ωi
)

. Several approaches can be
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employed to address this issue, including the selection of test functions in the variational formulations of temperatures
within the spaceH1 (Ωi

)

∩ L∞
(

Ωi
)

. For further details on this approach, please refer to [10]. However, in our case,
we opt for the method proposed in [4] by designating the boundary condition 'd within the spaceH1 (Ωi

)

∩L∞
(

Ωi
)

.
The variational formulation is subsequently discretized using finite element schemes in both domains, and we utilize
the domain decomposition method, particularly the Schwarz algorithm, to ensure the continuity of heat and poten-
tial equations. Temporal discretization is implemented through an Euler scheme. Finally, we present the results of
numerical experiments conducted for various scenarios.

1.7. Organization of the paper
The structure of this paper is as follows. In the next section, we will introduce fundamental notations and appropri-

ate functional spaces. Then, we will formulate the problem within a variational framework and present the existence
result for the proposed model. Section 3 is dedicated to the proof of this result. We will also outline a two-dimensional
numerical approach, which will be illustrated in Section 4 through various numerical experiments involving different
parameter values. Lastly, Section 5 will consolidate our findings and provide insights into future perspectives.

2. Notion of solution and main result
2.1. Mathematical setting

Before presenting our results regarding weak solutions, we will first provide some preliminary materials, including
relevant notations and conditions imposed on the data.
LetΩ = Ωb∪Ωts be a bounded open subset ofℝN , whereN = 3, such thatΩb∩Ωts = ∅. The boundary ofΩ is smooth
and can be denoted as )Ω = Σb ∪Σts, with Σb ∩Σts = Σ7 ∪Σ8 (see Figure 2). The symbol |Ω| represents the Lebesgue
measure of Ω. For i = ts, b, we denoteH1 (Ωi

)

as the Sobolev space of functions  ∶ Ωi → ℝ, where  ∈ L2
(

Ωi
)

and ∇ ∈ L2
(

Ωi;ℝN). The notation ∥ ⋅ ∥Lp(Ωi) represents the standard norm in Lp
(

Ωi
)

, with 1 ≤ p ≤ +∞:

Lp
(

Ωi
)

=

{

 ∶ Ω⟶ ℝ measurable and ∫Ωi
| (x)|p dx < +∞

}

,

L∞
(

Ωi
)

=

{

 ∶ Ωi ⟶ ℝ measurable and sup
x∈Ωi

| (x)| < +∞
}

.

If X is a Banach space, a < b, and 1 ≤ p ≤ +∞, the notation Lp (a, b;X) represents the space of all measurable
functions  ∶ (a, b) → X such that ∥  (⋅) ∥X belongs to Lp (a, b). Note that Cc0 (0, T ;X) denotes the space of
continuous functions with compact support and values in X.

To simplify mathematical formulations, we introduce the following notations, assuming that the functions v, w,
 , �i, �i, 'i, �i, and Si for i = b, ts are sufficiently smooth so that the following integrals are well-defined:

(w, ) = ∫Ωb
w ⋅  dx,

(

�i, Si
)

Γi
= ∫Γi

�i Si d�,

ãw (w, ) = ∫Ωb
D (w) ∶ ∇ dx, d

(

w, �i, Si
)

= ∫Ωi

(

w ⋅ ∇�i
)

Si dx,

b (w, v, ) = ∫Ωb
(w.∇) v ⋅  dx, a�i

(

�i; �i, Si
)

= ∫Ωi
�i
(

�i
)

∇�i ⋅ ∇Si dx,

ã�i
(

�i, Si
)

= ∫Ωi
∇�i ⋅ ∇Si dx, c'i

(

�i, 'i, Si
)

= ∫Ωi
�i
(

�i
)

∇'i ⋅ ∇'iSi dx,

a'i
(

�i, 'i, �i
)

= ∫Ωi
�i
(

�i
)

∇'i ⋅ ∇�i dx, aw (�;w, ) = ∫Ωb
� (�)D (w) ∶ ∇ dx.
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Furthermore, in the analysis of our RF-ablation model (5), we will utilize the following vectorial spaces:

L2
(

Ωb
)

=
(

L2
(

Ωb
))3 , H1 (Ωb

)

=
(

H1 (Ωb
))3 ,H1

0
(

Ωb
)

=
(

H1
0
(

Ωb
))3 ,

Hu
0 =

{

u ∈ H1 (Ωb
)

, div u = 0 and u = 0 on Σb
}

, Lb =Hu
0
L2(Ωb),

H
�i
0 =

{

�i ∈ H1 (Ωi
)

, �i = 0 on ΣDT ,i
}

, for i = b, ts,

H
'i
0 =

{

'i ∈ H1 (Ωi
)

, 'i = 0 on ΣT ,i⧵ΣT ,7
}

, for i = b, ts.

The properties of the forms b (⋅, ⋅, ⋅) are described in the following lemma, where C1 is a positive constant (depen-
dent on the domain) that may vary between different lines.

Lemma 2.1 ( Properties of the trilinear form [16]). The trilinear form b is continuous on H1
0(Ω) ×H1

0(Ω) ×H1
0(Ω)

and satisfies:

b (w, v, ) + b (w, , v) = 0, ∀w, v, ∈Hu
0 ,

b (w, v, v) = 0, ∀w, v ∈Hu
0 .

Moreover, for all w, v, ∈Hu
0 , we have

|b (w, v, ) | ≤ C1‖w‖
1∕4
L2

‖w‖3∕4
H1 ‖v‖

1∕4
L2

‖v‖3∕4
H1 ‖ ‖H1 .

For all w, v ∈Hu
0 we denote as B (w, v) ∈

(

Hu
0
)′ the bilinear form on Hu

0 ×Hu
0 defined by

⟨B (w, v) , ⟩(Hu
0)
′,Hu

0
= b (w, v, ) .

Then, by Lemma 2.1, it is clear that the map B is continuous from Hu
0 ×Hu

0 into (H
u
0)
′ and that we have

‖B (w,w) ‖(Hu
0)
′ ≤ C1‖w‖

1∕2
L2

‖w‖3∕2
H1 , ∀w ∈Hu

0 . (8)

2.2. Variational formulation
Before presenting our main result, we make several assumptions about the parameters and data of the model (5)-(7).

Without further references, we assume the following assumptions:
Firstly, we assume that the functions �, �i, and �i are positive, bounded, and continuous with respect to the temperature

0 < � ≤ � (�) ≤ � < +∞ ∀� ∈ ℝ,
0 < �i ≤ �i (�) ≤ �i < +∞ ∀� ∈ ℝ and i = b, ts,
0 < �

i
≤ �i (�) ≤ �i < +∞ ∀� ∈ ℝ and i = b, ts,

(9)

where �, �, �i, �i, �i and �i are positive constants.
In addition, with respect to the boundary conditions of (6), we use the notations ud , �d , and 'i,d , and we also denote
their trace extensions by the same notations. Then, we assume the following conditions:

ud ∈ L4
(

0, T ;H1 (Ωb
))

, )tud ∈ L2
(

0, T ;
(

H1 (Ωb
))′) , such that div ud = 0 in Ω,

�d ∈ L2
(

0, T ;H1 (Ωb
)

∪H1 (Ωts
))

, )t�d ∈ L2
(

0, T ;
(

H1 (Ωb
))′ ∪

(

H1 (Ωts
))′) ,

'i,d ∈ L∞
(

0, T ;H1 (Ωi
)

∩ L∞
(

Ωi
))

, ∀i = b, ts.

(10)

The initial conditions of the temperatures and velocity on the boundary, �d,0 ∶= �d (0, ⋅) and ud,0 ∶= ud (0, ⋅), belong
to L2

(

Ωb
)

∪ L2
(

Ωts
)

and L2
(

Ωb
)

, respectively.
Finally, the assumptions for the rest of the data are as follows:

u0 ∈ L2
(

Ωb
)

, �i,0 ∈ L2
(

Ωi
)

for i = b, ts and F ∈ L2
(

ΩT ,b
)

. (11)

Now we define what we mean by a weak solution of our system (5)-(7). We also supply our main existing result.
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Definition 2.1. We say that
(

u, �b, �ts, 'b, 'ts
)

is a weak solution to System (5), (6) and (7), if

u − ud ∈ L∞
(

0, T ;Lb
)

∩ L2
(

0, T ;Hu
0
)

, )tu ∈ L1
(

0, T ;
(

Hu
0
)′
)

,

�i − �d ∈ L∞
(

0, T ;L2
(

Ωi
))

∩ L2
(

0, T ;H�i
0

)

, )t�i ∈ L1
(

0, T ;
(

H
�i
0

)′
)

, for i = b, ts

'i − 'i,d ∈ L2
(

0, T ;H'i
0
)

∩ L∞
(

0, T ;L∞
(

Ωi
))

, for i = b, ts

and the following identities hold

∫

T

0
⟨)tu,  ⟩ dt + ∫

T

0
au

(

�b; u, 
)

dt + ∫

T

0
b (u, u, ) dt − ∫

T

0
(F , ) dt = 0,

∑

i=b,ts
∫

T

0
⟨)t�i, Si⟩ dt +

∑

i=b,ts
∫

T

0
a�i

(

�i; �i, Si
)

dt + ∫

T

0
d
(

u, �b, Sb
)

dt −
∑

i=b,ts
∫

T

0
c'i

(

�i, 'i, Si
)

dt = 0,

∑

i=b,ts
∫

T

0
a'i

(

�i;'i, �i
)

dt = 0,

(12)

for all test functions  ∈ D
(

[0, T ) ; Hu
0
)

, Si ∈ D
(

[0, T ) ; H�i
0

)

and �i ∈ D
(

[0, T ) ; H'i
0
)

, for i = b, ts, with
Sb = Sts on ΣT ,7 ∪ ΣT ,8 and

u (0,x) = u0 (x) in Ω, (13)
�i (0,x) = �i,0 (x) in Ω, for i = b, ts. (14)

It is significant to highlight that variational formulations of the heat equations are not as straightforward as those
of the Navier–Stokes system and the elliptic equations. While there is no difficulty in writing the convection term
d
(

u, �b, ⋅
)

= u.∇�b in a variational sense, this term can be tested by a function in H
�b
0 ⊂ H1 ↪ L4

(

Ωb
)

. Since we
seek the temperature �b inH

�i
0 and the velocity inHu

0 ⊂ H
1 ↪ L4

(

Ωb
)

. However, the quadratic terms �i
(

�i
)

|∇'i|2,
i = b, ts, cannot be tested by functions inH�i

0 since we are looking for the potentials 'i inH
'i
0 , as this term belongs to

L1
(

Ωi
)

. There are different methods to choose suitable function spaces. For example, we can take the test functions
in the space H�i

0 ∩ L
∞ (

Ωi
)

[10, 34]. Alternatively, if we set the boundary condition of the potential 'd in the space
H1∕2 (Σi

)

∩ L∞
(

Σi
)

, we can choose the test functions for the heat equations in H
�i
0 . A discussion of this approach

can be found in [4].

Theorem 2.1. Assume conditions (9), (10) and (11) hold. Then the RF-ablation model (5), (6) and (7) possesses a
weak solution in the sense of Definition 2.1.

The proof of Theorem 2.1 is divided into a series of steps outlined in Section 3. In Subsection 3.1, we construct
an approximate solution and demonstrate its convergence. The convergence proof relies on several uniform a priori
estimates and compactness arguments, which are established in Subsection 3.2. Finally, we conclude the proof of our
result in Subsection 3.3.

3. Proof of Theorem 2.1
3.1. Faedo–Galerkin approximate solutions

Let, for i = b, ts,
{

(�l , �i,l , �i,l)
}

l=1,2,… ⊂Hu
0 ×H

�i
0 ×H

'i
0 be an orthonormal basis of Lb ×H

�i
0 ×H

'i
0 . We set

V n ×Xn
i × Y

n
i = span

{(

�1, �i,1, �i,1
)

,… ,
(

�n, �i,n, �i,n
)}

. The approximate Faedo–Galerkin problem to be solved is
then: Determine un − ud ∈ H1 (0, T ;Hu

0
)

, �ni − �d ∈ H
1
(

0, T ;H�i
0

)

, and 'ni − 'i,d ∈ H
1 (0, T ;H'i

0
)

,

⟨)tun, �l⟩ + au
(

�nb , u
n, �l

)

+ b
(

un, un, �l
)

−
(

F n, �l
)

= 0,
∑

i=b,ts

⟨

)t�
n
i , �i,l

⟩

+
∑

i=b,ts
a�i

(

�ni ; �
n
i , �i,l

)

+ d
(

un, �nb , �1,l
)

−
∑

i=b,ts
c'ni

(

�ni , '
n
i , �i,l

)

= 0,

∑

i=b,ts
a'ni

(

�ni , '
n
i , �i,l

)

= 0,

(15)

Bendahmane, Ouakrim, Ouzrour and Zagour: Preprint submitted to Elsevier Page 8 of 27



Mathematical study of a new coupled electro-thermo radiofrequency model of cardiac tissue

for l = 1,… , n, where

un =
n
∑

l=1
unl�l , �nj =

n
∑

l=1
�ni,l�i,l , 'nj =

n
∑

l=1
'ni,l�i,l for i = b, ts. (16)

The initial conditions of the ODE system are then given by

un(0) =
n
∑

l=0
u0,l�l , where u0,l =

(

u0, �l
)

L2 ,

�ni (0) =
n
∑

l=0
�i,0,l�i,l , where �i,0,l =

(

�i,0, �i,l
)

L2 ,
(17)

for i = b, ts. We use the following assumption for the initial conditions

u0 ∈ L2
(

Ωb
)

, �b,0 ∈ L2
(

Ωb
)

and �ts,0 ∈ L2
(

Ωts
)

. (18)

In (15) we have used a finite dimensional approximation of F

F n (t, x) =
n
∑

l=0

(

F , �l
)

L2 (t)�l (x) .

Using the orthonormality of the basis, we can write (15) more explicitly as a system of ordinary differential equations:

dunl
dt

= −au
(

�nb , u
n, �l

)

− b
(

un, un, �l
)

+
(

F n, �l
)

∶= Fl,un
(

t,
{

unk
}n
k=1 ,

{

�nb,k
}n

k=1

)

,

∑

i=b,ts

d�ni,l
dt

= −d
(

un, �nb , �1,l
)

−
∑

i=b,ts
a�i

(

�ni ; �
n
i , �i,l

)

+
∑

i=b,ts
c'ni

(

�ni , '
n
i , �i,l

)

∶=
∑

i=b,ts
Fl,�i

(

t,
{

unk
}n
k=1 ,

{

�nb,k
}n

k=1
,
{

�nts,k
}n

k=1
,
{

'nb,k
}n

k=1

{

'nts,k
}n

k=1

)

,

∑

i=b,ts
a'ni

(

�ni , '
n
i , �i,l

)

= 0,

(19)

for i = b, ts. From the assumptions on the data of the model, the functions Fl,un and Fl,�i (for i = b, ts) are

Caratheodory functions. Therefore, according to ordinary differential equation theory, functions
{

unk
}n
k=1,

{

�nb,k
}n

k=1
,

and
{

�nts,k
}n

k=1
, satisfying the equations, exist and are absolutely continuous. Consequently, a weak local solution

exists for all t ∈ (0, t0) with 0 < t0 < T . To establish the existence of 'ni , we regularize the elliptic equation of 'ni
in a manner akin to [6]. Specifically, we add the term "n

∑

i=b,ts
(

)t'ni , �i,l
)

to the left-hand side of the last equation
in (19), where "n ∶= 1∕n. We fix the initial data as 'ni (0) = 0 and choosing the regularity condition of 'd that is
)t'd = 0. Then the system involving the new unknown 'ni (for i = b, ts) becomes a well-posed ordinary differential
equation problem, and solutions are defined globally on [0, T ]. The regularity parameter "n tends towards 0 (as n to
+∞) at the end of the calculations, so to simplicity we neglect these regularity terms. Then, that the Galerkin solutions
(

un, �n, �nb , �
n
ts, '

n
b, '

n
ts
)

satisfy the following weak formulation :

∫

T

0
⟨)tun, ⟩ dt + ∫

T

0
au

(

�nb ; u
n, 

)

dt + ∫

T

0
b (un, un, ) dt − ∫

T

0
(F n, ) dt = 0,

∑

i=b,ts
∫

T

0

⟨

)t�
n
i , Si

⟩

dt +
∑

i=b,ts
∫

T

0
a�i

(

�ni ; �
n
i , Si

)

dt + ∫

T

0
d
(

un, �nb , Sb
)

dt −
∑

i=b,ts
∫

T

0
c'i

(

�ni , '
n
i , Si

)

dt = 0,

∑

i=b,ts
∫

T

0
a'i

(

�ni ;'
n
i , �i

)

dt = 0,

(20)
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for all test functions  ∈ D
(

[0, T ) ; Hu
0
)

, Si ∈ D
(

[0, T ) ; H�i
0

)

and �i ∈ D
(

[0, T ) ; H'i
0
)

, for i = b, ts, with
Sb = Sts on ΣT ,7 ∪ ΣT ,8.

Throughout the rest of the paper, we will always use positive constants c, C (⋅), C (⋅, ⋅), C , C1, C2⋯, which are not
specified and which may differ from line to line.

3.2. Basic a priori estimates
To establish the global existence of the Faedo–Galerkin weak solution, we rely on a series of basic energy-type

estimates as presented in the following lemma.

Lemma 3.1. Under the above assumptions, there exists a constant C > 0 not depending on n such that

‖un‖L∞(0,T ;L2(Ωb)) + ‖∇un‖L2(ΩT ,b,ℝ3) +
‖

‖

)tun‖‖L1
(

0,T ;H−1(Ωb)
) ≤ C, (21)

∑

i=b,ts

‖

‖

'ni ‖‖L∞(ΩT ,i) +
∑

i=b,ts

‖

‖

∇'ni ‖‖L2(ΩT ,i) ≤ C, (22)

∑

i=b,ts

‖

‖

�ni ‖‖L∞(0,T ;L2(Ωi)) +
∑

i=b,ts

‖

‖

∇�ni ‖‖L2(ΩT ,i) +
∑

i=b,ts

‖

‖

)t�
n
i
‖

‖L1(0,T ;H−1(Ωi)) ≤ C. (23)

Proof. Proof of (21). First, we substitute ∶= un−ud into (20). Then, we disregard the time integration and combine
the resulting equations to obtain:

1
2
d
dt ∫Ωb

|un − ud|2 dx + au
(

�nb ; u
n − ud , un − ud

)

= −au
(

�nb ; ud , u
n − ud

)

− b
(

un, un, un − ud
)

+ ∫Ωb
F n ⋅

(

un − ud
)

dx − ∫Ωb
)tud

(

un − ud
)

dx

∶= I1 + I2 + I3 + I4.

(24)

From the definition of the form au, it follows that

|I1| = | − au
(

�nb ; ud , u
n − ud

)

|

≤ �‖∇ud‖L2‖∇
(

un − ud
)

‖L2

≤ �‖un − ud‖2H1 + C
(

�, �
)

‖∇ud‖2L2 .
(25)

Using the properties of the trilinear form b, div un = 0 and un = ud on Σb, we obtain

−I2 = b
(

un, un, un − ud
)

=
N
∑

i,j=1
∫Ωb

uni )xiu
n
j

(

unj − uj,d
)

dx

= −
N
∑

i,j=1
∫Ωb

)xiu
n
i u

n
j

(

unj − uj,d
)

dx −
N
∑

i,j=1
∫Ωb

uni u
n
j )xi

(

unj − uj,d
)

dx

= −∫Ωb
div un un

(

un − ud
)

dx − 1
2

N
∑

i,j=1
∫Ωb

uni )xi
(

unj
)2

dx +
N
∑

i,j=1
∫Ωb

uni u
n
j )xiuj,d dx

= 1
2 ∫Ωb

div un |un|2 dx − 1
2 ∫Σb

|

|

ud||
2 ud ⋅ nbdy +

N
∑

i,j=1
∫Ωb

uni u
n
j )xiuj,d dx

= −1
2 ∫Σb

|

|

ud||
2 ud ⋅ nb dy +

N
∑

i,j=1
∫Ωb

uni u
n
j )xiuj,d dx

∶= I21 + I22.

Bendahmane, Ouakrim, Ouzrour and Zagour: Preprint submitted to Elsevier Page 10 of 27



Mathematical study of a new coupled electro-thermo radiofrequency model of cardiac tissue

Obviously, I21 is bounded. Let us proceed with the estimation of the term I22. To begin, we can reformulate I22 as
follows:

I22 = b
(

unj − uj,d
)

= b
(

ud , ud , ud
)

+ b
(

un − ud , ud , ud
)

+ b
(

ud , ud , un − ud
)

+ b
(

un − ud , ud , un − ud
)

.

Since ud is assumed to be sufficiently regular, we have the boundedness of b
(

ud , ud , ud
)

. While the second and the
third terms on the right-hand side of I22 can be estimated by

|b
(

un − ud , ud , ud
)

| + |b
(

ud , ud , un − ud
)

| ≤ ‖un − ud‖L4‖∇ud‖L2‖ud‖L4 + ‖ud‖L4‖∇ud‖L2‖un − ud‖L4
≤ c‖un − ud‖H1‖∇ud‖L2‖ud‖L4 + c‖ud‖L4‖∇ud‖L2‖un − ud‖H1

≤ �‖un − ud‖2H1 + C(�)‖∇ud‖
2
L2‖ud‖

2
L4 .

Furthermore, we can apply Young’s inequality with a parameter � (ab ≤ �ap + C(�)bq , where a, b > 0, � > 0,
1 < p, q < ∞, and 1∕p + 1∕q = 1, with C(�) = (�p)−q∕pq−1) and employ the Gagliardo-Nirenberg interpolation
inequality (cf. [1, Theorem 5.8]), to derive the following:

‖un − ud‖L4(Ωb) ≤ c‖un − ud‖
�
H1(Ωb)

‖un − ud‖
1−�
L2(Ωb)

, for � = N∕4.

Thus, the remaining term in I22 can be estimated as follows

|b
(

un − ud , ud , un − ud
)

| ≤ ‖un − ud‖L4‖∇ud‖L2‖un − ud‖L4

≤ c‖un − ud‖
2(1−� )
L2

‖un − ud‖
2�
H1‖∇ud‖L2

≤ �‖un − ud‖2H1 + C(�)‖∇ud‖
1
1−�

L2
‖un − ud‖2L2 .

Then, we deduce that

|I22| ≤ �‖un − ud‖2H1 + C(�)‖∇ud‖
1
1−�

L2
‖un − ud‖2L2 .

This implies

|

|

I2|| ≤ �‖un − ud‖2H1 + C(�, �)‖∇ud‖
2
L2 + C(�)‖∇ud‖

1
1−�

L2
‖un − ud‖2L2 . (26)

By applying the same arguments again, we obtain

|

|

I3|| ≤ c‖F‖2
L2(Ωb)

+ c‖un − ud‖2L2(Ωb) (27)

and
|

|

I4|| ≤ �‖un − ud‖2L2(Ωb)
+ C(�)‖)tud‖2H−1(Ωb)

. (28)

Combining the results obtained in (25), (26), (27), and (28), and taking � such that the constant C
(

�, �
)

=
�
2
− � > 0,

we can derive
d
dt
‖un − ud‖2L2(Ωb)

+ C
(

�, �
)

‖un − ud‖2H1(Ωb)

≤ C‖F‖2
L2(Ωb)

+ C‖)tud‖2H−1(Ωb)
+ C

(

�, �
)

‖∇ud‖2L2 + C‖u
n − ud‖2L2

(

1 + ‖∇ud‖
1
1−�

L2

)

.
(29)

Since ud ∈ L4
(

0, T ;H1(Ωb)
)

, )tud ∈ L2
(

0, T ;H−1 (Ωb
))

, F ∈ L2
(

ΩT
)

, un(0) and ud(0) ∈ L2
(

Ωb,ℝ3
)

,
integrating (29) over (0, T ) with 0 < t ≤ T , we can apply the Gröenwall inequality to obtain:

sup
0<t≤T

‖un(t) − ud(t)‖2L2(Ωb,ℝ3)
≤ C, (30)
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where C > 0 is a constant depending on the L2 norm of ud , )tud , F , u0 and ud,0. Integrating again (29) in time leads
to the following inequality:

∫

T

0
‖un(t)‖2

H1(Ωb,ℝ3)
dt ≤ C. (31)

Since the assumption (9), {un}∞n=1 is bounded in L
∞ (

0, T ;L2
(

Ωb
))

∩L2
(

0, T ;H1 (Ωb
))

(cf. (30) and (31)) and
F n is bounded in L2

(

0, T ;L2
(

Ωb
))

, then we have that {)tun}∞n=1 is bounded in L1
(

0, T ;
(

Hu
0
)′
)

. Indeed, for all
w ∈Hu

0 we have that

| ⟨)tun,  ⟩ | = | − au
(

�nb ; u
n, 

)

− b (un, un, ) + (F n, ) |
≤ |au

(

�nb ; u
n, 

)

| + |b (un, un, ) | + | (F n, ) |

≤ �̄‖∇un‖L2‖∇ ‖L2 + c‖un‖
(1−� )
L2

‖un‖�+1
H1 ‖ ‖H1 + ‖F n‖L2‖ ‖L2 , where � = N∕4

≤ C1‖∇un‖L2‖ ‖H1 + C2‖un‖2H1‖ ‖H1 + C3‖F n‖L2‖ ‖H1 ,

where c1, c2 and c3 are positives constants. Further, (recall that un ∈ L2
(

0, T ;H1 (Ωb
))

)

‖)tun‖
L1

(

0,T ;
(

Hu
0

)′
) ≤ C1T

1∕2
(

∫

T

0
‖∇un‖2L2 dt

)1∕2

+ C2 ∫

T

0
‖un‖2H1 dt + C3T

1∕2
(

∫

T

0
‖F‖2L2 dt

)1∕2

≤ C.

(32)

This achieves the estimate (21).
Proof of (22). By the maximum principle, we can deduce from the equation for 'ni the following inequality:

'
d
≤ 'nb

(

t1, x1
)

, 'nts
(

t2, x2
)

≤ 'd for all
(

t1, x1
)

∈ ΩT ,b,
(

t2, x2
)

∈ ΩT ,ts, (33)

where'
d
= min
(t,x)∈ΩT ,b∪ΩT ,ts

'd (t, x) and'd = max
(t,x)∈ΩT ,b∪ΩT ,ts

'd (t, x). We define � = min{�b, �ts} and � = max{�b, �ts}.

Now, by substituting �i = 'ni − 'd into (20), we can derive the following equation:

�
∑

i=b,ts
∬ΩT ,i

|

|

∇'ni ||
2 dx dt ≤

∑

i=b,ts
∬ΩT ,i

�i
(

�ni
)

∇'ni ⋅ ∇'
n
i dx dt

=
∑

i=b,ts
∬ΩT ,i

�i
(

�ni
)

∇'ni ⋅ ∇'d dx dt

≤
�
2

∑

i=b,ts
∬ΩT ,i

|

|

∇'ni ||
2 dx dt + C

(

�, �
)
∑

i=b,ts
∬ΩT ,i

|

|

∇'d||
2 dx dt,

(34)

where we have used the assumptions (9) and the constant C
(

�, �
)

> 0 is depending on � and �. This leads to the
following conclusion for i = b, ts:

∑

i=b,ts
∬ΩT ,i

|

|

∇'ni ||
2 dx dt ≤ C. (35)

Proof of (23). Let us introduce � = min{�
b
, �
ts
} > 0 and � = max{�b, �ts} > 0. Now, we focus on (20) without

considering the time integration. We use the test function Si = �ni (t) − �d(t) ∈ H
�i
0 . This allows us to derive the

following inequality:
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1
2

∑

i=b,ts

d
dt
‖�ni (t) − �d(t)‖

2
L2 + �

∑

i=b,ts
∫Ωi

|∇
(

�ni (t) − �d(t)
)

|

2 dx

≤
∑

i=b,ts

(1
2
d
dt
‖�ni (t) − �d(t)‖

2
L2 + a�i

(

�ni , �
n
i − �d(t), �

n
i (t) − �d(t)

)

)

= −d
(

un(t), �nb (t), �
n
b (t) − �d(t)

)

−
∑

i=b,ts
a�i

(

�ni , �d(t), �
n
i (t) − �d(t)

)

+
∑

i=b,ts
c'i

(

�ni ;'
n
i , �

n
i (t) − �d(t)

)

−
∑

i=b,ts
∫Ωi

)t�d(t)
(

�ni (t) − �d(t)
)

dx

∶= J1 + J2 + J3 + J4.

(36)

We reformulate the first term in (36) as follows: (Recall that div un = 0 and �b = �s on Σ8 )

−J1 = d
(

un(t), �nb (t), �
n
b (t) − �d(t)

)

= ∫Ωb
un ⋅ ∇

(

�nb − �d(t)
) (

�nb (t) − �d(t)
)

dx + ∫Ωb
un ⋅ ∇�d(t)

(

�nb (t) − �d(t)
)

dx

= −1
2 ∫Ωb

div un
(

�nb − �d(t)
)2 dx + 1

2 ∫Σb
un ⋅ nb

(

�nb − �d(t)
)2 dy + ∫Ωb

un ⋅ ∇�d(t)
(

�nb (t) − �d(t)
)

dx

= ∫Ωb
un ⋅ ∇�d(t)

(

�nb (t) − �d(t)
)

dx.

(37)

Now, to get the estimate of J1, we applied the Sobolev embeddingH1 ↪ Lp with 1 ≤ p ≤ 6, used Hölder’s inequality
and Young’s inequality with parameter �; then, we obtained the following estimation:

|

|

J1|| =
|

|

|

−d
(

un(t), �d(t), �nb (t) − �d(t)
)

|

|

|

≤ ‖un(t)‖L4
‖

‖

‖

�nb (t) − �d(t)
‖

‖

‖L4
‖

‖

∇�d(t)‖‖L2

≤ c‖un(t)‖H1
‖

‖

‖

�nb (t) − �d(t)
‖

‖

‖H1
‖

‖

∇�d(t)‖‖L2

≤ �
2
‖

‖

‖

�nb (t) − �d(t)
‖

‖

‖

2

H1
+ C(�)‖un(t)‖2H1

‖

‖

∇�d(t)‖‖
2
L2 .

(38)

From the definition of the form a�i , we have

|

|

|

a�i
(

�ni , �d(t), �
n
i (t) − �d(t)

)

|

|

|

=
|

|

|

|

|

∫Ωi
�i
(

�ni
)

∇�d(t)∇
(

�ni − �d(t)
)

dx
|

|

|

|

|

≤ �‖∇�d(t)‖L2(Ωi)‖∇
(

�ni (t) − �d(t)
)

‖L2(Ωi)
≤ �‖�ni (t) − �d(t)‖

2
H1(Ωi)

+ C (�) ‖∇�d(t)‖2L2(Ωi)
,

for i = b, ts where C(�) > 0. This implies that

|

|

J2|| ≤ �
∑

i=b,ts
‖�ni (t) − �d(t)‖

2
H1(Ωi)

+ C (�)
∑

i=b,ts
‖∇�d(t)‖2L2(Ωi)

. (39)

Bendahmane, Ouakrim, Ouzrour and Zagour: Preprint submitted to Elsevier Page 13 of 27



Mathematical study of a new coupled electro-thermo radiofrequency model of cardiac tissue

According to the definition of c' and using Green’s formula, we obtain the following expressions:

J3 =
∑

i=b,ts
c'ni

(

�ni ;'
n
i , �

n
i − �d

)

=
∑

i=b,ts
∫Ωi

�i
(

�ni
)

∇'ni ⋅ ∇'
n
i
(

�ni − �d
)

dx

=
∑

i=b,ts
∫Ωi

�i
(

�ni
)

∇'ni ⋅ ∇
(

'ni
(

�ni − �d
))

dx −
∑

i=b,ts
∫Ωi

�i
(

�ni
)

'ni∇'
n
i ⋅ ∇

(

�ni − �d
)

dx

=
∑

i=b,ts
∫Σi

(

�i
(

�ni
)

∇'ni
)

⋅ ni'ni
(

�ni − �d
)

dy −
∑

i=b,ts
∫Ωi

∇ ⋅
(

�i
(

�ni
)

∇'ni
)

'ni
(

�ni − �d
)

dx

−
∑

i=b,ts
∫Ωi

�i
(

�ni
)

'ni∇'
n
i ⋅ ∇

(

�ni − �d
)

dx

= −
∑

i=b,ts
∫Ωi

�i
(

�i
)

'ni∇'
n
i ⋅ ∇

(

�ni − �d
)

dx.

(40)

Then, by (33) and (35), we conclude that:

|

|

J3|| =
|

|

|

|

|

|

−
∑

i=b,ts
∫Ωi

�i
(

�ni
)

'ni∇'
n
i ⋅ ∇

(

�ni − �d
)

dx
|

|

|

|

|

|

≤�
∑

i=b,ts
||'ni ||L∞ ||∇'

n
i ||L2 ||∇�

n
i − �d||L2

≤C
∑

i=b,ts
||∇'ni ||L2 ||�

n
i − �d||H1

≤�
∑

i=b,ts
||�ni − �d||

2
H1 + C (�)

∑

i=b,ts
||∇'ni ||

2
L2
.

(41)

Similarly to J3, we have for J4

|

|

J4|| ≤ �
∑

i=b,ts
||�ni − �d||

2
H1 + C(�)

∑

i=b,ts

‖

‖

)t�d(t)‖‖
2
H−1(Ωi). (42)

Now, choosing � sufficiently small, using the estimates (31), (35), (38), (39), (41) and (42) that leads to the following
estimate

d
dt

(

∑

i=b,ts

‖

‖

�ni (t) − �d(t)‖‖
2
L2(Ωi)

)

+ C1
∑

i=b,ts
||�ni (t) − �d(t)||

2
H1

≤ C2

(

∑

i=b,ts

‖

‖

)t�d(t)‖‖
2
H−1(Ωi) +

∑

i=b,ts
||∇�d(t)||2L2 +

∑

i=b,ts
||∇'ni ||

2
L2
+ ‖un(t)‖2H1

‖

‖

∇�d(t)‖‖
2
L2

)

+ C3
∑

i=b,ts

‖

‖

�ni (t) − �d(t)‖‖
2
L2(Ωi),

(43)

for some constants C1 > 0, C2 > 0 and C3 > 0. Integrating (43) over (0, T ) with 0 < t ≤ T , we get that

∑

i=b,ts

‖

‖

�ni (t) − �d(t)‖‖
2
L2(Ωi) ≤

∑

i=b,ts

‖

‖

�ni (0) − �d(0)‖‖
2
L2 + �(t) + C3 ∫

t

0

∑

i=b,ts

‖

‖

�ni (s) − �d(s)‖‖
2
L2(Ωi) ds, (44)

where

�(t) = C2 ∫

t

0

(

∑

i=b,ts

‖

‖

)t�d(s)‖‖
2
H−1(Ωi) +

∑

i=b,ts
||∇�d(s)||2L2 +

∑

i=b,ts
||∇'ni (s)||

2
L2
+ ‖un(s)‖2H1

‖

‖

∇�d(s)‖‖
2
L2

)

ds > 0.
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The Gronwall’s inequality implies
∑

i=b,ts
sup
0<t≤T

‖

‖

�ni (t) − �d‖‖
2
L2(Ωi) ≤ C, (45)

for some constant C > 0. By the estimates (43) and (45), we can conclude that there exist constants C1 > 0 and C2 > 0
such that

∑

i=b,ts

‖

‖

�ni (t)‖‖L∞(0,T ;L2(Ωi)) ≤ C1, (46)

∑

i=b,ts

‖

‖

�ni (t)‖‖L2(0,T ;H1(Ωi)) ≤ C2. (47)

Now, since the assumption (9) be satisfied and from (46) and (47), we deduce that
{

�ni
}∞
n=1 is bounded in

L∞
(

0, T ;L2
(

Ωi
))

∩ L2
(

0, T ;H1 (Ωi
))

, for all i = b, ts. Thus, we collect the previous results on un and 'ni to
obtain that a�i

(

�ni ; �
n
i , ⋅

)

, d
(

un, �nb , ⋅
)

and c'i
(

�ni , '
n
i , ⋅

)

are bounded in L2
(

0, T ;H−1 (Ωi
))

, L1
(

0, T ;H−1 (Ωb
))

and L2
(

0, T ;H−1 (Ωi
))

, respectively. Consequently,
{

)t�ni
}∞
n=1 is bounded in L1

(

0, T ;H−1 (Ωi
))

for all i = b, ts.
Indeed

∑

i=b,ts
∫

T

0
‖)t�

n
i ‖H−1(Ωi) dt ≤

∑

i=b,ts
∫

T

0
‖a�i

(

�ni ; �
n
i , ⋅

)

‖H−1(Ωi) dt + ∫

T

0
‖d

(

un, �nb , ⋅
)

‖H−1(Ωb) dt

+
∑

i=b,ts
∫

T

0
‖c'i

(

�ni , '
n
i , ⋅

)

‖H−1(Ωi) dt

≤ C
(

�, T
)
∑

i=b,ts
‖∇�ni ‖L2(0,T ;L2) + c1‖u

n
‖L2(0,T ;H1(Ωb))‖∇�

n
b‖L2(0,T ;L2(Ωb))

+ C
(

�, T
)
∑

i=b,ts
‖'ni ‖L∞(0,T ;L∞(Ωi))‖∇'

n
i ‖L2(0,T ;L2(Ωi))

≤ C,

for some constant C > 0.

3.3. Passage to the limit and concluding the proof of Theorem 2.1
Thanks to Lemma 3.1, there exist subsequences of {un}∞n=1,

{

'ni
}∞
n=1, and

{

�ni
}∞
n=1, which will be still denoted

(for simplicity) as {un}∞n=1,
{

'ni
}∞
n=1, and

{

�ni
}∞
n=1(for i = b, ts ), respectively, such that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un ⇀ u weakly in L2
(

0, T ;Hu
0
)

,

)tun ⇀ )tu weakly in L1
(

0, T ;
(

Hu
0
)′
)

,

∇un ⇀ ∇u weakly in L2
(

0, T ;L2
)

,

(48)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'ni ⇀ 'i weakly in L∞
(

0, T ;L∞
(

Ωi
))

,

'ni ⇀ 'i weakly in L2
(

0, T ;H1 (Ωi
))

,

'ni → 'i strongly in L2
(

0, T ;L2
(

Ωi
))

,

∇'ni ⇀ ∇'i weakly in L2
(

I ;L2
(

Ωi
))

,

(49)

⎧

⎪

⎨

⎪

⎩

�ni ⇀ �i weakly in L2
(

0, T ;H1) ,

)t�
n
i ⇀ )t�i weakly in L1

(

0, T ;H−1) ,

∇�ni ⇀ ∇�i weakly in L2
(

0, T ;L2
)

.

(50)
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By the Aubin–Lions–Simon compactness theorem (
{

u ∈ L2
(

0, T ,H1) , )tu ∈ L1
(

0, T ,H−1)} ↪↪ L2
(

0, T , L2
)

,
see also [16, Theorem II.5.16]), we get for i = b, ts:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un → u strongly in L2
(

0, T ;L2
)

,
un → u almost everywhere in Ωb,T ,
�ni → �i strongly in L2

(

0, T ;L2
)

,
�ni → �i almost everywhere in ΩT .

(51)

Next, denote the differences �̃ni = �ni − �i, ũ
n = un − u, and '̃ni = 'ni − 'i for i = b, ts. Then, by choosing the test

functions
(

 , Si, �i
)

∈ Hu
0 ×H

�i
0 ×H

'i
0 in the weak formulation (20) and using the results (48)-(51), as well as the

continuity of �, �i, and �i, we obtain the following limits:

au
(

�nb ; u
n, 

)

− au
(

�b; u, 
)

= au
(

�nb ; ũ
n, 

)

+ ∫Ωb

[

�
(

�nb
)

− �
(

�b
)]

D(u) ∶ ∇ dx

≤ �̄ ∫Ωb
D
(

ũn
)

∶ ∇ dx + ∫Ωb

[

�
(

�nb
)

− �
(

�b
)]

D(u) ∶ ∇ dx.
(52)

Based on the weak convergence of ∇un to ∇u in L2
(

Ωb
)

, the first integral goes to 0 when n goes to∞. Furthermore,
we infer the second quantity’s convergence to 0 using the Lebesgue-dominated convergence (see, for example, [11]).
Then, we get

au
(

�nb ; u
n, 

) n⟶∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ au

(

�b; u, 
)

. (53)

Furthermore, following the sames methods that proved (53), we also show that :

a'
(

�ni , '
n
i , �i

)

− a'
(

�i, 'i, �i
)

= a'
(

�i, '̃
n
i , �i

)

+ ∫Ωi

[

�i
(

�ni
)

− �i
(

�i
)]

∇'i ⋅ ∇�i dx
n⟶∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0,

a�
(

�ni , �
n
i , Si

)

− a�
(

�i; �i, Si
)

= a�
(

�ni , �̃
n
i , Si

)

+ ∫Ωi

[

�i
(

�ni
)

− �i
(

�i
)]

∇�i ⋅ ∇Si dx
n⟶∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

(54)

From the compact embeddingH1 (Ωb
)

↪↪ Lq
(

Ωb
)

(resp. H1 (Ωi
)

↪↪ Lq(Ωi), for i = b, ts), with 1 ≤ q ≤ 6(for
N = 3). Then, using again Lebesgue-dominated convergence, we have the followings strong convergences:

b (un, un, )
n⟶∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ b (u, u, ) , (55)

d
(

un, �nb , Sb
) n⟶∞

←←←←←←←←←←←←←←←←←←←←←←←←←←→ d
(

u, �b, Sb
)

. (56)

Finally, using the results of (49) and continuity of �i, we obtain

c'
(

�ni , '
n
i , Si

)

− c'
(

�i, 'i, Si
)

= ∫Ωi
�i
(

�ni
)

'ni ⋅ ∇'
n
i ⋅ ∇Si dx − ∫Ω

�i
(

�i
)

'i ⋅ ∇'i∇Si dx

=

(

∫Ωi
�i
(

�ni
)

'̃ni ⋅ ∇'
n
i ⋅ ∇Si dx + ∫Ω

[

�i
(

�ni
)

− �i�i
(

�i
)]

'i∇'ni ⋅ ∇Si dx

+∫Ωi
�i(�i)'̃ni ⋅ ∇'

n
i ⋅ ∇Si dx

)

n⟶∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

(57)

Now, by exploiting the results (53)-(57) we can pass immediately to the limit in the weak approximate formulation
(15) as n⟶∞. The result is: the triple (u, �i, 'i) satisfies the following variational formulation:

⟨)tu, ⟩ + au
(

�b; u, 
)

+ b (u, u, ) − (F , ) = 0,
∑

i=b,ts

(

⟨)t�i, Si⟩ + a�i
(

�i; �i, Si
)

− c'i
(

�i, 'i, Si
)

)

+ d
(

u, �b, Sb
)

= 0,

∑

i=b,ts
a'i

(

�i;'i, �i
)

= 0,

(58)
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for every
(

 , Si, �i
)

∈Hu
0 ×H

�i
0 ×H

'i
0 with Sb = Sts on ΣNb and almost every t ∈ I and the initial condition

u(x, 0) = u0(x), (59)
�i(x, 0) = �0i (x), in Ω, for all i = b, ts. (60)

To complete the proof of Theorem 2.1, we also need to demonstrate that )tu ∈ L1
(

0, T ; (Hu
0)
′) and )t�i ∈

L1
(

0, T ;
(

H�i
)′
)

for all i = b, ts. Indeed, the first equation of (58) can be expressed as follows:

d
dt
⟨u,  ⟩ = ⟨div

(

�
(

�b
)

D(u)
)

− B (u) + F , ⟩ for all  ∈ Hu
0 . (61)

On one hand, � is bounded, the operator −div
(

�
(

�b
)

D(u)
)

∶ Hu
0 → (Hu

0)
′ is linear and continuous, and u ∈

L2
(

0, T ;Hu
0
)

; this implies that−div
(

�
(

�b
)

D(u)
)

∈ L2
(

0, T ;
(

Hu
0
)′
)

. On the other hand, F ∈ L2
(

0, T ;L2
(

Ωb
))

.
By Lemma 2.1, we have established that b (u, u, ) = ⟨B (u) , ⟩ is trilinear and continuous onHu

0 , and ‖B (u) ‖(Hu
0
)′ ≤

‖u‖2
Hu

0
. Thus, B (u) ∈ L1

(

0, T , (Hu
0)
′). Consequently, )tu ∈ L1

(

0, T ;
(

Hu
0
)′
)

.
In similar ways, the second equation of (58) can also be expressed by:

∑

i=b,ts
⟨)t�i, Si⟩ = −

∑

i=b,ts
a�i

(

�i; �i, Si
)

− d
(

u, �b, Sb
)

+
∑

i=b,ts
c'i

(

�i, 'i, Si
)

for all Si ∈ H
�i
0 . (62)

Since Assumption (9) is satisfied and �i ∈ L2
(

0, T ;H�i
0

)

, we deduce that a�i
(

�i; �i, ⋅
)

∈ L2
(

0, T ;L2
(

Ωi
))

. Fur-
thermore, we collect the result that u ∈ L2

(

0, T ;Hu
0
)

and'i ∈ L2
(

0, T ;H'i
0
)

∩L∞
(

0, T ;L∞
(

Ωi
))

to get d
(

u, �b, ⋅
)

and c'i
(

�i, 'i, ⋅
)

are bounded in L1
(

0, T ;H−1 (Ωb
))

and L2
(

0, T ;H−1 (Ωi
))

, respectively. Consequently, )t�i is

bounded in L1
(

0, T ;
(

H�i
)′
)

for i = b, ts.
Finally, to introduce the pressure �, we set

V (t) = ∫

t

0

(

�
(

�b
)

D(u)
)

(s) ds, R(t) = ∫

t

0
(u ⋅ ∇)u(s) ds, and K(t) = ∫

t

0
F (s) ds.

It is clear that V ,K,R ∈ C
(

0, T ;
(

H1(Ω)
)′
)

. Integrating (61) over [0, t] yields

⟨u(t) − u0 − divV (t) + R(t) +K(t), ⟩ = 0 for all t ∈ [0, T ] and for all  ∈Hu
0 .

By application of the Rham theorem [33], we find, for each t ∈ [0, T ], the existence of some function P (t) ∈ L20
(

Ωb
)

such that

u(t) − u0 − divV (t) + R(t) +K(t) + ∇P = 0,

whereL20(Ω) =
{

w ∈ L2
(

Ωb
)

, ∫Ωw dx = 0
}

. Therefore,∇P ∈ C
(

0, T ; H−1
(

Ωb
))

, and thusP ∈ C
(

0, T ; L20
(

Ωb
))

.
By derivation with respect to t in the sense of distributions, we obtain

)tu − div
(

�
(

�b
)

D(u)
)

+ (u ⋅ ∇) u + F + ∇� = 0,

where � = )tP ∈ W −1,∞ (

0, T ;L20
(

Ωb
))

.

4. Numerical approach
In this section we present the numerical procedure to solve the electro–thermo–fluid model (5). In this regard, the

brief overview of the numerical discretization of finite element method approximation of aforesaid model is given.
Next, we prove the existence of a discrete solution to the discrete problem. In addition, we indicate the main steps of
the convergence proof of the finite element solution generated by the discrete problem. Subsequently, numerical results
are provided to illustrate the influence of the presence of potential electrical in cardiac tissue, the saline viscosity and
the external forces.
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4.1. Existence of the numerical scheme
Let now give the discretization of our model. For this, let Ti be a regular partition of Ωi into tetrahedra Ki with

boundary )Ki and diameter ℎKi where i = b, ts. We define the mesh parameter ℎ = maxKi∈Ti{ℎKi} and the associated
finite element spacesW ℎ and V ℎ

i for the approximation of viscosity and, heats and electrical potentials, respectively
(we use piecewise linear finite elements for heats and potentials). The involved spaces is defined as

W ℎ = {v ∈ C0(Ω̄b) ∶ v|Kb ∈ ℙ2(Kb) for all Kb ∈ Tb} ,

V ℎ
i = {S ∈ C

0(Ω̄i) ∶ S|Ki ∈ ℙ1(Ki) for all Ki ∈ Ti}, for i = b, ts.

where ℙk, denotes the k-th degree piecewise polynomial space, with k = 1, 2. The semidiscrete Galerkin finite
element formulation reads as follows for the electro-thermo-fluid RFA model equations (5). For t > 0, find uℎ ∈ W ℎ,
�ℎi (t), '

ℎ
i (t) ∈ V

ℎ
i and �ℎ(t) ∈ V ℎ

b such that (with the standard finite element notation for L2 scalar products) one has

d
dt

(

uℎ, ℎ)
Ωb
+ au

(

�ℎb ; u
ℎ, ℎ) + b

(

uℎ, uℎ, ℎ) −
(

F ℎ, ℎ)
Ωb
= 0,

∑

i=b,ts

d
dt

(

�ℎi , S
ℎ
i
)

Ωi
+

∑

i=b,ts
a�i

(

�ℎi ; �
ℎ
i , S

ℎ
i
)

+ d
(

uℎ, �ℎb , S
ℎ
b
)

−
∑

i=b,ts
c'i

(

�ℎi , '
ℎ
i , S

ℎ
i
)

= 0,

∑

i=b,ts
a'i

(

�ℎi ;'
ℎ
i , �

ℎ
i
)

= 0,

(63)

for all test functions  ℎ ∈ W ℎ, Sℎi ∈ V ℎ
i and �ℎi ∈ V ℎ

i , for i = b, ts, with Sℎb = Sℎts on ΣT ,7 ∪ ΣT ,8 and �
ℎ
b = �ℎts

on ΣT ,7 ∪ ΣT ,8. We define a time subdivision t0 = 0 < ⋯ < tM = T , whereM is an integer and the time steps is as
follows Δt ∶= T

M = tn+1 − tn, n = 0,⋯ ,M − 1. This results in the following fully discrete method: for t > 0, find
uℎ ∈ W ℎ, �ℎi (t), '

ℎ
i (t) ∈ V

ℎ
i and �ℎ(t) ∈ V ℎ

b such that

uℎ(t, x) =
M
∑

n=1
uℎ,n(x)11[(n−1)Δt,nΔt](t),

�ℎi (t, x) =
M
∑

n=1
�ℎ,ni (x)11[(n−1)Δt,nΔt](t),

'ℎi (t, x) =
M
∑

n=1
'ℎ,ni (x)11[(n−1)Δt,nΔt](t),

satisfy the following system

(

uℎ,n − uℎ,n−1
Δt

, ℎ
)

Ωb
+ au

(

�ℎ,n−1b ; uℎ,n, ℎ
)

+ b
(

uℎ,n, uℎ,n−1, ℎ) −
(

F ℎ,n, ℎ)
Ωb
= 0,

∑

i=b,ts

(

�ℎ,ni − �ℎ,n−1i
Δt

, Sℎi

)

Ωi

+
∑

i=b,ts
a�i

(

�ℎ,n−1i ; �ℎ,ni , Sℎi
)

+ d
(

uℎ,n, �ℎ,nb , Sℎb
)

−
∑

i=b,ts
c'i

(

�ℎ,ni , 'ℎ,n−1i , Sℎi
)

= 0,

∑

i=b,ts
a'i

(

�ℎ,n−1i ;'ℎ,ni , �ℎi
)

= 0,

(64)

for all test functions  ℎ ∈ W ℎ, Sℎi ∈ V
ℎ
i and �ℎi ∈ V

ℎ
i , for i = b, ts, with S

ℎ
b = S

ℎ
ts on ΣT ,7 ∪ ΣT ,8 and �

ℎ
b = �

ℎ
ts on

ΣT ,7 ∪ ΣT ,8 and for all n ∈ {1,… ,M}; the initials conditions takes the form (the initial conditions are projected on
W ℎ and V ℎ

i by means of the L2-Hilbertian projection PW ℎ and PV ℎi , respectively)

(uℎ,0, �ℎ,0i ) = (PW ℎ (u0), PV ℎi (�i,0)).

The existence result for the finite element scheme is given by the following lemma.
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Lemma 4.1. Assume that (9), (10) and (11) hold. Then the problem (64) admits a discrete solution
(

uℎ, �ℎb , �
ℎ
ts, '

ℎ
b , '

ℎ
ts
)

.

Proof. Let Eℎ ∶= W ℎ × V ℎ
b × V ℎ

ts × V
ℎ
b × V ℎ

ts be a Hilbert space endowed with the obvious norm, let Y ℎ ∶=
(

uℎ, �ℎb , �
ℎ
ts, '

ℎ
b , '

ℎ
ts
)

andΦℎ ∶=
(

 ℎ, Sℎb , S
ℎ
ts, �

ℎ
b , �

ℎ
ts

)

∈ Eℎ withSℎb = S
ℎ
ts onΣT ,7∪ΣT ,8 and�

ℎ
b = �

ℎ
ts onΣT ,7∪ΣT ,8.

We now define the mapping A ∶ Eℎ → Eℎ by

[

A
(

Y ℎ,n
)

,Φℎ
]

=
(

uℎ,n − uℎ,n−1
Δt

, ℎ
)

Ωb
+ au

(

�ℎ,n−1b ; uℎ,n, ℎ
)

+ b
(

uℎ,n, uℎ,n−1, ℎ) −
(

F ℎ,n, ℎ)
Ωb

+
∑

i=b,ts

(

�ℎ,ni − �ℎ,n−1i
Δt

, Sℎi

)

Ωi

+
∑

i=b,ts
a�i

(

�ℎ,n−1i ; �ℎ,ni , Sℎi
)

+ d
(

uℎ,n, �ℎ,nb , Sℎb
)

−
∑

i=b,ts
c'i

(

�ℎ,ni , 'ℎ,n−1i , Sℎi
)

+
∑

i=b,ts
a'i

(

�ℎ,n−1i ;'ℎ,ni , �ℎi
)

,

for all Φℎ ∈ Eℎ. We have the following estimate from the same estimates as in subsection 3.2.
[

A
(

Y ℎ,n
)

,Φℎ
]

≤ C ‖

‖

‖

Y ℎ‖‖
‖Eℎ

‖

‖

‖

Φℎ‖‖
‖Eℎ

, for all Y ℎ and Φℎ in Eℎ.

This implies that A is continuous. The aim now is to show that

[A(Y ℎ,n), Y ℎ,n] > 0 for ‖‖
‖

Y ℎ,n‖‖
‖Eℎ

= r > 0, (65)

for a sufficiently large r. We mention that from the trace embedding theorem, Young and Poincare inequalities,

[

A
(

Y ℎ,n
)

, Y ℎ,n
]

≥ 1
Δt

‖

‖

‖

uℎ,n‖‖
‖

2

L2
− 1
Δt

(

uℎ,n−1, uℎ,n
)

Ωb
+ � ‖‖

‖

uℎ,n‖‖
‖

2

H1
−
(

F ℎ,n, uℎ,n
)

Ωb

+ 1
Δt

∑

i=b,ts

‖

‖

‖

�ℎ,ni
‖

‖

‖

2

L2
− 1
Δt

∑

i=b,ts

(

�ℎ,n−1i , �ℎ,ni
)

Ωi
+

∑

i=b,ts
�
i
‖

‖

‖

�ℎ,ni
‖

‖

‖

2

H1

−
∑

i=b,ts
c'i

(

�ℎ,ni , 'ℎ,n−1i , �ℎ,ni
)

+
∑

i=b,ts
�i
‖

‖

‖

'ℎ,ni
‖

‖

‖

2

H1
,

≥ 1
2Δt

‖

‖

‖

uℎ,n‖‖
‖

2

L2
− 1
4Δt

‖

‖

‖

uℎ,n−1‖‖
‖

2

L2
+ � ‖‖

‖

uℎ,n‖‖
‖

2

H1
− C(Δt) ‖‖

‖

F ℎ,n‖‖
‖

2

L2

+ 1
2Δt

∑

i=b,ts

‖

‖

‖

�ℎ,ni
‖

‖

‖

2

L2
− 1
2Δt

∑

i=b,ts

‖

‖

‖

�ℎ,n−1i
‖

‖

‖

2

L2
+

∑

i=b,ts
�
i
‖

‖

‖

�ℎ,ni
‖

‖

‖

2

H1

−
∑

i=b,ts

�
i
2
‖

‖

‖

�ℎ,ni
‖

‖

‖

2

L2
− C(�

b
, �
ts
)
∑

i=b,ts

‖

‖

‖

'ℎ,n−1i
‖

‖

‖

2

L2
+

∑

i=b,ts
�i
‖

‖

‖

'ℎ,ni
‖

‖

‖

2

H1

=

(

1
2Δt

‖

‖

‖

uℎ,n‖‖
‖

2

L2
+ � ‖‖

‖

uℎ,n‖‖
‖

2

H1
+ 1
2Δt

∑

i=b,ts

‖

‖

‖

�ℎ,ni
‖

‖

‖

2

L2
+

∑

i=b,ts

�
i
2
‖

‖

‖

�ℎ,ni
‖

‖

‖

2

H1

+
∑

i=b,ts
�i
‖

‖

‖

'ℎ,ni
‖

‖

‖

2

H1

)

−

(

1
4Δt

‖

‖

‖

uℎ,n−1‖‖
‖

2

L2
+ 1
2Δt

∑

i=b,ts

‖

‖

‖

�ℎ,n−1i
‖

‖

‖

2

L2

+ C(�
b
, �
ts
)
∑

i=b,ts

‖

‖

‖

'ℎ,n−1i
‖

‖

‖

2

L2
+ C(Δt) ‖‖

‖

F ℎ,n‖‖
‖

2

L2

)

≥min

{

1
2Δt

, �, 1
2Δt

,
�
b
2
,
�
t,s

2
, �b, �ts

}

‖

‖

‖

Y ℎ,n‖‖
‖

2

Eℎ
−

(

1
4Δt

‖

‖

‖

uℎ,n−1‖‖
‖

2

L2

+ 1
2Δt

∑

i=b,ts

‖

‖

‖

�ℎ,n−1i
‖

‖

‖

2

L2
+ C(�

b
, �
ts
)
∑

i=b,ts

‖

‖

‖

'ℎ,n−1i
‖

‖

‖

2

L2
+ C(Δt) ‖‖

‖

F ℎ,n‖‖
‖

2

L2

)

.

(66)
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Finally for a given uℎ,n−1, �ℎ,n−1i and 'ℎ,n−1i , we deduce from (66) that (65) holds for r large enough (recall that
‖

‖

Y ℎ,n‖
‖Eℎ

= r) for i = b, ts. Hence, we obtain the existence of at least one solution to the discrete finite element scheme
(64).

Remark 4.1. Although the convergence proof of the finite element solution Uℎ =
(

uℎ, �ℎb , �
ℎ
ts, '

ℎ
b , '

ℎ
ts
)

, generated
by (64), is postponed to [7], let us indicate its main steps. The convergence of the discrete solution Uℎ to U =
(

u, �b, �ts, 'b, 'ts
)

(where U is a weak solution in the sense of Definition 2.1) can then be proved (see [7] for more
details) by passing to the limit ℎ → 0 in a sequence Uℎ satisfying the following numerical stability (discrete energy
estimates)

‖

‖

‖

uℎ‖‖
‖L∞(0,T ;L2(Ωb))

+ ‖

‖

‖

∇uℎ‖‖
‖L2(ΩT ,b,ℝ3)

≤ C,
∑

i=b,ts

‖

‖

‖

'ℎi
‖

‖

‖L∞(ΩT ,i)
+

∑

i=b,ts

‖

‖

‖

∇'ℎi
‖

‖

‖L2(ΩT ,i)
≤ C,

∑

i=b,ts

‖

‖

‖

�ℎi
‖

‖

‖L∞(0,T ;L2(Ωi))
+

∑

i=b,ts

‖

‖

‖

∇�ℎi
‖

‖

‖L2(ΩT ,i)
≤ C,

(67)

for some constant C > 0 not depending on ℎ. Next, we derive the following estimates on differences of space and time
translates of the functionWℎ ∶= uℎ, �ℎb , �

ℎ
ts:

∬Ω′b×(0,T )

|

|

|

uℎ(t, x + r) − uℎ(t, x)||
|

2
dxdt +

∑

i=b,ts
∬Ω′i×(0,T )

|

|

|

�ℎi (t, x + r) − �
ℎ
i (t, x)

|

|

|

2
dxdt

≤ C |r|2 + T sup
0<|r|≤� ∫Ω′b

|uℎ0 (x + r) − u
ℎ
0 (x)|

2dx + T sup
0<|r|≤�

∑

i=b,ts
∫Ω′i

|�ℎi,0(x + r) − �
ℎ
i,0(x)|

2dx,
(68)

for all r ∈ ℝ3 with Ω′i = {x ∈ Ωi, [x, x + r] ⊂ Ωi} for i = b, ts, and

∬Ωb×(0,T−�)

|

|

|

uℎ(t + �, x) − uℎ(t, x)||
|

2
dxdt +

∑

i=b,ts
∬Ωi×(0,T−�)

|

|

|

�ℎi (t + �, x) − �
ℎ
i (t, x)

|

|

|

2
dxdt ≤ C(� + Δt) (69)

for all � ∈ (0, T ), for some constant C > 0.
The consequence of (68), (69), (67) and Kolmogorov’s compactness criterion yield the following convergences

uℎ → u strongly in L2(ΩT ,b) and a.e. in ΩT ,b,
�ℎi → �i strongly in L2(ΩT ,i) and a.e. in ΩT ,i,

uℎ ⇀ u weakly in L2(0, T ;H1(Ωb)),

�ℎi ⇀ �i weakly in L2(0, T ;H1(Ωi)),

'ℎi ⇀ 'i weakly in L2(0, T ;H1(Ωi)),

(70)

for i = b, ts. Exploiting the convergence (70), we can sendℎ→ 0 in (64) to conclude that the limitU =
(

u, �b, �ts, 'b, 'ts
)

is a weak solution in the sense of Definition 2.1.

4.2. Numerical results
First, we mention here an interesting question which is how to treat the temperature advection-diffusion equation.

Obviously, not all discretization of this equation are equally stable without regularization techniques. For this reason,
we can use discontinuous elements which is more efficient for pure advection problems. However, in the presence of
diffusion terms, the discretization of the Laplace operator is cumbersome due to the large number of additional terms
that must be integrated on each face between the cells. Consequently, a better alternative is to add some nonlinear
viscosity �̃ (�) to the model that only acts in the vicinity of shocks and other discontinuities. The viscosity �̃ (�) is
chosen in such a way that if � satisfies the original equations, the additional viscosity is zero. In our case, we will opt

Bendahmane, Ouakrim, Ouzrour and Zagour: Preprint submitted to Elsevier Page 20 of 27



Mathematical study of a new coupled electro-thermo radiofrequency model of cardiac tissue

for the stabilization strategy developed in [21] that builds on a suitably defined residual and a limiting procedure for
the additional viscosity. For this, let us define a residual R� (�) as follows:

R� (�) =
()�
)t
+ u ⋅ ∇� − ∇ ⋅ �

(

�
)

∇� − �
(

�
)

|∇'|2
)

��−1, � ∈ [1, 2].

Note that R� (�) will be zero if � satisfies the temperature equation. Multiplying terms out, we obtain the following
entirely equivalent form:

R� (�) =
1
�
) (��)
)t

+ 1
�
u ⋅ ∇ (��) − 1

�
∇ ⋅ �

(

�
)

∇ (��) + �
(

�
)

(� − 1) ��−2|∇�|2 − 
��−1.

Using the above equation, we define the artificial viscosity as a piece-wise constant function defined on each cell K
with diameter ℎK separately giving by:

�̃� (�)||K = �‖u‖L∞(K)min
{

ℎK , ℎ
�
K

‖

‖

R� (�)‖‖L∞(K)
c (u, �)

}

,

where, � is a stabilization constant and c (u, �) = cR‖u‖L∞(Ω) var (�) | diam (Ω) |�−2 where var (�) = maxΩ �−minΩ �
is the range of present temperature values and cR is a dimensionless constant.
If on a particular cell the temperature field is smooth, then we expect the residual to be small and the stabilization term
that injects the artificial diffusion will be rather small, when no additional diffusion is needed. In addition, if we are
on or near a discontinuity in the temperature field, then the residual will be large and the artificial viscosity will ensure
the stability of the scheme.
Our goal is to show that the proposed model can reproduce the very interesting characteristics and phenomena of

radiofrequency ablation. In particular, we demonstrate the influence of electrical potential in cardiac tissue, saline
viscosity and external forces. Numerical results are provided based on existing parameters in the literature, for instance,
[18, 19, 20]. We consider a Ω domain which is decomposed by two sub-domains Ωb and Ωts as described in Figure
2 where L = 1.5, H = 1 and r = 0.075. In our numerical simulations, the electrode thickness is assumed negligible
because their diameter is very small. However, the numerical simulation in three-dimensional space with the optimal
control will be studied in our next work. In addition, the electrical conductivities �i, thermals conductivities �i, and
blood conductivity � have been modeled as temperature-dependent functions and are given by the following equations

�b
(

�b
)

=

⎧

⎪

⎨

⎪

⎩

�0 exp
(

0.015
(

�b − �̄
))

for �b ≤ 99◦C,
2.5345�0 for 99◦C < �b ≤ 100◦C,
2.5345�0

(

1 − 0.198
(

�b − 100◦C
))

for 100◦C < �b ≤ 105◦C,
0.025345�0 for �b > 105◦C,

�b
(

�b
)

=
{

�0 + 0.0012
(

�b − �̄
)

for �b ≤ 100◦C,
�0 + 0.0012

(

100◦C − �̄
)

for �b > 100◦C,
�ts

(

�ts
)

= �0 + 0.02
(

�ts − �̄
)

,

�ts
(

�ts
)

= �0 + 0.0012
(

�ts − �̄
)

,

where �0 = 0.6 and �0 = 0.54 are the constant electrical conductivity and the thermal conductivity, respectively, at
core body temperature, �̄ = 37◦C and 'd = 1. Moreover, the viscosity and density of blood are 0.0021 Pa ⋅ s and
1000 kg∕m3, respectively, while those of saline are 0.001 Pa ⋅ s and 1000 kg∕m3, respectively, based on the material
property of water.

Finally, we consider the following boundary conditions. A velocity u = ue =
(

4y (H − y)
0

)

on boundary Σ1,

u = us on boundary Σ8, and we change the boundary condition of the viscosity in the boundary Σ3 that is −�nb +

�
(

�b
)

D (u)nb = 0. On boundaries Σi, i = 2, 7, we assume that the velocity is zero i.e., u =
(

0
0

)

on Σ2∪Σ7. We set

on the boundaries Σi, i = 1,⋯ , 6 the temperatures, �b = �ts = 37◦C. For the potential equation, we fix'i = 'd = 1 on
Σ8 and the homogeneous Dirichlet condition in the remaining boundaries. In the following, we provide three numerical
experiments where the aims are to show the influences of the saline flow and the external force.
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Figure 3: Snapshot of evolution of the potentials at four time moments t = T
6
, T
2
, 3T

4
, T .

4.2.1. Test 1: heat transfer and blood flow
The aim of this test is to show that our model is validated by comparing with the results from the literature. First of

all, we mention that the impact of saline viscosity and the external forces are neglected, which is expressed as us = 0
and F = 0. In this scenario, the continuity condition is used in place of the saline heat and the Dirichlet condition
of viscosity on the boundary of Σ3, which are

(

�b
(

�b
)

∇�b
)

⋅ nb = −
(

�ts
(

�ts
)

∇�ts
)

⋅ nb on Σ8 and u = ue on Σ3,
respectively.

The first remark is that the computed potential evolves very slowly during the time iterations, see Figure 3. This can
be justified by the fact that the only data in the potential equation is the source 'i which is constant and the electrical
conductivity �i. Thus, we omit the figures of the potential as there is no significant change during the iterations.

Now, let comment on the mechanism of how and why we got our numerical results. The applied potential increases
the temperature of the tissue part near to the catheter and then diffusing in cardiac tissue domain, see Figure 4. Thanks
to the the continuity on the boundaries, the temperature of the blood domain is also increased, this can be justified by
the presence of the electric field term −�ts

(

�ts
)

∇'ts ⋅ ∇'ts. It is important to mention that this temperature is also
influenced by the presence of the blood. More precisely, it is transported in the direction of the fluid because of the
presence of the term u ⋅ ∇�b. On the other hand, it is clear that the speed of the fluid and the pressure in the fluid part
are influenced by the viscosity which depends on the temperature �b. More precisely, we see a flow recirculation zone,
with a local enhance of velocity upstream to the catheter. While it remains almost uniform in the other regions far from
the catheter at time T ∕6. In time progress, we can see that the velocity and the pressure are influenced by the presence
of the viscosity, see the second column of Figure 4.

To cut it short, this test shows the influence of each term in our model, it shows the coupling effects, that is to say,
the fluid, the pressure, the temperatures, and the potentials are affecting each other.

There is close agreement between the model and the experimental results from the literature.
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Figure 4: Test 1 : evolution of heats (column 1), velocity and pressure (column 2) at three time moments t = T
6
(line 1),

t = T
2
(line 2) and t = T (line 3).

4.2.2. Test 2: the saline flow effect
In this test, we aim to demonstrate the effect of the saline flow. As it is shown in Test 1 (cf. Subsection 4.2.1), the

temperature in the neighborhoods of the catheter achieves a critical values between 40◦C and 42◦C. Thus, naturally
it is necessary to cool down this zone and make it’s temperature down. For that, we need to inject a fluid where the
saline heat is 20◦C i.e., �b = �ts = �s = 20◦C on Σ8. This can be done by considering the following u = us =
⎛

⎜

⎜

⎝

20
r

(

x − L
2
+ r

)(L
2
+ r − x

)(L
2
− x

)

−20
r

(

x − L
2
+ r

)(L
2
+ r − x

)

y

⎞

⎟

⎟

⎠

, on boundary Σ8. To present these evolution, we show in Figure 5 the

results of numerical simulations at three different times t = T
6 ,

T
2 , T , where each row of the figure represents the

corresponding time in the same order. In the first column, we show the heats �b and �ts, and in the second column, we
show the velocity field and the pressure. Clearly, we notice that the injected saline flow us diminishes the calculated
heats. This leads to the possibility of cooling the domain by the saline fluid from Σ8. In addition, we observe the
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rotation of the fluid in the areas subject to heat variations, especially in the area near the outlet boundary Σ3.

Figure 5: Test 2 : evolution of heats (column 1), velocity and pressure (column 2) at three time moments t = T
6
(line 1),

t = T
2
(line 2) and t = T (line 3).

4.2.3. Test 3: the external force effect
In final test, we are interested in the behavior of the heats when the fluid source term is non-zero. Thus, we consider

the fluid source F = −
(

0
10−39.81∕303

(

�b − �̄
)

)

as in Boussinesq equations. Figure 6 represents the evolution of

the heats �i (first column) and of the velocity and pressure (column 2) at times t = T
6 ,

T
2 , and T . We notice the rotation

of the fluid in the areas subject to heat variations, especially in the area near the outlet boundary Σ3. This is justified
by the structure of the source term F, in particular the term �b − �̄. Indeed by the principle of maximum, the velocity
changes its sign according to the value of the temperature �b whether it is lower or higher than �̄. Consequently, we
achieve a reduction of the temperature in certain areas of the domain.
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Figure 6: Test 3 : evolution of heat (column 1), velocity and pressure (column 2) at three time moments t = 0 (line 1),
t = T

2
(line 2) and t = T (line 3).

5. Conclusion and perspectives
In this paper, a new coupled electro-thermo-fluid RFA model describing radiofrequency ablation phenomena in

cardiac tissue and Newtonian fluid medium governed by the incompressible Navier–Stokes has been proposed. The
proposed model can be considered as an improved model in [8]. Indeed, their model consists of a coupled thermistor
and the incompressible Navier–Stokes equations that describe the evolution of temperature, velocity, and potential only
in the blood vessel.

In this work, the existence of weak solutions has been proved using the Faedo–Galerkin with a priori estimates
and compactness arguments. In addition, numerical simulations in different cases have been illustrated in a two-
dimensional space using the finite element method.

Our proposed model can be considered as a general mathematical framework that is capable of including the fol-
lowing features: a radiofrequency ablation phenomenon for cardiac tissue, predicting the temperature of the tissues,
the saline flow, and the external force. These features are demonstrated in our numerical simulations. We believe this
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work can lead to interesting perspectives, such as optimal control models and inverse problems, namely the identifi-
cation of the frequency factor of different tissue types. In addition, other perspectives consist of studying the optimal
control of the proposed model and improving it by adding the stochastic effects, for instance in the incompressible
Navier–Stokes equation, see [7, 5].
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