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Abstract

We consider the classical multi-armed bandit problem, but with strategic arms. In
this context, each arm is characterized by a bounded support reward distribution
and strategically aims to maximize its own utility by potentially retaining a portion
of its reward, and disclosing only a fraction of it to the learning agent. This scenario
unfolds as a game over T rounds, leading to a competition of objectives between
the learning agent, aiming to minimize their regret, and the arms, motivated by
the desire to maximize their individual utilities. To address these dynamics, we
introduce a new mechanism that establishes an equilibrium wherein each arm
behaves truthfully and discloses as much of its rewards as possible. With this
mechanism, the agent can attain the second-highest average (true) reward among
arms, with a cumulative regret bounded by O(log(T )/∆) (problem-dependent) or
O(
√
T log(T )) (worst-case).

1 Introduction

The multi-armed bandit (MAB) problem serves as a fundamental modeling framework for exploring
the interplay between a decision-making agent (or player) and a set of arms. Its primary aim is
to enable the player to learn the most favorable sequence of decisions over time. In formal terms,
we consider a scenario involving K arms, where, at each time step t, the player selects one arm
kt from the set {1, 2, . . . ,K} and receives a reward, denoted as rkt,t. These rewards can either be
generated stochastically or determined adversarially. The player’s overarching objective is to strike a
balance between two key aspects: exploration and exploitation. Initially, he must explore all arms
adequately to gain confidence in identifying the best-performing arm. Once this is accomplished, he
focuses on exploiting this knowledge to maximize his cumulative reward over subsequent rounds.
Established algorithms for this problem ensure that the player’s performance is nearly as good as
selecting the best individual arm, thus minimizing his regret [1, 2, 3]. This modeling framework
has broad real-world applications, including domains such as clinical trials [4, 5], recommender
systems [6], and resource allocation problems [7]. However, in many of these scenarios, arms are
traditionally viewed as passive entities, faithfully reporting their generated rewards rkt,t to the player.
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This perspective leaves out an array of dynamic agency dilemmas, where the player selects one of the
K agents (arms) at each time step to execute a task on his behalf, with the associated cost remaining
hidden from the player due to his limited domain or market knowledge. Essentially, the player is
uncertain about the precise costs or returns until the task is completed, and the agent has substantial
freedom to set these ex-post [8]. In this context, it is reasonable to assume that arms are strategic and
may act in their self-interest. Conceptually, arms can report a value, denoted as xkt,t, which may
differ from the actual reward rkt,t, retaining in the process a net utility of rkt,t − xkt,t. This strategic
scenario introduces a game-like dynamic, creating a competition of objectives between the player,
aiming to minimize his regret and the arms, wishing to maximize their own utilities.

Motivated by numerous real-world applications where, by design, strategic arms operate under
restricted payment conditions, our study focuses on debt-free reporting. In this setting, arms cannot
report values higher than the observed reward. An illustrative example pertains to scenarios with
binary variables, where declaring a fake failure is possible but creating a fake success is impossible.
This situation is evident in e-commerce, where advertisers receive rewards for successful ad campaigns
that result in a sale after a click. Notably, an e-commerce platform may choose to conceal a sale,
but it cannot fabricate one. This setting is also referred to as budget-balance in the repeated trade
literature [9, 10], requiring xkt,t ≤ rkt,t for all t, or equivalently, (xkt,t, rkt,t) belonging to the upper
triangle T = {(a, b) ∈ S2 | a ≤ b}, where S represents the variables’ space.

2 Problem Statement
The concept of the strategic multi-armed bandit builds upon the foundation of the classic multi-armed
bandit problem, introducing a novel element wherein the arms possess the capability to retain a
portion of the reward for themselves. Within this framework, we contemplate a collection of K
stochastic arms denoted by k ∈ {1, . . . ,K}, where each arm possesses a bounded reward distribution
Dk supported on [0, 1]. Each arm is distinguished by its reward mean, denoted as µk. To maintain
generality without loss of clarity, we assume, for the presentation and the analysis, an ordering
such that µ1 ≥ µ2 ≥ · · · ≥ µK (unknown to the player). In each round t, the player selects
an arm denoted as kt. This arm kt then observes a reward rkt,t ∈ [0, 1]. Subsequently, the arm
reports a quantity xkt,t to the player and retains rkt,t − xkt,t as its own utility. In this scenario, it
is important to note that solely arm kt possesses knowledge of the actually observed reward rkt,t,
whereas the player is privy only to xkt,t and remains unaware of the withheld portion. Hence the
decision of the player is based on the information gathered until time t which can formally encoded
in FP,t = {ks, xks,s}s<t implying that kt is σ (FP,t) measurable. Conversely, the arm kt’s available
information is succinctly represented by Fkt,t = {ks, rks,s, xks,s, kt, rkt,t}s<t:ks=kt ∪ {ks}s<t and
xkt,t is σ (Fkt,t) measurable. Specifically, this indicates that the tacit model is being utilized, wherein
the arms are informed about the pulled arms at each round and only observe the reward upon being
chosen.

Furthermore, we operate under the debt-free reporting assumption: arms are prohibited from incurring
negative balances when reporting xkt,t, implying the following constraint 0 ≤ xkt,t ≤ rkt,t ∀t ≥ 1.
In the context of strategic bandits, the player has the option to allocate a bonus Ψk to each arm
k ∈ {1, . . . ,K} at the end of the game. This bonus serves as an incentive to encourage arms to
provide truthful information, for instance. It can take various forms, including additional rounds of
pulling as in [8] or simply a bonus payment awarded to the arms, similar to payments in the usual
mechanism design for procurement auctions [11]. In this work, the latter option has been chosen for
use, i.e. a bonus payment-based algorithm. Therefore, the interaction between the player and the
arms can be encapsulated in the Model 1.

Model 1: The Strategic Multi-Armed Bandit Problem
1 Player commits to an algorithm A, which is public to the arms
2 for t = 1, . . . , T do
3 Player selects arms kt ∈ {1, . . . ,K} according to the chosen algorithm A
4 Arm kt observes reward rkt,t ∼ Dkt

5 Arm kt reports xkt,t ∈ [0, rkt,t] to the player
6 end
7 Player assigns bonuses Ψk to each arm k ∈ {1, . . . ,K}
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2.1 Arm Utility and Subgame Perfect Equilibrium Among Arms
Let us denote by P , the set of all possible arm strategies, by πk = (πk,t)t:kt=k ∈ P the strategy of
arm k and by π = (π1, . . . ,πk) the strategy profile of the arms. Explicitly, P is the set of mappings
from the past history

⋃T
s=1

{
[0, 1]2s × {0, 1}T

}
to [0, 1]. Here, [0, 1]2s denotes the accumulated

observed and announced rewards, and {0, 1}T indicates the rounds during which this arm has been
selected thus far. Let xk ∈ RT

⋆ (and rk ∈ RT
⋆ ) be the sequence of the reported values (and rewards,

respectively) by arm k across T rounds where R⋆ = R ∪ {⋆}, and the symbol ‘⋆’ is used for rounds
when the arm is not observed. We also refer to xk as the path of arm k under strategy π. Let x−k

denote the K − 1 paths of all arms except k. As a result, the utility associated with arm k is defined
in an ex-post fashion as follows:

Uk(πk,π−k) =

T∑
t=1

(rkt,t − xkt,t) · 1[kt=k] +Ψk(xk, x−k)
(1) (1)

which is the cumulative savings over rounds plus the corresponding assigned bonus (we slightly
abused notations here, as Ψk only depends on the observations of the player, and not the full vector
xk). Given that each arm aims to maximize its own utility, we introduce the solution concept of
subgame perfect Nash Equilibrium (SPE) among arms. A strategy profile π⋆ is a SPE if π⋆

k is an
optimal strategy for any arm k, considering any history and given any strategy π−k ∈ PK−1 adopted
by other arms, at any time t.

2.2 Player’s Strategic Regret
In the strategic scenario, the player, under the most unfavorable circumstances, cannot guarantee to
achieve gains surpassing µ2. This limitation arises from the fact that the optimal arm merely requires
a marginally higher reported value than the second-best arm to be chosen as the superior option by
the player (see Section 2.3 for more details). In addition, the bonus allocated to the arms is deducted
from the player’s total revenue; hence, these bonuses are factored into the regret definition. Therefore,
the regret, arising from the cumulative expected discrepancy between µ2 and the value reported by
the selected arm kt over T rounds, along with the bonus values, is defined as follows:

RT = E

[
T∑

t=1

(µ2 − xkt,t) +

K∑
k=1

Ψk(xk, x−k)

]
(2)

2.3 Related Work
A simplified instance of the strategic bandit problem has been examined within the context of the
principal-agent problem in contract theory [12, 13]. In this analogy, a player engages an arm with
greater expertise in a specific domain to perform work on his behalf. However, the arm may exploit the
player’s lack of knowledge to maximize its own utility and accumulate private savings. Consequently,
the strategic bandit problem can be viewed as a principal-multiagents problem. Additionally, drawing
inspiration from the field of online advertising, several studies have delved into dynamic mechanisms
to address similar scenarios [14, 15, 16, 17, 18, 19, 20]. For instance, [21] examined auctions with
reserve prices involving strategic myopic buyer.

In particular, [22] studied strategic arms but with a distinct utility function that depends solely on the
number of pulls. In this scenario, each strategic arm aims to maximize the total number of rounds it is
selected rather than cumulative savings. The authors demonstrate that stochastic MAB algorithms are
robust to strategic manipulation, allowing the player to achieve µ1T with a sublinear regret. Under
their utility definition, an arm is content to report the entirety of its reward as long as it is selected,
justifying their use of the best mean µ1 as a comparator for regret.

A comparable study was conducted by [23], albeit with a variation in the arm’s utility function, which
incorporates the number of pulls alongside savings. The primary difference lies in their incorporation
of a non-empty set of truthful arms, among other considerations. In this context, where arms are
informed about competition and with additional assumptions conducive to specific MAB algorithms,
they establish the resilience of these algorithms to strategic manipulation. However, when arms lack

(1)1[] is the indicator function: 1[a=b] =

{
1 if a = b

0 otherwise
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information about competition, they propose a mechanism reliant on the presence of truthful arms,
ensuring a substantial revenue for the player.

The most related setting is considered by [8]. They addressed a multi-armed bandit problem with
strategic arms, employing a similar utility function, dependent on cumulative savings as outlined
in (1). Their work revealed that if the player aims for the highest mean µ1 – i.e., employs a no-regret
strategy – then the arms can form an undesirable equilibrium that leaves the player with a sub-linear
cumulative revenue. Consequently, any incentive-unaware learning algorithm that is oblivious to
the strategic nature of the arms is not resilient to such a utility definition and will generally fail to
achieve low regret. Therefore, it becomes crucial to design algorithms that rely not only on sequential
decision-making but also on incorporating incentive mechanisms to enhance truthfulness. In this
context, Lemma 14 of [8] establishes that no mechanism can guarantee more than µ2T as revenue
for the player in the worst case. This observation justifies the use of µ2 as a comparator in the
regret definition. As a solution, they propose a mechanism referred to here as S-ETC (Strategic
Explore Then Commit). When arms have the flexibility to report any value within the range of [0,1],
potentially incurring negative utility, S-ETC ensures that the player achieves a revenue of µ2T with
sub-linear cumulative regret. However, under debt-free reporting, the player incurs an additional
regret of O(T

2
3 ) within a given Nash equilibrium among the arms.

2.4 Objectives and Challenges
The central question we address is whether there exist, under debt-free reporting, an algorithm for the
player that establishes a Nash equilibrium for the arms, guaranteeing lower regret, akin to classical
non-strategic bandit settings [24, 25, 26], or not.

Dealing with strategic arms in the context of debt-free reporting poses significant challenges, espe-
cially when striving to minimize regret. Our overarching goal is to achieve a regret of O( log(T )

∆ ).
This task proves to be far from straightforward, as it cannot be resolved by merely adapting prior
research. In particular, when considering the fixed design (i.e., non adaptive exploration phase)
solution proposed by [8], the minimum bonus required to ensure truthfulness is directly proportional
to the length of the exploration phase. This cannot provide a regret guarantee better than O(T

2
3 ).

Furthermore, this observation underscores that achieving incentive-compatibility cannot be solely
contingent on the bonus, as it tends to become prohibitively costly for the player. To address this, we
shall rely on the adaptive elimination of arms, introducing a secondary trade-off for the arms that
enables a reduction in the bonus requirement. The less faithful an arm behaves, the more swiftly it is
removed from consideration. However, this approach grants arms some control over the number of
their pulls, necessitating meticulous design in other aspects of the mechanism.

2.5 Contributions
We operate within the framework of debt-free reporting, wherein each arm is constrained to report
values no higher than its observed outcomes. In this context, our contributions are:

1. We introduce a novel incentive-aware learning algorithm, denoted as Algorithm 1: S-SE,
which integrates mechanism design and online learning techniques. This algorithm adeptly
motivates favorable arm strategies, minimizing regret by adjusting a well-calibrated bonus.
This introduces a strategic tradeoff for arms, balancing high savings through dishonesty with
the risk of swift elimination.

2. We demonstrate that under Algorithm 1, there is a dominant-strategy SPE in our game, where
each arm simply reports truthfully, as proven in Theorem 4.1. Under this equilibrium, the
player provably obtain an expected revenue of µ2T , up to a sub-linear regret that is bounded
by O

(∑K
k=3

log(T )
∆2k

+
∑K

k=2
log(T )
∆1k

)
where gaps are defined as: ∆ij = µi − µj ,∀i, j ∈

{1, . . . ,K}. In the worst-case scenario with significantly small gaps, the regret bound is of
O
(√

KT log(T )
)

, as outlined in Theorem 4.2. This result outperforms the regret bound

of O(T 2/3) presented in the literature within the examined setting (see Table 1).

3. Under additional technical assumptions, we analyze the player’s regret incurred when
employing Algorithm 1 within any arms strategy profile. This analysis aims to provide a
comprehensive characterization of a broad range of potential equilibria.
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Table 1: Comparison summary between S-ETC [8] and S-SE: setting and results.
Tacit Model Debt-free reporting Bonus nature Regret

S-ETC [8] ✓ ✓ Additional rounds O(T 2/3)

S-SE ✓ ✓ Payment

Problem-dependent
O(log(T )/∆)

Problem-independent
O(
√

KT log(T ))

3 The Player Algorithm
This section is dedicated to the description of the algorithm used by the player. We first introduce
some notations.

Let {ak,t}k∈{1,...,K} be a set of K real values evaluated at time t. We then denote by at the vector
obtained by concatenating values {ak,t}k∈{1,...,K}, i.e., a⊤

t = [a1,t, a2,t, . . . , aK,t]. We also denote
by σa a bijection from {1, . . . ,K} to itself that gives the index of the kth highest element in vector a.
For example, if a⊤ = [1, 10, 4, 6], then σa(1) represents the index of the highest value in a, which
is 2. Likewise, σa(2) = 4, σa(3) = 3, and σa(4) = 1. The inverse of this mapping provides the rank
associated with a given index. When the context is clear, we can simplify the notation and omit the
vector a, proceeding directly with σ and its inverse σ−1.

Let S be a set; then we denote the cardinality of S by |S|.

3.1 Algorithm Presentation
Algorithm 1 closely integrates a strategy that combines successive elimination and bonus allocation,
hence it is referred to as Strategic Successive Elimination (S-SE). It is structured into two distinct
phases:

The Initial Phase. It is composed of the first τ rounds (a random stopping time defined in (8)),
where an adaptive exploration technique is employed, based on round-robins on active arms leading
to a series of successive eliminations aimed at identifying the best-performing arm. To achieve this,
the player keeps track of the number of times nk(t) each arm k is pulled up to time t, defined as:

nk(t) =

t∑
s=1

1[ks=k] (3)

Additionally, the empirical average of received rewards from arm k at time t is computed as:

µ̃k,t =
1

nk(t)

t∑
s=1

xk,s · 1[ks=k] (4)

This is distinct from the empirical average of observed rewards:

µ̂k,t =
1

nk(t)

t∑
s=1

rk,s · 1[ks=k] (5)

which is observable only by the concerned arm k. The relevant quantity to the player is µ̃t =
(µ̃k,t)k∈[K] and its ordering mapping σµ̃t

. However, to alleviate cumbersome notations, we shall use
from now on σt instead of σµ̃t

.

Leveraging a Hoeffding confidence bound and denoting αk,t =
√

2 log(T )
nk(t)

, the algorithm effectively
eliminates arms that are likely to perform worse than the best arm with high probability. Hence, an
arm k is eliminated at time t if the following event is happening:

Et
k := {µ̃σt(1),t − ασt(1),t ≥ µ̃k,t + αk,t} (6)

which leads to define the stopping time at which arm k is eliminated, with the convention that
inf ∅ = +∞,

τk := inf{t ∈ [T ] : Et
k} . (7)
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Algorithm 1: Strategic Successive Elimination (S-SE)
1 Let A1 = {1, . . . ,K} the set of all arms and t=1
2 while t ≤ T and |At| > 1 do
3 Play k ∈ {k ∈ At : argmin

k∈At

nk(t− 1)}

4 Update nk(t) and µ̃k,t

5 if nk(t) = nk′(t), ∀k, k′ ∈ At then
6 At+1 = At \ {k ∈ At : µ̃σt(1),t − ασt(1),t ≥ µ̃k,t + αk,t} ▷ Drop bad arms
7 else
8 At+1 = At

9 end
10 t=t+1
11 end

▷ τ is the length of the first phase
12 Identify the arm with the highest average στ (1), denoted as k⋆
13 for t = τ + 1, · · · , T do
14 Play k⋆ and receive the reported value xk⋆,t

15 Compute x̃k⋆,t =
1

t−τ

t∑
s=τ+1

xk⋆,s

16 if x̃k⋆,t < min(µ̃στ (2),τ , µ̃στ (1),τ −
√

2 log(T )
t−τ ) then

17 Set Ψk⋆ = 0 ▷ Incentive
18 Stop playing k⋆ immediately and move to step 21 ▷ Incentive
19 end
20 end
21 Allocate bonuses Ψk∈{1,...,K} ▷ Incentive

Consequently, the number of active arms in the set At progressively reduces over time until, eventually,
only the best-performing arm remains. Hence, the duration of this initial phase, represented as τ ,
is a random stopping time. It is not fixed from the outset but dynamically adapted to the statistical
characteristics of the arms, and it is defined as:

τ = inf{t ∈ [T ] : |At| = 1} = inf

{
t ∈ [T ] : ∃St ⊂ {1, . . . ,K} s.t |St| = K − 1 and

⋂
k∈St

Et
k

}
(8)

The Second Phase. It starts after stage τ and thus may never happen, as in classical MAB. In such
case, for t > τ , the best arm, i.e. k = στ (1), is required to report an average value that surpasses at
least the second-highest average achieved at the conclusion of the initial phase, denoted as µ̃στ (2),τ .
If the player confidently detects the best arm is defecting and fails to report as much, it is no longer
played. Additionally, its bonus is set to zero, and the game is halted (we assume that the player can
choose to end the game when the best arm defects).

At the conclusion of the game, a bonus denoted as Ψk is assigned to each arm k, based on µ̃[τ ]

and its rank σ−1
τ (k). The strategic distribution of bonuses serves as an incentive mechanism to

encourage truthfulness. Drawing inspiration from real-world practices in financial exchanges within
e-commerce, all bonus payments are deferred until the end of the game to ensure incentives.

Definition 3.1. Let τk represent the last time when arm k is active. Let τ and τ ′ respectively denote
the duration of the first and second phases. Then the bonus function Ψk is defined as following:

Ψk(xk, x−k) =
(
nk(T )

(
µ̃k,T − µ̃στk -1(2),τk-1

)
+ xk,τk

)
1[στ (1)=k]1[τ+τ

′≥T ]

+

(
16 log(T )

µ̃στk -1(1),τk-1 − µ̃k,τk-1
+ xk,τk

)
1[σ−1

τ (k)≥2] (9)

Hence, contingent on their ranking at the conclusion of the first phase:
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The highest-performing arm: if it refrains from defecting during the second phase, it will be
rewarded with a bonus that compensates for the discrepancy between its reported value and the
second-best reported value. This process mirrors the dynamics observed in second-price auctions.

Suboptimal arms: they will receive a bonus inversely proportional to the difference between their
means and the best arm mean. Consequently, the bonus increases as the reported values grow larger.

By implementing anytime tests to eliminate arms during the first phase (line 6 of Algorithm 1),
the algorithm introduces a strategic tradeoff for arms, balancing the advantages of dishonesty with
the risk of expedited elimination. This tradeoff constrains potential gains from dishonest behavior,
resulting in smaller bonuses required to ensure truthful reporting and, consequently, providing a
more robust guarantee. In contrast to the fixed design with a predetermined exploration phase length
introduced in [8], where arms know from the beginning exactly how long they will be played during
the first phase independently of their performances, giving them more freedom and requiring larger
bonuses (proportional to the exploration phase) to ensure truthfulness, which is more costly than the
bonus given in Definition 3.1.

4 Dominant-Strategy SPE
Algorithm 1 combines elements of a bandit algorithm and an incentive mechanism, creating a
beneficial tradeoff that encourages truthful reporting as a dominant strategy for each arm in any
subgame. Consequently, each arm reporting truthfully forms a dominant-strategy SPE. Specifically,
we demonstrate that the utility of arm k under the truthful strategy π⋆

k dominates its utility under any
other strategy πk, given any fixed history(2)hk,t = {kz, rkz,z, xkz,z}z≤t:kz=k ∪ {kz}z≤t. Formally,
we define the subgame utility of arm k under strategy profile (πk,π−k), at time t given any history
hk,t−1 as:

Uk(πk,π−k)[t : T | hk,t−1] =

T∑
s=t

(rk,s − xk,s) · 1[ks=k] +Ψk(xk, x−k), (10)

where the history hk,t−1 is implicitly considered within Ψk(xk, x−k).

Theorem 4.1 (Incentive-Compatibility). Under Algorithm 1 and using the bonus function in Defini-
tion 3.1, for any arm k, any strategy πk, any strategy profile of other arms π−k, at any time t, and
given any history hk,t−1, the truthful reporting strategy π⋆

k satisfies:

Uk(πk,π−k)[t : T |hk,t−1] ≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1] (11)

Proof. See Appendix C.

Therefore, truthful reporting is a best response to any strategy profile π−k. Consequently, each arm
playing truthfully forms a dominant-strategy SPE.

Regret Bound. Under the dominant truthful SPE established in Theorem 4.1, we compute the
player’s regret over T rounds. As previously discussed, the regret is calculated in relation to µ2.
Notably, a subtlety arises in the strategic scenario as compared to the non-strategic one: we must
factor in the bonuses paid when calculating the regret.

Theorem 4.2 (Regret Bound). Let T ≥ 1. The regret of Algorithm 1 is upper-bounded as:

RT ≤ O

(
K∑

k=2

log(T )

∆1k
+

K∑
k=3

log(T )

∆2k

)
(12)

The instance-independent regret upper-bound is given by:

RT ≤ O
(√

KT log(T )
)

(13)

Proof. See Appendix D.

(2)By definition, the history combines the information available to the arm to make a decision concerning the
reporting, in addition to the reported value, i.e hkt,t = Fkt,t ∪ {xkt,t}.
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Theorem 4.2 demonstrates that the regret bound under the considered setting is significantly lower
than the regret attained in the Nash equilibrium presented in [8] under the same conditions. The bonus
design compensates for any gains that may occur from being untruthful, establishing the truthful
SPE. Under the latter, the algorithm is the classical successive elimination algorithm designed for the
non-strategic MAB, whose worst-case regret is known to match that of Theorem 4.2. At the same
time, the successive eliminations create a trade-off between high savings from dishonesty and swift
elimination, which reduces the bonus values needed in a way that they do not incur an additional
harmful cost for the regret.

A second observation is that the instance-dependent regret matches the one of a regular MAB
O
(∑K

k=2
log(T )
∆1k

)
up to a second additive term of the same order O

(∑K
k=3

log(T )
∆2k

)
. This second

term comes from the additional need to correctly estimate the value of the second-best arm to make
sure to "bill" accurately the best arm during the second phase. The less accurate the estimation of µ2,
the larger the deviation the best arm could have in the second phase without being detected. As the
gain from potential deviation is incorporated in the bonus to ensure truthfulness, the accuracy of the
estimation of µ2 impacts the regret.

It’s worth noting that the truthful SPE highlighted in Theorem 4.1 might raise questions about the
regret comparator µ2. In other words, if truthfulness exists, why can’t we expect to achieve rewards
of µ1? While it’s true that arms are incentivized to be truthful, this motivation is realized through the
allocation of bonuses at the conclusion. Bonuses are part of the arm’s utility and contribute to making
truthful reporting the best response that maximizes utility. Specifically, the best arm is incentivized
with a bonus of O(T∆12). Since the bonus is integral to the regret calculation, we compute the regret
relative to µ2 in a manner similar to the approach justified in Lemma 14 of [8].

Tightness of Regret. For simplicity, let’s consider three arms with µ1 ≥ µ2 ≥ µ3. The optimal
arm only needs to report a slightly higher value than the second-best arm to be chosen by the player
as the superior option. Consequently, all efficient low-regret mechanisms must ensure truthfulness, at
least for the two best arms. Under debt-free reporting, where no arm can falsely claim to be better
than it actually is, distinguishing between the two best arms incurs a regret of log(T )

∆12
. Additionally,

distinguishing between the second and the third arm is required to estimate the second-best mean
accurately, resulting in a regret of log(T )

∆23
. However, the third arm does not need to be truthful; we only

need to distinguish it from the second-best arm. Therefore, in general, the incurred regret will be of
order log(T )

∆̃23
, where ∆̃23 is the difference between the true mean µ2 and an effective mean µ̃3, which

can be different from µ3. Ideally, µ̃3 = 0 to minimize the corresponding regret i.e incentivizing
non-truthful strategies for arms k ≥ 3, allowing the player to identify the second-best arm more
quickly. Nonetheless, in all cases, the regret will be of the same order as the one described in (12). In
Appendix F, we conducted an experimental analysis on simulated data, highlighting the tightness of
the regret bounds by evaluating several strategies.

Utilities Bounds. Considering the game-like dynamics between the player and the arms, alongside
the regret bounds, it is natural to examine bounds on the utilities of the arms, as illustrated in the
following corollary.

Corollary 4.1 (Utilities Upper Bound). Under the truthful SPE, the utility of any arm is upper
bounded as follows:

∀k ∈ {2, . . . ,K} E[Uk] ≤ O
(
log(T )

∆1k

)
and E[U1] = O(T∆12) (14)

Proof. See Appendix D.1.

5 Regret Analysis Across Arbitrary Strategy Profiles
In the previous section, we assessed the regret of Algorithm 1 when the arms adhere to the dominant
strategy SPE. General profiles and equilibria in extensive games are known to be intractable [27, 28].
Specifically, for an arbitrary strategy profile that is not truthful, the values reported by the arms are
not i.i.d., complicating the analysis as tools like Hoeffding’s inequality cannot be directly applied.
Consequently, determining the algorithm’s output becomes non-trivial. To address this, we introduce
an additional technical assumption regarding the boundedness of gains through dishonesty. With
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this assumption, we can analyze the algorithm under a wide range of strategy profiles, not just the
dominant one previously discussed.

Fix an arbitrary strategy profile π. For each arm k, we define ST
k =

∑T
s=1(rks,s − xks,s) · 1[ks=k]

as the cumulative savings of arm k up to round T . We assume the existence of some upper-bound
M on cumulative saving, i.e., such that for all arms k ∈ [K] and for any strategy π, it must hold
that ST

k ≤ M . We define the effective mean under strategy π as µπ
k , and let µπ = (µπ

k )k∈[K].
Therefore, we define ∆π

k as the difference between the highest effective mean under strategy π and
the effective mean of arm k, given by : ∆π

k = µπ
σµπ (1) − µπ

k . Similarly, ∆π
k represents the difference

between the second-highest effective mean and the effective mean of arm k under strategy π, defined
as: ∆π

k = µπ
σµπ (2) − µπ

k . We show that when arms use the strategy profile π, even under non-i.i.d.
reported variables, Algorithm 1 outputs the second highest effective mean, and the regret is provided
by the following theorem.

Theorem 5.1. For any arbitrary strategy profile π with M -bounded savings, the regret of Algorithm 1
is bounded by:

Rπ
T = E

[
T∑

t=1

(
µπ
σµπ (2) − xkt,t

)
+

K∑
k=1

Ψk(xk, x−k)

]

≤ O

 ∑
k:σ−1

µπ (k)≥2

max

{
M,

log(T )

∆π
k

}
+

∑
k:σ−1

µπ (k)≥3

max

{
M,

log(T )

∆π
k

} (15)

Proof. See Appendix E.2.
The upper bound of savings M determines the regret with regard to the second-highest effective mean
of any strategy π, as shown by Theorem 5.1. In particular, it is demonstrated to be sublinear in T
provided that M = o(T ). The upper bound exhibits a similar form to the problem-dependent upper
bound in Theorem 4.2. Specifically, under the truthful equilibrium π⋆ where M = 0, µπ⋆

k = µk,
∆π⋆

k = ∆1k, and ∆π⋆

k = ∆2k, we retrieve the result from (12). Additionally, in the debt-free
reporting setting, it is observed that for any strategy π, µπ

σµπ (2) ≤ µ2. This suggests that the player’s
revenue drops when arms diverge from the honest SPE in a way that affects the second-highest mean.

Sensitivity of Algorithm 1 around truthful SPE. For a strategy profile where M = o(log(T )),
the difference between the true second highest mean µ2 and the effective second highest mean µπ

2 is
of the same order as the regret. In this scenario, the player’s revenue is µ2T , up to a sublinear regret
Rπ

T = O (RT ). Hence, even though the savings are not zero, we retrieve results comparable to those
with truthful reporting.

6 Limitations and Future Work
The algorithm S-SE, presented as an efficient solution to the strategic MAB, combines elements of
successive elimination with a well-tuned incentive. This raises the question: is it possible to adapt
any no-regret MAB algorithm, such as UCB, with a suitable incentive to solve the same problem? A
complete and detailed answer to such a question is reserved for future work. However, our intuition
is that this would be challenging because, in a similar setting, [29] argue that a truthful mechanism
under the strategic MAB problem needs to be exploration-separated. In other words, at any given
time step, either it exploits (action depends on current knowledge) or it explores (action allows to
gain knowledge but does not depend on current information), but not both simultaneously. This
observation suggests that a tailored version of UCB (at least without additional assumptions) may not
be suitable.

Despite the similarity between the algorithm of [8] and our algorithm S-SE, both being strategic
versions of exploration-separated algorithms, there is a major difference in the nature of the games
generated by both algorithms. In [8], all arms are played sequentially for a predetermined number of
explorations each before committing to the best arm, creating a simultaneous-like game. In contrast,
Algorithm 1 uses an adaptive design permitting lower regret. However, this adaptability involves an
extensive game requiring a more complicated analysis based on the concept of SPE.

It’s also worth mentioning that the improvement in regret doesn’t depend on the type of incentives,
whether they are additional bonus rounds or bonus payments. This is because bonuses are subtracted
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from player revenue and considered in the regret calculation, irrespective of their nature. Therefore,
replacing the additional rounds in [8] with payments will not lead to an improvement in regret.
However, in this paper, actual payments are chosen to keep the intuition more direct and facilitate the
presentation.

7 Conclusion
We addressed the challenge of strategic multi-armed bandit problems under debt-free reporting. Arms
aim to maximize their own utilities by manipulating the reported values to the player, resulting in a
more complex problem compared to the standard setting due to the game-like dynamics involved.
We proved that by employing a strategic variant of successive elimination algorithm, it is possible
to design a bonus-based incentive structure, resulting in a dominant-strategy SPE for arms where
they report truthfully. The dynamics of the successive elimination process, particularly the trade-off
between high savings and swift elimination, allow for the implementation of cost-effective bonuses,
leading to low regret.
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A Useful Inequalities
Theorem A.1 (Hoeffding’s Inequality). Let X1, . . . , Xn be a collection of n i.i.d. sampled values
from a distribution D with expected value µ. Define µ̂ = 1

n

∑n
i=1 Xi. Then, for any ϵ > 0, we have:

P (|µ̂− µ| ≥ ϵ) ≤ 2 exp
(
−2nϵ2

)
. (16)

Fact A.1. For sufficiently large T , the following inequality holds:

τ∑
t=1

√
2 log(T )

t
≤
√

8 log(T )[
√
τ − 1] + 1 ≤

√
8 log(T )

√
τ (17)

Fact A.2. √
16 log(T )

√
max

{
3M

∆π
k

,
162 log (T )

(∆π
k )

2

}
≤ max

{
3M,

162 log (T )

∆π
k

}
(18)

B Background on Non-Strategic Successive Elimination Algorithm
In the non-strategic case, we assume directly that arms are truthful, i.e., xk,t = rk,t for all k ∈
{1, . . . ,K} and t ∈ [T ] and are independent and identically distributed (i.i.d). The classic successive
elimination algorithm is as follows:

Algorithm 2: Successive Elimination
1 Let A1 = {1, . . . ,K} the set of all arms and t=1
2 while t ≤ T and |At| > 1 do
3 Play k ∈ {k ∈ At : argmin

k∈At

nk(t− 1)} ▷ Round-robins instance

4 Update nk(t) and µ̃k,t

5 if nk(t) = nk′(t), ∀k, k′ ∈ At then
6 At+1 = At \ {k ∈ At : µ̃σt(1),t − ασt(1),t ≥ µ̃k,t + αk,t} ▷ Drop bad arms

7 else
8 At+1 = At

9 end
10 t=t+1
11 end
12 Continue to play the remaining best arm k⋆

During the first phase, the Algorithm 2 plays arms and then eliminates those that are performing
poorly, leveraging the corresponding confidence bound α.,.. Consequently, the number of active arms
in the set At progressively reduces over time until only the best-performing arm remains and is then
played until the end of the game. Let nk(T ) be the number of rounds each arm k is played before
being eliminated, and let τ be the total length of the first phase.

Theorem B.1. Suppose that ∆1k > 0, for k = 2, . . . ,K. Then under successive elimination
algorithm (Algorithm 2):

• with probability at least 1− 4
T 2 :

nk(T ) ≤ tk =
32 log(T )

∆2
1k

(19)

• with probability at least 1− 4K
T 2 :

τ ≤ t1 =

K∑
k=3

32 log(T )

∆2
1k

+ 2
32 log(T )

∆2
12

(20)
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Proof of Theorem B.1. For a given time instance t and arm k ∈ At, leveraging the Hoeffding’s
inequality, we can assert the following inequality:

∀t, P(|µ̃k,t − µk| ≥ αk,t) ≤
2

T 4
(21)

Employing the union bound, we can deduce that with a probability of at least 1− 2
T 2 , for any time t

and arm k, the following condition holds:

|µ̃k,t − µk| ≤ αk,t (22)

Consequently, with a probability exceeding 1− 2K
T 2 , the elimination of the best arm is avoided.

Consider any arm k such that µk ≤ µ1, i.e., arms that are worse than the best arm. We focus on the
last round τk when we did not deactivate k yet. This happens when the first time τk, the confidence
intervals of k and the best arm do not overlap, i.e the first time when event Et

k is valid. A suboptimal
arm k, is played at time t if its upper confidence bound exceeds the lower confidence bound of arm 1,
indicating that:

µ̃k,t + αk,t > µ̃1,t − α1,t (23)

Using (22), we get:

µ̃1,t ≥ µ1 − α1,t and µ̃k,t ≤ µk + αk,t (24)

Hence with probability at least 1− 4
T 2 :

µk + 2αk,t ≥ µ1 − 2α1,t (25)
⇒ 2αk,t + 2α1,t ≥ µ1 − µk (26)
⇒ 4αk,t ≥ µ1 − µk ( nk(t) = n1(t)) (27)

⇒ 32 log(T )

(µ1 − µk)2
≥ nk(T ) (28)

Implying that with probability at least 1− 4
T 2 , nk(T ) ≤ tk such that:

tk =
32 log(T )

(µ1 − µk)2
=

32 log(T )

∆2
1k

(29)

So in this case,with a probability of at least 1− 4K
T 2 , τ ≤ t1 such that:

t1 =

K∑
k=3

tk + 2t2 (30)

C Proof of Theorem 4.1
Theorem 4.1 (Incentive-Compatibility). Under Algorithm 1 and using the bonus function in Defini-
tion 3.1, for any arm k, any strategy πk, any strategy profile of other arms π−k, at any time t, and
given any history hk,t−1, the truthful reporting strategy π⋆

k satisfies:

Uk(πk,π−k)[t : T |hk,t−1] ≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1] (11)

Proof. Let’s give k ∈ [K], πk ∈ P and π−k ∈ PK−1 . The subgame utility of arm k when the
player is using Algorithm 1 and given any history hk,t−1 is

Uk(πk,π−k)[t : T |hk,t−1] =

T∑
s=t

(rk,s − xk,s) · 1[ks=k] +Ψk(xk, x−k) (31)

where the history hk,t−1 explicitly appears in Ψk(xk, x−k). For ease of presentation, for t′ ≥ t, we
define the windowed savings average S̄t:t′

k = 1
nk(T )

∑t′

s=t(rk,s − xk,s) · 1[ks=k], which represents
the contribution of the time window [t, t′] to the complete average of savings by arm k.

The idea is to analyze both optimal and suboptimal arms.
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Case 1 – ∃t ≤ T, s.t. µ̃k,t + αk,t < µ̃σt(1),t − ασt(1),t :

Let τk be the last node or round of the extensive game where arm k is played.

In such case, τk ≤ T and

Uk(πk,π−k)[t : T |hk,t−1] =

T∑
s=t−1

(rk,s − xk,s) · 1[ks=k] +Ψk(xk, x−k) (32)

=

τk∑
s=t−1

(rk,s − xk,s) · 1[ks=k] +Ψk(xk, x−k) (33)

= nk(τk)S̄
t:τk
k +Ψk(xk, x−k) (def. of S̄t−1:τk

k )
(34)

= nk(τk)S̄
t:τk
k +

16 log(T )

µ̃στk−1(1),τk−1 − µ̃k,τk−1
+ xk,τk (def. of Ψk)

(35)

=
2 log(T )

α2
k,τk

S̄t:τk
k +

16 log(T )

µ̃στk−1(1),τk−1 − µ̃k,τk−1
+ xk,τk (def. of αk,τk )

(36)
Considering that the final reported value at τk is fully reimbursed to the arm as a bonus, it is dominant
to have rk,τk = xk,τk implying that S̄t:τk

k ≤ S̄t:τk−1
k . The utility is upper-bounded as follows:

Uk(πk,π−k)[t : T |hk,t−1] ≤
2 log(T )

α2
k,τk

S̄t:τk−1
k +

16 log(T )

µ̃στk−1(1),τk−1 − µ̃k,τk−1
+ rk,τk (37)

Then, by definition of τk, the following inequalities holds,

µ̃στk−1(1),τk−1 − µ̃k,τk−1

2
≤ αk,τk−1 = αk,τk

√
nk(τk)

nk(τk − 1)
(38)

≤ αk,τk

√
nk(τk)

nk(τk)− 1
(39)

≤ αk,τk

√√√√ 1

1−
α2

k,τk

2 log(T )

(40)

By rearranging terms, we obtain:

nk(τk) =
2 log(T )

α2
k,τk

≤ 8 log(T )

(µ̃στk−1(1),τk−1 − µ̃k,τk−1)2
+ 1 (41)

Hence:

Uk(πk,π−k)[t : T |hk,t−1] ≤

(
8 log(T )

(µ̃στk−1(1),τk−1 − µ̃k,τk−1)2
+ 1

)
S̄t:τk−1
k +

16 log(T )

µ̃στk−1(1),τk−1 − µ̃k,τk−1
+ rk,τk

(42)

≤ 16 log(T )

(µ̃στk−1(1),τk−1 − µ̃k,τk−1)2
S̄t:τk−1
k +

16 log(T )

µ̃στk−1(1),τk−1 − µ̃k,τk−1
+ rk,τk (43)

≤ 16 log(T )

(µ̃στk−1(1),τk−1 − µ̂k,τk−1 + S̄t:τk−1
k + S̄1:t−1

k )2
S̄t:τk−1
k +

16 log(T )

µ̃στk−1(1),τk − µ̂k,τk−1 + S̄t:τk−1
k + S̄1:t−1

k

+ rk,τk︸ ︷︷ ︸
ζ(S̄

t:τk−1

k )

(44)
≤ max

ϵ∈R+

ζ(ϵ) = ζ(0) (45)

≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1] (46)
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This concludes the first case.

Case 2 – ∃τ ≤ T, s.t. µ̃k,τ − αk,τ > µ̃στ (2),τ + αστ (2),τ . In such a case, τk = τ + τ ′, where τ is
the length of the first period, and τ ′ is the length of the second one.

Uk(πk,π−k)[t : T |hk,t−1] =

τ+τ ′∑
t=1

(rk,t − xk,t) · 1[kt=k] +Ψk(xk, x−k)1[τ ′=T−τ ] (Step 17 of Algorithm 1)

(47)

= nk(T )S̄
t:T
k +Ψk(xk, x−k)1[τ ′=T−τ ] (def. of S̄t:T

k ) (48)

= nk(T )S̄
t:T
k +

(
nk(T )(µ̃k,T − µ̃στ−1(2),τ−1) + xk,τ

)
1[τ ′=T−τ ] (def. of Ψk) (49)

= nk(T )S̄
t:T
k +

(
nk(T )(µ̂k,T − S̄1:T

k − µ̃στ−1(2),τ−1) + xk,τ

)
1[τ ′=T−τ ] (50)

(51)
If t > τ , meaning that t is in the second phase:
Uk(πk,π−k)[t : T |hk,t−1] = nk(T )S̄

t:T
k +

(
nk(T )(µ̂k,T − S̄1:T

k − µ̃στ−1(2),τ−1) + xk,τ

)
1[τ ′=T−τ ]

(52)

= nk(T )S̄
t:T
k +

(
nk(T )(µ̂k,T − S̄1:t−1

k − S̄t:T
k − µ̃στ−1(2),τ−1) + xk,τ

)
1[τ ′=T−τ ] (53)

(54)

Then, we obtain three cases that depend on S̄t:T
k :

• If S̄t:T
k = 0:
Uk(πk,π−k)[t : T |hk,t−1] = nk(T )(µ̂k,T − S̄1:t−1

k − µ̃στ−1(2),τ−1) + xk,τ (55)
with nk(T ) = O(T )

• If S̄t:T
k ̸= 0 but still not significant to be detected, i.e τ ′ = T − τ :

Uk(πk,π−k)[t : T |hk,t−1] = nk(T )S̄
t:T
k + nk(T )(µ̂k,T − S̄1:t−1

k − S̄t:T
k − µ̃στ−1(2),τ−1) + xk,τ

(56)

≤ nk(T )(µ̂k,T − S̄1:t−1
k − µ̃στ−1(2),τ−1) + xk,τ (57)

≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1] (58)

• If S̄t:T
k ̸= 0 in a significant way such that the arm is detected as untruthful, stopped from

being played, and prevented from receiving the bonus. In this case at most τ ′ = 2 log(T )
α2

k,τ
:

Uk(πk,π−k)[t : T |hk,t−1] = nk(T )S̄
t:T
k (59)

≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1]

(
because in this case nk(T ) = O(

2 log(T )

∆2
) = o(T )

)
(60)

Hence, it is dominant to report truthfully:
Uk(πk,π−k)[t : T |hk,t−1] ≤ Uk(π

⋆
k,π−k)[t : T |hk,t−1] (61)

If t ≤ τ , meaning that t is in the first phase:

Uk(πk,π−k)[t : T |hk,t−1] = nk(T )S̄
t:T
k +

(
nk(T )(µ̂k,T − S̄1:T

k − µ̃στ−1(2),τ−1) + xk,τ

)
1[τ ′=T−τ ]

(62)

= nk(T )(S̄
t:τ
k + S̄τ+1:T

k ) +
(
nk(T )(µ̂k,T − S̄1:t−1

k − S̄t:τ
k − S̄τ+1:T

k − µ̃στ−1(2),τ−1) + xk,τ

)
1[τ ′=T−τ ]

(63)
Using results from the previous part:

Uk(πk,π−k)[t : T |hk,t−1] ≤ nk(T )S̄
t:τ
k + nk(T )(µ̂k,T − S̄1:t−1

k − S̄t:τ
k − µ̃στ−1(2),τ−1) + xk,τ (64)

≤ nk(T )(µ̂k,T − S̄1:t−1
k − µ̃στ−1(2),τ−1) + rk,τ (65)

≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1] (66)

This concludes the second case.
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Case 3 – ∀t ≤ T, µ̃k,t + αk,t ≥ µ̃σt(1),t − ασt(1),t and µ̃k,t − αk,t ≤ µ̃σt(2),t + ασt(2),t. In such
a case, τ , which represents the length of the first phase, is equal to T , meaning that there is no
exploitation phase. The utility is:

Uk(πk,π−k)[t : T |hk,t−1] = nk(T )S̄
t:T
k +Ψk(xk, x−k) (67)

≤ nk(T )S̄
t:T
k +

(
nk(T )

(
µ̃k,T − µ̃στk−1(2),T−1

)
+ xk,T

)
1[σ−1

T (k)=1] (68)

+

(
16 log(T )

µ̃σT−1(1),T−1 − µ̃k,T−1
+ xk,T

)
1[σ−1

T (k)≥2] (69)

≤
(
nk(T )S̄

t:T
k + nk(T )

(
µ̃k,T − µ̃σT−1(2),T−1

)
+ rk,T

)
1[σ−1

T (k)=1] (As in case 2) (70)

+

(
nk(T )S̄

t:T
k +

16 log(T )

µ̃σT−1(1),T−1 − µ̃k,T−1
+ rk,T

)
1[σ−1

T (k)≥2] (As in case 1) (71)

Hence, we retrieve the two previous cases, and we can conclude that:

Uk(πk,π−k)[t : T |hk,t−1] ≤ Uk(π
⋆
k,π−k)[t : T |hk,t−1] (72)

D Proof of Theorem 4.2
Theorem 4.2 (Regret Bound). Let T ≥ 1. The regret of Algorithm 1 is upper-bounded as:

RT ≤ O

(
K∑

k=2

log(T )

∆1k
+

K∑
k=3

log(T )

∆2k

)
(12)

The instance-independent regret upper-bound is given by:

RT ≤ O
(√

KT log(T )
)

(13)

Proof. Theorem 4.1 demonstrates the incentivized truthfulness of the arms. Consequently, we
calculate the regret while operating under the assumption that arms adhere to truthfulness, accurately
reporting their real values. As previously discussed, the regret is calculated in relation to µ2. Notably,
a subtlety arises in the strategic scenario as compared to the non-strategic one: we must factor in
the bonuses paid when calculating the regret. We commence our analysis by closely examining the
Bonus function, denoted as Ψk:

Ψk(xk, x−k) =
(
nk(T )

(
µ̃k,T − µ̃στk -1(2),τk-1

)
+ xk,τk

)
1[στ (1)=k]1[τ+τ ′≥T ]

+

(
16 log(T )

µ̃στk -1(1),τk-1 − µ̃k,τk-1
+ xk,τk

)
1[σ−1

τ (k)≥2] (73)

• If σ−1
τ (k) = 1, then Ψk(xk, x−k) ≤ nk(T )

(
µ̃k,T − µ̃στk -1(2),τk-1

)
+ rk,τk and given that

regret is computed with respect to the second-highest mean then this bonus contributes to
the regret only with rk,τk ≤ 1.

• If σ−1
τ (k) ≥ 2, then:

Ψk(xk, x−k) =
16 log(T )

µ̃στk−1(1),τk−1 − µ̃k,τk−1
+ rk,τk ≤

(b)︷ ︸︸ ︷
2τk(µ̃στk−1(1),τk−1 − µ̃k,τk−1)+1

(74)

Interestingly, the term (b) of the upper-bound is directly linked to the regret associated with
selecting this arm during the initial phase. Equivalently, we can substitute (b) contribution
by considering that this arm contributes with an additional regret, on average per round,
2∆1k throughout the first phase.
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Then the regret is as follows:

RT ≤

Exploration regret denoted as R1
T︷ ︸︸ ︷

K∑
k=3

∆2kE[nk(T )] +

Exploitation regret denoted as R2
T︷ ︸︸ ︷

E
[
(T − τ)(µ2 − µ̃στ (2),τ )

]
+ E

[
τ∑

t=1

√
2 log(T )

t

]
+

Bonus regret denoted as R3
T︷ ︸︸ ︷

K∑
k=2

2∆1kE [nk(T )] +K

(75)

Yet, we will evaluate each term of the regret separately:

Exploration regret R1
T :

R1
T =

K∑
k=3

∆2kE[nk(T )] (76)

≤
K∑

k=3

(∆2ktkP(nk(T ) ≤ tk) + µ2TP(nk(T ) ≥ tk)) (77)

(29)
≤

K∑
k=3

(
∆2k

32 log(T )

∆2
1k

+ µ2T
4

T 2

)
(Theorem B.1) (78)

≤
K∑

k=3

32 log(T )

∆2k
+ o(1) (79)

The final inequality is a result of ∆2k ≤ ∆1k.

Exploitation regret R2
T : Using Fact A.1,

E

[
τ∑

t=1

√
2 log(T )

t

]
≤
√
8 log(T )E[

√
τ ] (80)

≤
√
8 log(T )

[√
t1P(τ ≤ t1) + TP(τ ≥ t1)

]
(81)

≤
√

8 log(T )
√
t1 + o(1) (82)

≤
√
8 log(T )

√√√√2

K∑
k=2

tk + o(1) (83)

≤

√√√√16

K∑
k=2

32 log(T )2

∆2
1k

+ o(1) (84)

≤ 16

K∑
k=2

√
2 log(T )

∆1k
+ o(1) (85)

On the other hand:
E
[
(T − τ)(µ2 − µ̃στ (2),τ )

]
≤ T E

[
µ2 − µ̃στ (2),τ

]
(86)

≤ E
[
µ2 − µ̃στ (2),τ |τ ≤ t1

]
TP(τ ≤ t1) + µ2TP(τ ≥ t1) (87)

≤ E
[
µ2 − µ̃στ (2),τ |τ ≤ t1

]
T + o(1) (88)

However, we have:
µ2 = E

[
µ̃στ (2),τ |τ ≤ t1

]
P(τ ≤ t1) + E

[
µ̃στ (2),τ |τ ≥ t1

]
P(τ ≥ t1)

(89)

⇒ E
[
µ̃στ (2),τ |τ ≤ t1

]
=

µ2 − E
[
µ̃στ (2),τ |τ ≥ t2

]
P(τ ≥ t2)

P(τ ≤ t1)
(90)

≥
µ2 − 2K

T 2

1
(91)

⇒ TE
[
µ2 − µ̃στ (2),τ |τ ≤ t1

]
≤ 2K

T
= o(1) (92)
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Hence:

R2
T ≤ 16

K∑
k=2

√
2 log(T )

∆1k
+ o(1) (93)

Bonus regret R3
T :

R3
T =

K∑
k=2

2∆1kE [nk(T )] +K (94)

≤
K∑

k=2

2∆1ktkP(nk(T ) ≤ tk) + 2TP(nk(T ) ≥ tk) +K (95)

(29)
≤

K∑
k=2

(
2∆1k

32 log(T )

∆2
1k

+ 2T
4

T 2

)
+K (Theorem B.1) (96)

≤
K∑

k=2

64 log(T )

∆1k
+K + o(1) (97)

By considering (79), (93) and (97) then with a high probability exceeding 1−O
(

1
T 2

)
, the total regret

is bounded by:

RT ≤ O

(
K∑

k=3

log(T )

∆2k
+

K∑
k=2

log(T )

∆1k

)
(98)

Further analysis can be conducted to eliminate the gaps in the aforementioned regret. To address the
variable ∆ij , let us select a fixed ϵ > 0 and proceed as follows:

• Arms k where ∆ij ≤ ϵ contribute a maximum of ϵ per round, yielding a cumulative
contribution of ϵT .

• Arms k where ∆ij ≥ ϵ contribute at most O
(

log(T )
ϵ

)
.

By combining these points, the following can be established:

O

(
K∑

k=3

log(T )

∆2k
+

K∑
k=2

log(T )

∆1k

)
= O

(
K log(T )

ϵ
+ ϵT

) ϵ=

√
K log(T )

T

≤ O(
√
KT log(T )) (99)

Consequently:

RT ≤ O
(√

KT log(T )
)

(100)

This analysis serves to bridge the gaps in the regret computation, leading to a more refined under-
standing of the upper bound on the regret.

D.1 Proof of Corollary 4.1
Corollary 4.1 (Utilities Upper Bound). Under the truthful SPE, the utility of any arm is upper
bounded as follows:

∀k ∈ {2, . . . ,K} E[Uk] ≤ O
(
log(T )

∆1k

)
and E[U1] = O(T∆12) (14)
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Proof. For the suboptimal arms: k ∈ {2, . . . ,K}, using 74 we have:

E [Ψk] ≤ 2∆1kE [nk(T )] + 1 (101)

≤ 2∆1ktkP
(
nk(T ) ≤ tk

)
+ 2TP

(
nk(T ) ≥ tk

)
+ 1 (102)

(29)
≤ 2∆1k

32 log(T )

∆2
1k

+ 2T
4

T 2
+ 1 (Theorem B.1) (103)

≤ O
(
log(T )

∆1k

)
(104)

For the optimal arm k = 1, the result directly follows from the definition of the corresponding
bonus.

E Proof of Theorem 5.1

E.1 Number of Pulls under Strategies with Upper-Bounded Savings

Lemma E.1. For any strategy π with bounded savings by M , the expected number of times that a
suboptimal arm k is pulled up to time T can be bounded as follow:

E[nk(T )] ≤ max

{
6M

∆π
k

,
162 log (T )

(∆π
k )

2

}
+

2

T 2
(105)

Proof. For simplicity, we omit the dependency on the strategy profile π in our notation, since it is
clear that we focus on an arbitrary profile π. Let ζk(T ) = max

{
6M
∆π

k
, 162 log(T )

(∆π
k )2

}
be a threshold on

the number of pulls of a suboptimal arm k.

E [nk(T )] ≤ E

[
T∑

t=1

1[kt=k]

]
(106)

≤ E

[
T∑

t=1

1[kt=k,nk(t−1)≤ζk(T )]

]
+ E

[
T∑

t=1

1[kt=k,nk(t−1)≥ζk(T )]

]
(107)

≤ ζk(T ) +

T∑
t=1

P
(
kt = k, nk(t− 1) ≥ ζk(T )

)
(108)

Next, we bound the probability P
(
kt = k, nk(t− 1) ≥ ζk(T )

)
using a union bound. We denote by

k⋆ the best arm under policy π. We recall that the elimination test is conducted after arms have been
played the same number of times. This means that if we assess whether an arm k is played at time t,
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then we have αk⋆,t−1 = αk,t−1.

P
(
kt = k, nk(t− 1) ≥ ζk(T )

)
= P

(
µ̃k,t−1 + αk,t−1 ≥ µ̃k⋆,t−1 − αk⋆,t−1, nk(t− 1) ≥ ζk(T )

)
(109)

= P
(
µ̃k,t−1 + αk,t−1 ≥ µ̃k⋆,t−1 − αk,t−1, nk(t− 1) ≥ ζk(T )

)
(110)

= P
(
µ̂k,t−1 −

St−1
k

nk(t− 1)
+ αk,t−1 ≥ µ̂k⋆,t−1 −

St−1
k⋆

nk(t− 1)
− αk,t−1, nk(t− 1) ≥ ζk(T )

)
(111)

≤
t−1∑

l=ζk(T )

P
(
µ̂k,t−1 +

St−1
k⋆ − St−1

k

nk(t− 1)
+ 2αk,t−1 ≥ µ̂k⋆,t−1|nk(t− 1) = l

)
(112)

≤
t−1∑

l=ζk(T )

P
(
µ̂k,t−1 +

M

nk(t− 1)
+ 2αk,t−1 ≥ µ̂k⋆,t−1|nk(t− 1) = l

)
(113)

(a)

≤
t−1∑

l=ζk(T )

P
(
µ̂k,t−1 +

∆π
k

6
+ 2αk,t−1 ≥ µ̂k⋆,t−1|nk(t− 1) = l

)
(114)

(b)

≤
t−1∑

l=ζk(T )

P
(
µ̂k,t−1 +

∆π
k

6
+

∆π
k

6
≥ µ̂k⋆,t−1 + αk,t−1|nk(t− 1) = l

)
(115)

(c)

≤
t−1∑

l=ζk(T )

P
(
µ̂k,t−1 − µk + µk⋆ − µ̂k⋆,t−1 +

M

nk(t− 1)
−∆π

k ≥ −2∆π
k

6
+ αk,t−1|nk(t− 1) = l

)
(116)

≤
t−1∑

l=ζk(T )

P
(
µ̂k,t−1 − µk + µk⋆ − µ̂k⋆,t−1 ≥ ∆π

k − 3∆π
k

6
+ αk,t−1|nk(t− 1) = l

)
(117)

≤
t−1∑

l=ζk(T )

[
P
(
µ̂k,t−1 − µk ≥ ∆π

k

2
|nk(t− 1) = l

)
+ P

(
µk⋆ − µ̂k⋆,t−1 ≥ αk,t−1|nk(t− 1) = l

)]
(118)

(d)

≤
t−1∑

l=ζk(T )

1

T 4
+

1

T 20
(119)

≤
t−1∑

l=ζk(T )

2

T 4
(120)

Where (a), (b), and (d) respectively depend on l ≥ ζk(T ) ≥ 3M
∆k

, l ≥ ζk(T ) ≥ 162 log T
∆2

k
, and the

Hoeffding’s inequality. (c) is because that −µk⋆ + µk ≤ −∆π
k + M

nk(t−1) . Hence:

E [nk(T )] ≤ ζk(T ) +
2

T 2
≤ max

{
3M

∆π
k

,
162 log (T )

(∆π)2k

}
+

2

T 2
(121)

E.2 Proof of Theorem 5.1
Theorem 5.1. For any arbitrary strategy profile π with M -bounded savings, the regret of Algorithm 1
is bounded by:

Rπ
T = E

[
T∑

t=1

(
µπ
σµπ (2) − xkt,t

)
+

K∑
k=1

Ψk(xk, x−k)

]

≤ O

 ∑
k:σ−1

µπ (k)≥2

max

{
M,

log(T )

∆π
k

}
+

∑
k:σ−1

µπ (k)≥3

max

{
M,

log(T )

∆π
k

} (15)

Proof. Fix an arbitrary strategy profile π. For each arm k, we define ST
k =

∑T
s=1(rks,s − xks,s) ·

1[ks=k], representing the cumulative savings of arm k up to round T . We assume that for all arms
k ∈ [K] and for any strategy π, the cumulative savings satisfy ST

k ≤ M . We define the effective
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mean under strategy π as µπ
k , and let µπ = (µπ

k )k∈[K]. Therefore, we define ∆π
k as the difference

between the highest effective mean under strategy π and the effective mean of arm k, given by :
∆π

k = µπ
σµπ (1) − µπ

k . Similarly, ∆π
k represents the difference between the second-highest effective

mean and the effective mean of arm k under strategy π, defined as: ∆π
k = µπ

σµπ (2) − µπ
k . The regret

of Algorithm 1 with respect to the second highest effective mean can be upper bounded as in 75:

Rπ
T ≤

∑
k:σ−1

µπ (k)≥3

∆π
kE[nk(T )] +

∑
k:σ−1

µπ (k)≥2

2∆π
kE [nk(T )]

+ E
[
(T − τ)(µπ

σµπ (2) − µ̃π
σµ̃π (2))

]
+ E

[
τ∑

t=1

√
2 log(T )

t

]
+K (122)

Hence it is crucial to upper bound E[nk(T )].

By applying Lemma E.1 multiple times, we bound each component of the regret.
First step:∑

k:σ−1
µπ (k)≥3

∆π
kE[nk(T )] +

∑
k:σ−1

µπ (k)≥2

2∆π
kE [nk(T )] (123)

≤
∑

k:σ−1
µπ (k)≥3

∆π
k max

{
3M

∆π
k

,
162 log (T )

(∆π
k )

2

}
+

∑
k:σ−1

µπ (k)≥2

2∆π
k max

{
3M

∆π
k

,
162 log (T )

(∆π
k )

2

}
+

6K

T 2

(124)

≤
∑

k:σ−1
µπ (k)≥3

max

{
3M,

162 log (T )

∆π
k

}
+

∑
k:σ−1

µπ (k)≥2

2max

{
3M,

162 log (T )

∆π
k

}
+ o(1) (125)

Second step:

E

[
τ∑

t=1

√
2 log(T )

t

]
≤
√
8 log(T )E[

√
τ ] (126)

≤
√
8 log(T )

√
E [τ ] (concavity of square root function) (127)

≤
√
8 log(T )

√√√√2
∑

k:σ−1
µπ (k)≥2

E [nk(T )] (128)

≤
√
8 log(T )

√√√√2
∑

k:σ−1
µπ (k)≥2

[
max

{
3M

∆π
k

,
162 log (T )

(∆π
k )

2

}
+

2

T 2

]
(129)

≤
√
8 log(T )

√√√√2
∑

k:σ−1
µπ (k)≥2

max

{
3M

∆π
k

,
162 log (T )

(∆π
k )

2

}
+

4K

T 2
(130)

≤
√
16 log(T )

∑
k:σ−1

µπ (k)≥2

√
max

{
3M

∆π
k

,
162 log (T )

(∆π
k )

2

}
+ o(1) (131)

Fact A.2
≤

∑
k:σ−1

µπ (k)≥2

max

{
3M,

162 log (T )

∆π
k

}
+ o(1) (132)

(133)

Third step:

E
[
(T − τ)(µπ

σµπ (2) − µ̃π
σµ̃π (2))

]
= o(1) (similar arguments 86–92) (134)
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Combining the three steps gives:

Rπ
T ≤ O

 ∑
k:σ−1

µπ (k)≥2

max

{
M,

log(T )

∆π
k

}
+

∑
k:σ−1

µπ (k)≥3

max

{
M,

log(T )

∆π
k

} (135)

F Empirical Analysis
We conducted an experiment with six arms, where the rewards followed the order (µ1 > µ2 > µ3 >
µ4 > µ5 > µ6). The experiment spanned a horizon of 104 time steps and was averaged over 100
epochs. The game’s dynamics are inherently complex, as arm strategies are typically intractable
in practical scenarios. To gather empirical evidence, we fixed certain strategies and monitored the
player’s regret while using Algorithm 1. Our study examined three specific scenarios:

1. Untruthful Arbitrary Reporting: At each round, the selected arm randomly reports 100%,
60%, 40%, 10%, or 0% of its observed reward.

2. Truthful Reporting: This corresponds to the Dominant SPE.

3. "Optimal" Reporting: Here we use the term "optimal" somewhat loosely. In this scenario,
only the two best arms report truthfully, while the remaining suboptimal arms report 0.

Figure 1: Cumulative regret under different strategies: 1. Under untruthful arbitrary reporting, where arms
arbitrarily choose to keep a portion of their reward. 2. Under truthful reporting, where arms adhere to the
dominant truthful SPE. 3. Under "optimal" reporting, where only the two best arms report truthfully and the
remaining suboptimal arms withhold the entirety of their observed reward.

Figure 2: Comparison of arms’ utilities between truthful reporting and arbitrary untruthful strategies

In Figure 1, we present the cumulative regret of the player for each strategy, where the final point of
each curve represents the bonus paid to the arms at the end of the game. The results are averaged over
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multiple epochs. As expected, the worst regret is observed in the first scenario, where arms withhold
an arbitrary portion of the observed reward. For the two remaining scenarios, both exhibit logarithmic
cumulative regret, with the "optimal" reporting scenario demonstrating a better factor. This is because
the algorithm eliminates suboptimal arms more quickly and transitions faster to the second phase
where it achieves better performance. While "optimal" reporting is challenging to achieve, S-SE
effectively incentivizes arms to report truthfully, creating a dominant SPE and guaranteeing the player
logarithmic regret.

Within the same experiment, we calculated the total gains for each arm under two scenarios: truthful
reporting (i.e., the dominant Subgame Perfect Equilibrium, SPE) and arbitrary untruthful reporting,
where arms misreport a portion of the observed rewards. As shown in Figure 2, we observed that
under truthful reporting, the arms’ utilities were higher compared to those under untruthful reporting,
consistent with the theoretical predictions.
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper meticulously details the complete set of assumptions underlying
each theoretical result, with all comprehensive and correct proofs provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include any experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The NeurIPS Code of Ethics is reviewed and adhered to with respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work performed does not have a societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose any risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not utilize existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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