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Abstract. The relevance of the phase-field approach to simulate the fracture in porous ceramics 

has been investigated. For this purpose, the conditions for the crack initiation using the phase-

field model have been compared to the theoretical predictions of the coupled criterion 

considering a pure V-notch singularity and a crack blunted by a cavity. For two types of 

ceramics (3YSZ and 8YSZ), it has been shown that the phase-field approach is able to simulate 

accurately the crack nucleation as predicted by the coupled stress-energy criterion. The nature 

of the regularization parameter ℓ for the phase-field model has been discussed as function of 

the material and the local geometry where the crack initiates. Moreover, the apparent fracture 

toughness and the compressive fracture strength have been calculated for real porous YSZ 

ceramics. It has been found that the fracture properties of these complex 3D porous materials 

can be correctly predicted with the phase-field model. For specimen loaded under compression, 

it has been shown that the model is able to capture and explain the transition from a brittle 

behavior towards a diffuse damage when increasing the porosity.  

Keywords: porous ceramics, fracture, crack nucleation, phase-field modeling, coupled 

criterion. 
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1. Introduction

Porous ceramics are gaining a noteworthy interest as functional materials for many applications. 

They benefit from the ceramic properties, which are known to be highly stable in corrosive and 

oxidizing environments. Moreover, they offer high thermochemical and mechanical stability, 

low thermal conductivity and small dielectric constant [1–8]. Thanks to all these features, 

porous ceramics are used as key components in several technological devices with far-reaching 

economic and ecological implications. They are currently employed in biology, medical 

industry, electronic engineering, petroleum industry, metallurgy, environment protection and 

chemical engineering [2–6]. In particular, porous ceramics have achieved an overwhelming 

success in the domain of energy. For example, they are used as barrier coatings to enhance the 

lifetime of many devices operated under severe conditions such as gas turbines. Porous 

ceramics have been also selected as material for the key components of several energy storage 

and power generation systems such as the solid oxide fuel cells and batteries [9–11]. Yttria 

Stabilized Zirconia (YSZ) is a specific example, which exhibits good chemo-thermo-

mechanical properties and high ionic conductivity. Nevertheless, despite all these advantages, 

the fracture of porous ceramic remains a problematic issue for all these technological 

applications.  

It is worth noting that the mechanical behavior and especially the fracture of porous ceramics 

cannot be investigated based only on experimental studies because the analysis would require 

an unlimited number of mechanical characterizations. Indeed, the mechanical response of 

porous ceramics is complex and strongly dependent on the microstructure. For example, the 

apparent toughness of porous ceramic generally decreases with increasing porosity [12]. The 

crack onset and propagation is also a function of the local geometry of the pores and their 

distribution. Under specific conditions, the crack tip blunted by distant macropores can even 

lead to enhance the apparent toughness compared to the dense material [13,14]. For porous 

ceramics tested under compression, it has been shown that the fracture mechanism changes 

from a brittle behavior at low porosity towards a diffuse damage at high porosity [15,16]. 

However, this transition has not been precisely explained yet. From this point of view, a 

numerical approach would be well adapted to better understand the precise role of the 

microstructure and to provide accurate prediction of the fracture of porous ceramics. 

Nevertheless, the complexity and the heterogeneity of the microstructure make the numerical 

treatment very challenging. For this reason, the simulation of the nucleation and propagation of 

cracks in such microstructure remains a salient subject of investigation. Therefore, there is still 
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not a 3D model, which has been fully validated to predict precisely the fracture in porous 

ceramics.   

To date, several works have been focused on solving the fracture problem in porous ceramics 

using different numerical approaches. On the one hand, it has been studied without simulating 

explicit cracks. In this case, phenomenological laws taking into account the loss of rigidity 

induced by the cracks nucleation and extension are used in order to reproduce the specimen 

macro-response during the loading [17,18]. Even if these methods enable the computation of 

the overall material behavior with good approximation, they are not based on physical models 

for fracture and their applications is generally limited to the studied case. On the other hand, 

methods based on the explicit simulation of cracks has been adopted in order to thoroughly 

study fracture initiation, propagation and branching. For this purpose, two main computational 

families have been developed in the frame of the Finite Element Method (FEM) depending on 

the sharp or diffuse description of the simulated crack. The first numerical approach is referred 

as the discrete crack model. In this case, the sharp crack is introduced as a discontinuity in the 

mesh and its propagation is simulated using various numerical methods. For instance, the 

extended finite element method (XFEM) [19], the phantom-node method, the element-erosion 

method, the generalized finite element method (GFEM) or re-meshing techniques [20–23] have 

been used to simulate the fracture. However, the implementation of discrete crack models 

requires criteria for crack initiation and propagation. These criteria are taken from the Linear 

Elastic Fracture Mechanic (LEFM), which is well appropriate to describe the brittle behavior 

of ceramic materials. The extension of preexisting crack is governed by an energy balance based 

on the Griffith theory [24,25]. For the fracture initiation, the coupled criterion proposed by D. 

Leguillon [26] assumes that both the stress and energy criteria have to be fulfilled. It provides 

a rigorous framework for computing the crack nucleation [27,28]. However, the numerical 

implementation of the discrete crack models can be difficult since the fracture criterion must be 

evaluated on the whole structure in order to identify the sites for the crack nucleation. 

Furthermore, special algorithms are required to introduce discontinuities by modifying locally 

the shape functions or by re-meshing the path for the propagation. For all these reasons, discrete 

crack models are not well adapted to simulate complex cases like the branching and multiple 

cracks problem. Therefore, they cannot be applied to porous ceramics, which have complex and 

heterogeneous microstructures. 

In order to overcome the limitations inherent to the discrete approach, several models have been 

proposed in the frame of the continuous fracture mechanics theory [29–37]. All are based on a 
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‘diffuse’ or ‘smeared’ description of the discontinuity where the crack is implicitly modeled 

through a smooth scalar damage variable. In this context, Marigo and coauthors have proposed 

for the development of these models a rigorous theoretical framework using the variational 

approach and the gamma-convergence theory for the regularization of the free-discontinuity 

medium [29–33]. As a result, the fracture problem has been reformulated as the minimization 

of an energy functional without any additional criterion. On the basis of these developments, 

Miehe et al. [38,39] have proposed a specific smeared crack model referred as the Phase-Field 

Method (PFM) for fracture mechanics. Thanks to the thermodynamic consistency of this model, 

a staggered scheme has been proposed for the numerical resolution [38], allowing a simple 

implementation in FEM codes [23,40,41]. The crack extension is governed by an energy driving 

force that can be interpreted as a Griffith criterion. Several studies have shown that the model 

is able to simulate accurately the propagation, the branching and the multi-cracking problem in 

complex geometry [21,23]. For example, Nguyen et al. [42] have successfully simulated the 

cracks evolution in a lightweight concrete microstructure with encapsulated pores. For all these 

reasons, the PFM seems suitable to study the fracture in porous ceramics. However, controversy 

remains on the PFM capacity to predict accurately the crack initiation.  

On the one hand, Amor et al. [43] have suggested that the PFM approach can predict the crack 

initiation by choosing an ad-hoc value for the length scale parameter ℓ, which was initially 

introduced in the method to control the width of the smeared crack. Indeed, it has been proposed 

that this regularization length for the phase-field method can be related to the Irwin 

characteristic length linked to the material properties, i.e., strength and toughness. For this 

purpose, an expression of ℓ has been derived considering a one-dimensional traction test 

[43,44]. It can be noticed that some authors have successfully tested the relevance of this 

approach to simulate the crack nucleation for simplified geometries [21,45]. Besides, Molnár 

et al. [46] have recently proposed a generalization of this expression for the 2D case still 

considering a homogeneous phase-field. They have found that the length scale parameter must 

be also a function of the ratio of the principal stresses suggesting a dependence to the local 

geometry where the crack nucleates. However, the generalization and the relevance of these 

expressions for complex 3D geometries without neglecting the gradient term in the phase-field 

is still questionable.  

On the other hand, Kumar et al. [47] have recently criticized the above interpretation of ℓ as a 

material constant. They have claimed that ‘the fracture nucleation cannot be properly modelled 

by the phase-field formulation’ since ‘it is purely energetic’ and does not take into account the 
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material fracture strength. In this view, the regularization length is just a numerical ‘parameter 

that is void of any further physical meaning’. To overcome this difficulty, they proposed to add 

an external driving force to the classical formulation depending on the material strength and 

supplementary numerical correction factors [47]. This literature review indicates that the 

interpretation of the regularization length and the use of the PFM to simulate the crack 

nucleation is still a subject of investigation. In this objective, the comparison of the PFM with 

the results given by a criterion based on the LEFM could be helpful to unravel the real nature 

of the length scale parameter ℓ.  

The aim of the article is to evaluate the relevance of the PFM approach to predict correctly the 

fracture in the complex 3D microstructures of porous ceramics. In this frame, the nature of the 

length scale parameter ℓ is discussed depending on the material properties and geometry. For 

these objectives, the PFM simulations have been compared to the results of the coupled criterion 

obtained for stress singularity and stress concentration configurations (i.e. for a V-notched 

sample and a macro-crack blunted by a pore) [13,26,48]. The comparison has been conducted 

considering two types of zirconia stabilized with 3% and 8% molar of Yttria (3YSZ and 8YSZ) 

exhibiting different fracture properties. Once the capacity of the PFM model to detect accurately 

the crack initiation has been verified for these simplified geometries, the model has been used 

to compute the apparent fracture toughness and the compressive fracture strength of porous 

ceramics. The simulations have been compared to experimental data reported in [49] and [16] 

as a function of the porosity for the model validation. Finally, the fracture mechanism for porous 

ceramics subjected to a compressive loading has been more precisely discussed. 

         

2 Methodology 

 

The objective of the present study is to evaluate the capability of the PFM approach to 

accurately predict the crack initiation in porous ceramic materials. For this purpose, PFM 

simulations have been conducted on different geometrical configurations and compared to the 

apparent fracture toughness given by the coupled criterion. First, V-notched samples with 

different opening angles have been studied to address the case of crack nucleation from an ideal 

stress singularity [26]. In order to mimic the fracture in porous ceramics, the crack nucleation 

from a stress concentration represented by a macro-crack blunted by a cavity [13,48] has been 

simulated. Moreover, the role of the material properties has been investigated considering two 
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types of Zirconia Stabilized with 3% and 8% molar of Yttria (3YSZ and 8YSZ). Indeed, as 

reported in Table 1, the yttrium content in YSZ has a strong impact on the material fracture 

properties. For example, the strength and toughness of 3YSZ are roughly two and three times 

higher than 8YSZ, respectively [9]. The relevance of the PFM approach for predicting the 

propagation of a preexisting macro-crack in real porous ceramics has been assessed using 2D 

numerical microstructures. The results have been compared to the data reported in [49] related 

to an apparent fracture toughness measured on porous 3YSZ specimens. All the simulations 

have been performed with the plane strain elasticity assumption for a classical three-point 

bending symmetric test. In this condition, the crack is nucleated under a pure symmetric mode. 

Finally, the PFM has been used to simulate the crack initiation in real 3D porous ceramic 

microstructures for 8YSZ samples submitted to a compression loading. The results have been 

compared to the compressive fracture strength measured on the same microstructures reported 

in [16].   

 

2.1 Crack nucleation from a stress singularity: V-notched sample 

The considered geometry of the V-notched sample with different opening angles 2β is 

illustrated in Fig. 1. The length and height of the beam are L = 8 mm and h = 2 mm, respectively, 

while the notch depth is an = 0.4 mm. It is worth noting that the coupled criterion allows 

computing the apparent toughness �������� for the notch while the critical load 	
 triggering the 

crack initiation is calculated with the PFM model. Therefore, the two approaches have been 

compared using the following expression [50]: 

�������� = � 3	
�
2�ℎ�� ℎ(���)� ���

ℎ � (1) 

Where � denotes the beam thickness taken to the unity for the 2D simulations. The exponent � 

is the singularity order for a symmetric loading, which is obtained by solving the following 

equation [50]: 

��� (! − #) + �� %2�(! − #)& = 0 (2) 

The dimensionless factor � �()
� � in Eq. (1) is the polynomial function given in Eq. (3): 

� ���
ℎ � = *�

��
ℎ + *�

��
ℎ

� + *+
��
ℎ

+ + *,
��
ℎ

, + *-
��
ℎ

-
 (3) 
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The coefficients *. are tabulated in [50] for a ratio 
()
�  ranging between 0.05 and 0.7. It can be

noticed that the dimensions of the simulated specimen have been chosen to fulfill this condition 

on the ratio 
()
� . Three notch angles 2# ∈ {60°, 90°, 120°} have been investigated to sweep a

large range of singularity orders with a crack initiation mainly controlled by the energy criterion 

for 2# = 60° and a non-negligible contribution of the stress criterion for 2# = 120°.

Fig 1.  Three-point-bending test on a V-notched sample. 

2.2 Crack nucleation from a stress concentration: crack blunted by a cavity 

The simulated beam with a preexisting crack blunted by a cavity is shown in Fig. 2. Its geometry 

is the same as the previous V-notched case with a same crack length of ac = 0.4 mm. In this 

case, the fracture toughness ��� and the applied critical loading 	
 are linked as follows:

�1
 = � 	

�√ℎ� � ���

ℎ � (4) 

The dimensions of the studied geometry fulfil the condition 
(3
� ∈ [0.05, 0.7] for which the

dimensionless factor � �(3
� � is expressed as [51]:

� ���
ℎ � =

3 �ℎ 4��ℎ
2 �1 + 2 ��ℎ � �1 − ��ℎ �

+�
61,99

− ��
ℎ �1 − ��

ℎ � 92,15 − 3,93 ���
ℎ � + 2,7 ���

ℎ ��<=

(5) 

Four porosities have been considered with a radius > ranging from 0.01 mm to 0.03 mm.  These 

cavity sizes remain very small with respect to the crack length so that Eqs (4) and (5) remain 

valid for assessing the apparent fracture toughness ���(??
. Moreover, the width δc of the

L

h

an

F

2β

h (mm) 2

L (mm) 8

an (mm) 0.4

β (°) {30, 45, 60}
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preexisting crack introduced in the mesh was small as compared to the pore size (i.e. δc=3 

µm<< 2>). 

 

Fig 2. Three-point-bending test on a sample with a crack blunted by a cavity. 

 

 

2.3 Crack nucleation and propagation in porous ceramics microstructures 

2.3.1 Propagation of a preexisting macro-crack in 2D 

The sample geometry to simulate the crack extension with the PFM approach in porous ceramic 

is displayed in Fig. 3a. The selected dimensions are L= 40 µm, h = 10 µm and �� = 3 µm. The 

ratio 
(3
�  is still comprised between 0.05 and 0.7 in such a way that Eqs. (4) and (5) can be used 

to express the toughness as a function of the applied loading. As shown in Fig. 3a-3c, three 

microstructures of different porosities @ ∈ {10 %, 20 %, 30 %} have been simulated. These 

numerical microstructures have been generated using the Gaussian random field method 

[52,53]. Indeed, it has been shown that this method is able to emulate accurately the morphology 

of partially sintered ceramic microstructures, such as solid oxide fuel cell electrode materials  

[53,54]. The three microstructures have been generated by maintaining a constant correlation 

length for the solid YSZ phase [54]. As result, the mean diameter for YSZ calculated by 

continuous Particle Size Distribution (PSD) [55], is approximatively a constant equal to 0.45 

µm for all the microstructures simulated in the present study. On the contrary, the mean pore 

diameter decreases from 0.22 µm to 0.05 µm when densifying the ceramic from 30 % to 10 %. 

In all cases, the size of the porosity remains small compared to the simulated preexisting crack 

length. Besides, the crack width set to δc = 0.1 µm is lower than the mean pore diameter for a 

porosity of 20 % and 30 %, whereas, for a porosity of 10 %, the two dimensions δc and 2r are 

equivalent. 

h

L

ac

2r

F
h (mm) 2

L (mm) 8 

ac (mm) 0.4

r (mm) {0.01, 0.02, 0.03}
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Fig 3. Synthetic porous microstructures at different porosity volume fractions ε (solid phase 

in grey): a) 10 %, b) 20 %, c) 30 %. 

 

2.3.2 Crack nucleation in 3D 

To study the crack nucleation in a real microstructure, the phase-field approach has been used 

to simulate our experiments reported in [16]. In this previous work, the compressive fracture 

strength was measured as a function of the porosity ranging from 33% to 63%. The tested 

specimens were micro-pillars with a height of 130 µm made of porous 8YSZ. Due to a slight 

taper angle of 6°, the pillars presented a section that evolves from 60 µm at the top to around 

88 µm at the bottom. To measure accurately the porosity, 3D reconstructions were also obtained 

for all the investigated specimens [16]. 

To predict the dependence of the compressive fracture strength with porosity, a multi-scale 

approach has been adopted coupling computation on the whole micro-pillar with simulation on 

the 3D porous ceramic microstructure (Fig. 4). 
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Fig 4. Mesh of the: a) tapered pillar attached to the pellet with axisymmetric conditions. A 

zoom on the pillar is shown together with the location of the Volume Of Interest (VOI) for 

the simulation at the microstructure scale, b) 3D microstructure at a porosity of 63 %. 

 

 

At the microstructure scale, the crack nucleation and propagation has been computed on sub-

volumes, extracted from the whole reconstructions, using the PFM model. For intermediate 

porosities below 50%, a volume of 4�4�4 µm3 has been simulated whereas a larger volume 

of 15�15�15 µm3 has been considered for the highest porosity at 63%. These dimensions of 

the simulated domain were chosen to be representative of the heterogeneous microstructures. 

Indeed, the pore mean phase diameter is lower than 0.13 µm for the specimen at intermediate 
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porosities (<50%) and equal to 0.99 µm at 63% [16]. Therefore, even in this later case, several 

pores remain included along the edge of the computed volume (the characteristic size for the 

simulated volume is around fifteen times larger than the mean pore diameter). The solid phase 

of the reconstructed sub-volumes has been meshed using the software Avizo® considering 

tetrahedral elements. For the microstructures at intermediates porosities, the mesh were built 

using around 3.5�106 tetrahedrons (corresponding to around 17�106 degrees of freedom) 

while the volume at 63% contained 5.6�106 tetrahedrons (corresponding to around 26�106 

degrees of freedom). A special attention was paid to the quality of the mesh by keeping elements 

with an aspect ratio below 10 and a dihedral angle above 10°. For instance, a zoom of the 

generated mesh at a porosity of 63% is displayed in Fig. 4b. It can be seen that the surface of 

the solid phase inside the microstructure is smoothly meshed by the triangular elements 

avoiding numerical artifacts during the computation. The uniaxial compression has been 

simulated on the meshed reconstructions in displacement-controlled loading considering the 

properties of the dense 8YSZ (Table 1).   

On the other hand, finite element simulations of the compression test at the micro-pillar scale 

were conducted assuming a homogeneous medium with a pure elastic behavior. For this 

modeling, a 2D approach including the full geometry of the tapered micro-pillar attached to a 

part of the pellet was considered using axisymmetric conditions (Fig. 4a). The size of the 

simulated pellet substrate was chosen in such a way that the mechanical response of the micro-

pillar becomes independent of boundary conditions applied at the bottom of the substrate (i.e. 

the displacements are blocked in the axial direction). The simulations were performed using a 

Poisson’s ratio of 0.31 and an effective Young’s modulus taken from our experiments as a 

function of porosity [16]. Because of the taper angle, it is worth noting that a stress gradient 

appears in the pillar during compression. For this reason, the cracks were observed during the 

experiments in the upper part of the pillar where the stress is the highest [16]. The Volume Of 

Interest (VOI) related to the simulated domain at the microstructure scale was therefore taken 

at a short distance from the top of the pillar (i.e. 11 µm) where the damage is expected to occur 

(Fig. 4a). The difference in the displacements at the top and the bottom of the VOI surface was 

then extracted from the simulation at the macroscopic scale and applied on the 3D 

reconstruction simulated with the phase-field. In this approach, the compressive fracture 

strength corresponds to the critical load applied at the top of the micro-pillar identified when 

the damage is initiated in the simulated microstructure. 
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3. Models description  

 

In this work, the coupled criterion has been used in order to validate the results obtained by the 

PFM model. The coupled criterion is thus briefly reminded hereafter before detailing the 

implemented PFM method.  

 

3.1 Coupled criterion 

The coupled criterion stipulates that the crack initiation is triggered when both the stress and 

energy criteria are fulfilled. This condition can be reached when the applied stress AB  reaches 

a critical value AB� leading to the nucleation of a crack with an initial critical length CB� [26]. 

When the crack initiation occurs with an initial length CB, the stress criterion requires that the 

local stress must exceed the material strength A� along the expected crack path, as expressed in 

Eq. (6). Regarding the energy criterion, the incremental energy release rate DEF
, which is the 

change in the potential energy G? due to the crack nucleation, must be higher than the material 

fracture toughness D
 as shown in Eq. (7): 

A(H) ≥ A�     for      0 < H < CB (6) 

GEF
(CB) = − OG?
CB

≥ G
 (7) 

 

The local stress A(H) and the energy release rate GEF
(CB)  introduced in the two last equations 

can be expressed as a function of the applied stress AB using matched asymptotic expansions 

between the singular and the far fields [56]:   

A(H) = P(H) AB      for      0 < H < CB (8) 

GEF
(CB) = Q(CB) AB� (9) 

Where the dimensionless coefficients P and Q depend on the crack length CB, the material 

properties and the local geometry where the crack initiates. 

It is worth noting that the coefficient P decreases with increasing CB whereas Q is an increasing 

function of CB. Therefore, combining Eqs. (6) and (8), the stress condition provides an upper 

bound for the nucleation since the applied loading AB increases with CB (Fig. 5). The lower 

bound for nucleation is provided by the energy condition combining Eqs. (7) and (9). The 
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coupled criterion corresponds to the configuration where the two conditions are fulfilled by 

minimizing the applied stress AB denoted AB�. In this condition, a unique solution for a critical

crack length CB� is obtained, as shown in Fig. 5.

In the case of the V-notched sample submitted to a symmetric loading, the coupled criterion is 

formulated as follows [26]: 

�1 ≥ ��������  with �������� = � RS
T(U)�

��� A����� (10) 

Where �1 is the generalized stress intensity factor and the term Λ(#) is a scaling coefficient

depending on the notch opening angle. In this case, the critical length can be given through a 

precise analytical expression: 

CB� = 1
Λ(#)

D

A�� = 1

Λ(#)WX
�1
�
A�� (11) 

where WX is the Young modulus for the plane strain condition (WX = Y
��Z[). From Eq. (11), it can

be noted that the critical length is proportional to the Irwin length (C1\]EF = ^_S[
`3[ ) through a

factor depending on the notch opening and the Young modulus. 

For a crack blunted by a cavity, it is worth mentioning that the matched asymptotic expansion 

for expressing A(H) and  GEF
(CB) has been conducted by taking into account the local geometry

with the pore size [13,48]. Therefore, the apparent toughness for a blunted crack ���(??
 is not

only dependent on CB but also on the pore radius > [13]:

���(?? = � D

D(>, CB)�

�/�
(12) 

where D is a function of > and CB. In this case, the critical length for the crack nucleation must

depend on both the pore radius and the Irwin length (i.e. CB� = � �>, ^_S[
`3[ �). However, there is no

analytical expression for this length, which must be calculated by solving a non-linear equation 

as detailed in [48]. 
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Fig 5. Applied loading as a function of the initial crack length for the coupled criterion 

obtained using the stress (in blue) and the energy (in purple) criteria. The coupled criterion 

is chosen among the admissible solutions such CB� minimizes the applied loading AB� (in red). 

 

 

3.2 Phase-Field Method 

The PFM approach described in Miehe et al. [38,39] has been adopted for this work. The model 

has been built considering quasi-static and isothermal conditions with the assumption of small 

strain. The variables of the problem are time dependent because the damage evolves during the 

loading. Nevertheless, the time step c is not ‘real’ and is introduced only through the loading 

increment in the simulation. Hereafter, the studied domain and the position are denoted V and 

ef, respectively.  

As mentioned in the introduction, the crack is modelled through a smooth scalar damage 

variable g(ef) referred as the phase-field. Besides, a regularization length scale parameter ℓ has 

been introduced to control the region of transition from the pristine state (g(ef) = 0) to the fully 

broken state (g(ef) = 1) (Fig. 6). In order to propose a specific expression for the smeared crack 

surface hℓ(g), depending on the damage variable, Miehe et al. [38] have assumed that the 

evolution of the damage in one-dimension can be approximated by an exponential function 

g(H) =  i�|k|
ℓ . This hypothesis had allowed expressing hℓ(g) in 1D which has been directly 

extended to the three-dimension case as follows: 

Energy criterion
Stress criterion
Coupled criterion
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hℓ(g) =  1
2ℓ l g2 + ℓ�∇ng ∙  ∇ng gVV  with V ⊂ qr, O ∈  [1,2,3] (13) 

It is worth noting that the minimization of the functional hℓ provides an approximation of the 

phase-field g(ef), which is a solution of the associated Euler-Lagrange type equation: 

g − ℓ�ug =  0   in V   with   ∇fg . yf  = 0 on ∂V  (14) 

where yf is the outward normal on ∂V considering the natural boundary conditions. 

The PFM approach is mainly based on an energy balance. Indeed, the evolution of the potential 

energy during the loading !{  is the sum of three contributions, namely the rate of the stored 

elastic energy W{|, the rate of the work of the external forces }{� and the energy dissipation rate G{� 

due to crack propagation: 

!{  =  W{| + G{� − }{� (15) 

where the symbol ~{  denotes the time derivative of ~. 

• The last term of this equation is classically expressed through the displacement field �f and 

the applied force �̅ on the edge of the domain: 

}{� = �  �̅
��

. �f{  g� (16) 

 • The energy dissipation rate associated to the damage evolution can be expressed as the rate 

of the work G� required to create a diffuse crack in the volume: 

G� = G�hℓ(g)  and  G{ *  =  G�
ghℓ(g)

gc = G� � �1
ℓ g − ℓug� g{  gV

�
 (17) 

Where G� is the critical energy release rate of the material.  

• The rate of stored energy is expressed by the integral of the density of elastic strain energy �: 

W{| = � �{ gV
�

 (18) 

In the implemented model, it is assumed that the crack cannot propagate under compression. 

To fulfil this requirement, a spectral decomposition of the strain tensor �� is carried out and the 

density of strain energy is split into a sum of two contributions �� and ��, related to tension 

and compression, respectively: 

� =  (�(g) + �)�� + ��  (19) 

Where �(g) is a degradation function introduced to take into account the material softening 

during damage. Among several options [57], �(g) is chosen, in this work, as a quadratic 
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function with �(g) = (1 − g)². It can be noticed that the numerical parameter �, which is 

assigned a very low positive value, is added to ensure the stability of the simulation when g 

tends to 1.  

Thanks to the introduction of the degradation function, the stress tensor �� is dependent on the 

damage field g(ef) as follows:  

��(��, g)  =  ��(��, g)
���    (20) 

Besides, the thermodynamic driving force � for crack extension is expressed in the model as 

the derivative of the elastic strain energy stored in the material with respect to the damage 

variable:  

  � = − ��(��,�)
��   = 2(1 − g)�� (21) 

In this condition, the driving force for the crack propagation is controlled by the part of the 

strain energy related to the tension. Finally, the rate of the stored energy can be written as 

follows: 

W{| = � 6��: 91
2 %∇f�f{ + ∇f��f{ &< − �g{= 

�
gV (22) 

 

The governing equation to solve the problem is given by the rate of the potential energy Eq. 

(18) combined with Eqs. (16), (17) and (22). For each increment of loading (or time), the 

minimization of this energy functional must be carried out on each variable g and �f. In a 

staggered approach for the resolution, the minimization at a frozen damage for the phase-field 

(i.e. g(ef) = *ci) leads to solve a ‘classical’ elastic problem: 

�n ∙ ��(��, g) = 0  for the domain �  with   ��. �f = �̅     �  �� (23) 

Then, the resolution at a given loading (i.e. �f = *ci) yields the equation for the phase-field 

computation when the crack propagates with g{ > 0 : 

� = 2(1 − g)�� = G* �1
ℓ g − ℓug�   with ∇fg . yf  = 0 on ∂V (24) 

It can be noticed that this equation describes a classical energy criterion. Indeed, the crack is 

assumed to propagate when the driving force equivalent to an energy release rate in J·m-3 is 

equal to the density of energy created in the domain by the apparition of the cracked surface. 

Moreover, the formation of cracks is an irreversible process, so that the phase-field g(ef) cannot 
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decrease during the loading. To take into account this supplement constrain, Miehe et al. [38] 

have proposed to introduce in Eq. (24) an ‘history’ loading field ℋ(en, c) stipulating that  �� 

can only increase over the time. The partial differential Eq. (24) is thus rewritten as follows: 

2(1 − g)ℋ = G* �g
ℓ − ℓug�     with  ℋ(en, c) = max      � ∈ [0,c]��(�f(en, c)) (25) 

 

The computation for the coupled criterion has been carried out with the FE code Modulef, while 

the phase-field approach has been implemented in the software Comsol Multiphysics®.  

For the phase-field computations, it is worth noting that a special attention was paid to check 

the convergence of the simulations. More specifically, the number of iteration for the staggered 

resolutions was chosen so that the results are independent on the loading step. For this purpose, 

when the damage parameter exceeds 0.4, the loading step was divided by 100. Moreover, the 

independence of the result with the mesh size was also verified for all the simulations. It can be 

noticed that a very fine mesh was considered in the damage zone: for instance, more than 15 

elements were included in the width 2ℓ for the 2D simulations. Besides, all the computations 

have been carried out in such a way that the softening effect on the load-displacement curve 

due to a large damage zone remains negligible. Finally, the simulated tensile, shear and 3 point 

bending tests reported in Miehe et al. [38] were used as benchmark to validate the 

implementation. For all the cases, a very good agreement has been found between the results 

from the Comsol Multiphysics ® and the data reported in Miehe et al. [38] validating the 

implementation. 
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Fig 6. Sharp and diffuse crack description. 

 

4. Results and discussions 

In this section, the results of the PFM simulations, conducted on the stress singularity and stress 

concentration configurations, are presented and compared to those performed using the coupled 

criterion. The capacity of the model to predict accurately the crack nucleation is evaluated and 

the nature of the length scale parameter ℓ is discussed. Then, the numerical results obtained on 

2D and 3D porous ceramic microstructures are compared to the experimental data reported in 

[49] and [16] in order to investigate the relevance of the PFM model to simulate the fracture in 

porous ceramics. 

 

4.1. V-notched 8YSZ sample  

Preliminary computations have been conducted with the PFM model to simulate the crack 

pattern in the V-notched 8YSZ sample considering two length scale parameters (i.e. ℓ�=0.01 

mm and ℓ�=0.04 mm). It can be noted that the classical undamaged condition (∇fg . yf =0) was 

retained for the notch. As shown in Fig. 7a and 7b, the crack initiates from the stress singularity 

and propagates in pure symmetric mode for both cases.  Therefore, as already stated, the PFM 

is able to identify correctly the zone where the crack nucleates as well as its direction of 

propagation whatever the value of ℓ [38] (Fig. 7a and 7b). Moreover, it can be seen that the 
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crack becomes thicker when ℓ is larger since this regularization parameter controls the width 

of the region of transition from the pristine material to the fully broken state. Fig. 7c shows that 

the force-displacement curve for ℓ = 0.04 mm is slightly below the one calculated for 

ℓ = 0.01 mm before the fracture. This result is due to the material softening effect during the 

loading, which is more pronounced when ℓ is larger as previously mentioned.  

 

 

Fig 7. Visualization of the crack pattern initiated from a notch at an opening angle 2β of 90° 

for: a) ℓ� = 0.01 mm, b) ℓ� = 0.04 mm. c) Force-Displacement curves considering the 

8YSZ material at a V-notch angle 2β of 90° for ℓ� = 0.01 mm and ℓ� = 0.04 mm. 
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As discussed in the introduction, the critical loading triggering the fracture was found to be 

strongly dependent on the choice of ℓ. To investigate its role on the crack onset, the critical 

loading has been determined for several opening angles of the V-notched 8YSZ specimen. The 

critical loading 	
 was retrieved from the simulated force-displacement curves when the phase-

field parameter g reaches ≈1 at the notch tip. The evolutions of the apparent facture toughness

deduced from these computations are compared to the coupled criterion predictions in Fig. 8a. 

When the regularization parameter is increased, the apparent fracture toughness computed with 

the phase-field is increased especially at the highest opening angles. At the lowest angle (2β =
30°), it can be noted in Fig. 8a that the apparent fracture toughness is almost independent of ℓ. 

This behavior is explained since the singularity order at 2β = 60° is very close to the exponent 

0.5 for a perfect crack (i.e. λ = 0.5122 for 2β = 60°). In this condition, the crack initiation is 

almost governed by an energy criterion. As pointed out by Tanné at al. [45], the phase-field 

method, which is based on a pure energetic approach for the crack propagation, is thus able to 

simulate the fracture initiation from a sharp singularity with a low sensitivity on the length scale 

parameter. On the contrary, at the highest opening angle, the apparent fracture toughness is 

strongly dependent on the choice of ℓ for the simulations (Fig. 8a). Indeed, the low singularity 

order at 2β = 120° (i.e. λ = 0.6157) means that the fracture behavior is partially controlled by 

the stress criterion [26,48]. In this case, the prediction provided by the phase-field method, 

which does not consider the stress criterion, becomes a function of the regularization parameter. 

In other words, the choice of ℓ is crucial for an accurate prediction of the crack onset when the 

fracture is partially controlled by the stress criterion. In these conditions, the regularization 

parameter could be seen as a pure numerical parameter that must be adapted for each 

configuration, as suggested by Kumar et al. [47].  

Nevertheless, it has been possible to identify a single value of ℓ denoted ℓ���  in such a way

that the apparent fracture toughness computed by the phase-field matches the coupled criterion 

prediction over the full span of investigated angles (Fig. 8a). Indeed, the PFM simulations 

obtained with ℓ��� = 0.01 mm provides a precise prediction of the crack nucleation with a

mean relative error lower than 2.4%. For this ad-hoc value of ℓ, the PFM model is thus able to

accurately reproduce the apparent toughness evolution when the fracture mechanism is changed 

from an energy controlled criterion to a coupled criterion. In other words, the length scale 

parameter allowing retrieving the coupled criterion predictions is found to be independent of 

the notch opening angle. The possibility to identify a single value of ℓ���  suggests that this

parameter could have a physical meaning and would contain the information to take into 
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account the fracture properties involved in both criteria (i.e. toughness and strength). From this 

point of view, ℓ���  could be related to a characteristic length of the material such as the Irwin 

length C1\]EF or the critical length CB� involved in the coupled criterion (cf. Eq. (11)). This 

statement is in good agreement with Tanné et al. [45] and suggests that, as for the uni-axial 

traction [44], the length scale parameter must be proportional to the Irwin length. 

The critical loading leading to the fracture is plotted in Fig. 8b as a function of the opening 

angles 2β for the investigated length scale parameters. As expected, the critical force is almost 

independent of ℓ at the lowest angles, whereas it decreases with increasing ℓ at the highest 

angles (Fig. 8b-c). This dependence of the critical force (Fig. 8b) associated to the apparent 

fracture toughness (Fig. 8a) with the regularization parameter ℓ at high opening angles was also 

observed in Tanné et al. [45]. This behavior can be interpreted through the relationship between 

the regularization parameter and the material characteristic length (C1\]EF or CB�). Indeed, if ℓ is 

proportional to C1\]EF or CB�, a large value of this parameter is related to a very low material 

strength. Since the fracture is partially governed at high opening angle by the strength criterion 

[26],  the critical force or the apparent fracture toughness must decrease with increasing ℓ.  

It can be noted that a decrease of the critical loading 	
 is observed when increasing 2β for the 

highest length scale parameter (i.e. ℓ = 0.4 mm in Fig. 8b). In this condition, the material 

fracture strength must be very low due to the dependence of A� with ℓ. Therefore, the stress 

criterion is more easily fulfilled while the contribution of the energy criterion is enhanced. The 

force triggering the fracture is thus decreased with increasing 2β since the energy criterion is 

more easily fulfilled when the opening angle is large (note that �������� is still an increasing 

function of 2β at ℓ = 0.4 mm due to the evolution of the term ℎ(���) in Eq. (1)). This discussion 

reinforces the claim that, for a V-notched singularity, the regularization parameter in the phase-

field model must be related to a material characteristic length C1\]EF or CB�. 
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Fig 8. Dependence of the mechanical response of the V-notched 8YSZ sample on the 

opening angle considering different values of the length scale parameter ℓ: a)  apparent 

fracture toughness, b)  critical force triggering crack initiation. ℓ���  refers to the length 

scale parameter that provides close agreement between the coupled criterion and the PFM 

results over the whole considered range of  notch angles, c) force-displacement curves at a 

V-notch angle 2β of 120°. 
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4.2. V-notched 3YSZ sample  

The role of the material properties on the regularization parameter has been investigated by 

repeating the same study considering the 3YSZ instead of 8YSZ. The apparent fracture 

toughness calculated with the PFM model is plotted in Fig. 9 as a function of the V-notched 

opening angles for different values of ℓ. The results are consistent with the previous analysis 

since the same evolutions of �������� with 2β and ℓ than the ones discussed for 8YSZ are 

observed. These evolutions are compared to the predictions given by the coupled criterion in 

Fig. 9. As for the 8YSZ ceramic, it has been possible to identify an ad-hoc length scale 

parameter ℓ+��  that allows retrieving the evolution of the theoretical fracture toughness with 

the opening angle. Indeed, the PFM results obtained for ℓ+��  = 0.02 mm match the coupled 

criterion predictions with a mean relative error on the apparent fracture toughness estimated to 

1.9%. It is here worth noting that ℓ+��  is two times higher than ℓ��� . This statement clearly 

shows that the regularization parameter changes with the simulated material. Moreover, the 

ratio 
ℓ¡¢£¤
ℓ¥¢£¤ =2 for the phase-field approach is almost equal to the theoretical ratio 

¦_§¨©ª¡¢£¤
¦_§¨©ª¥¢£¤ =

¦«3,¡¢£¤
¦«3,¥¢£¤ =1.8. Therefore, this analysis confirms that when considering the crack onset from a 

singularity, the regularization parameter in the phase-field method is proportional to a material 

characteristic length C1\]EF or CB�. This statement has far-reaching practical implications for the 

study of the V-notch configuration with the PFM model. Indeed, only a single study considering 

one material could be sufficient to determine the corresponding ℓ for any other types of brittle 

materials. 

 

Fig 9. Dependence of the apparent fracture toughness on the opening angle for the 3YSZ 

material considering different values of the length scale parameter ℓ. ℓ+��  refers to the 

length scale parameter that provides close agreement between the coupled criterion and the 

PFM results over the whole considered range of  notch angles. 
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4.3. Crack blunted by a cavity in 8YSZ and 3YSZ 

To study the crack nucleation from a stress concentration, a crack blunted by a cavity has been 

simulated for the 8YSZ and 3YSZ ceramics. The relative toughness q = ���(??/���  obtained 

with the PFM method as well as the theoretical predictions given by the coupled criterion are 

plotted as a function of the pore radii in Fig. 10. It can be noticed that the phase-field simulations 

have been carried out for various length scale parameters. As shown in Fig. 10, the dependence 

of the PFM results on the regularization parameter is less pronounced when the pore radius is 

lowered. As for the notch configuration, this evolution can be explained since the geometry 

tends towards a sharp crack entirely controlled by a pure energy criterion. On the contrary, the 

dependence on the apparent toughness calculated with the PFM becomes significant at the 

highest investigated pore radius for which the contribution of the stress criterion to the fracture 

is non-negligible. In this case, the apparent fracture toughness is lowered with increasing ℓ. 

This evolution can be interpreted through a very low facture strength associated to the large 

length scale parameter. This explanation would mean that the regularization parameter can be 

still related to a material characteristic length for a stress concentration [45]. As illustrated in 

Fig.10a for 8YSZ, this dependence can lead to an incoherent behavior for ℓ =0.04 mm with a 

weakening effect with increasing the pore radius. 

 

For both materials, it has been possible to identify two specific values for the regularization 

parameters ℓ���  and ℓ+��  to fit accurately the predictions given by the coupled criterion (Fig. 

10). Indeed, the mean relative error on the relative fracture toughness simulated with ℓ���  = 

0.005 mm and ℓ+��  = 0.007 mm is equal to 1.1% and 1.2% for 8YSZ and 3YSZ respectively. 

Therefore, for a given value of ℓ, the PFM model is able to capture the expected strengthening 

effect due to the crack blunting by a cavity [13]. Nevertheless, it can be noted that the length 

scale parameters ℓ���  and ℓ+��  identified for the V-notch singularity are not the same than 

the ones obtained for the blunted crack (for the same specimen submitted to a three-point 

bending test). For instance, the regularization parameter identified for the notch (ℓ���  =0.01 

mm) is significantly higher than the one for the blunted crack (ℓ���  =0.005 mm). When the 

length scale parameter for the notch is taken to ℓ���  =0.005 mm, the phase-field results 

overestimate the coupled criterion predictions. In this case, the discrepancy between the critical 

forces provided by the coupled criterion and the phase-field reaches almost 20% for a notch 

opening angle of 2β=120°. Such a discrepancy cannot be explained by the numerical 
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uncertainties for the phase-field simulations, which have been checked to be very limited in our 

case. This result would thus suggests that the regularization parameter could be also a function 

of the type of local geometry where the crack nucleates.  

 

It can be noticed that the ratio 
ℓ¡¢£¤
ℓ¥¢£¤ =1.4 obtained with the phase-field method for the blunted 

crack is different from the Irwin one 
¦_§¨©ª¡¢£¤
¦_§¨©ª¥¢£¤ =1.8. However, it is almost equal to the ratio of the 

critical crack length in the coupled criterion  
¦«3,¡¢£¤
¦«3,¥¢£¤ =1.5.  This statement means that the length 

scale parameter ℓ for the phase-field method is related to the critical length CB� for the coupled 

criterion. For a V-notch singularity, the ratio 
¦«3,¡¢£¤
¦«3,¥¢£¤ is equivalent to the ratio given by the Irwin 

characteristic length as mentioned in the previous section. However, for a crack blunted by a 

cavity, the critical crack length  CB� is still a function of C1\]EF but also takes into account the 

local geometrical characteristics of the stress concentration [13,48] (cf. section 3.1). This 

discussion reinforces the proposition that the length scale parameter must be dependent on the 

type of local geometry where the crack nucleates for a stress concentration. It can be mentioned 

that the possibility could be further discussed by comparing the coupled criterion prediction 

with alternative phase-field methods [34–37]. Nevertheless, even if additional studies are still 

needed, it can be concluded from this analysis that the PFM model can be applied to predict the 

crack initiation in porous ceramic with a length scale parameter that have to be identified for 

each type of microstructures. 
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Fig 10. The dependence of the relative toughness on the cavity radius considering different 

values of the length scale parameter ℓ for: a) 8YSZ material, b) 3YSZ material. 

ℓ���  and ℓ+��  refer to the length scale parameters that provide close agreement between

the coupled criterion and the PFM results over the whole considered range of cavity radii. 

4.4. Crack nucleation in porous microstructures 

When the length scale parameter ℓ is correctly chosen, the above case studies have shown the 

capacity of the PFM model to accurately predict the crack nucleation on ideal geometries (i.e. 

V-notch and the blunted crack). In this section, the relevance of the PFM model to simulate the

fracture in porous media with complex microstructures is evaluated. 
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4.4.1 Apparent fracture toughness of porous ceramics 

To study the evolution of the apparent fracture toughness with the porosity, 2D porous 3YSZ 

microstructures have been generated with the random field method considering a constant 

correlation length for the solid phase (cf. section 2.3 and Fig. 3). As a result, the geometrical 

features of the simulated microstructures are preserved except modifications affecting mainly 

the porosity (i.e. volume fraction and pore mean diameter). Therefore, based on the previous 

statements, it is anticipated that a unique length scale parameter for the phase-field model is 

sufficient to predict the evolution of the apparent toughness with the porosity. Two methods 

have been used to determine ���(??
 from the phase-field simulations. In the first one (denoted 

‘method 1’ thereafter), the toughness was deduced when the fracture initiates at the tip of the 

preexisting macro-crack (with δc = 0.1 µm) blunted or not by a pore (cf. Fig. 11).  In the second 

method (called ‘method 2’), the toughness was assessed after propagation, when the fracture is 

reinitiated from the first pore reached by the crack. The reason for using two methods is to 

provide an estimation of the toughness scattering induced by heterogeneities in the simulated 

microstructures. 

 

 

Fig 11. Cartographies displaying the crack path within the porous microstructures: a) first 

realization at ε = 20 %, b) second realization at ε = 20 %, c) first realization at ε = 10 %. ( 
ℓ+�� = 0.1 µm). 
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For each porosity, two independent realizations (i.e. microstructures) exhibiting the same 

geometrical statistical properties have been generated using the Gaussian random field method. 

As an illustration for a porosity of 20%, it can be seen in Fig. 12 that the PSD of the two 

microstructures shown in Fig. 11a-b are nearly perfectly superimposed. The simulations of 

these two microstructures at the same porosity level should allow estimating the impact of the 

local spatial variations on the toughness predictions. It is worth noting that, in spite of these 

statistical variations on the local geometry, the same type of morphology is preserved since the 

same method and input parameters have been used to generate the microstructure. Finally, as 

pointed out in section 2.3.1, the synthetic microstructures generated with the Gaussian random 

field method provide a good approximation of real porous ceramic microstructures produced 

by powder sintering [53]. Consequently, the experimental toughnesses reported in [49], which 

were  measured using double-torsion testing on 3YSZ porous membranes produced by tape-

casting, have been selected for comparison with the phase-field simulations. 

 

 

Fig 12. Comparison between two generated synthetic microstructures with ε = 20 %: a) 

visualization of the two realizations of the microstructure, b) Solid phase size distributions 

computed on the two realizations. 
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All the simulations have been performed with a single length scale parameter  ℓ+��  = 0.1 µm 

that remains small compared to the correlation length used to generate the microstructures (cf. 

section 2.3.1). The apparent fracture toughnesses calculated on the first synthetic microstructure 

are compared to the experimental data in Fig. 13a. Independently of the method used to assess 

the toughness, the phase-field results are consistent with the measurements. The offset between 

the simulations and the experimental curve can be explained by the assumptions considered for 

the modeling, which are mainly (i) the differences between the synthetic microstructures and 

the real ones, and (ii) the hypothesis of 2D simulations for the phase-field model. Moreover, it 

is worth noting that the slight disagreement between the experimental data and the simulations 

can be further reduced by increasing ℓ+�� . For example, it has been found that a regularization 

parameter taken at ℓ+��  = 0.8 µm allows fitting almost perfectly the experimental data 

(indeed, at a porosity of 10 %, the computed fracture toughness with the method 1 falls to 

���(?? = 3.8 MPa.√m). However, a tradeoff has to be found for the length scale parameter. On 

the one hand, this parameter must be adapted to describe accurately the initiation step in order 

to predict the apparent fracture toughness. On the other hand, a sufficiently low value for ℓ must 

be ensured to describe correctly the subsequent crack propagation in the fine microstructure. 

From a practical point of view, if necessary, two length scale parameters may be considered for 

the simulations. The first one could be adapted to compute precisely the fracture initiation, 

while the second one could be chosen small compared to the size of the microstructure in order 

to describe the crack propagation in the porous ceramic. 

Nevertheless, with a single length scale parameter, the model captures correctly the decrease of 

���(??
 with increasing the porosity. This result confirms the relevance of the phase-field method 

to predict the fracture toughness of porous brittle materials after calibration of the regularization 

parameter for a given type of microstructure. This supports the claim that this parameter 

contains material fracture properties so that the PFM model can be used to quantify the 

conditions for the propagation of a pre-existing crack in porous ceramics.  

 

The comparison of the fracture toughness predictions as a function of the porosity for the two 

microstructures (displayed in Fig.12) is shown in Fig. 13b. For the sake of clarity, only the 

results with the first method have been reported. The results fall within the same range for the 

two simulated microstructures. The slight difference between the two curves is due to local 

variations in the geometry at the preexisting macro-crack tip. Therefore, by keeping the same 
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length scale parameter for the phase-field model, it is possible to estimate correctly the fracture 

toughness for two different microstructures exhibiting similar statistical features for the 

morphology. In other words, the fracture properties can be determined with a single 

regularization parameter for one type of porous media (characterized by the same 

morphological features related to the manufacturing process or the method of synthetic 

microstructure generation). This statement is consistent with the previous discussion on the 

dependence of the regularization parameter on the type of the local geometry where the crack 

initiates. For a complex microstructure, ℓ would thus depend on the characteristics of the solid 

and pore phases (i.e. shape and size of pores and of solid ligaments between the pores, their 

statistical distribution, etc. [13]).  

In Fig. 13a, it can be noticed that the first method to compute the apparent fracture toughness 

leads to slightly overestimate ���(??
 compared to the second one at ε = 20 % and 30 % and 

underestimate ���(??
 at 10 %. These results can be interpreted by inspection of the cartographies 

displaying the crack path within the microstructure in Fig 11. For instance, at ε = 20 %, it can 

be noted that the preexisting macro-crack ends in a large pore (Fig.11a). Due to the blunting 

effect induced by this large cavity, the apparent toughness computed with the first method is 

thus enhanced. On the contrary, after propagation, the crack reaches a smaller pore. Therefore, 

the apparent toughness for the crack re-initiation from this smaller cavity is lowered knowing 

that the other conditions affecting the fracture remains roughly similar. Indeed, the direction of 

propagation remains in a quasi-pure opening mode and the distance between the pores is almost 

constant (Fig. 11a) [13]. At the lowest porosity fraction (ε = 10 %), the initial macro-crack tip 

is located in the 3YSZ solid phase (Fig. 11c). Therefore, in this particular case, the crack tip is 

no longer blunted by a cavity explaining the lower value of  ���(??
 obtained with the first method 

with respect to the second one. Moreover, it can be noticed that the direction of propagation 

remains similar (only the distance between the initial macro-crack tip and the first pore and 

between the first and second pores is changed).  
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Fig 13. Experimental and simulated dependences of the apparent fracture toughness on 

porosity using a) the two computation methods for realization 1, b) “method 1” for the two 

realizations. 
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4.4.2 Compressive fracture strength of porous ceramics 

To study the crack nucleation in pristine porous ceramics, the compressive fracture strength 

measured in [16] as a function of porosity for 8YSZ has been calculated with the PFM model. 

The simulations have been conducted on 3D porous ceramic microstructures according to the 

methodology detailed in section 2.3.2. Two length scale parameters of ℓ = 0.4 µm and ℓ = 

0.8 µm have been considered for the computations. 

The calculated compressive fracture strength is compared to the experimental data as a function 

of porosity in Fig. 14. It can be seen that the numerical predictions are in very good agreement 

with the measurements. Especially at ℓ = 0.8 µm, the model captures almost perfectly the 

decease of the compressive fracture strength with the porosity. This statement confirms that, 

with a single value of the regularization parameter ℓ, the phase-field method is also able to 

predict accurately the crack nucleation in partially sintered ceramics. Therefore, for a given 

type of microstructure for which the regularization parameter has been identified, the phase-

field approach can be seen as a predictive tool to study the fracture behavior of uncracked 

porous ceramic. In other words, as already discussed on ideal geometries, the length scale 

parameter must contain the material properties so that the phase-field model can be used to 

predict the fracture in complex porous ceramic microstructures.    

 

 
Fig 14. Comparison between the calculated compressive fracture strength and the 

experimental data [16] as a function of porosity. 
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It is worth noting that a transition in the fracture mechanism with the porosity fraction was 

detected in the micro-compression tests [16]. Indeed, at low porosity, it was found that the 

fracture is controlled by a pure brittle behavior whereas a diffuse damage with the generation 

of stable micro-cracks in the microstructure was observed at high porosity. This behavior is 

well retrieved by the PFM model and can be analyzed thanks to the simulated results obtained 

on the 3D volumes. For instance, as shown in Fig. 15a-15c for a porosity of 33%, the apparition 

of the first crack in the microstructure is almost instantaneously followed by a complete damage 

spreading in the whole microstructure. Indeed, the first cracks are detected in the volume for an 

applied force on the micro-pillar of 6.04 N (Fig. 15a). Then, for a very small increment in charge 

(less than 25%), the damaged variable takes a value of d = 1 in the whole simulated domain 

indicating the total fracture of the specimen as shown in Fig. 15c. Therefore, as soon as the 

facture is initiated in the volume, it leads to the complete collapse of the material as it was 

observed during the experiments. It can be also noticed that the first micro-cracks are roughly 

aligned and parallel to the direction of the applied solicitation as detected during the tests [16]. 

At the contrary, for the highest porosity, the simulations have revealed the formation of a 

network of stable micro-cracks distributed in the microstructure during the loading (Fig. 15b-

15d). As shown in Fig15b, the first micro-cracks appear for an applied force of 0.09 N. Then, 

the density of cracks is progressively increased with increasing the loading. The repartition of 

micro-cracks in volume is for example shown in Fig. 15d for an applied force of 0.16 N. The 

total collapse arises only when the load is increased up to 0.17 N. These results, which are in 

very good agreement with the experiments, constitutes a further proof of the relevance of the 

phase-field approach to calculate accurately the fracture initiation in complex porous ceramics. 
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Fig 15. Visualization of the cracks created in porous microstructures submitted to 

compression: First micro-cracks created in the microstructure for a porosity of a) 33 % and 

b) 63 %. Evolution of the damage variable after a small increment of charge at c) 33 % and

d) 63 % (ℓ = 0.4 µm). 

The modeling results can be used to analyze this transition in the fracture mechanism as a 

function of the porosity. For this purpose, the density of elastic strain energy ¬ stored in the 

microstructure has been calculated just before the first crack nucleates in the volume: 

¬ = 1
�®¯

� �gV
�®¯

(26) 

Where ���  is the volume of the solid phase. This density of energy is plotted in Fig. 16 as a

function of the porosity. It can be noticed that the strain energy strongly decreases with 

increasing the porosity. The high stored energy at low porosity should thus constitute the 
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driving force to propagate the first nucleated micro-cracks to the whole microstructure 

explaining the brittle behavior of the ceramic. At the opposite, for the highly porous material, 

the stored energy becomes insufficient to ensure the propagation to the whole specimen. In this 

condition, the fracture is based on a diffuse damage as shown by the modeling and experimental 

results. 

 

 
Fig 16. Evolution of the density of elastic strain energy as a function of porosity (ℓ = 0.8 

µm).  

 

 

Moreover, the mean value of the local maximum principal stress, which was taken in the 
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the apparent fracture strength of the 8YSZ ceramic when considering the very small volume of 

the ligament submitted to the tensile loading [58].  
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As for the ideal 2D geometries, the above discussion shows that the phase-field model is able 

to capture a change in the fracture criterion thanks to an accurate identification of the 

regularization parameter. For a porous ceramic loaded under compression, it enables us to 

explain the observed transition in the fracture mechanism from a brittle behavior towards a 

diffuse damage. From all these results, the phase-field model appears as a relevant tool to 

quantify the crack nucleation in porous ceramics but also to analyze the underlying mechanisms 

controlling the fracture.       

5. Conclusion

The relevance of the phase-field model for simulating the crack nucleation and propagation in 

porous ceramics has been evaluated. For this purpose, the PFM results have been compared to 

the predictions of the coupled criterion based on linear fracture mechanics. The study was 

conducted on two types of ceramics, whose fracture properties are significantly different (i.e. 

3YSZ and 8YSZ). A pure singularity induced by a V-notch and a stress concentration related 

to a crack blunted by a cavity have been studied considering a three point bending test.  

In the V-notch case, considering a unique length scale parameter for the phase-field model ℓ, it 

has been shown that the PFM method is able to retrieve the coupled criterion predictions as a 

function of the notch-opening angle. Moreover, the ratio of the regularization parameter for the 

two ceramics is equal to the ratio for both the Irwin length and the critical length for the coupled 

criterion (
ℓ¡¢£¤
ℓ¥¢£¤ ≈ ¦_§¨©ª¡¢£¤

¦_§¨©ª¥¢£¤ = ¦«3,¡¢£¤
¦«3,¥¢£¤). Therefore, the length scale parameter depends on the material

fracture properties as expected. For an ad-hoc value of ℓ, the PFM method is thus able to predict 

correctly the facture initiation at singularities even when the crack nucleation is controlled by a 

coupled energy and stress criterion.  

For a crack blunted by a cavity, the PFM model is also able to reproduce the theoretical 

dependence of the apparent fracture toughness on the pore size. In this case, the ratio of the 

selected length scale parameters for the two materials is no longer equal to the ratio for the 

Irwin length but remains identical to the one related to the coupled criterion (
ℓ¡¢£¤
ℓ¥¢£¤ ≈ ¦«3,¡¢£¤

¦«3,¥¢£¤ ≠
¦_§¨©ª¡¢£¤
¦_§¨©ª¥¢£¤ ). Moreover, the length scale parameter for the V-notch was found significantly different

from the one identified for the blunted crack. Therefore, this result suggest that the length scale 
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parameter is also dependent on the type of local geometry or microstructure where the crack 

initiates. In this context, it should be determined using theoretical or experimental data.  

This analysis conducted with the coupled criterion and the PFM on ideal geometries indicates 

that the phase-field should be an appropriate method to predict the crack initiation in complex 

porous ceramic microstructures. To confirm this claim, the relevance of the phase-field method 

to simulate the crack nucleation and propagation in representative porous ceramic 

microstructures has been investigated. For this purpose, the conditions triggering the 

propagation of a pre-existing crack in porous 3YSZ have been computed with the phase-field 

method on 2D synthetic microstructures. As proposed, the apparent fracture toughness was 

found to be in good agreement with experimental data over the whole porosity range using a 

unique length scale parameter. Moreover, the conditions of crack re-initiation from porosity 

during the propagation has been discussed as a function of local microstructural parameters (i.e. 

pore size, length of the ligaments between the pores and direction of propagation). These results 

confirm that the phase-field method is able to predict accurately the fracture toughness of 

porous brittle materials after calibration of the regularization parameter. 

The fracture initiation in uncracked porous ceramics have been studied on real 3D 

microstructures. In that objective, the compressive strength has been computed with the PFM 

model for 8YSZ with porosities ranging from 33% to 63%. For a single length scale parameter, 

it has been found that the compressive strengths computed as a function of the porosity are in 

very good agreement with the experimental data. Besides, it has been shown that the model 

predicts the transition from a brittle behavior at low porosity towards a diffuse damage at high 

porosity. This change in the fracture mechanism has been analyzed with the model. It has been 

shown that this transition is related to the elastic strain energy stored in the microstructure. A 

low porosity, the excess of strain energy allows the unstable crack propagations in the whole 

specimen. Conversely, at high porosity, the strain energy is insufficient to propagate the 

nucleated micro-cracks to the whole microstructure. All these results show that the PFM method 

is a relevant tool to predict accurately the fracture of porous ceramics. 
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Nomenclature 

ac crack length (mm or µm) 

an notch depth (mm) 

L beam length (mm or µm) 

h beam height (mm or µm)  

b beam thickness (mm or µm) 

> cavity radius (mm) 

δc crack width (µm) 

� singularity order (-) 

# notch angle (degrees) 

@ porosity (%) 

�������� apparent fracture toughness for the notch (MPa m1-λ)

���(?? apparent fracture toughness for the crack blunted by a 

cavity 

(MPa √m ) 

�1 generalized stress intensity factor (MPa m1-λ)

��� material fracture toughness (MPa √m) 

q relative toughness (-) 

	
 applied critical loading (N) 

D
 critical energy release rate (J m-2) 

DEF
 incremental energy release rate (J m-2) 

G? potential energy (J) 

A� material strength (MPa) 

AB applied stress (MPa) 

AB� critical applied stress (MPa) 

P, Q dimensionless coefficients (-) 

Λ scaling coefficient (MPa-1) 

D scaling coefficient (MPa-0.5) 

W Young modulus (MPa) 

WX Young modulus for the plane strain condition (MPa) 

² Poisson coefficient (-) 

g phase-field variable (-) 

� degradation function (-) 

c time (s) 

W| stored energy (J) 

G� energy dissipation (J) 

}� work of external forces (J) 

! potential energy (J) 

� density of elastic strain energy (J m-3) 

�� density of strain energy related to tension contribution (J m-3) 

ℋ ‘history’ loading field (J m-3) 

� thermodynamic driving force (J m-3) 

ℓ length scale parameter for the phase-field approach (mm or µm) 

ℓ���  length scale parameter for the 8YSZ material (mm or µm) 

ℓ+��  length scale parameter for the 3YSZ material (mm or µm) 

C1\]EF Irwin length (µm) 

C1\]EF���  Irwin length for the 8YSZ material (mm or µm) 

C1\]EF+��  Irwin length for the 3YSZ material (mm or µm) 

CB initial crack length for the coupled criterion (mm or µm) 
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CB� critical initial crack length for the coupled criterion (mm or µm) 

CB�,���  critical initial crack length for the 8YSZ material (mm or µm) 

CB�,+��  critical initial crack length for the 3YSZ material (mm or µm) 
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Table 1. Mechanical properties of 3YSZ and 8YSZ. 

Material E [GPa] ³ ´µ¶ [MPa.√·] �¸ [MPa] ¹µº»¼y = �´µ¶
�¸ �½

[µm] reference 

3YSZ 214 0.31 5.1 583 76.5 [59] 

8YSZ 216 0.31 1.61 245 43.2 [60,61] 
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