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Abstract
We introduce a symplectic inner product on vectors over a non-unitary non commutative
ring of order 4. Linear and additive codes over that ring are explored from the standpoint of
self-duality and complementarity with their duals.
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1 Introduction

Most of the literature on codes over rings is in the context of codes over unital rings, that is to
say rings with a unity for the second law (Shi et al. 2017). Codes over non-unital rings started
to be considered in this decade (Alahmadi et al. 2022, 2023a), with a special emphasis
on duality studies. In that context self-dual codes are replaced by quasi self-dual codes,
a special class of self-orthogonal codes (Alahmadi et al. 2022; Dougherty and Sahinkaya
2023; Alahmadi et al. 2023b). Codes that intersect trivially their dual are called LCD or
ACD depending on their linearity or mere additivity over the alphabet ring. ACD codes were
introduced over finite fields in Shi et al. (2023) and over non-unitary rings in Shi et al. (2022).

On the other hand, symplectic self orthogonal, linear complementary dual beyond sym-
plectic self-dual codes over finite fields have received a sustained attention from researchers
in recent times (Xu and Du 2021; Jin and Xing 2011; Lv et al. 2020; Xu and Du 2022;
Zhu et al. 2023). Xu and Du (2021) has given some methods to construct symplectic LCD
and symplectic LCDMDS (symplectic maximum distance separable) codes over finite field.
Also, Zhu et al. (2023) used Plotkin sum construction to obtain symplectic self orthogonal
and LCD with explicit and good parameters.
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In the present paper, we replace the standard inner product that was used in all of the
above duality studies by the symplectic inner product (Li and Zhu 2024; Xu and Du 2021).
We define and study self-dual, LCD codes, ACD codes for this inner product over the ring E
in the notation of Alahmadi et al. (2022), a non-unitary, non-commutative ring of order 4. See
Sect. 3 for an explicit definition. In particular we characterize free symplectic LCD codes as
a function of a binary symplectic LCD code.We derive a characterization of symplectic LCD
E-codes by their generator matrices. We give a characterization of symplectic ACD codes as
a function of their residue and torsion codes. We characterize left symplectic self-dual codes.
General bounds on the minimum symplectic weight of a code are given.

The material is structured as follows. The next section contains the main definitions,
notions, and notations needed for the rest of the paper. Section 3 lays the foundation for
the study of linear symplectic codes. Section 4 studies symplectic LCD codes. Section 5
introduces and studies ACD codes. Section 6 focusses on symplectic self-dual codes. Section
7 concludes the article.

2 Backgroundmaterial

To begin with, we need to recall some basic definitions. Denote by F2 = {0, 1} the finite
field with two elements. Let n be a nonnegative integer. A linear [n, k]-code over F2 is a
k-dimensional subspace of F

n
2. The vector u = (x|y), ( resp. v = (z|t)) is the juxtaposition

of the two vectors x, y (resp. z, t), respectively. The symplectic inner product of u and v

is defined by 〈u, v〉s = uΩvT = 〈x, t〉 + 〈y, z〉, where Ω =
[
0n In
In 0n

]
, with 0n is the zero

matrix, In is the identity matrix of order n, vT denotes the transposed vector of v and 〈., .〉 is
the Euclidean inner product.

Any [n, k] binary code C is a subspace of F
n
2 of length n and dimension k. Define the

(Euclidean) dual code C⊥ of C by C⊥ = {u ∈ F
n
2 | 〈u, v〉 = 0,∀ v ∈ C}. The symplectic

dual D⊥S of [2n, k′] binary code of length 2n and dimension k′ is defined as D⊥S = {u ∈
F
2n
2 | 〈u, v〉s = 0, for all v ∈ D}.
A linear code C over F2 is (Euclidean) self orthogonal (respectively, symplectic self

orthogonal) if C ⊆ C⊥ (respectively, C ⊆ C⊥S ) and (Euclidean) self-dual (respectively,
symplectic self-dual ifC = C⊥ (respectively,C = C⊥S ). Moreover,C is called Euclidean-
LCD or (Euclidean) linear with complementary dual (respectively, symplectic-LCD or
(symplectic linear with complementary dual) if C ∩ C⊥ = {0} (respectively, C ∩ C⊥S =
{0}).

The (Hamming) weight ωH (c) of c ∈ C is the number of nonzero components in c. The
symplectic weight ωS(c′) of c′ ∈ D is ωS(c′) = ωS(((x|y)) = |{i : ωH ((xi |yi )) 
= 0 for all
i = 1 · · · n}|, accordingly.

The minimum Hamming distance and the minimum symplectic distance of C are
denoted by dH (C) and dS(C), respectively, and are defined as

dH (C) = min{ωH (c)|0 
= c ∈ C},
dS(C) = min{ωS(c)|0 
= c ∈ C}.

In Li and Zhu (2024), there is a relation between the minimum (Hamming) distance and the
minimum symplectic distance of an [2n, k]-code C over F2, given as follows.⌈

dH (C)

2

⌉
≤ dS(C) ≤ min

{
dH (C),

⌊
2m − k + 2

2

⌋}
. (1)
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3 Codes over non-unital non-commutative ring of order four

We start this section by recalling some basic concepts and summarize several facts and
terminologies for codes over the considered ring as stated in Alahmadi et al. (2022, 2023a),
Shi et al. (2022) and Dougherty and Sahinkaya (2023) which are essential for the study of
symplectic codes presented in our research.

Let E be a ring defined as: E = {a, b | 2a = 2b = 0, ab = a, ba = b, a2 = a, b2 = b}.
Observe that E is a local ring with unique maximal ideal denoted by mE = {0, c} where
c = a + b. Its addition table is expressed in Table 1. Thus, it is a non-commutative and
non-unital ring. Its multiplication table is given in Table 2.

A c-adic decomposition of an arbitrary element e of E as e = fa + f ′c where f, f ′ ∈ F2.
Define a natural action of F2 over E as e0 = 0e = 0 and e1 = 1e = e, for any e ∈ E (Note
that this action is distributive).

For additional details on the properties of the ring E, we recommend the reader to check
(Alahmadi et al. 2023a; Dougherty and Sahinkaya 2023).

A linear E-code or E-code of length n is a left E-submodule of En .
The (Euclidean) inner product of vectors u = (u1, u2, · · · , un) and v =

(v1, v2, · · · , vn) of En is defined by 〈u, v〉 = ∑n
i=1 uivi .

For any pair of vectors x = (u|u′), y = (v|v′) of E2n where u,u′, v and v′ in En , the
symplectic inner product of x and y has the definition 〈x, y〉s = 〈u, v′〉 + 〈v,u′〉.

The left symplectic dual C⊥SL of a linear code C of E2n is a left module defined as

C⊥SL = {y ∈ E2n | 〈y, x〉s = 0,∀ x ∈ C}.
The right symplectic dual C⊥SR of a linear code C of E2n is a right module defined by

C⊥SR = {y ∈ E2n | 〈x, y〉s = 0,∀ x ∈ C}.
By using similar terminology as in Alahmadi et al. (2023a), an E-code C is said to be
symplectic self orthogonal if for any u, v ∈ C, 〈u, v〉s = 0. Moreover, any symplectic self
orthogonal code C meets C ⊆ C⊥SL ∩ C⊥SR .

An E-code C of length 2n is left symplectic nice (respectively, right symplectic nice) if
|C||C⊥SL | = 42n (respectively, |C||C⊥SR | = 42n).

Table 1 Addition table + 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

Table 2 Multiplication table × 0 a b c

0 0 0 0 0

a 0 a a 0

b 0 b b 0

c 0 c c 0

123
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If C is symplectic self orthogonal with cardinality 4n , then we say C is symplectic quasi
self-dual or symplectic-QSD. Thus,C is called left symplectic self-dual (respectively, right
symplectic self-dual if it verifies C = C⊥SL (respectively, C = C⊥SR ).

An additive code C of length 2n over E or (additive E-code) is defined to be an additive
subgroup of E2n . Such a code has the minimum symplectic distance dS and its parameters
are in the form (2n, |C|, dS).

A E-code is left symplectic-LCD (resp. right symplectic-LCD) if it is left symplectic
nice and C ∩ C⊥SL = {0} (resp. right symplectic nice and C ∩ C⊥SR = {0}).

Two linear codes over E are said to be permutation-equivalent if there exists a permu-
tation of coordinates that maps one to the other. Furthermore, if such codes are symplectic
self orthogonal over E, we say that they are symplectic-equivalent.

For any linear E-code C of length n, we canonically associate with this C two binary
linear codes as follows:

res(C) = {αE(u) | u ∈ C} and tor(C) = {v ∈ F
n
2 | cv ∈ C}

whereαE is themapof reductionmodulomE = {0, c}. It is definedbyαE : E → E/mE  F2,
such that αE(0) = αE(c) = 0, αE(a) = αE(b) = 1. This mapping is extended in a natural
way from E to E

n .
As presented in Deb et al. (2022), these two binary codes satisfy res(C) ⊆ tor(C). Denote

by k1 the dimension of res(C), and by k1 + k2 the dimension of tor(C). Then, the first
isomorphism theorem yields

|C| = | res(C)|| tor(C)| = 4k1 × 2k2 .

The E-code C is then said to be of type (k1, k2). If k2 = 0, then C is free as an E module,
which is equivalent to res(C) = tor(C).

We now state a method to construct symplectic-QSD codes over E from F2-codes.

Theorem 1 Let S be a binary linear code of length 2n. If S is symplectic self orthogonal.
Then, let C be the code constructed as

C = aS + cS⊥S

C is E-code. Further, C is symplectic-QSD with res(C) = S and tor(C) = S⊥S .

Proof First we have to prove that C is an E-code. By the linearity of S, we observe that C
is closed under addition. Therefore, a C ⊆ a S ⊆ C. By using the hypothesis that S is
self orthogonal of S, we obtain c C ⊆ c S ⊆ c S⊥S ⊆ C, and b C ⊆ b S ⊆ a S+ ⊆
c S ⊆ a S+ ⊆ c S⊥S ⊆ C. As consequence of this, C is E-code. Therefore, assume that
c = a s1 + c s′1, c′ = a s2 + c s′2 are two arbitrary codewords of C where s1, s2 ∈ S,
(s′1, s′2) ∈ S⊥S . Note that

〈c, c′〉s = 〈a s1, c s′1, a s2 + c s′2〉s
= a〈s1, s2〉s + c〈s2, s′1〉s = 0.

The latest equality holds because S is binary symplectic self-orthogonal.
Hence, C is symplectic self-orthogonal over E.
Since, C = aS + cS⊥S , then |C| = |S||S⊥S | = 22n = 4n .
As consequence,C is symplectic-QSD overE. Additionally, the residue and torsion codes

can be derived directly by applying their definitions. ��
When a linear code C is symplectic self-orthogonal over E, we obtain the next two results.
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Lemma 1 LetC be aE-code. IfC is symplectic self-orthogonal, then the following statements
hold

(i) res(C) is a binary symplectic self-orthogonal.
(ii) tor(C) ⊆ res(C)⊥S . Equality holds if |C| = 4n.

Proof To prove statement (i). Let r, r′ ∈ res(C). From Lemma 3, ar, ar′ ∈ C. Using the fact
thatC is symplectic self-orthogonal, we obtain 0 = 〈ar, ar′〉s = a〈r, r′〉s . Thus, 〈r, r′〉s = 0.
As a consequence, res(C) ⊆ res(C)⊥S .

Now we prove statement (ii). Suppose t ∈ tor(C) and r ∈ res(C). From c tor(C) ⊆ C,
if ar + ct′ ∈ C where t′ is a binary vector, then by using the symplectic self-orthogonality
of C, we get 0 = 〈ct, ar + ct′〉s = c〈t, r〉s . This implies that 〈t, r〉s = 0. In addition to
r ∈ tor(C), we obtain t ∈ res(C)⊥S . Hence, tor(C) ⊆ res(C)⊥S . Furthermore, |C| = 4n

equivalent to k1+(k1+k2) = 2n. This implies that tor(C) and res(C)⊥S have samedimension.
Consequently, the statement (ii) is proved. ��
Lemma 2 Assume C is a symplectic-QSD code over E of length 2n and t = at1 + ct2 where
t1, t2 are two binary vectors of length 2n. If t ∈ C, then t1 ∈ res(C) and t2 ∈ tor(C).
Particularly, a res(C) ⊆ C.

Proof We have t1 = αE(t) ∈ res(C). Since res(C) ⊆ tor(C), every r ∈ res(C) satisfies
ar ∈ C. From the symplectic orthogonality of C, we obtain

0 = 〈t, ar〉s = 〈at1 + ct2, ar〉s = a〈t1, r〉s + c〈t2, r〉s
By Lemma 1, we observe 〈t1, r〉s = 0. Then, 〈t2, r〉s = 0,∀r ∈ res(C). Moreover C
is symplectic-QSD, we get t2 ∈ res(C)⊥S = tor(C). Furthermore, cr ∈ C and at1 =
at1 + ct2 + ct2 ∈ C. Hence, a res(C) ⊆ C. ��
Recall the results of Alahmadi et al. (2023a) on a linear E-code, which gave the relation
between any E-code and its residue and torsion codes. The next lemma follows by removing
the condition of the symplectic QSD from the previous lemma. The proof is omitted.

Lemma 3 (Alahmadi et al. 2023a, Lemma 1) IfC is aE-code of length n, then a res(C) ⊆ C.

We are now in a position to state and prove the next result.

Theorem 2 (Alahmadi et al. 2023a, Theorem 7) If C is a E-code of length n, then C =
a res(C) ⊕ c tor(C).

Using Lemma 1 and Theorem 2, we provide a necessary and sufficient for a linear code over
E to be a symplectic self-orthogonal. As stated in next lemma.

Lemma 4 Let C be a E-code. Then C is symplectic self-orthogonal if and only if res (C) ⊆
tor (C)⊥S .

Proof Since C is symplectic self-orthogonal, by Lemma 1, the statement follows.
Let c, d be two codewords of C, then from Theorem 2, c = ac1 + cc2 and d = ad1 + cd2

where c1,d1 ∈ res (C) and c2,d2 ∈ tor (C). Note that

〈c,d〉s = 〈ac1 + cc2, ad1 + cd2〉s = a〈c1,d1〉s + c〈d1, c2〉s
Using res (C) ⊆ tor (C) and the hypothesis, we observe that res (C) ⊆ tor (C)⊥S ⊆
res (C)⊥S , implying that 〈c1,d1〉s = 0 and 〈d1, c2〉s = 0. Thus 〈c,d〉s = 0. The converse
follows. ��

123
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Following Alahmadi et al. (2023b, Corollary 2) for some symplectic self-orthogonal E-
codes, the symplectic-QSD codes over E can be obtained as stated in the next corollary.

Corollary 1 Let C be a linear code of length 2n over E of generator matrix G = [aIn |L],
where L is a square matrix of size n and entries from E. If C is symplectic self-orthogonal
over E. Then,

C is symplectic-QSD if and only if it is free and of type (n, 0).

Proof Suppose C is symplectic-QSD of generator matrix in the form of G, then |C| = 22n .
By using the same argument used to prove Alahmadi et al. (2023b, Theorem 6), we get
L = aD where D is a binary matrix of size n. By Alahmadi et al. (2023b, Theorem 6), C is
a free code of type (n, 0).

Conversely, sinceC is of type (n, 0), we have |C| = 22n . This, togetherwith the symplectic
self-orthogonality ofC, yields that res(C) is a binary symplectic self-orthogonal and tor(C) =
res(C)⊥S (using Lemma 1). Hence, by Theorems 1 and 2, C is a symplectic-QSD code over
E. ��

4 Symplectic duality

First, we prove that the left symplectic, and the right symplectic dual codes of a E-code are
not equal generally. Also, a nonzero E-code cannot be always right symplectic nice. Thus,
there is no non-trivial right symplectic-LCD code over E. This is stated in the next remark.

Remark 1 (1) Let Crep = {00, aa, bb, cc} be the repetition code of length 2 over E. Then,

C
⊥SL
rep = Crep and C

⊥SR
rep = Crep ∪ {c0, 0c, ab, ba}.

We have C is linear code over E, also C
⊥SR
rep and C

⊥SL
rep are not equal. Therefore,

|Crep||C⊥SR
rep | = 42n does not always apply in general, since |Crep||C⊥SR

rep | = 43.
(2) Let C be an nonzero E-code. From the linearity of E, any y ∈ C, cy ∈ C. For any

x ∈ C, we observe that 〈x, cy〉s = 0. This implies that cy ∈ C⊥SR . Consequently,
C ∩ C⊥SR 
= {0}. Hence, there is no non-trivial right symplectic-LCD code over E.

From the previous remark, the right symplectic-LCD codes over E will not be considered
in the rest of the paper. Hereinafter, we consider the left symplectic-LCD codes and write
symplectic-LCD codes, hence the left symplectic dual only. Following Shi et al. (2022), we
have obtained the following results.

Lemma 5 Let C be a free E-code of generator matrix G. Denote C⊥L its left (Euclidean)
dual. Then

(1) C = 〈aG2〉E, where G2 is a binary matrix.
(2) C⊥L = 〈aH2〉E for some binary parity check matrix H2.
(3) C⊥SL = 〈aH2Ω〉E.
Proof The proof of statements (1) and (2) can be found in Shi et al. (2022, Lemma 1). Now,
we prove the statement (3). Since C = 〈aG2〉E, for some binary matrix G2. Let H2 be a
parity check matrix related to G2. Using proposition 2.1 of Li and Zhu (2024), one can say
H2Ω is a generator matrix of the symplectic dual of the binary code of generator matrix G2.
Then,

(aH2Ω)Ω(aG2)
T = aH2ΩGT

2 = 0.
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Hence, 〈aH2Ω〉E ⊆ C⊥SL .
Suppose G2 is of the standard form [Ik |B] where Ik is the identity matrix and B is binary

matrix. Let y ∈ C⊥SL . Assume aG2 =

⎡
⎢⎢⎢⎣
ag1
ag2
...

agk

⎤
⎥⎥⎥⎦, where g1, . . . , gk are the rows of G2.

Therefore, 〈y, agi〉s = 0,∀0 ≤ i ≤ k. For each 0 ≤ i ≤ k, ayi1 + ayi2 + · · · ayit =
a(yi1 + yi2 + · · · yit = 0 for some 0 ≤ t ≤ k. From Table 2, note (yi1 + yi2 + · · · yit = 0.
This fact, together with Table 2 and from the standard form of G2, yields the followings k
equations.

yn+1 + 0 + 0 + · · · + 0 + yk+i1 + · · · + yij1 = 0,
0 + yn+2 + 0 + · · · + 0 + yk+i2 + · · · + yij2 = 0,

...

0 + 0 + · · · + 0 + yk + yk+ik + · · · + yijk = 0,

For each 0 ≤ t ≤ k, the indices k + it , · · · i jt of y correspond to the nonzero positions
of agt. Since we have at most 2n − k free variables in the k equations above, so there are
42n−k solutions of y, this implies that |C⊥SL | ≤ 42n−k . Since |〈aH2Ω〉E| = 42n−k and
〈aH2Ω〉E ⊆ C⊥SL , we get C⊥SL = 〈aH2Ω〉E. ��
Proposition 1 Let C be a linear code over E of length 2n. Then it is free if and only if it is
left symplectic nice.

Proof Since C is E-code, then

|C||C⊥SL | = 4k1 × 2k2 × 42n−k1 = 42n × 2k2

Therefore, C is free if and only if it is left symplectic nice. ��
As a consequence of Proposition 1, we observe the next result.

Corollary 2 If C is symplectic-LCD E-code, then it is free.

Proof From the definition of symplectic-LCD E-code, we have C is left symplectic nice.
According to Proposition 1, we conclude that C is free. ��
Note that in the Corollary above, there is no symplectic-LCD E-code that is not free. In the
following results, we present a method for constructing symplectic-LCD E-codes by using
binary symplectic-LCD codes.

Proposition 2 LetD be a binary symplectic-LCD [2n, k]-code of generator matrix G2. Then
the E-span of aG2, the code 〈aG2〉E is a symplectic-LCD E-code.

Proof Suppose C = 〈aG2〉E and H2 be a binary parity check matrix for D. According to (3)
of Lemma 5,

C⊥SL = 〈aH2Ω〉E.

Hence, |C||C⊥SL | = 4k × 42n−k = 42n . This shows that C is left symplectic nice. Now, we
proveC∩C⊥SL = {0}. Suppose 0 
= z ∈ C∩C⊥SL . Then, we have the next two possibilities:

123
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Case 1: Assume z is not the product of a binary vector with c, then

z =
∑

γi agi , where and agi is a row of aG2 for some distinct i and γi ∈ E.

Again,

z =
∑

λ j ag j , where ag j is a row of aH2Ω for some distinct j and λ j ∈ E.

Since c = a + b, suppose γi ’s and λ j ’s are a or b. Furthermore, we have aa = a,
ab = a and az = z 
= 0. Then

az =
∑

agit , where and agi is a row of G2 for some distinct it .

Also,

az =
∑

ag jl , where g jl is a row of H2Ω for some distinct jl .

Therefore, 0 = ∑
agit − ∑

ag jl = a(
∑

git − ∑
g jl ). Hence,

∑
git − ∑

g jl = 0.
Implying that,

∑
git = ∑

g jl ∈ D ∩ D⊥S , which is in conflict with D being a
symplectic-LCD F2-code.

Case 2: Assume x = cu, where u is a nonzero binary vector. By consideration of the gen-
erator matrix aG2 with G2 in standard form, we see u can be expressed as a linear
combination of some rows of G2. This implies that, v ∈ D. Similarly, we have
u ∈ D⊥S . Hence u ∈ D ∩ D⊥S , which is in conflict with D being symplectic-LCD
F2-code.

In both cases, we obtained a contradiction. Consequently, C ∩ C⊥SL = {0}. Hence, C is a
symplectic-LCD E-code. ��
Now we consider an example of symplectic-LCD E-code constructed by using the method
characterized in Proposition 2.

Example 1 Let D be a binary [8, 4]-code of generator matrix G2 where,

G2 =

⎛
⎜⎜⎝
1 1 1 1 0 0 0 0
0 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1
0 1 1 1 0 1 0 0

⎞
⎟⎟⎠

From Xu and Du (2021, Example 4), D is a symplectic-LCD F2-code. Hence, the E-code C,
where C = 〈aG2〉E is a symplectic-LCD over E by Proposition 2.

To prove that C is a symplectic-LCD code over E, we have to check all the conditions of
a code to be symplectic-LCD over E. We have the parity check matrix of D is

H2 =

⎛
⎜⎜⎝
0 0 1 0 1 0 0 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
0 1 1 1 0 0 0 1

⎞
⎟⎟⎠

From (3) of Lemma 5, C⊥SL = 〈aH2Ω〉E. Since, |C| = |C| = 44, then |C||C⊥SL | = 48.
So, C is a left symplectic nice. Remaining to prove C ∩ C⊥SL = {0}. It is easy to check that
the matrix (aG2)Ω(aG2)

T is nonsingular. Hence, C ∩ C⊥SL = {0}. Consequently, C is a
symplectic-LCD code over E.

Now, we state and prove the converse assertion of Proposition 2.
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Proposition 3 A free symplectic-LCD E-code C is spanned by the matrix aG2, with G2 is a
generator matrix for a binary symplectic-LCD code.

Proof Using Lemma 5, C is generated by the rows of aG2 where G2 is a generator matrix
of a binary code denoted by D. Again by Lemma 5, C⊥SL = 〈aH2Ω〉S where H2 is a parity
check matrix related to G2. Since C is symplectic-LCD, we have C ∩ C⊥SL = {0}. Now
we prove D is a symplectic-LCD F2-code. Assume 0 
= v ∈ D ∩ D⊥SL , since v is nonzero
vector, then 0 
= av ∈ C ∩ C⊥SL , which contradicts to C is symplectic-LCD. So, D is a
symplectic-LCD F2-code. ��
Corollary 3 If C is a symplectic-LCD E-code, then its residue and torsion codes are binary
symplectic-LCD codes.

Proof SinceC is symplectic-LCD, according to Corollary 2,C is free. From Proposition 2,C
is generated by the rows of aG2 over E, with G2 is generator matrix of a binary symplectic-
LCDcode. From the freeness ofC, we have res(C) = tor(C) andG2 is going to be a generator
matrix for both. ��
From a characterisation of an symplectic-LCD code over a finite field presented in Xu and
Du (2021), we state a necessary and sufficient condition for a E-code to be symplectic-LCD.
Therefore,

Proposition 4 Let C be an E-code with additive generator matrix G of the form 1 given in
Shi et al. (2022, Corollary 1), where

G =
⎡
⎣ aIk1 aX aY
bIk1 bX bY
0 cIk2 cZ

⎤
⎦

Where It is the identity matrix and X, Y , Z are binary matrices. Let G2 = [
Ik1 X Y

]
. Then,

C is symplectic-LCD over E if and only if k2 = 0 and det (G2ΩGT
2 ) 
= 0.

Proof Since C is a symplectic-LCD code over E, it is free by Corollary 2, i.e, k2 = 0. If
det (G2ΩGT

2 ) = 0, let D be a binary linear code of generator matrix G2, by Theorem 1,
Alahmadi et al. (2023b, Theorem 1), D is not symplectic-LCD code, so D ∩ D⊥SL = {0}.
Therefore, let 0 
= v ∈ D ∩ D⊥SL , then av ∈ C ∩ C⊥SL which contradicts with C is a
symplectic-LCD E-code. Hence, det (G2ΩGT

2 ) 
= 0.
Conversely, if det (G2ΩGT

2 ) 
= 0, then, according to Xu and Du (2021, Theorem 1), G2

generates a binary symplectic-LCD code. This together with k2 = 0, then by Proposition 2,
C is a symplectic-LCD code over E. ��

5 Symplectic-ACD codes over the ring E

This section define right and left symplectic-ACD codes over E. It also characterize the
symplectic-ACD codes over E.

An additiveE-codeC of length 2n is a free F2-module having 2l elements, where 0 ≤ l ≤
2n. Such a code is said to be right symplectic nice (resp. left symplectic nice) if it verifies
(|C||C⊥SR | = 42n) (resp. |C||C⊥SL | = 42n). Furthermore, C is called right symplectic-
ACD (resp. left symplectic-ACD) if it is a right symplectic nice (resp. left symplectic nice)
and C ∩ C⊥SR = {0} (resp. C ∩ C⊥SL = {0}).
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Theorem 3 If C is an additive E-code of length 2n, then its left symplectic dual is free, but
its right symplectic dual is not free.

Proof First, we prove that C⊥LS is an E-code. Assume d + d′ ∈ C⊥LS and c ∈ C. From the
definition of left symplectic dual, we obtain

〈d + d′, c〉s = 〈d, c〉s + 〈d′, c〉s = 0.

Then, d + d′ ∈ C⊥LS . Therefore, let e ∈ E. From a c-adic decomposition of e, we have
e = ae1 + ce2 where e1, e2 are binary vectors. Then, for any d ∈ C⊥LS and c ∈ C, since
〈ad, c〉s = 〈bd, c〉s = 〈d, c〉s = 0, we have ad, bd ∈ C⊥LS . So

〈ed, c〉s = 〈(ae1 + ce2)d, c〉s = 〈ae1d, c〉s + 〈ce2d, c〉s = 0

Then ed ∈ C⊥LS . We conclude that C⊥LS is linear code over E. By the same technique, we
can prove that C⊥RS is a linear code over E.

Next, we show that C⊥LS is free and that C⊥RS is not free.

(i) Since C⊥LS is E-code. Assume z = cv ∈ C⊥LS , where v ∈ F
2n
2 . By Table 2, every

y ∈ C, 〈z, y〉s = 〈cv, y〉s = ct = 0. Hence, t is even. Let x = aw. From Table 2,
〈x, y〉s = 〈aw, y〉s = at = 0. So, x ∈ C⊥LS . By Shi et al. (2022, Lemma 2), we
conclude that C⊥LS is a free E-code.

(ii) Suppose C⊥RS is free, then it has an additive generator matrix A =
[
aIk1 aX aY
bIk1 bX bY

]
.

Observe that c is a right zero divisor, we get 〈cI2n〉F2 ⊆ C⊥RS . Since C⊥RS is free E-
code, by (Lemma 2, Shi et al. 2022), we have 〈aI2n〉F2 ⊆ C⊥RS and 〈bI2n〉F2 ⊆ C⊥RS .
These imply that |C⊥RS | = 4n × 4n = 42n . Also, |C⊥RS | ≤ 42n because C⊥RS ⊆ E2n .
Consequently, |C⊥RS | = 42n . C⊥RS = E2n . So, C = {0}, that is not possible. So C⊥RS

is not free.

��
Theorem 4 Let C be an E-code. Then, (C⊥SL )⊥SL = C if and only if C is left symplectic
nice.

Proof Since (C⊥SL )⊥SL = C. By Theorem 3, C⊥SL is free also from Proposition 1, we have
C⊥SL is left symplectic nice. So, |C||(C⊥SL )⊥SL | = 42n . Hence, |C||C⊥SL | = 42n . Implying
that C is left symplectic nice.

For converse inclusion, assume C is left symplectic nice. From Proposition 1, we have
both codesC andC⊥SL are free. By Lemma 5, for any c ∈ C and d ∈ C⊥SL , we have c = ax
and d = ay for some binary vectors x and y. Therefore,

〈d, c〉s = 〈ay, ax〉s = a〈y, x〉s .
Hence, c ∈ (C⊥SL )⊥SL . This shows C ⊆ (C⊥SL )⊥SL . Since C and its left symplec-
tic dual are both left symplectic nice, we obtain |C||C⊥SL | = |C⊥SL ||(C⊥SL )⊥SL |, then
|C| = |(C⊥SL )⊥SL |. We conclude that (C⊥SL )⊥SL = C. ��
Proposition 5 If C is left symplectic-ACD additive E-code of length 2n with 2l codewords,
then l is even.

Proof SinceC additiveE-code, by Theorem 3,C⊥SL is free linear code overE. So, |C⊥SL | =
4k1 . Since C is left symplectic-ACD additive code, we have |C||C⊥SL | = 42n , this implies to
|C| = 24n−2k1 . This shows that l = 4n − 2k1, which is even. ��
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Remark 2 Let C be an additive E-code of length 2n with additive generator matrix G =
[aI2n]. Then HR = cΩ it going to be an additive generator matrix of C⊥SR . Clearly, the
parameters of both C and C⊥SR are (2n, 22n, 1). Further, |C||C⊥SR | = 22n × 22n = 42n .
AlsoC∩C⊥SR = {0}. Hence,C is a right symplectic-ACDadditiveE-code. Consequently, for
any integer l, a right symplectic-ACD additiveE-code with 2l codewords can be constructed.

In the following results we give a method to construct some additive E codes that are left
symplectic-ACD.

Lemma 6 LetCbe anadditiveE-code of length2n. LetC∩C⊥SL = {0}and cC∩C⊥SL = {0},
also |C||C⊥SL | < 42n. For any 0 
= w = z + ct ∈ C + cC, if w ∈ C⊥SL , then z 
= 0 and
ct 
= 0, as well as z is a product of a binary vector by c and z ∈ C\cC.
Proof 0 
= w = z + ct ∈ C+ cC, with z, t ∈ C. Suppose w ∈ C⊥SL , then four cases occur:

1. If z = 0 and ct = 0 then w = 0, which leads to contradiction since w is nonzero
codeword. Then, we omit this case.

2. If z = 0 and ct 
= 0 then w = ct ∈ C⊥SL , this is not possible since cC ∩ C⊥SL = {0}.
So, we omit this case also.

3. If z 
= 0 and ct = 0 thenw = z, which is not possible sinceC∩C⊥SL = {0}. Therefore,
this case is not possible.

4. If z 
= 0 and ct 
= 0, then w = z + ct. Assume z is not equal to a product of a binary
vector by c, note that cw 
= 0. By Theorem 3,C⊥SL is free E-code and sincew ∈ C⊥SL ,
we have cw = cz ∈ C⊥SL . Since cC∩C⊥SL = {0}, cz = 0, this creates a contradiction.
So x = cvwhere v is a binary vector. Furthermore, If z ∈ cC∩C, we getw ∈ cC. Since
cC ∩ C⊥SL = {0}, then w = 0, this is a contradiction with the fact that w is a nonzero
codeword. Then, we conclude that z ∈ C\cC.

��
Now, we give a construction of left symplectic-ACD codes from some additive E-codes as
follows.

Proposition 6 Suppose C to be an additive E-code of length 2n which verifies: C∩C⊥SL =
{0}, cC∩C⊥SL = {0} and |C||C⊥SL | < 42n. Then, we can extendC to a left symplectic-ACD
code by the addition of some codewords of cC.

Proof (1) First, we have prove cC � C. Let consider an E-code U as

U = 〈C〉E = aC + cC = {az + ct|z, t ∈ C\cC}
where both vectors z and t are not product of binary vectors by c. Using the fact that
c is right zero divisor, we note that A is a free E-code. By Theorem 3, C⊥SL is free
E-code. Therefore, U⊥SL = C⊥SL . From Proposition 1, |U||U⊥SL | = 42n . Now, we
assume cC ⊆ C. Consider a map g : C → U as

g(0) = 0, g(w) = aw and g(cw) = cw, for every w ∈ C\cC.

Assume, g(w + w′) = g(w) + g(w′), for any w,w′ ∈ C. Clearly, g is a surjective
F2-linear map. As consequence, |C| ≥ |C⊥SL |. This yields to,

|C||C⊥SL | ≥ |U||U⊥SL | = 42n .

This is not possible. Consequently, cC � C.
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(2) Our strategy to prove the statement is to show the existence of ct ∈ cC\C, such that,
for any z ∈ C, z + ct /∈ C⊥SL . Using proof by contradiction. Suppose, ∃ z ∈ C
such that z + ct ∈ C⊥SL . By Lemma 6, z is a product of a binary vector by c also
z ∈ C\cC. For ct1, ct2 ∈ cC\C and ct1 
= ct2, thus there exists z1, z2C, such that
z1 + ct1, z2 + ct2 ∈ C⊥SL . We have z1 
= z2, otherwise if z1 = z2, one can obtain
(z1 + ct1) + (z2 + ct2) = c(t1 + t2) ∈ C⊥SL , this yields to a contradiction. Hence, we
must have z1 
= z2. Consider a map h : U → C with two following cases:

(a) For any t ∈ C\cC, if ct ∈ cC\C, we define h as

h(0) = 0, h(at) = t and h(ct) = t

where z is the aforementioned vector such that z + ct ∈ C⊥SL .
(b) For any t ∈ C\cC, if ct ∈ C, we define g as

h(0) = 0, h(at) = t and h(ct) = ct

In both cases, assume that g(w+w′) = g(w) + g(w′), for any w,w′ ∈ C. Also we
see h is injective F2-linear map. As consequence, |C||C⊥SL | ≥ |U||U⊥SL | = 42n .
This contradicts the hypothesis. Hence, there exists ct ∈ cC\C such that, for any
z ∈ C, z + ct /∈ C⊥SL .

From above two steps, by adding ct toC, we getU. It is easy to see thatU∩U⊥SL = {0}.
IfU is left symplectic nice, thenU is a left symplectic-ACD additiveE-code. Otherwise,
repeat steps (1) and (2) for U.

��
Next, we will extend the definitions of residue and torsion codes of an E-code to an additive
E-code. Obviously, these codes are binary linear codes. Assume dim res(C) = l1 and
dim tor(C) = l2.

LetC be an E-code of generator matrix G as given in Shi et al. (2022, Corollary 1). Then,
dim(res(C)) = k1 = l1 and dim(tor(C)) = l1 + k2 = l2, with where k2 is the F2-dimension
of the set of elements of C which are scalar multiples of c ∈ E and that can not be generated
by the first two blocks of the matrix G.

Theorem 5 IfC is an additiveE-code of length 2n. Then,C⊥SL = 〈res(C)⊥S 〉E and |C⊥SL | =
42n−dim(res(C)) = 42n−l1 .

Proof Let w ∈ C, then there is z ∈ res(C), such that aw = az. Let z′ ∈ res(C)⊥SL ), we see
that

〈az′,w〉s = 〈az′, aw〉s = 〈az′, az〉s = a〈z′, z〉s = 0 and 〈bz′,w〉s = 〈bz′, aw〉s =
〈bz′, az〉s = b〈z′, z〉s = 0.

This imply that az′, bz ∈ C⊥SL . So, 〈res(C)⊥S 〉E ⊆ C⊥SL .

For converse inclusion. It is easy to prove 〈res(C)⊥S 〉E = 〈res(C)〉⊥SL
E . Therefore, let

z ∈ res(C), there exists az+cz′ ∈ C, where αE(az+cz′) = z. Since c is a right zero divisor,
for every w ∈ C⊥SL , we have

〈w, az〉s = 〈w, az + cz′〉s = 0 and 〈w, bz〉s = 〈w, az〉s = 0.

Hence, w ∈ 〈res(C)〉⊥SL
E . This shows C⊥SL ⊆ 〈res(C)⊥S 〉E.

Consequently, C⊥SL = 〈res(C)⊥S 〉E. Moreover, |C⊥SL | = 42n−dim(res(C)) = 42n−l1 . ��
In upcoming results, we establish a sufficient condition for an additive E-code to be a left
symplectic-ACD.
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Proposition 7 An additive E-code of length 2n is left symplectic-ACD if the following
conditions hold:

(1) res(C) is a binary symplectic-LCD code.
(2) c tor(C) ∩ C⊥SL = {0}
(3) 2l1 × 2l2 × 42n−l1 = 42n(i.e; l1 = l2).

Proof Obviously, |C| = | res(C)|| tor(C)| = 2l1 × 2l2 . By Theorem 5, |C⊥SL | = 42n−l1 .
Hence, C is left symplectic nice. Let 0 
= w = (w1,w2, · · · ,w2n) ∈ C ∩ C⊥SL . Since
c tor(C) ∩ C⊥SL = {0}, w is not product of a binary vector by c. This implies that αE(w) is
a nonzero binary vector. Also, for any w′ = (w′

1,w
′
2, · · · ,w′

2n) ∈ C, 〈w,w′〉s = 0. Since
αE is a ring homomorphism, we obtain

〈αE(w), αE(w′)〉s = αE(〈w,w′〉s) = αE(0) = 0.

As results, αE(w) ∈ res(C) ∩ res(C)⊥SL , this is not possible. Hence, w = 0. So C is left
symplectic-ACD additive E-code. ��
Now, we will show that the converse of Corollary 3 is also true.

Corollary 4 Let C be a free E-code of length 2n. Then C is symplectic-LCD if res(C) is a
symplectic-LCD F2-code.

Proof Since res(C) is a symplectic-LCD F2-code, to show C is an symplectic-LCD code,
it suffices to check the conditions (2) and (3) of Proposition 7. From the freeness of C, we
have tor(C) = res(C), so k1 = k2. By Theorem 5, we have

c tor(C) ∩ C⊥SL = c res(C) ∩ 〈res(C)⊥S 〉E
= c(res(C) ∩ res(C)⊥S )

= {0} (since res(C) is a binary symplectic-LCD code.)

Also, l1 = l2, since tor(C) = res(C). Hence, C is left symplectic-ACD code, implying that
C is a symplectic-LCD E-code. ��
Lemma 7 Let C be an additive E-code of length 2n. Then res(C⊥LS ) = tor(C⊥LS ) =
res(C)⊥S .

Proof We have C⊥LS is free E-code by Theorem 3. So, res(C⊥LS ) = tor(C⊥LS ). Therefore,
for any w = az+ ct ∈ C⊥LS and w′ = az′ + ct′ ∈ C with z, z′, t, t′ ∈ F

2n
2 , by the definition

of αE, we have αE(w) = z ∈ res(C⊥S ) and αE(w′) = z′ ∈ res(C). Using the ring morphism
αE and 〈w,w′〉s = 0, we obtain

0 = αE(〈w,w′〉s) = 〈αE(w), αE(w′)〉s = 〈z, z′〉s
This implies that, z ∈ res(C)⊥S . So res(C⊥LS ) ⊆ res(C)⊥S . Further, by Theorem 5 |C⊥LS | =
42n−l1 . Also, from the freeness of C⊥S , we have | res(C⊥LS )| = 22n−l1 . Thus, | res(C)⊥S | =
22n−l1 . Then, the cardinality of these codes is the same. Hence, res(C⊥LS ) = res(C)⊥S . ��
Corollary 5 If C is a E-code of length 2n, then C⊥LS = a res(C)⊥S ⊕ c res(C)⊥S .

Proof From Theorem 2 and Lemma 7, the result follows immediately. ��
Corollary 6 Let C be an E-code of length 2n. Then, tor(C)⊥S ⊆ tor(C⊥LS ). Particularly, if
C is free, this equality holds.
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Proof Since C and C⊥S are linear codes, res(C) ⊆ tor(C) and res(C⊥LS ) ⊆ tor(C⊥LS ).
Furthermore, tor(C)⊥S ⊆ res(C)⊥S . Applying Lemma 7, tor(C)⊥S ⊆ res(C⊥LS ). Hence,
tor(C)⊥S ⊆ tor(C⊥LS ).

We have C⊥LS is free by Theorem 3. Then, res(C⊥LS ) = tor(C⊥LS ). Since C is free,
then res(C) = tor(C). Thus, res(C)⊥S = tor(C)⊥S . By Lemma 7, res(C)⊥S = tor(C⊥LS ).
Consequently, tor(C⊥LS ) = tor(C)⊥S . ��
Now, we show that the converse statement of Proposition 7 is true.

Proposition 8 Let C be a left symplectic-ACD additive E-code of length 2n satisfies cC ∩
C⊥LS = {0}. Then its residue code is a binary symplectic-LCD code and 2l1+l2 × 42n−l1 =
42n( i.e; l1 = l2), thus c tor(C) ∩ C⊥LS = {0}.
Proof Since C is an additive E-code, then by Lemma 7, res(C)⊥S = res(C⊥LS ). Now, let
r ∈ res(C) ∩ res(C)⊥S = res(C) ∩ res(C⊥LS ), then there are ar + ct ∈ C and ar +
ct′ ∈ C⊥LS such that, αE(ar + ct) = αE(ar + ct′) = r. By linearity of C⊥LS , we have
cr = c(ar + ct′) ∈ res(C⊥LS ). Moreover, cr = c(ar + ct) ∈ C. These imply that cr ∈
cC ∩ C⊥LS = {0}. So r = 0. Consequently, res(C is a binary symplectic-LCD code. Next,
since |C| = | res(C)|| tor(C)| = 2l1+l2 also |C⊥LS | = 42n−l1 and C is a left symplectic-
ACD, this shows 2l1+l2 × 42n−l1 = 42n , and, therefore, that l1 = l2. It remains to prove
c tor(C) ∩ C⊥LS = {0}. Let w ∈ c tor(C) ∩ C⊥LS , then w = ct with t ∈ tor(C). From
the definition of a torsion code, w ∈ C. Thus, w ∈ C ∩ C⊥LS = {0}, so w = 0. Hence
c tor(C) ∩ C⊥LS = {0}. ��
To conclude this section, we give the next example to illustrate Propositions 6 and 7.

Example 2 Let C be an additive E-code of length 4 and additive generator matrix G, where

G =
(
a 0 b b
0 a 0 b

)

Let (y1, y2, y3, y4) ∈ C⊥SL , then we have 〈(y1, y2, y3, y4), (a, 0, b, b)〉s = 0 and
〈(y1, y2, y3, y4), (0, a, 0, b)〉s = 0. Thus, C⊥SL = {(y1, y2, y1 + y2, y2)| y1, y2 ∈ E}. It
is clearly to see C ∩ C⊥SL = {0}, cC ∩ C⊥SL = {0} and |C||C⊥SL | = 4 × 42 = 43 < 44.
Hence, by Proposition 6, we can add to G the vectors (c, 0, c, c) = c(a, 0, b, b) and
(0, c, 0, c) = c(0, a, 0, b), we get an additive E-code D with an additive generator matrix
GD, where

GD =

⎛
⎜⎜⎝
a 0 b b
0 a 0 b
c 0 c c
0 c 0 c

⎞
⎟⎟⎠

Additionally, D is left symplectic-ACD.
To prove D is left symplectic-ACD, it suffices to check three conditions of Proposition 7.

We have a generator matrix for both res(D) and tor(D) is equal to G1 =
(
1 0 1 1
0 1 0 1

)
Thus,

res(D) is a binary symplectic-LCD code, since

G1ΩGT
1 =

(
0 1
1 0

)

is nonsingular. Further, any element (x, y, z, t) ∈ res(D)⊥S , it satisfies

〈(x, y, z, t), (1, 0, 1, 1)〉s = 0 and 〈(x, y, z, t), (0, 1, 0, 1)〉s = 0.
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These imply x + y + z = 0 and y + t = 0. Thus, z = y + x and t = y.

Hence, res(D)⊥S has a binary generator matrix

(
1 0 1 0
0 1 1 1

)
. Then, by Theorem 5, we get

D⊥LS = 〈res(D)⊥S 〉E =
〈(

1 0 1 0
0 1 1 1

)〉
E

.

It is easy to see that, c tor(D) ∩ D⊥SL = {0} and l1 = l2 = 2. Hence, by Proposition 7, D is
a left symplectic-ACD code over E.

Example 3 Let C be the additive E-code of length 6 with additive generator matrix G where

G =

⎛
⎜⎜⎜⎜⎝

0 0 0 a b 0
0 0 0 0 a b
a b 0 0 0 0
0 a b 0 0 0
0 c c c c c

⎞
⎟⎟⎟⎟⎠

By Theorem 5, C⊥SL is E-span of the matrix

(
1 1 1 0 0 0
0 0 0 1 1 1

)
. Also, |C| = 25 and |C⊥SL | =

24. Thus,

|C||C⊥SL | = 211 < 46.

Therefore, it is easy to see that, C ∩ C⊥SL = {0} and cC ∩ C⊥SL = {0}.
Then, we can add c(a, b, 0, 0, 0, 0) = (c, c, 0, 0, 0, 0), c(0, a, b, 0, 0, 0) =

(0, c, c, 0, 0, 0) and c(0, 0, 0, 0, a, b) = (0, 0, 0, 0, c, c) in G to get the additive E-code
D with additive generator matrix GD, where

GD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 a b 0
0 0 0 0 a b
a b 0 0 0 0
0 a b 0 0 0
0 c c c c c
c c 0 0 0 0
0 c c 0 0 0
0 0 0 0 c c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence, by Proposition 6, D is left symplectic-ACD.
In order to proveD is a left symplectic-ACDcode,we verify all conditions of Proposition 7.

Note that, res(D) and tor(D) have generator matrices Gres(D) and G tor(D), respectively

Gres(D) =

⎛
⎜⎜⎝
0 0 0 1 1 0
0 0 0 0 1 1
1 1 0 0 0 0
0 1 1 0 0 0

⎞
⎟⎟⎠ G tor(D) =

⎛
⎜⎜⎝
0 1 1 1 1 1
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 1 1

⎞
⎟⎟⎠

Clearly, l1 = l2 = 4. Also, res(D) is a binary symplectic-LCD code since

Gres(D)ΩGT
res(D) =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠
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is invertible. According to Theorem 5, D⊥SL = 〈res(D)⊥S 〉E. Therefore, it is easy to prove,
c tor(D) ∩ D⊥SL = {0}.

Hence, by Proposition 7, D is a left symplectic-ACD code over E.

6 Symplectic self-dual codes

In this section, we characterize the left symplectic self-dual E-codes and provide some
necessary results for the classification of left symplectic self-dual codes. At the end we give
some results on the minimum symplectic distance of an arbitrary non-zero E-code.

Theorem 6 Let C be an E-code of length 2n. Then,
C is left symplectic self-dual code if and only if C is free and its residue code is a binary

symplectic self-dual code.

Proof To prove this result, we use Theorem 2 and Corollary 5. Note that, C = C⊥SL if and
only if res(C) = res(C)⊥S = tor(C). Hence, the result holds. ��
The following simple examples illustrated Theorem 6.

Example 4 Let C be the linear code over E of length 4 and generator matrix G, where

G =
(
a 0 0 a
0 a a a

)
.

Clearly, C is free and res(C) has a generator matrix G2 =
(
1 0 0 1
0 1 1 1

)
.

Thus, by Xu and Du (2022, Theorem 1), res(C) is a binary symplectic self-dual code as
G2ΩGT

2 is the zeromatrix and dim res(C)⊥S = 4−dim res(C) = 4−2 = 2 = dim res(C).
Hence, by Theorem 6, C is left symplectic self-dual.

On the other hand, to show C is a really left symplectic self-dual E-code, we need to
prove that C = C⊥SL . From the freeness of C and part (3) of Lemma 5, C⊥SL = 〈aH2Ω〉E
where H2 =

(
0 1 1 0
1 1 0 1

)
is a binary parity check matrix related to G2. Thus, H2Ω = G2.

So, aH2Ω = G. This yields, C⊥SL = C. Hence, C is a left symplectic self-dual E-code.

Example 5 Let C be the E-code of length 2 defined by

C = {00, a0, b0, c0, 0c, cc, bc, ac}
Then, res(C) = {00, 10} and tor(C) = F

2
2. Thus, C

⊥SL = {00, ao, b0, c0}. It is easy to see,
C 
= C⊥SL . Hence, C is not a left symplectic self-dual code over E. However, res(C) is a
binary symplectic self-dual code.

Example 6 Let C be a linear code over E of type (1, 0) defined by.

C = 〈( a 0 a a )〉E
Therefore, res(C) has generatormatrix

(
1 0 1 1

)
. Thus, res(C) is a binary [4, 1]-code. Since,

dim res(C)⊥S = 4−dim res(C) = 3 
= dim res(C), then res(C) is not symplectic self-dual.
Next, we check whether C is left symplectic self-dual over E.

By Lemma 5, C⊥SL = 〈aD〉E where, D =
⎛
⎝ 0 0 0 1
1 0 1 0
0 1 1 0

⎞
⎠. Therefore, |C⊥SL | = 43 
= 4 =

|C|. This shows, C 
= C⊥SL . Hence, C is not left symplectic self-dual over E. However, C is
free.
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A permutation-equivalence between two E-codes is illustrate in the following theorem.

Theorem 7 LetDandD′ are two free codes overE. ThenDandD′ are permutation-equivalent
if and only if res(D) and res(D′) are permutation equivalent.

Proof SinceD andD′ are permutation equivalent, there exists a permutation matrix P where
D′ = DP . Thus, αE(D′) = αE(DP) = αE(D)P . As consequence, res(D′) and res(D) are
permutation equivalent.

It remains to prove the opposite. Since res(D) and res(D′) are permutation equivalent,
there exists a permutation matrix P such that res(D′) = res(D)P . From the freeness of D
and D′, tor(D′) = res(D′), tor(D) = res(D). According to the definition of these E-codes,

D′ = a res(D′) ⊕ c res(D′) = a res(D)P ⊕ c res(D)P = (a res(D) ⊕ c res(D))P.

This shows D′ and D are permutation-equivalent E-codes. ��
It is interesting to note that the condition of freeness of codes overE in Theorem 7 is necessary
for it to hold, the next example proves this.

Example 7 The E-codes D′ and D with generator matrices GD′ and GD, respectively

GD′ =
(
a a 0 0
0 0 c 0

)
GD =

(
a a c 0
0 0 0 c

)

We have, res(D′) = res(D) = {(0, 0, 0, 0), (1, 1, 0, 0)}, this implies that these binary codes
are permutation equivalent. However the E-codes D′ and D are not permutation equivalent.
Observe that D′ and D are of type (1, 1) which imply that they are not free codes.

Since every left symplectic self-dual E-code is necessarily free code, the next corollary
establish a symplectic equivalence between two left symplectic self-dual E-codes.

Corollary 7 LetD′ andD be left symplectic self-dualE-codes. Then,D′ andD are symplectic-
equivalent if and only if res(D′) and res(D) are symplectic-equivalent.

Proof AsD′ andD are symplectic-equivalent codes overE, there exists a permutation matrix
P such thatD′ = DP . ThusαE(D′) = αE(D)P . Also, res(D′) and res(D) are binary symplec-
tic self-orthogonal codes, because of symplectic self-orthogonality ofD′ andD and Lemma 1.
Hence, res(D′) and res(D) are symplectic-equivalent.

For the inverse statement. Suppose D′ and D are left symplectic self-dual E-codes. By
Theorem 6, D′ and D are free codes and res(D′) and res(D) are binary symplectic self-
dual codes. Therefore, by Theorem 2, D′ = a res(D′) ⊕ c res(D′) and D = a res(D) ⊕
c res(D). From the symplectic-equivalence of residue codes of res(D′) and res(D), there exists
a permutation matrix P such that res(D′) = res(D)P . So, D′ = a res(D)P ⊕ c res(D)P =
a res(D) ⊕ c res(D)P = DP . This with the symplectic self-orthogonality of D′ and D, we
conclude, D′ and D are symplectic-equivalent codes over E. ��
We conclude our study over the non-commutative ring E with an interesting parameter of a
linear code, known by the minimum symplectic distance. The result can be stated as follows.

Theorem 8 If C is a nonzero E-code of length 2n, then dS(C) = dS(tor(C)). Where dS(C)

(resp. dS(tor(C))) denotes the minimum symplectic distance of C ( resp. the minimum
symplectic distance of tor(C) ).
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Proof Assume dS(tor(C)) = dt . So there exists x ∈ tor(C) such that ωS(x) = dt . Since
c tor(C) ⊆ C, ωS(cx) = ωS(x) = dt . Hence, dS(C) ≤ dt .

Let t ∈ C, such that dS(C) = ωS(t). According to Theorem 2, t = at1 + ct2 where
t1 ∈ res(C) and t2 ∈ tor(C). From the hypothesis C is nonzero code, the following cases
arise:

• If t1 = 0, t2 
= 0, then ωS(t) = ωS(ct2) = ωS(t2).
• If t1 
= 0, t2 = 0, then ωS(t) = ωS(at1) = ωS(t1).
• If t1 
= 0, t2 
= 0, then ωS(t) ≥ ωS(at) = ωS(at1) = ωS(t1).

Due to res(C) ⊆ tor(C), we see t1 ∈ tor(C). From preceding cases, ωS(t) ≥ dt . Hence
dS(C) ≥ dt . Consequently, this equality holds. ��
Using relation (1), Theorem 8 and Alahmadi et al. (2023a, Theorem 20), we obtain the
following lemma:

Lemma 8 If C a nonzero linear code E, then⌈
dH (C)

2

⌉
≤ dS(C) ≤ min{dH (C),

⌊
2m − k1 + k2 + 2

2

⌋
}.

Proof Since tor(C) is binary linear code of dimension k1 + k2. By applying (1), we get the
the following inequality:⌈

dH (tor(C))

2

⌉
≤ dS(tor(C)) ≤ min{dH (tor(C)),

⌊
2m − k1 + k2 + 2

2

⌋
}.

From Alahmadi et al. (2023a, Theorem 20) and Theorem 8, we have dH (C) = dH (tor(C))

and dS(C) = dS(tor(C)). Hence, the result follows. ��

7 Conclusion

In this paper, the symplecticQSD,LCDandACDcodes over the non-unital, non-commutative
local ring E of order four are introduced. Moreover, we have determined the connection
between free symplectic-LCD E-codes and binary symplectic-LCD codes. The symplectic-
LCD codes were also characterized corresponding to their generator matrices. Further, we
have derived different conditions for the existence of symplectic-ACD codes over E. Also,
such codes are characterized as a function of their residue and torsion codes. Finally, left
symplectic self-dual codes are well presented. Bounds on the minimum symplectic distance
of a linear code over E were determined. For future work, it will be an interesting idea to
construct a family of left symplectic-ACD codes overEwith long lengths and largeminimum
distances. For instance, combinatorial matrices arising from low class association schemes
could be used to that end, along the lines of Alahmadi et al. (2023b). Thus, there is strong
possibility to extend this study to a non-commutative non-unitary ring of odd characteristic.
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