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Abstract—This paper addresses the challenges of 

implementing markerless Augmented Reality (AR) in complex 

manufacturing settings. Making AR systems more intuitive, 

robust, and adaptable is a required step to make their adoption 

possible in the industry. Among the hard constraints 

encountered in uncontrolled, real-world environments, we 

notably face the dynamic nature of production lines and the 

evolving appearance of the objects during the assembly process. 

Emerging deep learning (DL) methods enable 6D object pose 

estimation for AR registration of moving objects. However, they 

need a significant amount of 6D object pose ground truth data. 

In real-world scenarios, such a requirement cannot be fulfilled, 

because of two factors: the complexity of establishing an 

accurate 6D pose labeling procedure for large objects in a real 

production line and the wide variety of object states and 

appearances encountered along the assembly line. For this 

reason, it is necessary to develop alternative 6D pose estimation 

techniques capable of handling unseen objects. To this end, this 

paper introduces a novel pipeline relying on HoloLens 2 for data 

capture, Neural Radiance Fields (NeRF) for 3D model 

generation, and MegaPose for 6D pose estimation. The proposed 

approach enables 6D pose estimation without object-specific 

training or laborious pose labeling.  

Keywords— Industrial augmented reality, deep learning, 6D 

object pose estimation 

I. INTRODUCTION 

The emergence of Industry 4.0 has generated great interest 
in applying augmented reality (AR) to various levels and use 
cases of the supply chain. More specifically, industrial 
assembly performed by human operators has a lot to gain from 
AR adoption [1]. AR-based assistants can be used to 
summarize industrial procedures, check the quality of the 
assembly, detect unsafe situations, and train novice 
operators [2]. It has been demonstrated that AR is a relevant 
medium to guide operators during assembly tasks [3] due to 
its capacity to interactively display pertinent information in 
the real world at the right time. Despite the expected benefits, 
the adoption of AR-based assistants remains limited in 
practice, and notably in use cases occurring in real industrial 
environments [4] involving complex industrial objects and 
uncontrolled environments.  

 The use case considered in this paper concerns a real-
world boiler production line from the elm.leblanc - Bosch 
manufactories (Fig. 1 1 ), which raises some important 
challenges. Such production lines lead to cluttered and 
dynamic scenes. Indeed, the boilers are moved along the 
assembly line through different workstations and thus their 
pose is continuously changing. In addition, the shape and 

 
1 Please note that all figures presented in this paper are acquired in real-life 

conditions at the elm.leblanc - Bosch manufacture in Drancy, France. 

visual appearance of the boiler evolve during the assembly 
process (Fig. 2).  

A key stage in AR applications concerns the registration 
step, which aims to align the virtual content with the real 
world. This step enables the placement of virtual content at 
meaningful locations so that the user can visualize easily the 
task to do and interact with the virtual content.  

For the time being, the most commonly used registration 
method is to add a simple visual feature, such as a QR code, 
to the scene. The marker can be detected and tracked at every 
frame and acts as an anchor for placing the virtual content. 
Most of the time, the marker is positioned at a known, fixed 
location and remains static. As a result, such a method cannot 
keep virtual content aligned with moving objects. A different 
possibility would be to set up markers on all moving objects. 

  
                     (a)                                                           (b) 

 
 (c) 

Fig. 1. Pictures of the boiler on the lifting trolley at one of the same late 

stages of assembly. (a) front view of the boiler tilted by 45 degrees (b) 

front view of the boiler with no tilt, but with the max elevation (c) side 
view of the boiler tilted by 45 degrees. These pictures show the boiler 

3D pose changes based on the operator’s needs. 



However, markers must remain visible, which is not trivial for 
the various objects that are present on the assembly line 
(boilers, tools, components…), due to inherent occlusions. As 
a consequence, the AR application will not be able to relocate 
the virtual content correctly and will lead to significant 
registration errors. Moreover, precisely positioning virtual 
content manually at a default location during AR authoring is 
burdensome. Both issues increase the cognitive load of 
operators and reduce the assistance quality provided by the 
AR application [5].  

Therefore, our objective is to perform markerless 
registration of AR content that can automate both the initial 
placement of the virtual content and the correct update of its 
location when boilers are moving through the assembly line. 
Solving this task can help AR applications display dynamic 
virtual content [6], be more responsive, and provide an overall 
enhanced user experience. 

The markerless registration of virtual content can be 
formulated as a 6D object pose estimation problem. The 
objective is thus to perform 6D pose estimation of the boiler 
at different assembly states.  

In recent years, deep learning (DL) methods have 
revolutionized various computer vision tasks, with spectacular 
results. Given the highly difficult nature of our task, with 
uncontrolled environments and boilers represented as 
complex, evolving objects with reflective or texture-less parts, 
DL techniques offer a promising axis of research. Let us note 
that although several DL approaches consider the issues of 2D 
and 3D object detection for AR scenarios [7], their application 
to 6D object pose estimation within the framework of 
industrial AR use cases remains limited.  

However, DL-based 6D pose estimation methods require 
a large amount of labeled training data, which is highly 
difficult to obtain in real-life industrial settings. To overcome 
such limitations, we propose a novel pipeline relying on the 
HoloLens 2 device for acquisition, Neural Radiance Fields 
(NeRF) [8] for 3D object reconstruction, and the MegaPose 
6D pose estimation technique [9]. Trained on millions of 
synthetic scenes with thousands of different objects, the 
MegaPose approach offers the advantage of being able to be 
applied without re-training to estimate the pose of unseen, 
novel objects. The proposed approach makes it possible to 
perform 6D pose estimation of several boiler models at 
different assembly states as required by the considered 
industrial AR use case. 

The rest of the paper is structured as follows. Section II 
briefly introduces the state of the art in traditional DL-based 
6D pose estimation, then analyzes their applications to 
industrial AR use cases, and lastly details the task of 6D pose 
estimation on unseen objects. Section III presents the 
proposed pipeline and the results obtained. Finally, Section IV 
concludes the paper and draws some perspectives for future 
work. 

II. RELATED WORK 

A. 6D pose estimation for industrial AR applications 

DL-based 6D object pose estimation is a fast-growing 
research field. The goal of 6D object pose estimation is to infer 
the 6D pose of the object of interest, expressed as 3D 
translation and rotation parameters. Traditionally, DL-based 
methods are built upon a 3D object detector or feature 
extractor and use as input either RGB-D data [10] or RGB data 
only [11]. Such methods are composed of a 6D object pose 
estimator network supplemented by a pose refinement method 
which can be DL-based [12] or not, like Iterative Closest Point 
(ICP) [13]. The 6D object pose estimation methods can be 
trained to determine the pose of a specific object instance [14, 
15, 16] or a whole object category [17, 18, 19]. 

The application of DL-based 6D object pose estimation 
methods to industrial AR is still an emerging field due to 
technological challenges, data limitations, and 
interdisciplinary nature. This explains the relatively limited 
number of papers directly addressing this issue.  

In [20], the 6D pose estimation of an industrial milling 
machine has been performed from RGB-D input. The RGB 
data are captured using a HoloLens 1, and the depth input is 
captured from an IoT depth camera. The model combines four 
deep neural networks, each dedicated to a specific task: RGB 
image segmentation, RGB feature extraction, 3D feature 
extraction from the reconstructed object point cloud, and 
finally 6D pose estimation. In order to ensure the related 
computational requirements, the inference is performed on a 
remote server. The obtained pose results are finally sent back 
to the HoloLens 1 device.  

MANTRA [21] is an AR system able to align temperature 
information on industrial objects like water pumps and 
electronic cardboards. First, the method detects the object and 
estimates its pose through the association of the Yolo4 model 
with an altered LINEMOD method [22]. Then, the ICP 
algorithm [13] is applied to perform a pose refinement. Lastly, 
a 6D pose tracking module allows updating the pose of the 
object in real-time. The inputs are RGB-D images, thermal 
images, and CAD object models. The AR display is screen-
based. The method is robust enough to display virtual content 
on parts of the electronic board.  

In [23], the authors introduce a CNN (Convolutional 
Neural Network) approach able to jointly perform object pose 
and state estimation. The object is a coffee machine with 
removable parts that can be used to simulate the assembly. The 
network is based on TridentNet and Faster R-CNN 
architectures and exploits two distinct CNNs: a first one 
responsible for object detection and state estimation and a 
second one for 6d pose estimation. Interestingly, the proposed 
approach is able to deal with objects being assembled. 

The above-cited methods are instance-based and require 
training a DL model for every new object. They provide 
accurate pose estimates for learned instance objects but have 

     

Fig. 2. Changes in the appearance of a boiler during the assembly for a 

given model.  



inherently weak generalization. This limitation hinders 
scalability in our evolving industrial environment, where the 
AR assistant must interact with a large variety of boilers at 
different assembly stages for which an instance-based pose 
estimation model has not been trained. Consequently, such 6D 
instance-based pose estimation methods are impractical in our 
case. 

To address the issue of per-object instance DL retraining, 
a second family of methods, so-called category-based, has 
been developed. These methods aim to estimate poses for 
entire object categories rather than specific instances. 
Category-based approaches typically rely on large corpora of 
annotated pose data that are usually produced with dedicated 
annotation tools. For example, the T-LESS data set [24] uses 
a sophisticated manual pose labeling process enabled by 
multiple cameras at known positions to ensure accurate 
ground truth poses. The development of a pose annotator tool 
like for the Objectron dataset [25] facilitates the pose labeling 
process, but human effort is still needed and increases 
consequently with the number of considered objects. This 
requirement represents a strong limitation, especially in 
industrial settings where capturing accurate 6D pose ground 
truth for large objects is challenging. 

 The use of synthetic data reduces the need for real-world 
data acquisition and manual pose labeling. Indeed, synthetic 
data can be generated from the 3D models of the objects or 
environments of interest. A model is then trained on these 
synthetic data and transfer learning is applied to fine-tune the 
model to real-world data. Such a transfer learning strategy was 
used for pose estimation [26]. An alternative is to use a self-
training mechanism that generates pseudo-pose labels from 
the synthetic model later used to self-train the model on real 
unlabeled data. This strategy was effectively applied to AR 
registration and integrated into a mobile application for 
industrial robot manipulation [27].  

 Despite these advancements, category-based methods, 
like other approaches that rely on training or fine-tuning, need 
to be adapted for new, unseen objects, which limits their 
capacity to be used in the wild in our reconfigurable industrial 
environment. For these reasons, we have not retained 
category-based techniques in our developments. 

B. 6D pose estimation of unseen objects 

While instance-based and category-based methods have 
made significant strides in 6D object pose estimation, they are 

limited by their reliance on pre-defined object instances or 
categories. To address this limitation and facilitate the 
application of DL-based 6D object pose estimation methods 
to real-world scenarios, recent works have focused on the 
challenging task of estimating poses for unseen novel objects. 
This evolution towards more generalizable solutions is crucial 
for industrial applications where encountering new object 
variants or objects being assembled is common.  

In contrast to the traditional supervised workflow of 
training and inference used in instance-based and category-
based methods, approaches designed for unseen objects 
introduce an extra step called object onboarding. This step 
occurs between training and inference and helps the DL model 
to adapt to entirely new objects. During onboarding, the DL 
model is provided with a 3D mesh [9] or a few views with 
pose labels [28] of the novel unseen test object. This approach 
eliminates the need for retraining for new objects and enables 
the model to estimate 6D poses of previously unseen objects 
from input test images during inference.  

Two families of DL-based 6D pose estimation methods for 
unseen objects can be identified: template-based and feature-
based matching techniques [29]. Both leverage deep learning 
for object detection or segmentation, feature extraction, pose 
estimation, and refinement, but differ in their approach. These 
modules are often a combination of CNNs or Vision 
Transformers.  

Template-based methods [9, 29] use deep neural networks 
to extract high-level features from both the cropped region of 
interest of the test image and a set of rendered image templates 
from the onboarded 3D mesh. These methods then classify the 
rendered templates to find the best match with the test image. 
This classification yields an initial pose hypothesis, which is 
subsequently refined by another deep neural network. This 
process can be repeated to generate multiple pose hypotheses 
and deal with pose ambiguities more easily. To enhance 
robustness, templates are rendered with diverse lighting 
conditions, material properties, and background textures. 
However, these approaches can be computationally intensive 
due to the extensive rendering requirements and the several 
forward passes.  

Feature-based methods [29, 30] focus on extracting local 
features from both the segmented test image and the object-
onboarding input (3D mesh or labeled views). After feature 
extraction, these methods use another network to perform the 
feature matching. They are faster than template-based 
methods thanks to the absence of template rendering. 
However, they may still struggle with viewpoints that lack 
distinctive local features or present pose ambiguities. 

DL models capable of performing predictions on unseen 
objects align with our industrial context. They relieve us from 
the constraint of capturing 6D pose ground truth and retraining 
the model for every model and assembly state. Considering 
that boilers present textureless and reflective parts, and certain 
background elements closely resemble boiler components, 
thus potentially generating similar features, template-based 
methods appear more suitable in our case.  

We have used the Benchmark for 6D Object Pose 
Estimation (BOP) [31] to make the final decision on the pose 
estimation model to retain. BOP has been organizing since 
2017 yearly challenges to track the advancement of 6D pose 
estimation as part of the R6D workshop. They provide 
datasets and performance metrics to compare methods and 

   

Fig. 3. Examples of two different boiler models in the production line. 



establish state-of-the-art on several tasks related to 6D pose 
estimation. In 2023, BOP introduced a task in the challenge 
for “Model-based 6D localization of unseen objects”. At 
inference, such models require a 3D model as onboarding 
input.  

We have adopted the MegaPose technique [9] to perform 
the pose estimation because it offers the backbone model of 
the method that won the best open-source method in the task 
in 2023 [32]. Furthermore, MegaPose works with rough or 
low-fidelity 3D models and has already been applied to a 
practical use case for visual guidance of a robotic arm similar 
to AR use cases. 

III. PROPOSED METHODOLOGY 

Our pipeline (Fig. 4) is composed of three main 
components: HoloLens 2 for data collection, NeRF for 3D 
model generation, and MegaPose for 6D pose estimation. The 
DL part of the pipeline uses Pytorch. 

A. Data collection and 3D model generation 

Data collection was conducted using the HoloLens 2 [33] 
to simulate typical augmented reality use case conditions. 
Videos are captured around boilers in each workstation of the 
production lines to capture different viewpoints.  

In the assembly industry, 3D models of small components, 
tools, or final products are often available. In our case, we do 
not have access to boiler 3D models at every assembly state. 
Consequently, our approach uses Neural Radiance Fields 
(NeRF) [8] to generate the required 3D models. Indeed, 

professional photogrammetry such as Agisoft Metashape [34] 
is expensive and demands more computational resources.  

NeRF is a method capable of generating new views of a 
given scene or object from an input video. For each image, 
NeRF casts a set of rays into the image space, and sampling is 
performed along these rays to select points. Then, two 
multilayer perceptrons learn the color and density of these 
points given their position and direction as input. Lastly, a 
traditional volume renderer is used to generate the color of 
rays and the loss is computed. At the end of the training, the 
weights of the NeRF contain all the scene information. Using 
these trained weights, new RGB images of the scene can be 
rendered. It is also possible to generate a 3D mesh of the scene 
by using the marching cube algorithm [35] or the Poisson 
reconstruction technique [36]. For each workstation, 
approximately 150 images are acquired, and a dedicated 
NeRF model is trained. A structure-from-motion pipeline 
called COLMAP [37] is used to create a sparse model of the 
workstation scenes containing the transform information 
(camera calibration and pose of each image with respect to the 
camera) required to train each NeRF model. We used the 
Nerfstudio library and the Nerfacto model [38]. This model 
incorporates several advanced techniques including multi-
hash encoding, proposal sampling, and scene contraction. The 
training takes around 30 minutes per workstation and the 
corresponding 3D model rendering takes 5 minutes on a GTX 
1080 GPU. An example of 3D reconstruction of a boiler 
model through the assembly line is illustrated in Fig. 5. 

B. 6D boiler pose estimation 

We can directly perform pose prediction on our data using 
MegaPose without any need for retraining. Indeed, MegaPose 
is trained on millions of synthetic scenes and a large number 
of objects. MegaPose takes as input an RGB image annotated 
with a region of interest, camera intrinsic parameters, and a 
3D model to predict the 6D pose of an unseen object. 
MegaPose is composed of a coarse pose estimator model and 
a pose refiner model. The objective of the coarse pose 
estimator is to predict an initial pose estimate. Then, the pose 
refiner iteratively updates the pose by comparing the input 
image with the rendered image. The architecture of both 
models is based on ResNet-34. For the inference, we take as 
input the test image captured from HoloLens 2 and as 
onboarding input the 3D model of the object at the current 
workstation. HoloLens 2 calibration has been performed with 
OpenCV and a chessboard pattern to obtain the camera’s 
intrinsic parameters. The inference takes around 50 seconds to 
run on our data on a GTX 1080 GPU. 

 

 
          (a) 

 
        (b) 

Fig. 4. Proposed pipeline. (a) Data processing including NeRFs models 

training and 3D models rendering for every workstation. (b) Inference with 

onboarded 3D models and annotated test images  

 

Fig. 5. Example of 3D meshes generated with NeRFs for one boiler model 

at different workstations through the assembly line. A 3D mesh is generated 

at the end of each workstation and not for every part added to the boiler. 



Several 6D pose estimation results are illustrated in Fig. 6 
(for successful pose estimations of different boiler models 
under various viewpoints) and Fig. 7 (which shows successful 
results at different assembly steps for a given boiler model). 
From left to right the figures present the test image, the edges 

of the NERF model superposed on the test image at the 
predicted pose, and finally, the entire 3D model projected at 
the predicted pose and superposed on the test image. We can 
observe that globally, the overall orientation, translation, and 
scaling factors are correct. We consider that the results 
obtained are sufficient for display purposes in an AR 
application.  

The results illustrated in Fig. 6 and Fig. 7 are obtained 
using the single hypothesis variant of MegaPose. To improve 
the results in case of ambiguous pose, it is possible to use the 
multi-hypothesis variant of MegaPose: the coarse model 
extracts the top-K hypotheses, runs K refiner iterations for 
each hypothesis, and then selects the highest refined 
hypothesis. Fig. 8 shows some examples of improvements 
obtained by considering the MegaPose multiple hypotheses 
variant. The trade-off for considering more initial hypotheses 
and running more refiner iterations is an increased 
computational cost that needs to be considered for AR 
applications. 

 

 
                                            (a) 

 
                                            (b)  

 
                                            (c) 

 
                                            (d)                                          

Fig. 6. Results of MegaPose 6D pose estimator for four different 

boilers models under different viewpoints (a) top (b) front right (c) far 
back and (d) down. From left to right, the first image is the test RGB 

image. The second image is the superposition of the test image with 

the edges of the 3D mesh projected at the predicted pose. The third 
image is the superposition of the test image with the 3D mesh 

projected at the predicted pose.  

 
                                           (a)                                        

 
                                            (b)                                          

 
                                            (c)                                          

Fig. 7. Results for one boiler model at different assembly states with 

different object poses: (a) 60 degrees (b) 45 degrees  (c) 90 degrees. 



Significant failure cases are illustrated in Fig. 9. The large 
deviations are caused by incorrect initial pose estimates from 
the coarse model. The pose refiner is trained to correct poses 
on a restricted interval and cannot correct such consequent 
pose errors. Even with multiple hypotheses, we were unable 
to obtain better results on these images. We observe that 
failures occur in two main scenarios: when only poorly 

textured parts of the boiler are visible, or when there is 
significant occlusion of the boiler's fine details. In such cases, 
the coarse pose estimator proposes a hypothesis that fits the 
external contours of the scene, but which may be highly 
different from the correct one.  

Table 1. summarizes the results obtained. We have run 
inferences on five different boiler models at five different 
assembly states. We have selected ten different viewpoints 
with respect to the object (front, front right, front left, back, 
top, down, right, left, top front, and down front). We split the 
results between a single hypothesis and K=5 multiple 
hypotheses. The obtained results demonstrate the superiority 
of the multiple hypotheses approach.  

TABLE I.  PERCENTAGES OF CORRECT ESTIMATIONS IN SINGLE AND 

5-HYPOTHESES MODES 

 
Correct percentage 

Average inference 

time 

Single hypothesis 58.1 % 50 s 

5-hypothesis 77.6 % 60 s 

 

 
 

 
                                            (a) 

 
 

 
                                            (b) 

Fig. 8. Example of results improvements from single pose hypothesis 

(images on the top) to multiple (K=5) hypothesis (images on the 

bottom). (a) The pose was reversed. (b) The predicted pose was outside 
of the region of interest. In both cases, the multiple hypothesis 

approach improves the obtained predictions. 

 
 

 
 

 

Fig. 9. Significant failure cases. 



C. Perspectives of improvement 

Despite the slight errors and the failure cases shown above, 
the pipeline is promising enough to be further enhanced and 
adapted to run within a HoloLens 2 application. Indeed, the 
6D object pose estimation is performed without training and 
the need for manual pose annotation. The pipeline works for 
our different models of boilers at different assembly steps and 
can be directly used for other objects of interest in the 
production line such as assembly components or auxiliary 
equipment. 

To improve the pipeline’s accuracy, speed, and practical 
applicability in industrial AR settings, we propose several 
areas of enhancements: 

1. Capture RGBD data with HoloLens 2 sensors. The 

additional depth channel would help solve the pose 

errors along the depth dimension. 

2. Replace NeRF with Gaussian Splatting [39], which 

offers faster training and view rendering. Gaussian 

Splatting has been successfully applied in AR for real-

time rendering of virtual content. However, it generates 

a set of 3D Gaussian primitives rather than a 3D mesh. 

This approach would require either an extra step to 

generate a 3D model from the Gaussian primitives or 

adjustments to pose estimation methods to accept 

Gaussian primitives as object-onboarding input. 

3. Incorporate zero-shot segmentation methods, such as 

those used in [40]. Segmentation would allow for more 

precise feature extraction from the exact region of 

interest in the image. 

4. Adapt and optimize the pose estimation model for 

HoloLens 2 deployment. This simplification process 

may be more straightforward using the latest state-of-

the-art methods such as [40, 41] addressing some 

limitations of MegaPose and offering improved accuracy 

and significantly faster performance. 

5. Incorporate a tracking module, such as in [42], as an 

essential component for our final industrial AR 

application. 

IV. CONCLUSION 

This research aims to make AR systems more intuitive, 
robust, and adaptable, thereby advancing the adoption of AR 
in the industry. We addressed two real-world constraints in 
our industrial AR use case: dynamic environments and objects 
with evolving appearances. These constraints emphasize the 
need for 6D pose estimation and methods capable of handling 
unseen objects. Our proposed approach, relying on HoloLens 
2, NeRF, and MegaPose, eliminates the need for object-
specific training and laborious pose labeling, making it 
adaptable to various boiler models and assembly states. 
Furthermore, this pipeline can be efficiently applied to any 
new objects relevant to industrial AR use cases, such as 
assembly tools, indicating its broader versatility. While our 
results show that the pipeline achieves reasonable pose 
estimates in many cases, there are opportunities for 
enhancement, particularly in handling challenging viewpoints 
and improving overall accuracy. We discussed promising 
improvements for future work, including the use of RGBD 
data, replacement of 2D bounding box annotation by zero-shot 
segmentation, incorporation of a tracking module, and 
simplification of the DL model for execution on HoloLens 2. 
Additionally, conducting a quantitative evaluation and a user 

study would further validate and improve the system's 
performance. 
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